JPH01101440A - Detecting device for road surface friction coefficient - Google Patents

Detecting device for road surface friction coefficient

Info

Publication number
JPH01101440A
JPH01101440A JP62260457A JP26045787A JPH01101440A JP H01101440 A JPH01101440 A JP H01101440A JP 62260457 A JP62260457 A JP 62260457A JP 26045787 A JP26045787 A JP 26045787A JP H01101440 A JPH01101440 A JP H01101440A
Authority
JP
Japan
Prior art keywords
friction coefficient
road surface
vehicle
surface friction
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62260457A
Other languages
Japanese (ja)
Inventor
Shoichi Kamimura
上村 昭一
Kenichi Watanabe
憲一 渡辺
Akihiko Miyoshi
三好 晃彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP62260457A priority Critical patent/JPH01101440A/en
Priority to EP88117133A priority patent/EP0312096B1/en
Priority to US07/260,890 priority patent/US4951198A/en
Priority to DE8888117133T priority patent/DE3877118T2/en
Publication of JPH01101440A publication Critical patent/JPH01101440A/en
Pending legal-status Critical Current

Links

Landscapes

  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)

Abstract

PURPOSE:To suppress variation in estimated value of a road surface friction coefficient in the malfunction of a sensor, etc., by calculating the road surface friction coefficient according to a driving state and converting the arithmetic value into an output value having a specific-width blind sector. CONSTITUTION:When a vehicle turns, a friction coefficient arithmetic means 39 calculates the road surface friction coefficient mu according to the stability factor of the vehicle stored in a storage means 31 and variables such as the lateral acceleration of the vehicle gravity center, front and rear steering angles, vehicle speed, etc., detected by a motion state detecting means 51, a steering state detecting means 37, and a vehicle speed detecting means 53. Then an output converting means 40 converts the output of said means 39 into the output having the specific-width blind sector. Consequently, impulsive disturbance due to the malfunction of the sensor, etc., is removed, so the variation in the estimated value of the road surface friction coefficient mu is suppressed and smoothed.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、車両のタイヤと路面との間の路面摩擦係数を
検出する摩擦係数検出装置に係り、特に車両の動特性に
応じた路面摩擦係数を検出するようにしたものに関する
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a friction coefficient detection device that detects a road surface friction coefficient between a vehicle tire and a road surface, and particularly relates to a friction coefficient detection device that detects a road surface friction coefficient between a vehicle tire and a road surface. Regarding detecting coefficients.

(従来の技術) 従来より、車両のタイヤと路面との間の路面摩擦係数を
検出する摩擦係数検出装置として、例えば特開昭59−
148769号公報に開示される如く、前輪の舵角に応
じて路面摩擦係数の値を複数個予測し、該予測された摩
擦係数にそれぞれ対応する横加速度を演算して、該演算
された横加速度と実測された横加速度とを比較し、最も
近い値に対応する予測摩擦係数を選択することにより、
実際の摩擦係数を推定し、この推定した摩擦係数を用い
て旋回走行時の後輪舵角を制御しようとするものが知ら
れている。
(Prior Art) Conventionally, as a friction coefficient detection device for detecting a road surface friction coefficient between a vehicle tire and a road surface, for example, Japanese Patent Application Laid-Open No. 1986-
As disclosed in Japanese Patent No. 148769, a plurality of values of the road surface friction coefficient are predicted according to the steering angle of the front wheels, lateral acceleration corresponding to each of the predicted friction coefficients is calculated, and the calculated lateral acceleration is calculated. By comparing the actual lateral acceleration and selecting the predicted friction coefficient corresponding to the closest value,
A known vehicle attempts to estimate an actual friction coefficient and use this estimated friction coefficient to control the rear wheel steering angle during cornering.

(発明が解決しようとする問題点) しかしながら、通常、車両の制御装置には各種の装置類
の作動や走行条件による外乱が加わり、また、各センサ
類の検出値にもバラツキがある。
(Problems to be Solved by the Invention) However, normally, disturbances due to the operation of various devices and driving conditions are added to a vehicle control device, and there are also variations in the detected values of each sensor.

さらに、タイヤに対する路面のグリップ力は断続的に大
きく変動しているので、車両の横加速度の変動も大きい
ことが多い。かかる場合、路面摩擦係数の演算値の誤差
、特にその変動が大きくなる。
Furthermore, since the grip force of the road surface on the tires fluctuates greatly intermittently, the lateral acceleration of the vehicle often fluctuates greatly. In such a case, the error in the calculated value of the road surface friction coefficient, especially its fluctuation, becomes large.

したがって、上記従来のものでは、そのような因子が生
じる条件下で十分安定した制御を行うことができないと
いう問題がある。
Therefore, the conventional method described above has a problem in that it is not possible to perform sufficiently stable control under conditions where such factors occur.

本発明は斯かる点に鑑みてなされたものであり、その目
的は、路面摩擦係数の演算値を平準化する手段を講する
ことにより、旋回走行時等の路面摩擦係数の演算値の変
動を滑らかにして、円滑な走行制御を行うに有用な路面
摩擦係数検出装置を提供することにある。
The present invention has been made in view of the above, and its purpose is to reduce fluctuations in the calculated value of the road surface friction coefficient during cornering, etc. by providing a means for leveling the calculated value of the road surface friction coefficient. It is an object of the present invention to provide a road surface friction coefficient detection device that is useful for smoothing and performing smooth running control.

(問題点を解決するための手段) 上記目的を達成するため本発明の解決手段は、第1図に
示すように、車両のタイヤと路面との間の摩擦係数μを
検出する路面摩擦係数検出装置を対象とする。
(Means for Solving the Problems) To achieve the above object, the present invention provides a road surface friction coefficient detection system that detects the friction coefficient μ between the tires of a vehicle and the road surface, as shown in FIG. Targeting equipment.

そして、車両重心点の横加速度等の車両の運動状態を検
出する運動状態検出手段51と、ハンドル舵角などの操
舵状態を検出する操舵状態検出手段37と、車両の走行
速度Vを検出する車速検出手段53と、車両のスタビリ
テイファクタを記憶する記憶手段31と、上記運動状態
検出手段51、操舵状態検出手段37および車速検出手
段53の検出値と記憶手段31の記憶内容とに応じて路
面摩擦係数μを演算する摩擦係数演算手段39と、該摩
擦係数演算手段39での出力を受け、その値を所定幅の
不感帯を有する出力に変換する出力変換手段40とを設
ける構成としたものである。
A motion state detection means 51 detects the motion state of the vehicle such as the lateral acceleration of the center of gravity of the vehicle, a steering state detection means 37 detects the steering state such as the steering angle, and a vehicle speed detects the running speed V of the vehicle. A detection means 53, a storage means 31 for storing the stability factor of the vehicle, and a road surface according to the detected values of the motion state detection means 51, the steering state detection means 37, and the vehicle speed detection means 53 and the stored contents of the storage means 31. The friction coefficient calculation means 39 calculates the friction coefficient μ, and the output conversion means 40 receives the output from the friction coefficient calculation means 39 and converts the value into an output having a dead zone of a predetermined width. be.

