JPH01101343A - Electrically conductive resin composition - Google Patents

Electrically conductive resin composition

Info

Publication number
JPH01101343A
JPH01101343A JP62257437A JP25743787A JPH01101343A JP H01101343 A JPH01101343 A JP H01101343A JP 62257437 A JP62257437 A JP 62257437A JP 25743787 A JP25743787 A JP 25743787A JP H01101343 A JPH01101343 A JP H01101343A
Authority
JP
Japan
Prior art keywords
nitric acid
fiber
fibers
graphitized
resin composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62257437A
Other languages
Japanese (ja)
Other versions
JPH027979B2 (en
Inventor
Setsujirou Hashimoto
橋本 節二郎
Masahiro Kanda
政博 神田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yazaki Corp
Original Assignee
Yazaki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yazaki Corp filed Critical Yazaki Corp
Priority to JP62257437A priority Critical patent/JPH01101343A/en
Publication of JPH01101343A publication Critical patent/JPH01101343A/en
Publication of JPH027979B2 publication Critical patent/JPH027979B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the title composition of stabilized performance, significantly improved in electrical conductivity and processability, by dispersing a synthetic resin matrix with a specific interlaminar compound fiber. CONSTITUTION:The objective composition can be obtained by dispersing (A) 100pts.wt. of a synthetic resin (e.g. polyethylene, silicone rubber) matrix with (B) 5-200pts.wt. of an interlaminar compound fiber with a recurring period in the direction of the crystal c-axis of 21-25Angstrom , prepared by nitric acid treatment of a graphitized product from vapor growth carbon fiber produced by contact between a hydrocarbon compound and ultrafine powdery metal catalyst suspended in a high-temperature zone.

Description

【発明の詳細な説明】 〔発明の目的〕 産粟上夏憇朋光竪 本発明は導電性の成形品や塗料、接着剤などに有用な導
電性の複合材料に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] The present invention relates to a conductive composite material useful for conductive molded products, paints, adhesives, etc.

皿米■故青 エレクトロニクス技術の発展に伴い、静電気や電磁液の
シールド材として軽量で高導電性の材料が求められるよ
うになってきた。このような材料として金属や炭素等の
粉末や繊維等をゴムやプラスチック等と配合した樹脂複
合材料があるが、金属を用いたものは重くかつ高価であ
るという欠点がある。また、炭素系の導電材料は金属よ
りも導電性が低く、たとえばカーボンブラック等の粒子
状炭素材料によって高導電性のものを得ようとすると配
合量を多くする必要があり、加工性が著しく低いばかり
でなく混練時または成形時のせん断力によって導電性が
変化しやすく、性能の安定した製品が得にくい欠点があ
る。
With the development of electronics technology, there has been a demand for lightweight, highly conductive materials as shielding materials for static electricity and electromagnetic fluids. As such materials, there are resin composite materials in which powders or fibers of metals, carbon, etc. are blended with rubber, plastics, etc. However, materials using metals have the drawback of being heavy and expensive. In addition, carbon-based conductive materials have lower conductivity than metals, and if you try to obtain high conductivity with particulate carbon materials such as carbon black, you will need to increase the amount of the compound, and the processability will be extremely low. In addition, conductivity tends to change due to shear force during kneading or molding, making it difficult to obtain products with stable performance.

