JPH01104766A - Sputtering target for optical recording medium - Google Patents

Sputtering target for optical recording medium

Info

Publication number
JPH01104766A
JPH01104766A JP62259708A JP25970887A JPH01104766A JP H01104766 A JPH01104766 A JP H01104766A JP 62259708 A JP62259708 A JP 62259708A JP 25970887 A JP25970887 A JP 25970887A JP H01104766 A JPH01104766 A JP H01104766A
Authority
JP
Japan
Prior art keywords
target
phase
recording medium
film
optical recording
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62259708A
Other languages
Japanese (ja)
Inventor
Isao Ikuta
生田 勲
Yoshimi Kato
加藤 義美
Yoshihira Maeda
佳均 前田
Shoichi Nagai
正一 永井
Hisashi Ando
寿 安藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP62259708A priority Critical patent/JPH01104766A/en
Publication of JPH01104766A publication Critical patent/JPH01104766A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/243Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising inorganic materials only, e.g. ablative layers
    • G11B7/2433Metals or elements of Groups 13, 14, 15 or 16 of the Periodic Table, e.g. B, Si, Ge, As, Sb, Bi, Se or Te
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0623Sulfides, selenides or tellurides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/243Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising inorganic materials only, e.g. ablative layers
    • G11B2007/24302Metals or metalloids
    • G11B2007/24308Metals or metalloids transition metal elements of group 11 (Cu, Ag, Au)
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/243Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising inorganic materials only, e.g. ablative layers
    • G11B2007/24302Metals or metalloids
    • G11B2007/2431Metals or metalloids group 13 elements (B, Al, Ga, In)
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/243Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising inorganic materials only, e.g. ablative layers
    • G11B2007/24302Metals or metalloids
    • G11B2007/24312Metals or metalloids group 14 elements (e.g. Si, Ge, Sn)
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/243Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising inorganic materials only, e.g. ablative layers
    • G11B2007/24302Metals or metalloids
    • G11B2007/24314Metals or metalloids group 15 elements (e.g. Sb, Bi)
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/243Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising inorganic materials only, e.g. ablative layers
    • G11B2007/24302Metals or metalloids
    • G11B2007/24316Metals or metalloids group 16 elements (i.e. chalcogenides, Se, Te)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Thermal Transfer Or Thermal Recording In General (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To manufacture a ternary single-phase compound film by a direct sputtering method by forming a target into a ternary single-phase compound. CONSTITUTION:First raw materials blended so as to be formed into a composition of In3SbTe2 are charged into a graphite crucible, melted in an Ar atmosphere, and cast in a mold of the prescribed shape. Subsequently, this target is held in an Ar atmosphere at 450 deg.C for 2hr, followed by water cooling, by which the target is formed into a ternary single-phase compound of In3SbTe2. Since the directly sputtered film is formed into amorphous ternary single-phase compound, high-speed recording and erosion are made possible without initialization, and further, composition control is facilitated because this compound is of a single phase, and, as a result, the ternary single-phase compound of the desired composition can be obtained with superior reproducibility.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は光記録媒体に係り、特に、目的組成の光記録膜
を得るのに好適なスパッタリングターゲットに関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an optical recording medium, and particularly to a sputtering target suitable for obtaining an optical recording film having a desired composition.

〔従来の技術〕[Conventional technology]

従来法による光記録媒体用スパッタリングターゲットの
製造法には大別して二つある。一つの方法は目的の組成
に配合した原料を溶解し、ターゲットの形状に加工した
鋳型に鋳造し製造する方法である(以下鋳造ターゲット
と呼ぶ)。他方は原料を溶解し、インゴットとし、イン
ゴットを粉砕し粉末にしてホットプレス、あるいは、室
温でプレスする方法である(以下プレスターゲットと呼
ぶ)。これらの方法で製造したターゲットは通常の三元
単相化合物が室温で存在する場合は有効である。しかし
、室温以上に三元単相化合物が存在するInaSbTe
2.AgSbTez及びBiiGeTe7の場合は、タ
ーゲット自体が多相の混相であるため、目的組成の三元
単相化合物のアモルファス膜が作製できず、二相又は多
相の混相となり(例、In3SbTe2の場合、アモル
ファスを結晶化させX線回折で同定するとInSb+I
nTe+rnasbTezの混相となっている)、記録
、消去速度が遅くなり問題となる(特に消去速度)。
Conventional methods for producing sputtering targets for optical recording media can be broadly classified into two types. One method is to melt raw materials blended to a desired composition and cast into a mold processed into the shape of a target (hereinafter referred to as a cast target). The other method involves melting the raw materials to form an ingot, and pulverizing the ingot into powder using hot pressing or pressing at room temperature (hereinafter referred to as press target). Targets prepared by these methods are effective when conventional ternary single-phase compounds are present at room temperature. However, in InaSbTe, where a ternary single phase compound exists above room temperature,
2. In the case of AgSbTez and BiiGeTe7, since the target itself is a multiphase mixed phase, an amorphous film of a ternary single phase compound with the desired composition cannot be produced, and the film becomes a two-phase or multiphase mixed phase (for example, in the case of In3SbTe2, an amorphous When crystallized and identified by X-ray diffraction, InSb+I
nTe+rnasbTez), the recording and erasing speeds become slow (especially the erasing speed).