(作用) 以上の構成により、本発明では、車両の旋回走行時等に
おいて、記憶手段31に記憶された車両のスタビリテイ
ファクタと、運動状態検出手段51、操舵状態検出手段
37および車速検出手段53で検出された車両重心点の
横加速度、前後輪舵角および車速などの変数とに応じて
、摩擦係数演算手段39により、路面摩擦係数μが算出
される。
(Function) With the above configuration, in the present invention, when the vehicle is turning, etc., the stability factor of the vehicle stored in the storage means 31, the motion state detection means 51, the steering state detection means 37, and the vehicle speed detection means 53 can be used. A road surface friction coefficient μ is calculated by the friction coefficient calculating means 39 according to variables such as the lateral acceleration of the vehicle center of gravity, the front and rear wheel steering angles, and the vehicle speed detected in the above.

そして、出力変換手段40により、上記摩擦係数演算手
段39の出力が所定幅の不感帯を有する出力に変換され
る。その結果、センサ類の誤動作等による突発的な外乱
が除去されるので、路面摩擦係数μの推定値の変動が抑
制され平準化される。
Then, the output converting means 40 converts the output of the friction coefficient calculating means 39 into an output having a dead zone of a predetermined width. As a result, sudden disturbances caused by malfunctions of sensors and the like are removed, so fluctuations in the estimated value of the road surface friction coefficient μ are suppressed and equalized.

よって、このように出力変換された路面摩擦係数μ値を
車両の旋回走行制御等に利用することにより、例えば圧
雪路の旋回走行等においても円滑な走行制御を行うこと
ができる。
Therefore, by utilizing the road surface friction coefficient μ value output-converted in this way for turning control of the vehicle, it is possible to perform smooth driving control even when turning, for example, on a snow-packed road.

(実施例) 以下、本発明の実施例について、第2図以下の図面に基
づき説明する。
(Example) Hereinafter, an example of the present invention will be described based on the drawings from FIG. 2 onwards.

第2図は、本発明を適用した車両の4輪操舵装置の全体
構成を示し、2,2は車両の左右の前輪、3.3は左右
の後輪である。5は上記前輪2,2の舵角δFを調節す
る前輪操舵機構である。該前輪操舵機構5は、前輪2,
2を回転自在に支持するとともにジヨイント部6aを介
して車体に支持された左右一対のナックル部材6,6と
、該ナックル部材6,6のナックルアーム部6b、6b
にそれぞれ一端が連結された左右一対のタイロッド8.
8と、該一対のタイロッド8.8の各他端同士をそれぞ
れ両端で連結してなるラック軸9と、ハンドル4の回転
をピニオンおよびラック(いずれも図示せず)を介して
上記ラック軸9の左右の移動に変換させるステアリング
ギヤ機構10とを主要部材として構成されている。
FIG. 2 shows the overall configuration of a four-wheel steering system for a vehicle to which the present invention is applied, where 2 and 2 are left and right front wheels of the vehicle, and 3.3 are left and right rear wheels of the vehicle. Reference numeral 5 denotes a front wheel steering mechanism that adjusts the steering angle δF of the front wheels 2, 2. The front wheel steering mechanism 5 includes front wheels 2,
A pair of left and right knuckle members 6, 6 which rotatably support 2 and are supported by the vehicle body via a joint portion 6a, and knuckle arm portions 6b, 6b of the knuckle members 6, 6.
A pair of left and right tie rods 8. with one end connected to each other.
8, a rack shaft 9 formed by connecting the other ends of the pair of tie rods 8.8 to each other at both ends, and a rack shaft 9 that controls the rotation of the handle 4 via a pinion and a rack (none of which are shown). The main component is a steering gear mechanism 10 that converts the left and right movement.

そして、該前輪操舵機構5において、ハンドル4が一定
の操舵角θで回転されると、ステアリングギヤ機構10
によりラック軸9を介してタイロッド8.8が左右方向
に移動し、その移動により、ナックル部材6,6がジヨ
イント部5a、5aの回りにそれぞれ回動させられて、
前輪2.2がフロントギヤ比Z(−θ/δF)に応じた
前輪舵角δFで転舵させられるようになされている。
In the front wheel steering mechanism 5, when the handle 4 is rotated at a constant steering angle θ, the steering gear mechanism 10
The tie rod 8.8 moves in the left-right direction via the rack shaft 9, and due to this movement, the knuckle members 6, 6 are rotated around the joint parts 5a, 5a, respectively.
The front wheels 2.2 are steered at a front wheel steering angle δF corresponding to a front gear ratio Z (-θ/δF).

また、上記゛後輪3,3側には、左右の後輪3゜3を上
記前輪操舵機構5による前輪2.2の転舵に伴なって転
舵させるための後輪操舵機構12が設けられている。該
後輪操舵機構12は、上記前輪操舵機構5と同じ機能を
有する各要素、つまり一対のナックル部材13.13と
、タイロッド14.14と、ラック軸15とを有すると
ともに、該ラック軸15のラック部15aに先端のピニ
オン部16aで噛合するピニオン軸16と、該ピニオン
軸16の他端に取付けられた傘歯車18と、該傘歯車1
8に噛合する傘歯車19を出力軸に取付けてなるパルス
モータ20とを主要部材として構成されている。
Furthermore, a rear wheel steering mechanism 12 is provided on the rear wheels 3, 3 side for steering the left and right rear wheels 3.3 in accordance with the steering of the front wheels 2.2 by the front wheel steering mechanism 5. It is being The rear wheel steering mechanism 12 has elements having the same functions as the front wheel steering mechanism 5, that is, a pair of knuckle members 13.13, a tie rod 14.14, and a rack shaft 15. A pinion shaft 16 that meshes with the rack portion 15a at the pinion portion 16a at the tip thereof, a bevel gear 18 attached to the other end of the pinion shaft 16, and the bevel gear 1
The main component is a pulse motor 20 having a bevel gear 19 attached to an output shaft that meshes with the pulse motor 8.

そして、上記前輪操舵機構5による前輪舵角δFの調節
に応じて、後述の制御ユニット21によりパルスモータ
20が駆動されると、パルスモータ20の回転駆動力が
2つの傘歯車19.18、ビニオン部16aおよびラッ
ク部15aを介してラック軸15の左右方向の運動に変
換されるようになされている。
When the pulse motor 20 is driven by the control unit 21 (described later) in accordance with the adjustment of the front wheel steering angle δF by the front wheel steering mechanism 5, the rotational driving force of the pulse motor 20 is applied to the two bevel gears 19, 18, and the pinion. The movement is converted into a horizontal movement of the rack shaft 15 via the portion 16a and the rack portion 15a.