一方、黒鉛化炭素繊維を導電材料として用いようとする
と、たとえばポリアクリロニトリル繊維やピッチなどを
炭素化し更に黒鉛化して得たものでは導電性が不充分で
あるうえ加工性も低い。これに対して、特定の有機金属
化合物を触媒として炭化水素を熱分解して得られた、直
径0.05〜4μm1アスペクト比が20〜1000で
枝分れの殆んどない均一な太さの、炭素の層が長手軸に
平行に年輪状に配列して形成された炭素繊維を用いるこ
とにより樹脂組成物の導電性及び複合化操作性を改善す
ることが提案されている(特開昭6l−218661)
。しかし、これとても電気抵抗率は104Ω・口の水準
にしか達せず、またこのような値を得るためには炭素繊
維を多量に配合しなければならないので加工性が悪くな
り実用に供し得ないという問題があった。
On the other hand, when attempting to use graphitized carbon fiber as a conductive material, for example, those obtained by carbonizing polyacrylonitrile fibers or pitch and then graphitizing the fibers have insufficient conductivity and have low processability. On the other hand, a uniform thickness with a diameter of 0.05 to 4 μm, an aspect ratio of 20 to 1000, and almost no branching, obtained by thermally decomposing hydrocarbons using a specific organometallic compound as a catalyst. It has been proposed to improve the electrical conductivity and compounding operability of resin compositions by using carbon fibers in which carbon layers are arranged parallel to the longitudinal axis in the form of tree rings (Japanese Patent Application Laid-Open No. 6-112) -218661)
. However, the electrical resistivity of this product only reaches the level of 104 Ω, and in order to obtain such a value, a large amount of carbon fiber must be added, which deteriorates processability and makes it impossible to put it to practical use. There was a problem.

° しよ゛と る口 占 そこで本発明は、このような従来技術の組成物より更に
導電性および加工性に優れかつ性能の安定した、炭素質
繊維−樹脂系の導電性組成物を提供することを目的とし
たものである。
Accordingly, the present invention provides a carbonaceous fiber-resin-based conductive composition that has superior conductivity and processability and stable performance compared to the compositions of the prior art. It is intended for this purpose.

〔発明の構成〕[Structure of the invention]

エ 占を ゛ るための 前述のような本発明の目的は、高温帯域中に浮遊した超
微粒金属触媒と炭化水素化合物とを接触させて得た気相
成長炭素繊維の黒鉛化物を硝酸処理してなる層間化合物
繊維であって結晶のC軸方向の繰返し周期の長さが21
〜25オングストロームの範囲内にあるものが、合成樹
脂マトリックス中に分散されている導電性樹脂組成物に
よって達成される。
The purpose of the present invention, as mentioned above, is to treat graphitized vapor-grown carbon fibers obtained by contacting ultrafine metal catalysts suspended in a high-temperature zone with hydrocarbon compounds and treating them with nitric acid. It is an interlayer compound fiber consisting of a crystal with a repetition period length of 21 in the C-axis direction.
~25 angstroms are achieved with conductive resin compositions dispersed in synthetic resin matrices.

本発明において導電材料として用いられる炭素質の層間
化合物繊維は、高温帯域中に浮遊した超微粒金属触媒と
炭化水素化合物とを接触させて得た気相成長炭素繊維の
黒鉛化物を硝酸処理することによって得られる。
The carbonaceous intercalation compound fiber used as a conductive material in the present invention is obtained by treating a graphitized vapor-grown carbon fiber with nitric acid, which is obtained by contacting a hydrocarbon compound with an ultrafine metal catalyst suspended in a high-temperature zone. obtained by.

かかる気相成長炭素繊維は、トルエン、ベンゼン、ナフ
タレン等の芳香族炭化水素やプロパン、エタン、エチレ
ン等の脂肪族炭化水素などの炭化水素化合物、好ましく
はベンゼンまたはナフタレンを原料として用い、かかる
原料をガス化して水素などのキャリヤガスと共に900
−1500℃の反応帯域中に分散浮遊させた超微粒金属
からなる触媒、たとえば粒径100〜300オングスト
ロームの鉄、ニッケル、鉄−ニッケル合金などと接触、
分解させることにより得られるものである。
Such vapor-grown carbon fibers are produced using hydrocarbon compounds such as aromatic hydrocarbons such as toluene, benzene, and naphthalene, and aliphatic hydrocarbons such as propane, ethane, and ethylene, preferably benzene or naphthalene, as raw materials. 900 with a carrier gas such as hydrogen after gasification.
Contact with a catalyst made of ultrafine metal particles dispersed and suspended in a reaction zone at -1500°C, such as iron, nickel, iron-nickel alloy, etc. with a particle size of 100 to 300 angstroms,
It is obtained by decomposition.