なぜなら、例えばIn3SbTe2の場合、従来のター
ゲットで作製した膜は(rnsb+InTe+ I n
aS b T ez)の多相のアモルファスになる。
This is because, for example, in the case of In3SbTe2, the film produced using the conventional target is (rnsb+InTe+In
aS b T ez) becomes multiphase amorphous.

従って、多相のアモルファスが核生成しInaSbTa
zに結晶化するためには界面歪のため非常に長時間かか
る(アモルファス→結晶化:消去に相当する)。
Therefore, multiphase amorphous nucleates and InaSbTa
It takes a very long time to crystallize to z due to interface strain (amorphous → crystallization: equivalent to erasure).

また、従来のターゲットは多相であるために、それぞれ
の相のスパッタレイトに差があり、ターゲットの組成と
異なった膜の組成ができ、組成制御が困難であるという
問題がある。
Furthermore, since conventional targets have multiple phases, there are differences in the sputtering rate of each phase, resulting in a film having a composition different from that of the target, making it difficult to control the composition.

〔発明が解決しようとする問題点〕 従来のターゲットは三元単相化合物が室温以上に存在す
る点について考慮されておらず、目的組成のスパッタ膜
が作製できない問題があった。
[Problems to be Solved by the Invention] Conventional targets do not take into account the fact that ternary single-phase compounds exist above room temperature, and there is a problem that a sputtered film having a desired composition cannot be produced.

本発明の目的は三元単相化合物膜を直接スパッタ法で作
製することにある。そのために、従来法とは異なったタ
ーゲットの製造を試みた。
An object of the present invention is to produce a ternary single-phase compound film by direct sputtering. To this end, we attempted to manufacture a target using a method different from conventional methods.

〔問題点を解決するための手段〕[Means for solving problems]

アモルファスからの結晶化は多くの場合、核生成、相分
離や構造緩和など複雑な過程から成る。
Crystallization from amorphous often involves complex processes such as nucleation, phase separation, and structural relaxation.

相分離による構造変化には、原子の長距離の拡散が必要
であるから拡散距離の長いもの、拡散速度(拡散定数)
の小さいものは結晶化速度が小さい。
Structural changes due to phase separation require long-distance diffusion of atoms, so long-diffusion distances and diffusion rates (diffusion constants)
The smaller the value, the lower the crystallization rate.

また、相分離によって結晶構造の著しく違った多相が核
生成するには、界面歪のため非常に長時間かかる。しか
し、結晶化相を単相にすることで長距離拡散が必要でな
くなり、結合長オーダの短距離拡散で迅速に結晶化が進
行する。この物理的要因のために、単相によって構成さ
れた光記録媒体の消去速度は相分離を伴うものに比べて
大きい。
Furthermore, it takes a very long time to nucleate multiple phases with significantly different crystal structures due to phase separation due to interfacial strain. However, by making the crystallization phase into a single phase, long-distance diffusion is no longer necessary, and crystallization proceeds quickly by short-distance diffusion on the order of the bond length. Due to this physical factor, the erasing speed of an optical recording medium constructed with a single phase is higher than that of one with phase separation.

しかし、結晶化相を単相にするためにはスパッタ後の膜
のアモルファス相が単相になっていなければならない。
However, in order to make the crystallized phase into a single phase, the amorphous phase of the film after sputtering must be made into a single phase.

この点、従来技術のターゲットでは単相にならず問題に
なっている。
In this respect, the target of the prior art does not have a single phase, which is a problem.