さらに、上記後輪操舵機構12のラック軸15には、そ
の車幅方向の往復運動をアシストするためのパワーシリ
ンダ23が配設されていて、該パワーシリンダ23は、
ラック軸15に一体的に取付けられたピストン23aと
、該ピストン23aによって仕切られる2つの油圧室2
3 b、  23 cとを有している。また、該油圧室
23b、23cはそれぞれ油圧通路24.25を介して
コントロールバルブ26に連通している。該コントロー
ルバルブ26は、油供給通路27および油戻し通路28
を介してポンプ駆動用モータ30により回転駆動される
油圧ポンプ29に連通されている。
Further, a power cylinder 23 is disposed on the rack shaft 15 of the rear wheel steering mechanism 12 to assist in its reciprocating movement in the vehicle width direction.
A piston 23a integrally attached to the rack shaft 15, and two hydraulic chambers 2 partitioned by the piston 23a.
3 b and 23 c. Further, the hydraulic chambers 23b and 23c communicate with a control valve 26 via hydraulic passages 24 and 25, respectively. The control valve 26 is connected to an oil supply passage 27 and an oil return passage 28.
The hydraulic pump 29 is connected to a hydraulic pump 29 which is rotationally driven by a pump drive motor 30.

上記コントロールバルブ26は、ピニオン軸16の回転
方向に応じてパワーシリンダ23の油圧室23b、23
cに対する油圧の供給を制御するものである。すなわち
、パルスモータ20の回転駆動力により、後輪3.3を
転舵すべく、傘歯車18.19およびピニオン軸16を
介してラック軸15が車幅方向に移動させられるとき、
後輪3゜3の転舵方向に応じて、油圧供給通路27およ
び油圧戻し通路28と、各油圧通路24.25と、各油
圧室23b、23cとの連通関係を切換え、パワーシリ
ンダ23の油圧室23b、23Cに対する圧油の給排に
より、ラック軸15の車幅方向の移動を助成し、後輪3
,3を所定の後輪舵角−δRだけ転舵させるようになさ
れている。
The control valve 26 controls the hydraulic chambers 23b, 23 of the power cylinder 23 depending on the rotational direction of the pinion shaft 16.
This controls the supply of hydraulic pressure to c. That is, when the rack shaft 15 is moved in the vehicle width direction via the bevel gear 18.19 and the pinion shaft 16 to steer the rear wheels 3.3 by the rotational driving force of the pulse motor 20,
Depending on the steering direction of the rear wheels 3°3, the communication relationship between the hydraulic supply passage 27, the hydraulic return passage 28, each hydraulic passage 24, 25, and each hydraulic chamber 23b, 23c is switched, and the hydraulic pressure of the power cylinder 23 is changed. By supplying and discharging pressure oil to and from the chambers 23b and 23C, movement of the rack shaft 15 in the vehicle width direction is assisted, and the rear wheel 3
, 3 by a predetermined rear wheel steering angle -δR.

次に、21は、上記パルスモータ20およびポンプ駆動
用モータ30を制御する制御ユニットであって、該制御
ユニット21には、下記各センサ51〜53の信号が入
力されている。すなわち、51は車両の旋回走行時等に
おいて車体に作用する車幅方向の力つまり横力から横加
速度avを検出する運動状態検出手段としての横力セン
サ、52はハンドル舵角θを検出するための舵角センサ
、53は左方の前輪2の回転数に基づき車速Vを検出す
る車速検出手段としての車速センサである。
Next, 21 is a control unit that controls the pulse motor 20 and the pump drive motor 30, and signals from the following sensors 51 to 53 are input to the control unit 21. That is, 51 is a lateral force sensor as a motion state detection means for detecting lateral acceleration av from the force in the vehicle width direction, that is, lateral force, acting on the vehicle body when the vehicle is turning, etc., and 52 is for detecting the steering wheel steering angle θ. The steering angle sensor 53 is a vehicle speed sensor serving as vehicle speed detection means for detecting the vehicle speed V based on the rotation speed of the left front wheel 2.

そして、上記制御ユニット21は、第3図に示すように
、車両の重11m5車両の重心点と前輪軸との距離a1
車両の重心点と後車輪との距離b1標準状態における前
輪および後輪のタイヤコーナリングパワーKF、KR,
車両のヨー慣性モーメントエなどの車両のスタビリテイ
ファクタ、後述の路面摩擦係数μの演算式、転舵比特性
などの制御に必要なデータを記憶する記憶手段としての
記憶部31と、外部スイッチSWの切換えを検知し穂、
車両の横滑り角βが零の制御を行う側になっているか否
かを判別するとともに、その判別結果に応じて上記記憶
部31に設定されている路面摩擦係数μの演算式を切換
える切換器32と、該切換器32の判別結果および選択
された路面摩擦係数μの演算式に基づき上記各センサ類
の出力に応じて、路面とタイヤとの間の路面摩擦係数μ
を演算する摩擦係数演算部33と、該摩擦係数演算部3
3の出力に応じて記憶部31に記憶された転舵特性から
適正な転舵特性を選択する転舵比特性選択部34と、該
転舵比特性選択部34の選択された転舵比哀に基づき転
舵比Rつまり後輪舵角δRを演算する後輪舵角演算部3
5と、該後輪舵角演算部35の出力を受け、上記パルス
モータ20およびポンプ駆動用モータ30を駆動するた
めのパルス信号を形成するパルス信号形成部36と、該
パルス信号形成部36から得られたパルス信号に基づい
てパルスモータ20およびポンプ駆動用30を駆動する
駆動部MCとで構成されている。上記舵角センサ52お
よび後輪舵角演算部35により、前後輪舵角などの操舵
状態を検出する操舵状態検出手段37が構成されている
As shown in FIG. 3, the control unit 21 controls the distance a1 between the center of gravity of the vehicle and the front wheel axle.
Distance between the center of gravity of the vehicle and the rear wheels b1 Tire cornering power of the front and rear wheels in standard conditions KF, KR,
A storage unit 31 as a storage means for storing data necessary for control such as vehicle stability factors such as the vehicle's yaw moment of inertia, a calculation formula for the road surface friction coefficient μ (described later), and steering ratio characteristics, and an external switch SW. Detects the switching of the ears,
A switch 32 that determines whether or not the side slip angle β of the vehicle is controlled to be zero, and switches the calculation formula for the road surface friction coefficient μ set in the storage unit 31 according to the determination result. The road surface friction coefficient μ between the road surface and the tires is determined according to the outputs of the above-mentioned sensors based on the determination result of the switching device 32 and the calculation formula for the selected road surface friction coefficient μ.
a friction coefficient calculation unit 33 that calculates the friction coefficient calculation unit 3;
a steering ratio characteristic selection section 34 that selects an appropriate steering characteristic from the steering characteristics stored in the storage section 31 according to the output of the steering ratio characteristic selection section 34; A rear wheel steering angle calculation unit 3 that calculates the steering ratio R, that is, the rear wheel steering angle δR based on
5, a pulse signal forming section 36 that receives the output of the rear wheel steering angle calculation section 35 and forms pulse signals for driving the pulse motor 20 and the pump drive motor 30; It is comprised of a drive unit MC that drives a pulse motor 20 and a pump drive 30 based on the obtained pulse signal. The steering angle sensor 52 and the rear wheel steering angle calculating section 35 constitute a steering state detection means 37 that detects the steering state such as the front and rear wheel steering angles.