こうして得た炭素繊維は必要に応じてボールミル、ロー
タースピードミル、カッティングミルその他の適宜の粉
砕機を用いて粉砕する。かかる粉砕は必須ではないが、
層間化合物の形成し易さや他の材料との複合化の際の分
散性が改良されるから実施することが好ましい。
The carbon fibers thus obtained are pulverized using a ball mill, rotor speed mill, cutting mill, or other suitable pulverizer, if necessary. Although such grinding is not required,
This is preferred because it facilitates the formation of intercalation compounds and improves the dispersibility when compounding with other materials.

更に、こうして得た炭素繊維を、1500〜3500℃
、好ましくは2500〜3000℃の温度で、10〜1
20分間、好ましくは30〜60分間、アルゴン等の不
活性ガスの雰囲気下で熱処理することにより、炭素六角
網面が繊維軸に対して実質的に平行で年輪状に配向した
結晶構造を有する黒鉛化繊維が得られる。この場合、熱
処理温度が1500℃より低いと、炭素の結晶構造が充
分に発達せず、一方3500℃を超えても特に効果は増
進せず経済的でない。また、熱処理時間が10分間より
短いと熱処理効果が充分でなく結晶構造の発達度合のば
らつきが太き(、一方120分間を超えても更なる改善
はみられない。
Furthermore, the carbon fiber thus obtained is heated at 1500 to 3500°C.
, preferably at a temperature of 2500 to 3000°C, 10 to 1
By heat-treating for 20 minutes, preferably 30 to 60 minutes, in an atmosphere of an inert gas such as argon, graphite has a crystal structure in which the carbon hexagonal network planes are substantially parallel to the fiber axis and oriented in the form of annual rings. Compatible fibers are obtained. In this case, if the heat treatment temperature is lower than 1,500°C, the carbon crystal structure will not develop sufficiently, while if it exceeds 3,500°C, the effect will not be particularly enhanced and it is not economical. Furthermore, if the heat treatment time is shorter than 10 minutes, the heat treatment effect will not be sufficient and the degree of development of the crystal structure will vary greatly (on the other hand, if the heat treatment time exceeds 120 minutes, no further improvement will be observed.

このようにして得た黒鉛化繊維を硝酸処理するに当って
は、温度0〜80℃において20時間を超えない範囲で
硝酸を接触させる。
When treating the graphitized fiber thus obtained with nitric acid, it is brought into contact with nitric acid at a temperature of 0 to 80°C for no more than 20 hours.

この際に使用される硝酸は、できるだb’+ ?J1度
の高いものが好ましく、できれば水を含まないものがよ
(、濃度99%以上の発煙硝酸などを用いることが適当
である。かかる硝酸は黒鉛化繊維と接触させるに当って
液状であってもよく、または蒸気状であってもよい。液
状の場合には黒鉛化繊維を液状の硝酸中に浸漬するなど
の方法が用いられるが、硝酸中に含有される不純物も黒
鉛化繊維と接触するから、硝酸イオンが黒鉛結晶層間に
浸透拡散することを阻害したり、それ自身が黒鉛結晶層
間に入るような不純物は避けることが望ましい。
The nitric acid used at this time is b'+? It is preferable to use one with a high J1 degree, preferably one that does not contain water (it is appropriate to use fuming nitric acid with a concentration of 99% or more. Such nitric acid should be in a liquid state when brought into contact with the graphitized fibers. In the case of a liquid, a method such as immersing the graphitized fiber in liquid nitric acid is used, but impurities contained in the nitric acid also come into contact with the graphitized fiber. Therefore, it is desirable to avoid impurities that inhibit nitrate ions from permeating and diffusing between graphite crystal layers, or that impurities themselves enter between graphite crystal layers.

一方、硝酸蒸気を使用す、る場合にも、前記同様の注意
が必要であるが、不揮発性の不純物は自然に排除される
から、硝酸蒸気の発生源の純度や形態に対する制約が少
いという利点がある。
On the other hand, when using nitric acid vapor, the same precautions as above are required, but since non-volatile impurities are naturally eliminated, there are fewer restrictions on the purity and form of the source of nitric acid vapor. There are advantages.