これを解決する手段として、以下、In3SbTe2を
例にとって説明する。現在、従来のターゲットで作製し
た多相(InTe+InSb+In3SbTe2)のア
モルファス相全体をレーザで初期化(レーザで溶融しア
モルファス化させる)している。初期化することによっ
て、多相がIn3SbTe2の単相のアモルファス相に
なる。本発明法で製造したターゲットでは初期化の工程
は全く必要としない。
A means for solving this problem will be explained below using In3SbTe2 as an example. Currently, the entire amorphous phase of a multiphase (InTe+InSb+In3SbTe2) produced using a conventional target is initialized with a laser (melted with a laser to become amorphous). By initializing, the polyphase becomes a single amorphous phase of In3SbTe2. The target manufactured by the method of the present invention does not require any initialization step.

なぜなら、直接In3SbTe2単相のアモルファスが
作製できるためである。上記目的はターゲットをIn3
SbTez単相にすることによって達成される。
This is because In3SbTe2 single-phase amorphous can be directly produced. The above purpose is to target In3
This is achieved by using SbTez single phase.

〔作用〕[Effect]

In3SbTe2三元単相化合物は平衡状態図で約42
0℃〜580℃に存在し、室温ではInTeとInSb
に相分離しIn3SbTe2は存在しない。
In3SbTe2 ternary single phase compound has approximately 42 in the equilibrium phase diagram.
Exists between 0℃ and 580℃, and at room temperature InTe and InSb
Phase separation occurs and In3SbTe2 does not exist.

実際の従来技術で製造したターゲットはX線回折結果か
らInSb+InTe、それに、わずかではあるが、I
n3SbTe2が混在している(非平衡であるため)。
According to the X-ray diffraction results, the actual target manufactured using the conventional technology is InSb+InTe, and there is a small amount of I
n3SbTe2 is mixed (because it is non-equilibrium).

本発明ターゲットのInaSbTex単相を作製するた
めの技術的手段は従来法で製造したターゲットを三元単
相化合物が存在する温度450℃に保持し、急冷(水冷
)することによって単相が得られる。また、A g S
 b T e 2及びBi+GeTe7の場合も、同じ
ように、500℃に保持後水冷することによって単相が
得られる。
The technical means for producing the InaSbTex single-phase target of the present invention is to hold the target produced by the conventional method at a temperature of 450°C where the ternary single-phase compound exists, and then rapidly cool it (water cooling) to obtain a single phase. . Also, A g S
In the case of bTe2 and Bi+GeTe7, a single phase can be obtained in the same way by holding at 500°C and cooling with water.

これらターゲットの一部をヤスリで削りとり、粉末をX
線回折し同定した結果、いずれも、三元単相化合物のみ
になっていた。また、これらのターゲットを用いスパッ
タ後の膜を結晶化させX線回折を行う同定した結果、い
ずれ三元単相化合物のみになっていた。なお、従来法で
製造したターゲットによるスパッタ膜は同様に結晶化さ
せても単相とはならず多相であった。
Scrape off some of these targets with a file and remove the powder with an X
As a result of identification by line diffraction, all of them were found to be only ternary single-phase compounds. Further, as a result of crystallizing the film after sputtering using these targets and performing X-ray diffraction to identify it, it was found that it eventually became only a ternary single-phase compound. Incidentally, even when the sputtered film using a target manufactured by the conventional method was similarly crystallized, it did not become a single phase but a multiphase film.

〔実施例〕〔Example〕

〈実施例1〉 表1は本発明法によるIn3SbTe2三元単相化合物
ターゲットの製造工程とその時め結晶構造を示す。
<Example 1> Table 1 shows the manufacturing process and crystal structure of an In3SbTe2 ternary single phase compound target according to the method of the present invention.