ここに、本発明の特徴として、上記記憶部31には、以
下のようにして定められた路面摩擦係数μの演算式が設
定されている。
Here, as a feature of the present invention, an arithmetic expression for the road surface friction coefficient μ determined as follows is set in the storage unit 31.

すなわち、第4図に示すように、車両の旋回時において
タイヤに働く力の釣り合いから、下記に示す基本的な運
動方程式 %式%(1) [2) ただし、 ■(β+γ) −ay      (5)(
ここで、FF、FRはそれぞれ前輪2.後輪3のコーナ
リングフォース、γはヨーレイトである)を得る。上記
(1)〜(5)式からFF、FR,β、γ。
That is, as shown in Fig. 4, from the balance of the forces acting on the tires when the vehicle turns, the basic equation of motion is expressed as follows: (1) [2] However, ■(β+γ) -ay (5 )(
Here, FF and FR are the front wheels 2. The cornering force of rear wheel 3 (γ is the yaw rate) is obtained. From the above formulas (1) to (5), FF, FR, β, and γ.

テを消去すると、 [m・I−V’−s”+ 2 p−V (m (a”K
 F + b”KR) +I−K)・s + 4 c’
KF−KR・μ’ −2u−m−V’ (a−Kp−b
−KR)] aY− 2u十V’ (KF・δF + KR・6 R)・s’
+ 4 μ’V・KF−KR−c(b・δF+a・δR
)・s + 4 μ’V’KF・KR−C(δF−δR
)             [6)を得る(ただし、
Sはラプラス演算子、K−Kt=+kRSc−a+b)
If we eliminate Te, we get [m・I−V'−s”+2 p−V (m (a”K
F + b"KR) +I-K)・s + 4 c'
KF-KR・μ'-2u-m-V' (a-Kp-b
-KR)] aY- 2u 10V' (KF・δF + KR・6 R)・s'
+ 4 μ'V・KF−KR−c(b・δF+a・δR
)・s + 4 μ'V'KF・KR−C(δF−δR
) [6) is obtained (however,
S is Laplace operator, K-Kt=+kRSc-a+b)
.

ここで、Sの二乗項は過渡応答の高周波成分であって、
通常無視し得るので零とおき、上式の両辺をμで除する
ことにより、 u= [V (m (a”KF+b’KR) + I・
K1−5−m−V”(a−KF−b−KR) ] ay
/2 c−KrニーKRiV (b4F+a・6R)・
S+V’(δF−δR)−c−avl        
  (刀を得る。
Here, the square term of S is the high frequency component of the transient response,
Since it can usually be ignored, we set it to zero, and by dividing both sides of the above equation by μ, we get u= [V (m (a''KF+b'KR) + I・
K1-5-m-V” (a-KF-b-KR)] ay
/2 c-Kr knee KRiV (b4F+a・6R)・
S+V'(δF-δR)-c-avl
(Get a sword.

また、特に4輪操舵などでβを零とする制御を行うよう
なものでは、上記方程式(1)〜(5)においてβ−0
とすれば、より簡単な式、 μmm−aY/2 1KF・δF+KR−δR−(av
/ V’)  (a−KF−b−KR) l     
(8)、を得る。
In addition, in the above equations (1) to (5), especially when controlling to make β zero, such as four-wheel steering,
Then, a simpler formula, μmm-aY/2 1KF・δF+KR-δR-(av
/ V') (a-KF-b-KR) l
(8).

本実施例では、4輪操舵で横滑り角βが零となる制御を
行っており、上記(8)式をさらに変形して、μmm−
aY/ ((KF +R−KR)(θ/Z)−(ay/
V’)(a−KF−b−KR)l    (9)を得る
In this example, control is performed so that the sideslip angle β becomes zero by four-wheel steering, and by further modifying the above equation (8), μmm-
aY/ ((KF +R-KR)(θ/Z)-(ay/
V')(a-KF-b-KR)l (9) is obtained.

すなわち、路面摩擦係数μが、車速V、重車両慣性質量
m、車両重心点と前輪軸間の距離a、車両重心点と後輪
軸間の距離す、標準状態における前輪2及び後輪3のコ
ーナリングフォースKF。
That is, the road surface friction coefficient μ is determined by vehicle speed V, heavy vehicle inertial mass m, distance a between the vehicle center of gravity and the front wheel axle, distance between the vehicle center of gravity and the rear wheel axle, and cornering of the front wheels 2 and rear wheels 3 in the standard state. Force KF.

KR,ヨー慣性モーメント!およびフロントギヤ比2な
どのスタビリテイファクタと、車両重心点の横加速度a
y、ハンドル舵角θ、転舵比Rおよび車速Vなどの変数
とから求まることになる。
KR, yaw moment of inertia! and stability factors such as front gear ratio 2, and lateral acceleration a of the vehicle center of gravity.
It is determined from variables such as y, steering angle θ, steering ratio R, and vehicle speed V.

また、上記記憶部31には、上記転舵比特性選択部34
で選択すべき転舵比特性が設定されている。すなわち、
この転舵比特性は、第6図に示すように、基本的に、転
舵比Rを車速Vが小さいときには逆位相側に、車速Vが
大きいときには同位相側にそれぞれなるように連続的に
変化させるとともに、路面摩擦係数μの変化に応じて、
3種類の転舵比特性に切換えるものである。例えば、路
面摩擦係数μが標準的な値の時には、図中曲線r2のご
とくなるのに対し、路面摩擦係数μが比較的小さいとき
には、図中曲線r1のごとく転舵比Rが同位相側に逆転
する車速v1の値を上記標準特性の同車速v2よりも低
く、逆に路面摩擦係数μが比較的大きいときには、図中
曲線r3のごとく位相逆転の車速値v3を高い側にそれ
ぞれ設定されている。
The storage unit 31 also includes the steering ratio characteristic selection unit 34.
The steering ratio characteristics to be selected are set. That is,
As shown in Fig. 6, this steering ratio characteristic basically changes the steering ratio R continuously so that it is on the opposite phase side when the vehicle speed V is small, and on the same phase side when the vehicle speed V is large. In addition to changing the road surface friction coefficient μ,
This allows switching to three types of steering ratio characteristics. For example, when the road friction coefficient μ is a standard value, the curve r2 in the figure appears, whereas when the road friction coefficient μ is relatively small, the steering ratio R shifts to the same phase side as the curve r1 in the figure. When the value of the vehicle speed v1 for reversing is lower than the same vehicle speed v2 of the above-mentioned standard characteristics, and conversely, the road surface friction coefficient μ is relatively large, the vehicle speed value v3 for phase reversal is set to the higher side, as shown by curve r3 in the figure. There is.