黒鉛化繊維と硝酸との接触に当っては、温度が0〜80
℃、好ましくは5〜60℃であり、接触時間が20時間
を超えないことが必要である。温度が低すぎるときは、
硝酸イオンの黒鉛結晶層内への拡散に長時間を要するの
みならず温度管理が困難である不利があり、温度が高す
ぎるときは、繊維の破壊が起り易くまた破壊しないまで
も機械的強度が損われる。
When contacting graphitized fibers with nitric acid, the temperature is between 0 and 80°C.
℃, preferably 5 to 60 ℃, and the contact time does not exceed 20 hours. When the temperature is too low,
Not only does it take a long time for the nitrate ions to diffuse into the graphite crystal layer, but temperature control is also difficult.If the temperature is too high, the fibers are likely to break, and even if they do not break, the mechanical strength will deteriorate. be damaged.

黒鉛化繊維と硝酸との接触時間は20時間を超えないこ
とが必要であり、好ましくは15時間以内である。これ
以上の長時間にわたって接触させると、生成する硝酸処
理黒鉛化繊維の結晶構造が21〜25オングストローム
の範囲を外れるC軸方向の繰返し周期の長さを持つよう
になり、結果として導電性の低下を招くばかりでなく熱
や湿度に対する安定性もまた低下し、室内に保存したと
きでも性状の経時変化が大きくなる。また、接触時間が
短かすぎるときは品質のばらつきが大きいから、少くと
も0.1時間以上接触させることが望ましい。しかしな
がら、これ以下の接触時間では、操作上意味のある時間
制御は不可能であり、また接触時間を短縮しても経済上
の利点は殆んどないから、好ましい接触時間としては0
.2時間以上であり、この範囲内で生成する硝酸処理黒
鉛化繊維の結晶構造はC軸方向の繰返し周期の長さが2
1〜25オングストロームであるものとなる。しかし、
このような硝酸処理黒鉛化繊維の品質のばらつきを満足
できる程度まで減少させるのに必要な接触時間は、液状
硝酸を使用する場合が最も短くてよく、蒸気状硝酸を使
用する場合は、その蒸気の濃度が低くなるに従って長時
間を要する。従って、夫々硝酸の濃度や温度などの製造
条件に応じて、必要最短の接触時間を選択するのがよい
It is necessary that the contact time of the graphitized fibers with nitric acid does not exceed 20 hours, preferably within 15 hours. If the contact is carried out for a longer period of time, the crystal structure of the nitric acid-treated graphitized fibers produced will have a repeating period length in the C-axis direction that is outside the range of 21 to 25 angstroms, resulting in a decrease in conductivity. In addition to this, the stability against heat and humidity also decreases, and even when stored indoors, the properties change significantly over time. Furthermore, if the contact time is too short, the quality will vary greatly, so it is desirable to allow contact for at least 0.1 hour or more. However, if the contact time is less than this, meaningful time control is impossible in operation, and there is almost no economic advantage even if the contact time is shortened, so the preferred contact time is 0.
.. 2 hours or more, and the crystal structure of the nitric acid-treated graphitized fibers produced within this range has a repetition period length of 2 in the C-axis direction.
The thickness is 1 to 25 angstroms. but,
The contact time required to satisfactorily reduce quality variations in such nitric acid-treated graphitized fibers is the shortest when using liquid nitric acid; The lower the concentration, the longer the time required. Therefore, it is preferable to select the shortest necessary contact time depending on the manufacturing conditions such as the concentration and temperature of nitric acid.

このようにして得た硝酸処理黒鉛化繊維は合成樹脂マト
リックス中に添加分散されて本発明の組成物が得られる
The nitric acid-treated graphitized fiber thus obtained is added and dispersed in a synthetic resin matrix to obtain the composition of the present invention.