また、このターゲットを用いてスパッタした膜の結晶化
後の結晶構造を示す。まず、In5SbTezになるよ
う配合した原料を黒鉛ルツボに装入し、Ar雰囲気中で
溶解後、所定形状の鋳型に鋳造し成形した。鋳造成形後
のターゲットの表面をヤスリで削り、その粉末をX線回
折し、同定した結果、InSb、InTe、In3Sb
Te2の多相の混和からなっていることが明らかとなっ
た。本組成の場合、第1図に平衡状態図を示すがIn3
SbTezは室温では存在しないが、これは非平衡凝固
による出現したものと思われる。次に、このターゲット
をAr雰囲気中で450℃で二時間保持後水冷した。こ
れも上記したと同じような方法で、粉末をX線回折で同
定した。その結果、In3SbTe2の三元単相化合物
となっていた。本発明のターゲットを用い、透明ガラス
基板、または、ポリカーボネート基板上に膜厚1100
nにDCマグネトロン型スパッタリング法により成膜し
た。スパッタリング条件は基板水冷、出力100W、初
期真空度8.5  XIO″″5Pa、A、r分圧20
 mTorrである。第2図はこの膜の加熱に伴う動的
反射率変化の測定結果である。420℃で反射率は急激
に上昇する。これはアモルファスから結晶化するための
反射率の変化に相当する。表1で、スパッタ膜の結晶化
後の結晶構造の測定は、第2図の矢印■の温度まで加熱
し、その後、徐冷した膜についてX線回折した結果であ
る。すなわち、アモルファスから結晶化されつつあると
ころで徐冷したものである。これはIn3SbTe2は
高温で安定であるため、例えば、成膜後のアモルファス
がInSb、InTe、In3SbTe2の多相からな
っていた場合、第2図の矢印0点まで加熱してしまうと
、ここでは、In3SbTe2の単相になってしまって
1本発明のターゲットによる効果が不明になってしまう
ため、矢印■から徐冷した。その結果、表1に示したよ
うに、 In3SbTe2の単相になっていた。従って
、本記録媒体では高速記録、消去が可能であると予想さ
れる。なお1表2に示した従来法で製造したターゲット
を用い、第2図の矢印■まで加熱し徐去した試料をX線
回折し同定した結果、InSb、InTe。
Also shown is the crystal structure of a film sputtered using this target after crystallization. First, raw materials blended to become In5SbTez were charged into a graphite crucible, melted in an Ar atmosphere, and then cast and formed into a mold of a predetermined shape. The surface of the target after casting was sanded and the powder was subjected to X-ray diffraction and identified as InSb, InTe, In3Sb.
It became clear that it consisted of a mixture of multiple phases of Te2. In the case of this composition, the equilibrium phase diagram is shown in Figure 1, and In3
SbTez does not exist at room temperature, but this appears to be due to non-equilibrium solidification. Next, this target was held at 450° C. for 2 hours in an Ar atmosphere and then cooled with water. The powder was identified by X-ray diffraction, also in a manner similar to that described above. As a result, a ternary single phase compound of In3SbTe2 was obtained. Using the target of the present invention, a film thickness of 1100 mm was formed on a transparent glass substrate or a polycarbonate substrate.
A film was formed using a DC magnetron sputtering method. Sputtering conditions are substrate water cooling, output 100W, initial vacuum 8.5 XIO''''5Pa, A, r partial pressure 20
mTorr. FIG. 2 shows the measurement results of dynamic reflectance changes due to heating of this film. The reflectance increases rapidly at 420°C. This corresponds to a change in reflectance due to crystallization from amorphous. In Table 1, the crystal structure of the sputtered film after crystallization was measured by X-ray diffraction of the film that was heated to the temperature indicated by the arrow ■ in FIG. 2 and then slowly cooled. That is, it is slowly cooled while it is in the process of being crystallized from an amorphous state. This is because In3SbTe2 is stable at high temperatures. For example, if the amorphous film after deposition is composed of multiple phases of InSb, InTe, and In3SbTe2, if it is heated to the 0 point of the arrow in Fig. 2, here, Since a single phase of In3SbTe2 was formed and the effect of the target of the present invention became unclear, slow cooling was performed starting from the arrow (■). As a result, as shown in Table 1, a single phase of In3SbTe2 was obtained. Therefore, it is expected that high-speed recording and erasing will be possible with this recording medium. In addition, using targets manufactured by the conventional method shown in Table 1 and 2, a sample was heated to the point indicated by the arrow ■ in FIG.

In3SbTe2の多相の混和となっていた。It was a multiphase mixture of In3SbTe2.

これらのことから本発明ターゲットはきわめてすぐれて
いることが明らかとなった。第3図はIn3SbTe2
光記録媒体の静止状態における記録試験を従来法、及び
、本発明法で製造したターゲットを用い、成膜後保護層
として5iOzを1100nつけたものについて比較し
た結果である。記録条件はレーザ出力12mWで徐々に
パルス幅を長くしていった。初期状態では成膜したまま
の状態でアモルファスであり、従来法の膜はInSb。
From these results, it has become clear that the target of the present invention is extremely superior. Figure 3 shows In3SbTe2
These are the results of a comparison of a recording test of an optical recording medium in a stationary state using a conventional method and a target manufactured by the method of the present invention, with 1100n of 5iOz applied as a protective layer after film formation. The recording conditions were a laser output of 12 mW and a pulse width gradually lengthened. In the initial state, the film is amorphous as it is formed, and the film of the conventional method is InSb.

InTe、In3SbTe2の多相のアモルファスと予
想され、本発明法の膜はIn3SbTe2単相である。
It is expected to be amorphous with multiple phases of InTe and In3SbTe2, but the film of the present invention has a single phase of In3SbTe2.