次に、第5図は、上記摩擦係数演算部33において所定
のサンプリング周期で行われる路面摩擦係数μの演算手
順を示す。まず、ステップS1で上記車速センサ53、
横力センサ51、舵角センサ52および後輪舵角演算部
35の信号から車速v1車両重心点の横加速度a Y 
%ハンドル舵角θ、転舵比Rを読取り、ステップS2〜
S4で車速v1ハンドル舵角θ、横加速度aYがそれぞ
れ所定の設定値以上か否かを順に判別し、各判別がYE
Sであれば、適正な走行条件にあると判断して順にステ
ップS5まで進み、上記(9)式に基づいて路面摩擦係
数μを算出したのちステップS7に進む。
Next, FIG. 5 shows a procedure for calculating the road surface friction coefficient μ, which is performed at a predetermined sampling period in the friction coefficient calculating section 33. First, in step S1, the vehicle speed sensor 53,
From the signals of the lateral force sensor 51, the steering angle sensor 52, and the rear wheel steering angle calculation unit 35, the vehicle speed v1 is the lateral acceleration at the center of gravity of the vehicle a Y
Read % steering angle θ and steering ratio R, step S2~
In S4, it is sequentially determined whether the vehicle speed v1, the steering angle θ, and the lateral acceleration aY are each greater than or equal to a predetermined set value, and each determination is YES.
If S, it is determined that the running conditions are appropriate and the process proceeds to step S5. After calculating the road surface friction coefficient μ based on the above equation (9), the process proceeds to step S7.

一方、上記ステップ82〜S4における判別がいずれも
NOlつまり車速Vの値、ハンドル舵角θの絶対値およ
び車両の横加速度aYの絶対値がそれぞれ設定値よりも
低い場合には、上記(9)式の右辺の分母が零に近付き
誤差が増大する虞れがあるため、路面摩擦係数μの演算
を行わずに、ステップS6で前回のサンプリングで算出
したμの値をμとして設定し、ステップS7に移行する
。このステップS7では、路面摩擦係数μが負か否かを
判別し、判別がμく0のYESであれば、路面摩擦係数
μの特性からして不合理であるのでステップS8でμ−
〇に再設定する一方、ステップS7における判別がμ≧
0のNoであるときにはそのままでステップS9に進む
On the other hand, if all of the determinations in steps 82 to S4 are NO1, that is, the value of the vehicle speed V, the absolute value of the steering wheel steering angle θ, and the absolute value of the vehicle lateral acceleration aY are lower than the set values, the above (9) is determined. Since there is a risk that the denominator on the right side of the equation approaches zero and the error increases, the road surface friction coefficient μ is not calculated, and the value of μ calculated in the previous sampling is set as μ in step S6. to move to. In this step S7, it is determined whether the road surface friction coefficient μ is negative or not. If the determination is YES that μ is 0, it is unreasonable considering the characteristics of the road surface friction coefficient μ, so in step S8 μ-
While resetting to 〇, the determination in step S7 is μ≧
If the answer is 0 (No), the process directly proceeds to step S9.

そして、ステップS9では、制御を円滑に行うために、 μ′−μ/(1+τ・S) (ただし、μ′はμを積分化処理した新しい積分化摩擦
係数、τは積分時定数、Sはラプラス演算子)に基づき
路面摩擦係数μの積分化処理を行って、ステップSIQ
に進む。
Then, in step S9, in order to perform control smoothly, μ'-μ/(1+τ・S) (where μ' is the new integrated friction coefficient obtained by integrating μ, τ is the integral time constant, and S is Step SIQ
Proceed to.

ステップSIOでは、第7図に示すように、上記ステッ
プS9からの路面摩擦係数μ(実際には、積分化路面摩
擦係数μ′)の値に対して所定幅μ0の不感帯を有する
変換特性をもって出力する。
In step SIO, as shown in FIG. 7, a conversion characteristic having a dead zone of a predetermined width μ0 is output with respect to the value of the road surface friction coefficient μ (actually, the integrated road surface friction coefficient μ′) from step S9. do.

例えば、前回のサンプリング時の路面摩擦係数μの推定
値がμmで、今回のサンプリングによる推定値がμm以
上の場合、推定値μがμmに不感帯幅μ0を加算した値
μ2 (μ2−μm+μ0)よりも大きくないときには
出力が前回の推定値μmのまま変わらず、μ2を越えて
初めて出力が変化し、以下、図中の特性線■に沿ってリ
ニアに増加するが、常に入力値μに対して所定幅μ0の
分だけ小さな値μ−μ0を出力する。また、推定値μが
減少するとき(例えばμ3から)には、μ3から所定幅
μ0を減じた値μ4 (−μ3−μ0)以下になって初
めて出力値が変化し、以下、図中の特性線■に沿って入
力値と同じ値を出力しながらリニアに減少する。すなわ
ち、図中の原点から所定幅μ0分だけ出力を一定にして
延びたベースライン■と、該ベースライン■の右端部か
らリニアに出力値を増加させながら入力値が1十μ0に
なるまで延びた増加側変化直線■と、該直線部■の上端
から出力値μを一定値1.に維持しながら入力値が1に
なるまで延びたトップライン■と、該トップライン■の
左端から原点に向かってリニアに減少する減少側変化直
線■とで囲まれた領域において、所定幅μ0を有するヒ
ステリシスループ状に変化する出力値を生成する。なお
、上記実施例では、ヒステリシスループの原点を入出力
値共に0.1の点としている。
For example, if the estimated value of the road surface friction coefficient μ at the previous sampling was μm, and the estimated value from the current sampling is more than μm, the estimated value μ is μ2 (μ2 − μm + μ0), which is the sum of μm and the dead zone width μ0. When is not large, the output remains unchanged at the previous estimated value μm, and the output changes only when μ2 is exceeded. From then on, it increases linearly along the characteristic line ■ in the figure, but it always increases with respect to the input value μ. A value μ-μ0 smaller by a predetermined width μ0 is output. Furthermore, when the estimated value μ decreases (for example, from μ3), the output value changes only when it becomes less than the value μ4 (−μ3−μ0), which is μ3 minus the predetermined width μ0. It decreases linearly along the line ■ while outputting the same value as the input value. In other words, a baseline (■) extends from the origin in the figure by a predetermined width μ0 while keeping the output constant, and a baseline (■) extends from the right end of the baseline ■ while increasing the output value linearly until the input value reaches 10 μ0. The increasing side change straight line ■ and the output value μ from the upper end of the straight line part ■ to a constant value 1. In the area surrounded by the top line ■ that extends until the input value reaches 1 while maintaining It produces an output value that varies in a hysteresis loop. In the above embodiment, the origin of the hysteresis loop is set at a point where both the input and output values are 0.1.