ここで用いられる合成樹脂としては、たとえばポリエチ
レン、ポリプロピレン、ポリ塩化ビニル、ポリスチレン
、エチレン・酢酸ビニル共重合’fM 脂、エチレン・
アクリル酸エステル共重合樹脂などの熱可塑性プラスチ
ックス、たとえばシリコーン樹脂、フェノール樹脂、尿
素樹脂、エポキシ樹脂、ウレタン樹脂などの熱硬化性プ
ラスチックス、またたとえばクロロスルホン化ポリエチ
レン、塩素゛化ポリエチレン、エチレン・プロピレンゴ
ム、クロロプレンゴム、アクリルゴム、シリコーンゴム
、フッ素ゴムなどのゴムが使用できる。
The synthetic resins used here include, for example, polyethylene, polypropylene, polyvinyl chloride, polystyrene, ethylene/vinyl acetate copolymer resin, ethylene/vinyl acetate copolymer resin,
Thermoplastic plastics such as acrylic ester copolymer resins, thermosetting plastics such as silicone resins, phenolic resins, urea resins, epoxy resins, and urethane resins, and thermosetting plastics such as chlorosulfonated polyethylene, chlorinated polyethylene, ethylene, etc. Rubbers such as propylene rubber, chloroprene rubber, acrylic rubber, silicone rubber, and fluororubber can be used.

このような合成樹脂に対して硝酸処理黒鉛化繊維を分散
させる方法には特に制限はないが、たとえば2本ロール
、ニーグー、インターミックス、バンバリーミキサ−な
どの公知の混練機が使用できる。
There are no particular restrictions on the method of dispersing the nitric acid-treated graphitized fibers in such a synthetic resin, but known kneaders such as a two-roll, Nigoo, Intermix, and Banbury mixer can be used.

また、硝酸処理黒鉛化繊維と合成樹脂との配合割合は特
に制限はないが、電気抵抗率および加工成形性の面から
、樹脂100重量部に対して繊維が5〜200重量部程
重量上程、更には10〜100重量部であるのが好まし
い。
There is no particular restriction on the blending ratio of the nitric acid-treated graphitized fibers and the synthetic resin, but from the viewpoint of electrical resistivity and processability, the fiber content should be about 5 to 200 parts by weight per 100 parts by weight of the resin. More preferably, the amount is 10 to 100 parts by weight.

このような本発明の樹脂組成物には、それぞれ使用した
樹脂の種類に応じて充填剤、加工助剤、可塑剤、酸化防
止剤、架橋剤等の適宜の添加剤や配合剤または溶剤など
が含有されていて差支えない。また、本発明の樹脂組成
物は、押出し成形、射出成形、トランスファー成形、プ
レス成形等、適宜の成形方法を選択して所望の形状の物
品等を形成することができる。
The resin composition of the present invention may contain appropriate additives, compounding agents, or solvents such as fillers, processing aids, plasticizers, antioxidants, and crosslinking agents, depending on the type of resin used. There is no problem if it is contained. Further, the resin composition of the present invention can be formed into articles of a desired shape by selecting an appropriate molding method such as extrusion molding, injection molding, transfer molding, press molding, or the like.

次1J0− 1000〜1100℃に温度調節した縦型管状電気炉中
に、下方から水素を流しつつ粒径100〜300オング
ストロームの金属鉄触媒粒子を浮遊させておき、これに
ベンゼンと水素の混合ガスを下方から導入して分解させ
、長さ10〜10008m、径0.1〜0.5μmの炭
素繊維を得た0次に、この炭素繊維を遊星型ボールミル
(フリッチュ・ジャパン株式会社、P−5型)を用いて
回転数50ORPMで20分間粉砕した。
Next 1J0- Metallic iron catalyst particles with a particle size of 100 to 300 angstroms are suspended in a vertical tubular electric furnace whose temperature is adjusted to 1000 to 1100°C while hydrogen is flowing from below, and a mixed gas of benzene and hydrogen is added to this. was introduced from below and decomposed to obtain carbon fibers with a length of 10 to 10,008 m and a diameter of 0.1 to 0.5 μm. Next, the carbon fibers were milled in a planetary ball mill (Fritsch Japan Co., Ltd., P-5 The mixture was ground for 20 minutes using a mold) at a rotational speed of 50 ORPM.