両者について、まず、結晶化によって反射率は上昇し始
め、更に、パルス幅を長くすると部分的に融点をこえて
溶融し始め、記録状態となり反射率は低下する。両者を
比較すると、本発明法で作製した膜は記録、消去とも早
く、化合物が多相析出する従来法の膜が遅いことが明確
である。
For both, first, the reflectance begins to increase due to crystallization, and further, when the pulse width is lengthened, some parts exceed the melting point and begin to melt, resulting in a recording state and the reflectance decreases. Comparing the two, it is clear that the film produced by the method of the present invention is faster in both recording and erasing, whereas the film produced by the conventional method in which compounds are deposited in multiple phases is slower.

製造法のNn 2はプレスターゲットで、溶解後、−た
ん、インゴットとし、このインゴットを粉砕して粉末に
した後、480℃でホットプレスし成形したものを45
0℃で二時間保持後、水冷したものである。インゴット
、粉末、ホットプレスのそれぞれの粉末についてX線回
折した結果、いずれも、InSb、InTe、In3S
bTe2の多相の混相となっていた。これを熱処理する
ことによって、In3SbTe2の単相が得られる。N
a 3もNα2と同様で、プレスを室温で行ったもので
ある。熱処理する前の粉末はいずれもInSb。
Production method Nn 2 is a press target, after melting, it is made into an ingot, this ingot is crushed to powder, and then hot pressed and molded at 480 ° C.
After being kept at 0°C for 2 hours, it was cooled with water. As a result of X-ray diffraction of the ingot, powder, and hot pressed powder, all of them were InSb, InTe, In3S.
It was a multiphase of bTe2. By heat treating this, a single phase of In3SbTe2 is obtained. N
a3 is similar to Nα2, and was pressed at room temperature. All powders before heat treatment are InSb.

I n T e 、 In3SbTe2の多相の混和で
、熱処理することによってI naSbTe2単相が得
られる。これらNα2.Nα3のターゲットを用いて作
製したスパッタ膜をNα1と同様な実験を試みX線回折
した結果、いずれの膜もIn、3SbTe2単相になっ
ていた。
A single phase of InaSbTe2 can be obtained by heat treatment with a multiphase mixture of InTe, In3SbTe2. These Nα2. As a result of performing X-ray diffraction on the sputtered films produced using the Nα3 target in an experiment similar to that for Nα1, all films were found to have a single phase of In and 3SbTe2.

〈実施例2〉 表3は本発明法によるAgSbTe2三元単相化合物タ
ーゲットの製造工程と、その時の結晶構造を示す。
<Example 2> Table 3 shows the manufacturing process of an AgSbTe2 ternary single phase compound target by the method of the present invention and the crystal structure at that time.

製造工程、及び、X線回折による結晶構造の同定は実施
例1と同じ方法で行った。第4図はA g S b T
 e 2の平衡状態図を示す。AgSbTezは360
’C以上に存在する。従って、熱処理温度は500℃と
した。いずれの製造法でも、熱処理する前は5bxTe
3.AgSbTezの混相であるが熱処理することによ
ってAgSbTe2の単相となる。また、本発明のター
ゲットを用いることによって、スパッタ膜の結晶化後の
結晶構造もA g S b T e Z単相となる。な
お、スパッタ条件は実施例1と同じである。第5図はス
パッタ膜の加熱による動的反射率変化の測定結果を示す
The manufacturing process and the identification of the crystal structure by X-ray diffraction were performed in the same manner as in Example 1. Figure 4 shows A g S b T
The equilibrium state diagram of e2 is shown. AgSbTez is 360
'C exists more than C. Therefore, the heat treatment temperature was set at 500°C. In either manufacturing method, 5bxTe is used before heat treatment.
3. Although it is a mixed phase of AgSbTez, it becomes a single phase of AgSbTe2 by heat treatment. Further, by using the target of the present invention, the crystal structure of the sputtered film after crystallization also becomes a single phase of A g S b T e Z. Note that the sputtering conditions are the same as in Example 1. FIG. 5 shows the measurement results of dynamic reflectance changes due to heating of the sputtered film.

265℃で反射率は急激に上昇し、この温度でアモルフ
ァスから結晶化することが明らかである。
The reflectance increases rapidly at 265° C., and it is clear that the material crystallizes from amorphous at this temperature.