よって、上記ステップS5により、上記横力センサ(運
動状態検出手段)51.舵角センサ(操舵状態検出手段
)52および車速センサ(車速検出手段)53の検出値
と記憶部(記憶手段)31の記憶内容とに応じて路面摩
擦係数μを演算する摩擦係数演算手段39が構成され、
また、ステップSIOにより、該摩擦係数演算手段39
で演算された路面摩擦係数μの値を所定幅μ0の不感帯
を有する出力値に変換する出力変換する出力変換手段4
0が構成されている。
Therefore, in step S5, the lateral force sensor (motion state detection means) 51. Friction coefficient calculation means 39 calculates a road surface friction coefficient μ according to the detected values of the steering angle sensor (steering state detection means) 52 and the vehicle speed sensor (vehicle speed detection means) 53 and the stored contents of the storage section (storage means) 31. configured,
Further, by step SIO, the friction coefficient calculation means 39
Output converting means 4 for converting the value of the road surface friction coefficient μ calculated by into an output value having a dead zone with a predetermined width μ0.
0 is configured.

そして、車両の旋回走行時等に、各センサ51〜53の
出力を受けて、上記摩擦係数演算部33により、上記の
ようにして算出された路面摩擦係数μ(以下、積分化さ
れた路面摩擦係数μ′をいう)が演算されると、上記転
舵比特性選択部34により、路面摩擦係数μの値の大小
に応じて、予め上記記憶部31に設定された第6図の転
舵比特性曲線「1〜r3のうちいずれかが選択される。
Then, when the vehicle is turning, etc., the friction coefficient calculation section 33 receives the outputs of the respective sensors 51 to 53 and calculates the road surface friction coefficient μ (hereinafter, integrated road surface friction When the coefficient μ') is calculated, the steering ratio characteristic selection section 34 selects the steering ratio shown in FIG. One of the characteristic curves “1 to r3” is selected.

次に、上記後輪舵角演算部35により、上記転舵比選択
部34で選択された転舵比R1上記舵角センサ52で検
出されたハンドル舵角θおよび上記車速センサ53で検
出された車速Vの値に応じて、適切な後輪舵角δRが演
算される。さらに、パルス信号形成部36でその演算値
に応じたパルス信号が出力され、駆動部MCにより、該
パルス信号に応じて上記パルスモータ20およびポンプ
駆動用モータ30が駆動されて、後輪3,3が所定の舵
角δRになるよう駆動される。
Next, the rear wheel steering angle calculation section 35 calculates the steering ratio R1 selected by the steering ratio selection section 34, the steering wheel steering angle θ detected by the steering angle sensor 52, and the steering angle θ detected by the vehicle speed sensor 53. An appropriate rear wheel steering angle δR is calculated according to the value of the vehicle speed V. Further, the pulse signal forming section 36 outputs a pulse signal according to the calculated value, and the driving section MC drives the pulse motor 20 and the pump drive motor 30 according to the pulse signal, so that the rear wheels 3, 3 is driven to a predetermined steering angle δR.

したが°って、上記実施例では、車両の旋回走行時、タ
イヤと路面との間の路面摩擦係数μを各検出手段51〜
53で検出された車両重心点の横加速度aY、ハンドル
舵角θおよび車速Vに応じて、基本的な運動方程式から
導出された(9)式に基づき演算したのち、出力変換手
段40により、その演算値を所定幅μOの不感帯を有す
る出力値に変換するようにしたので、各検出手段からの
大きな変動が平準化される。すなわち、通常、車両の走
行中には、センサ類の誤動作や機器類の作動、停止など
による突発的な外乱がたえず発生している。
Therefore, in the above embodiment, when the vehicle is turning, the road surface friction coefficient μ between the tires and the road surface is measured by each of the detection means 51 to
After calculation is performed based on equation (9) derived from the basic equation of motion according to the lateral acceleration aY of the vehicle center of gravity, the steering angle θ, and the vehicle speed V detected at step 53, the output conversion means 40 calculates the Since the calculated value is converted into an output value having a dead zone of a predetermined width μO, large fluctuations from each detection means are smoothed out. That is, normally, while a vehicle is running, sudden disturbances such as malfunctions of sensors, activation or stoppage of equipment, etc. occur constantly.

そのために、各検出手段の出力に応じて推定演算した路
面摩擦係数μをそのまま走行制御に使用した場合、その
推定値は激しく振動的に変化しているので、制御が不安
定になる。かかる場合、本発明では、出力変換手段40
により、その推定値を所定幅μ0の不感帯を有する出力
値に変換するので、突発的な外乱が除去されて路面摩擦
係数μ推定値の変動を抑制することができ、よって、例
えば圧雪路の旋回走行等においても安定した走行を行う
ことができるのである。
Therefore, if the road surface friction coefficient μ estimated and calculated according to the output of each detection means is used as it is for driving control, the estimated value changes violently in an oscillatory manner, making the control unstable. In such a case, in the present invention, the output conversion means 40
Since the estimated value is converted into an output value having a dead zone with a predetermined width μ0, sudden disturbances can be removed and fluctuations in the estimated road friction coefficient μ can be suppressed. This also allows for stable driving.

次に、上記実施例の制御装置により、JWS車でβが零
となる旋回走行制御を行った実験例について、第8図に
基づき説明する。第8図(イ)〜(ハ)は、圧雪路(平
均路面摩擦係数μm0.2〜0.3と推定されるいわゆ
る低μ路)での旋回走行制御を行ったデータであって、
第7図(イ)−はハンドル舵角θの時間に対する変化、
同(ロ)は上記ハンドル舵角θの変化に対応してμ推定
後に出力変換を行わなかったときの路面摩擦係数μの値
の変化特性、同(ハ)は同じノ)ンドル舵角θの変化に
対応してμ推定後に出力変換を行ったときの路面摩擦係
数μの変化特性を示す。なお、いずれの場合も演算後の
積分化処理を行っている。
Next, an experimental example in which the control device of the above embodiment performs cornering control such that β becomes zero in a JWS vehicle will be described with reference to FIG. FIGS. 8(a) to 8(c) are data obtained by performing turning driving control on a compacted snow road (a so-called low-μ road where the average road surface friction coefficient μm is estimated to be 0.2 to 0.3),
Figure 7 (a) shows the change in steering wheel angle θ over time;
The same (b) shows the change characteristics of the road friction coefficient μ when no output conversion is performed after estimating μ in response to the change in the steering wheel steering angle θ, and the same (c) shows the change characteristic of the value of the road friction coefficient μ when the same steering angle θ is changed. The change characteristics of the road surface friction coefficient μ are shown when output conversion is performed after μ estimation in response to the change. Note that in both cases, integration processing is performed after the calculation.