この粉砕炭素繊維を電気炉に入れ、アルゴン雰囲気下で
2960〜30°oo℃に30分間保持して黒鉛化した
。得られた繊維は、X線回折および電子顕微鏡によって
、炭素六角網面が繊維軸に示行で年輪状に配向した結晶
構造を有しており、長さが3〜5μmに粉砕されている
ことが確かめられた。
This pulverized carbon fiber was placed in an electric furnace and maintained at 2960-30°C for 30 minutes under an argon atmosphere to graphitize it. X-ray diffraction and electron microscopy revealed that the obtained fibers had a crystal structure in which the carbon hexagonal mesh planes were oriented in the form of growth rings along the fiber axis, and were crushed to a length of 3 to 5 μm. was confirmed.

こうして得た黒鉛化繊維を、発煙硝酸(濃度99%)を
入れた容器中に密閉し、23℃で3時間保持した。所定
時間経過後硝酸中から黒鉛化繊維を濾過分離し、蒸留水
により充分洗浄し、デシケータ中で24時間乾燥した。
The graphitized fiber thus obtained was sealed in a container containing fuming nitric acid (concentration 99%) and kept at 23° C. for 3 hours. After a predetermined period of time, the graphitized fibers were separated from the nitric acid by filtration, thoroughly washed with distilled water, and dried in a desiccator for 24 hours.

得られた硝酸処理黒鉛化繊維についてX線回折法により
測定した結晶のC軸方向の繰返し周期の長さは24.4
4オングストロームであった。
The length of the repetition period in the C-axis direction of the crystal measured by X-ray diffraction method for the obtained nitric acid-treated graphitized fiber was 24.4.
It was 4 angstroms.

こうして得た硝酸処理黒鉛化繊維を、付加反応型液状シ
リコーンゴム(トーμ・シリコーン社、DY35−05
5)に対して第1表に示す配合に従って添加し、6イン
チロールミルで30分間混練した0次に架橋速度制御用
のインヒビター(トーμ・シリコーン社、MR−23)
および架橋触媒(トーμ・シリコーン社、5RX−21
2)を第1表の配合に従って添加し、均一混練して導電
性シリコーンゴム組成物を得た。ただし、配合の数字は
重量部である。
The thus obtained nitric acid-treated graphitized fibers were added to an addition reaction type liquid silicone rubber (TO-μ Silicone Co., Ltd., DY35-05).
5) was added according to the formulation shown in Table 1 and kneaded for 30 minutes with a 6-inch roll mill.
and a crosslinking catalyst (TOμ Silicone Co., Ltd., 5RX-21
2) was added according to the formulation shown in Table 1 and kneaded uniformly to obtain a conductive silicone rubber composition. However, the numbers in the formulation are parts by weight.

また、比較のために前述のようにして得た黒鉛化繊維で
硝酸処理を行わないもの、導電性カーボンブラック(ラ
イオンアクゾ社、ケッチエンブラックEC)、およびP
AN系炭素繊維の粉砕品(東し社、MLD−300)に
ついても第1表の配合に従い、同様に混線を行なってそ
れぞれシリコーンゴム組成物を調製した。
For comparison, graphitized fibers obtained as described above without nitric acid treatment, conductive carbon black (Lion Akzo Co., Ltd., Ketchen Black EC), and P
A pulverized product of AN-based carbon fiber (MLD-300, manufactured by Toshisha Co., Ltd.) was mixed in the same manner according to the formulation shown in Table 1 to prepare a silicone rubber composition.

これらのシリコーンゴム組成物をモールド中で100℃
、20分間プレス成形して100鶴×lOmmxl鰭の
架橋シートを作成し、それ゛らの体積固有抵抗を測定し
た。その結果は第1表に示す通りである。
These silicone rubber compositions were heated at 100°C in a mold.
A crosslinked sheet of 100 cranes x 10 mm x 1 fins was prepared by press molding for 20 minutes, and their volume resistivity was measured. The results are shown in Table 1.