第6図はAgSbTez光記録媒体の静止状態における
記録試験を従来法と本発明法で比較したものである。記
録条件は実施例1と同じである。図の結果から、両者を
比較すると本発明法のターゲットで作製した膜は記録、
消去とも早く、化合物が混和析出する従来法のスパッタ
膜では遅いことが明らかである。
FIG. 6 shows a comparison of a recording test of an AgSbTez optical recording medium in a stationary state between the conventional method and the method of the present invention. The recording conditions were the same as in Example 1. From the results shown in the figure, when comparing the two, it can be seen that the film produced using the target of the method of the present invention records
It is clear that erasing is also fast, whereas conventional sputtered films in which compounds are mixed and precipitated are slow.

〈実施例3〉 表4は本発明法によるBi4GeTe7三元単相化合物
ターゲットの製造工程と、その時の結晶構造を示す。
<Example 3> Table 4 shows the manufacturing process of a Bi4GeTe7 ternary single phase compound target by the method of the present invention and the crystal structure at that time.

製造工程、及び、X線回折による結晶構造の同定は実施
例1は同じ方法で行った。熱処理温度は5oo℃で行っ
た。いずれの製造法でも熱処理する前は5bzTea、
Bi4GeTe7の混相であるが熱処理することによっ
てB i +G’e T e 7の単相となる。また、
本発明のターゲットを用いることによって、スパッタ膜
の結晶化後の結晶構造もBi4GeTe7単相となる。
The manufacturing process and the identification of the crystal structure by X-ray diffraction were the same as in Example 1. The heat treatment temperature was 50°C. In any production method, before heat treatment, 5bzTea,
Although it is a mixed phase of Bi4GeTe7, it becomes a single phase of B i +G'e Te 7 by heat treatment. Also,
By using the target of the present invention, the crystal structure of the sputtered film after crystallization also becomes Bi4GeTe7 single phase.

なお、スパッタ条件は実施例1と同じである。第7図は
スパッタ膜の加熱による動的反射率変化の測定結果を示
す。
Note that the sputtering conditions are the same as in Example 1. FIG. 7 shows the measurement results of dynamic reflectance changes due to heating of the sputtered film.

165℃で反射率は急激に上昇し、この温度でアモルフ
ァスから結晶化することが明らかである。
The reflectance increases rapidly at 165° C., and it is clear that the material crystallizes from amorphous at this temperature.

第8図はBi4GeTe7光記録媒体の静止状態におけ
る記録試験を従来法と本発明法で比較したものである。
FIG. 8 shows a comparison of a recording test of a Bi4GeTe7 optical recording medium in a stationary state between the conventional method and the method of the present invention.

図の結果から、両者を比較すると本発明法のターゲット
で作製した膜は記録、消去とも早く、化合物が混相析出
する従来法のスパッタ膜では遅いことが明らかである。
From the results shown in the figure, when comparing the two, it is clear that the film produced using the target of the present invention is faster in both recording and erasing, whereas the sputtered film produced using the conventional method in which a compound is precipitated in a mixed phase is slower.

〈実施例4〉 表5は従来法と本発明法によって製造したターゲットで
スパッタ暎を作製し、膜の組成を分析し比較したもので
ある。
<Example 4> Table 5 shows a comparison of sputtering films produced using targets produced by the conventional method and the method of the present invention, and the compositions of the films analyzed.

なお、スパッタ条件は実施例1と同じである。Note that the sputtering conditions are the same as in Example 1.

従来法で作製した膜の組成はターゲット組成と大巾に異
なる。これは多相の混相となっているため、それぞれの
相のスパッタ1 イトが異なるため、組成変動する。この点、本発゛明法
によれば単相であるために、組成変動を±0,5 %内
におさえることができる。また、スパッタを何回くり返
しても再現性よく組成制御することができた。
The composition of the film produced by the conventional method differs greatly from the target composition. Since this is a multi-phase mixed phase, the sputtering rate of each phase is different, so the composition varies. In this regard, according to the method of the present invention, since it is a single phase, compositional fluctuations can be suppressed within ±0.5%. Furthermore, the composition could be controlled with good reproducibility no matter how many times sputtering was repeated.

〈実施例5〉 本発明によるスパッタリングターゲットは三元化合物の
単相よりなるが、化合物を形成せず相分離(例えば共晶
合金)している合金系ターゲットについて、以下に記述
する方式で単相化を試みた。
<Example 5> The sputtering target according to the present invention is composed of a single phase of a ternary compound, but an alloy target that does not form a compound and undergoes phase separation (for example, a eutectic alloy) is treated with a single phase by the method described below. I tried to change it.