出力変換を行わないときには、路面摩擦係数μの演算値
が振動的な変動を生じる上にμの値が負になることも多
いのに対し、出力変換を行った場合には、その変動が平
滑化されて全体的な大きな変化のみを得ることが示され
ている。なお、このデータは、上記実施例における演算
を中止すべきノーンドル舵角θをごく微小な値に設定し
ている。
When output conversion is not performed, the calculated value of the road surface friction coefficient μ causes oscillatory fluctuations, and the value of μ often becomes negative, whereas when output conversion is performed, the fluctuations are smooth. has been shown to yield only large overall changes. Note that, in this data, the noddle steering angle θ at which the calculation in the above embodiment should be stopped is set to a very small value.

・なお、上記実施例では、路面摩擦係数μを演算したの
ち積分化処理してから出力変換するようにしたが、必ず
しも前もって積分化処理する必要はなく、省略すること
も可能である。
- In the above embodiment, after calculating the road surface friction coefficient μ, the integration process is performed and then the output is converted. However, it is not necessarily necessary to perform the integration process in advance, and it is also possible to omit it.

ただし、上記のように積分化処理と出力変換とを併用し
た場合、積分化処理による応答性の劣化を抑制できると
いう著効を発揮する。すなわち、路面摩擦係数μ推定の
変動を抑制するためには、積分化処理を行うのが効果的
であり、そのときに積分時定数τを大きくすればその抑
制効果が増大する。しかし、反面、積分化処理により車
両の走行状態の変化に対する応答性が悪化し、積分時定
数τを大きくすれば益々応答性が悪くなる。かかる場合
、所定幅の不感帯を設けた出力変換を行うことにより、
積分処理による応答性の劣化を抑制し、積分時定数τの
大きさとの兼ね合いにより、路面摩擦係数μ推定の安定
性と応答性とを適度に調節することができるのである。
However, when the integration process and the output conversion are used together as described above, a remarkable effect is exhibited in that deterioration in responsiveness due to the integration process can be suppressed. That is, in order to suppress fluctuations in the estimation of the road surface friction coefficient μ, it is effective to perform integration processing, and at this time, increasing the integration time constant τ increases the suppressing effect. However, on the other hand, the integration process deteriorates the responsiveness to changes in the running condition of the vehicle, and as the integration time constant τ is increased, the responsiveness becomes even worse. In such a case, by performing output conversion with a dead zone of a predetermined width,
By suppressing the deterioration of responsiveness due to the integral processing and taking into account the magnitude of the integral time constant τ, it is possible to appropriately adjust the stability and responsiveness of estimating the road surface friction coefficient μ.

なお、本発明の適用は上記実施例のような4輪操舵の制
御のみに限定されるものではなく、例えば2輪操舵の制
御にも適用可能である。その場合、本発明の路面摩擦係
数検出装置で検出された路面摩擦係数μを利用して、低
摩擦係数を有する路面で走行する場合等に利用されるい
わゆるアンチロック・ブレーキ・システムに適用すれば
、旋回走行時等に実際の路面摩擦係数μの変化に対応し
たブレーキ力の制御を行うことができ、制御効果を向上
させることができるものである。
Note that the application of the present invention is not limited to the control of four-wheel steering as in the embodiments described above, but is also applicable to, for example, the control of two-wheel steering. In that case, the road surface friction coefficient μ detected by the road surface friction coefficient detection device of the present invention may be used to apply it to a so-called anti-lock braking system used when driving on a road surface with a low friction coefficient. It is possible to control the braking force in response to changes in the actual road surface friction coefficient μ during cornering, etc., thereby improving the control effect.

さらに、上記実施例に示すように、車両の基本的な運動
方程式(1)〜(5)から路面摩擦係数μを計算式を導
き出す場合、上述の(刀または(8)式、つまり下記の
一般的な式 %式%(17) に変形するだけでなく、 μ−G’  (s)  ・γ/H(s)  ・θ   
(18)のように、ヨーレイトγとハンドル舵角θとの
関数とすることもできる。あるいは、 μ−G’  (s)  ・β/H(s)  ・θ   
09)のように、横滑り角βとハンドル舵角θとの関数
に変形することもでき、それらの変数γ、θまたはβ、
θの値に応じて路面摩擦係数μを検出するような構成と
することも可能である。
Furthermore, as shown in the above example, when deriving the formula for calculating the road surface friction coefficient μ from the basic equations of motion (1) to (5) of the vehicle, the above-mentioned formula In addition to transforming the formula into the formula % (17), we also transform it into μ−G' (s) ・γ/H(s) ・θ
It can also be a function of the yaw rate γ and the steering wheel angle θ, as in (18). Or μ−G' (s) ・β/H(s) ・θ
09), it can also be transformed into a function of sideslip angle β and steering wheel steering angle θ, and these variables γ, θ or β,
It is also possible to adopt a configuration in which the road surface friction coefficient μ is detected according to the value of θ.

なお、本発明は、上記実施例のような車両の基本的な運
動方程式から導出される上記一般式濶〜09)で表され
る演算式に基づいて路面摩擦係数μを演算するものに限
定されるものではない。すなわち、上記従来の装置や、
路面摩擦係数μを路面の光の反射状態から演算推定する
ようにしたものなどについても適用することができ、そ
れらの場合にも、センサ類の誤動作などの突発的な外乱
による推定μ値の変動を抑制することにより、円滑な走
行制御に供することができる。
Note that the present invention is limited to calculating the road surface friction coefficient μ based on the arithmetic expression expressed by the above general equation 09) derived from the basic equation of motion of the vehicle as in the above embodiment. It's not something you can do. That is, the conventional device described above,
It can also be applied to systems in which the road surface friction coefficient μ is calculated and estimated from the state of light reflection on the road surface, and even in these cases, fluctuations in the estimated μ value due to sudden disturbances such as sensor malfunctions can be applied. By suppressing this, it is possible to provide smooth driving control.