In−Sb二元系について(InSb+Sb)と(In
Sb+In)二相共晶合金ターゲットでスパッタリング
を行うと作製した膜組成はターゲット組成から大きく異
なったものになった。そこで電子ビーム(5KW)を用
いて両ターゲット表面を溶融急冷したところ2表面層(
深さ2+m+)°はアモルファス相になっていることが
分った。このターゲットを用いてスパッタリングを行っ
たところ、ターゲット組成のスパッタ合金膜が得られた
。本発明は、上記の方式を用いると、化合物以外の組成
範囲にも適用できる。更に、ターゲット表層をアモルフ
ァス化する手段は、電子ビーム、高出力レーザ光線、中
性子照射、高塑性加工、超音波などが考えられる。その
他に、予めターゲットを構成する合金を溶湯急冷法、ス
パッタリング、真空蒸着法などでアモルファス化した後
、ターゲットを構造する手段も有効であった。
Regarding the In-Sb binary system (InSb+Sb) and (In
When sputtering was performed using a Sb+In) two-phase eutectic alloy target, the composition of the film produced was significantly different from the target composition. Therefore, when we melted and rapidly cooled both target surfaces using an electron beam (5KW), two surface layers (
It was found that the amorphous phase was present at a depth of 2+m+)°. When sputtering was performed using this target, a sputtered alloy film having the target composition was obtained. The present invention can be applied to composition ranges other than compounds by using the above method. Furthermore, possible means for making the target surface layer amorphous include electron beams, high-power laser beams, neutron irradiation, high plasticity processing, and ultrasonic waves. In addition, it has also been effective to structure the target after the alloy constituting the target is made amorphous by molten metal quenching, sputtering, vacuum evaporation, or the like.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、直接スパッタされた膜が三元単相化合
物のアモルファスとなるため、従来のように初期化しな
くとも高速記録、消去が可能であり、単相であるため、
組成制御が容易で再現性よく目的組成の三元単相化合物
が得られる。
According to the present invention, since the directly sputtered film becomes an amorphous ternary single-phase compound, high-speed recording and erasing is possible without initialization as in the conventional case, and since it is single-phase,
The composition can be easily controlled and a ternary single-phase compound having the desired composition can be obtained with good reproducibility.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例のIn3SbTezの平衡状
態図、第2図はIn3SbTe2の動的反射重度化を示
す図、第3図は従来法及び本発明法のターゲットで作製
したスパッタ膜の静上記録試験結果を示す図、第4図は
AgSbTez平衡状態図、第5図はA g S b 
T e 2の動的反射率変化を示す図、第6図は従来法
及び本発明法のターゲットで作製したスパッタ膜の静上
記録試験を示す図、第7図はBi4GeTe7の動的反
射率変化を示す図、第8図は従来法と本発明法のターゲ
ットで作T2図 第3層 o     o、t      r      to 
    to。 畠きL≦みハ゛ルヌヤ晶(ガ5) vJ4包 箪 5図 1屋(C) 下60 0    0、I     /      10   
 ’/θO書5込みハ・ル人輻(μS) 第70 ’、Apr’C) 葛8回 OOl    l     10    lσθ書でl
さみハ・ル又ヤ急Cμδ)
Figure 1 is an equilibrium state diagram of In3SbTez according to an embodiment of the present invention, Figure 2 is a diagram showing the dynamic reflection intensity of In3SbTe2, and Figure 3 is a diagram of sputtered films produced using targets of the conventional method and the present invention. Figures showing static recording test results, Figure 4 is AgSbTez equilibrium state diagram, Figure 5 is AgSb
Figure 6 shows the dynamic reflectance change of T e 2, Figure 6 shows the static recording test of sputtered films prepared using targets of the conventional method and the present invention, and Figure 7 shows the dynamic reflectance change of Bi4GeTe7. Figure 8 is a diagram showing the target of the conventional method and the method of the present invention.
to. Hatakeki L≦Mi Harunuya Akira (Ga 5) vJ4 packaging 5 figure 1 shop (C) lower 60 0 0, I / 10
'/θO writing 5 included ha l human traffic (μS) 70th ', Apr'C) Kuzu 8th OOl l 10 lσθ writing l
Samiha Lu Mataya Kyū Cμδ)

Claims (1)