(発明の効果) 以上説明したように、本発明の路面摩擦係数検出装置に
よれば、車両の旋回走行時等における横加速度、車輪の
舵角、車速等の運転状態に応じて、タイヤと路面との間
の路面摩擦係数を演算するとともに、その演算値を所定
幅の不感帯を有する出力値に変換するようにしたので、
センサ類の誤動作などの突発的な外乱による路面摩擦係
数推定値の変動を抑制することができ、安定した車両の
旋回走行制御等に供することができる。
(Effects of the Invention) As explained above, according to the road surface friction coefficient detection device of the present invention, the tire and road surface In addition to calculating the road surface friction coefficient between the
It is possible to suppress fluctuations in the estimated value of the road surface friction coefficient due to sudden disturbances such as malfunction of sensors, and it is possible to provide stable turning control of the vehicle.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の構成を示すブロック図である。 第2図以下は本発明の実施例を示し、第2図は車両の全
体構成図、第3図は車両の制御装置の構成図、第4図は
車両が旋回走行時に作用する力の関係を示す図、第5図
は路面摩擦係数演算部における制御を示すフローチャー
ト図、第6図は記憶部に設定された選択されるべき転舵
比特性を示す図、第7図は出力変換手段の特性図、第8
図は圧雪路における実験データを示す実験結果図である
。 31・・・記憶部(記憶手段)、37・・・操舵状態検
出手段、39・・・摩擦係数演算手段、40・・・出力
変換手段、51・・・横力センサ(運動状態検出手段)
、52・・・舵角センサ、53・・・車速センサ(車速
検出手段)。 特 許 出 願 人   マツダ株式会社代  理  
人    弁理士 前 1) 仏事2図 第1図 第6図 1ヨ=イf【1m 第5図 第7図 第8図
FIG. 1 is a block diagram showing the configuration of the present invention. Figure 2 and subsequent figures show embodiments of the present invention. Figure 2 is an overall configuration diagram of the vehicle, Figure 3 is a configuration diagram of the vehicle control device, and Figure 4 shows the relationship of forces that act when the vehicle turns. FIG. 5 is a flowchart showing the control in the road surface friction coefficient calculation unit, FIG. 6 is a diagram showing the steering ratio characteristics to be selected set in the storage unit, and FIG. 7 is the characteristics of the output conversion means. Figure, 8th
The figure is an experimental result diagram showing experimental data on a snow compacted road. 31... Storage unit (memory means), 37... Steering state detection means, 39... Friction coefficient calculation means, 40... Output conversion means, 51... Lateral force sensor (motion state detection means)
, 52... Rudder angle sensor, 53... Vehicle speed sensor (vehicle speed detection means). Patent applicant Mazda Motor Corporation representative
Person Patent Attorney Front 1) Buddhist ritual 2 Figure 1 Figure 6 Figure 1 Yo=i f [1m Figure 5 Figure 7 Figure 8

Claims (1)

【特許請求の範囲】[Claims] (1)車両のタイヤと路面との間の摩擦係数μを検出す
る路面摩擦係数検出装置であって、車両重心点の横加速
度等の車両の運動状態を検出する運動状態検出手段と、
前後輪舵角などの操舵状態を検出する操舵状態検出手段
と、車両の走行速度を検出する車速検出手段と、車両の
スタビリティファクタを記憶する記憶手段と、上記運動
状態検出手段、操舵状態検出手段および車速検出手段の
検出値と記憶手段の記憶内容とに応じて路面摩擦係数μ
を演算する摩擦係数演算手段と、該摩擦係数演算手段の
出力を受け、その値を所定幅の不感帯を有する出力に変
換する出力変換手段とを備えたことを特徴とする路面摩
擦係数検出装置。
(1) A road surface friction coefficient detection device that detects the friction coefficient μ between the vehicle tires and the road surface, and a motion state detection means that detects the motion state of the vehicle such as the lateral acceleration of the vehicle center of gravity;
Steering state detecting means for detecting a steering state such as front and rear wheel steering angles; vehicle speed detecting means for detecting the traveling speed of the vehicle; storage means for storing a stability factor of the vehicle; the motion state detecting means; and the steering state detecting means. road surface friction coefficient μ according to the detection value of the vehicle speed detection means and the memory contents of the storage means.
A road surface friction coefficient detection device comprising: a friction coefficient calculation means for calculating the friction coefficient calculation means; and an output conversion means for receiving the output of the friction coefficient calculation means and converting the value into an output having a dead zone of a predetermined width.
JP62260457A 1987-10-15 1987-10-15 Detecting device for road surface friction coefficient Pending JPH01101440A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP62260457A JPH01101440A (en) 1987-10-15 1987-10-15 Detecting device for road surface friction coefficient
EP88117133A EP0312096B1 (en) 1987-10-15 1988-10-14 Friction detecting device for vehicles
US07/260,890 US4951198A (en) 1987-10-15 1988-10-14 Friction detecting device for vehicles
DE8888117133T DE3877118T2 (en) 1987-10-15 1988-10-14 DEVICE FOR DETERMINING THE FRICTION FACTOR FOR VEHICLES.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62260457A JPH01101440A (en) 1987-10-15 1987-10-15 Detecting device for road surface friction coefficient

Publications (1)

Publication Number Publication Date
JPH01101440A true JPH01101440A (en) 1989-04-19

Family

ID=17348211

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62260457A Pending JPH01101440A (en) 1987-10-15 1987-10-15 Detecting device for road surface friction coefficient

Country Status (1)

Country Link
JP (1) JPH01101440A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117516961A (en) * 2024-01-05 2024-02-06 安徽中科星驰自动驾驶技术有限公司 Automatic driving automobile lateral stability testing device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117516961A (en) * 2024-01-05 2024-02-06 安徽中科星驰自动驾驶技术有限公司 Automatic driving automobile lateral stability testing device
CN117516961B (en) * 2024-01-05 2024-04-05 安徽中科星驰自动驾驶技术有限公司 Automatic driving automobile lateral stability testing device

Similar Documents

Publication Publication Date Title
US4951198A (en) Friction detecting device for vehicles
US5904223A (en) Electric power steering system
JP3179271B2 (en) Control method of front and rear wheel steering device
US5627754A (en) Method for controlling a front and rear wheel steering vehicle
JPS6133746B2 (en)
JPH0478668A (en) Rear wheel steering control method
JPH07186926A (en) Traction control device for vehicle
JPH0285069A (en) Auxiliary steering gear
JPS63287676A (en) Rear wheel steering angle control method
US5734570A (en) Wheeled vehicle steering system for steering the rear wheels of a vehicle
US5105899A (en) Rear wheel steering angle control system for vehicles
US4947326A (en) Rear wheel steer angle control system for vehicle
JP3060800B2 (en) Vehicle yawing momentum control system
JP3626388B2 (en) Vehicle attitude control device
JPH01101440A (en) Detecting device for road surface friction coefficient
EP0384400B1 (en) Rear wheel steering angle control system for vehicle
JPH07186989A (en) Auxiliary steering angle controller for vehicle
JP3509198B2 (en) Brake control method and brake control device for vehicle provided with anti-skid brake device and rear wheel steering device
JPH01101439A (en) Detecting device for road surface friction coefficient
JP4517555B2 (en) Electric power steering device for automobile
JPH01101441A (en) Detecting device for road surface friction coefficient
JPH0640051B2 (en) Road condition determination device
JP3532201B2 (en) Vehicle steering system with wheels
JPH03239673A (en) Car motion control device
JPH03167077A (en) Auxiliary steering system for vehicle