【特許請求の範囲】 1、相変化を利用して可逆的に記録、消去を行う光記録
媒体を作製するスパッタリングターゲットにおいて、 三元単相化合物からなることを特徴とする光記録媒体用
スパッタリングターゲット。 2、前記光記録媒体の前記三元単相化合物が室温以上に
存在することを特徴とする特許請求の範囲第1項記載の
光記録媒体用スパッタリングターゲット。 3、前記光記録媒体がIn_3SbTe_2からなるこ
とを特徴とする特許請求の範囲第1項記載の光記録媒体
用スパッタリングターゲット。 4、前記光記録媒体がAgSbTe_2からなることを
特徴とする特許請求の範囲第1項記載の光記録媒体用ス
パッタリングターゲット。 5、前記光記録媒体がBi_4GeTe_7からなるこ
とを特徴とする特許請求の範囲第1項記載の光記録媒体
用スパッタリングターゲット。
[Claims] 1. A sputtering target for producing an optical recording medium that performs reversible recording and erasing using phase change, characterized by being made of a ternary single-phase compound. . 2. The sputtering target for an optical recording medium according to claim 1, wherein the ternary single phase compound of the optical recording medium exists at a temperature higher than room temperature. 3. The sputtering target for an optical recording medium according to claim 1, wherein the optical recording medium is made of In_3SbTe_2. 4. The sputtering target for an optical recording medium according to claim 1, wherein the optical recording medium is made of AgSbTe_2. 5. The sputtering target for an optical recording medium according to claim 1, wherein the optical recording medium is made of Bi_4GeTe_7.
JP62259708A 1987-10-16 1987-10-16 Sputtering target for optical recording medium Pending JPH01104766A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62259708A JPH01104766A (en) 1987-10-16 1987-10-16 Sputtering target for optical recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62259708A JPH01104766A (en) 1987-10-16 1987-10-16 Sputtering target for optical recording medium

Publications (1)

Publication Number Publication Date
JPH01104766A true JPH01104766A (en) 1989-04-21

Family

ID=17337834

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62259708A Pending JPH01104766A (en) 1987-10-16 1987-10-16 Sputtering target for optical recording medium

Country Status (1)

Country Link
JP (1) JPH01104766A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01162247A (en) * 1987-12-18 1989-06-26 Nippon Telegr & Teleph Corp <Ntt> Rewriting type phase transfer optical recording medium
US5095479A (en) * 1990-08-13 1992-03-10 Ricoh Company, Ltd. Optical information recording medium
US5418030A (en) * 1992-06-12 1995-05-23 Tdk Corporation Optical recording medium and method for making
JP2010245238A (en) * 2009-04-03 2010-10-28 Promatic Kk Photoelectric conversion device and method of manufacturing the same, as well as method of manufacturing sulfide sintered compact target

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01162247A (en) * 1987-12-18 1989-06-26 Nippon Telegr & Teleph Corp <Ntt> Rewriting type phase transfer optical recording medium
US5095479A (en) * 1990-08-13 1992-03-10 Ricoh Company, Ltd. Optical information recording medium
US5418030A (en) * 1992-06-12 1995-05-23 Tdk Corporation Optical recording medium and method for making
JP2010245238A (en) * 2009-04-03 2010-10-28 Promatic Kk Photoelectric conversion device and method of manufacturing the same, as well as method of manufacturing sulfide sintered compact target

Similar Documents

Publication Publication Date Title
EP0184412B1 (en) Alloy having variable spectral reflectance and information recording material making use of the same
JP2003160826A (en) Silver-alloy sputtering target for forming reflective layer on optical recording medium
JPH01104766A (en) Sputtering target for optical recording medium
JPH0733262B2 (en) Method for manufacturing piezoelectric element utilizing crystallization of spherulites from amorphous
JP2002038258A (en) Sputtering target
Clawson Crystal morphology of melt grown InSb films
JPH01215971A (en) Production of sputtering target and production of optical recording medium
JPS61124564A (en) Formation of thin film
JPH0583630B2 (en)
JPH01136968A (en) Sputtering target for optical recording medium
JPS6253585B2 (en)
JPS5918189A (en) Preparation of single crystal of piezoelectric material
JPS61190028A (en) Alloy having variable spectral reflectance and recording material
JPH02228434A (en) Manufacture of hydrogen storage alloy
JPH01220236A (en) Rewritable phase change type optical memory medium
JP2005290404A (en) High-strength sputtering target
JPS61190033A (en) Alloy having variable spectral reflectance and recording material
JPS62297466A (en) Preparation of thin film
JPH01104767A (en) Sputtering target
JP2006137962A (en) Method for producing target for forming phase change recording film with which presputtering time is shortened
JPS61190030A (en) Alloy having variable spectral reflectance and recording material
JPH0582465B2 (en)
JPH0582466B2 (en)
JPH01320291A (en) Production of single crystal thin film
JPH09241834A (en) Sputtering target made of cast al alloy