次に、前記のシリコーンゴム組成物を径180μmの芳
香族ポリアミド繊維(デュポン社、ケプラー)3本から
なる撚芯線上に押出し被覆し、200℃で30秒間加熱
して外径0.90 amの線状架橋体を得た。このよう
にして組成物B、D、F、およびHについて成形試験を
行ない成形性の評価を行なった。その結果は第2表に示
す通りである。
Next, the silicone rubber composition was extruded and coated onto a twisted core wire consisting of three aromatic polyamide fibers (Dupont, Kepler) with a diameter of 180 μm, and heated at 200° C. for 30 seconds to form an outer diameter of 0.90 μm. A linear crosslinked product was obtained. In this manner, molding tests were conducted on compositions B, D, F, and H to evaluate moldability. The results are shown in Table 2.

第  1  表 A B C” D” E” F“G” H”シリコーン
ゴム100 100 100 100 100 100
 100 100カーボンブラツク         
     2040PAN系炭素繊唯        
             204047ヒヒ’)−0
,ff7 0.07 0.0?  0.0?  0.0
7 0.ff7 0.ff7 0.ff7架橋触媒 1
  ml  II  i  1 1第1表より、硝酸処
理黒鉛化繊維を配合したものは、体積固有抵抗が非常に
小さいことが判る。
Table 1 A B C” D” E” F “G” H” Silicone rubber 100 100 100 100 100 100
100 100 carbon black
2040PAN carbon fiber
204047 baboon') -0
,ff7 0.07 0.0? 0.0? 0.0
7 0. ff7 0. ff7 0. ff7 crosslinking catalyst 1
ml II i 1 1 From Table 1, it can be seen that the volume resistivity of the composition containing the nitric acid-treated graphitized fiber is extremely small.

第  2  表 結果 8 5時間連続運転問題なし。外観も良好D* 同上 F”  5時間連続運転問題なし、架橋物表面に微少亀
裂有。
Table 2 Results 8 No problems after 5 hours of continuous operation. Appearance is also good D* Same as above F” Continuous operation for 5 hours with no problems, slight cracks on the surface of the crosslinked product.

H”  5時間連続運転問題なし、但し、表面にゲラツ
キ有。
H” Continuous operation for 5 hours without any problems, however, there is some gelatin on the surface.

第2表より、本発明品は成型性も非常に優れている゛こ
とが判る。
From Table 2, it can be seen that the products of the present invention also have very excellent moldability.

爽施皿又 実施例1で用いた硝酸処理黒鉛化繊維を、エポキシ樹脂
(油化シェルエポキシ社、エピコート828)に第3表
の配合に従って添加し、攪拌機に 、より60分間混練
したのち3本ロールを5回通過させた。その後酸無水物
系硬化剤(油化シェルエポキシ社、エピキュアYH−3
07)および硬化促進剤(油化シェルエポキシ社、エピ
キュアEM1−24)を添加し、3本ロールを5回通し
て導電性エポキシ樹脂組成物を得た。なお、配合の数字
は実施例1と同様に重量部を表わす。
The nitric acid-treated graphitized fibers used in Example 1 were added to an epoxy resin (Yuka Shell Epoxy Co., Ltd., Epicoat 828) according to the formulation shown in Table 3, and kneaded with a stirrer for 60 minutes. The roll was passed through five times. After that, an acid anhydride hardener (Yuka Shell Epoxy Co., Ltd., Epicure YH-3)
07) and a curing accelerator (Epicure EM1-24, manufactured by Yuka Shell Epoxy Co., Ltd.) were added, and the mixture was passed through three rolls five times to obtain a conductive epoxy resin composition. Note that, as in Example 1, the numbers in the formulations represent parts by weight.

また、比較のために、実施例1におけると同様に硝酸処
理しない黒鉛化繊維およびPAN系炭素繊維の粉砕品を
用い、第3表の配合に従って同様に混練し、それぞれエ
ポキシ樹脂組成物を調製した。
For comparison, pulverized graphitized fibers and PAN-based carbon fibers that were not treated with nitric acid were used in the same manner as in Example 1, and kneaded in the same manner according to the formulations in Table 3 to prepare epoxy resin compositions. .

これらのエポキシ樹脂組成物を用い、トランスファー成
形により80℃3時間の条件でJISに6301による
4号ダンベル試験片をそれぞれ成形した。これらの試験
片について体積固有抵抗の測定を行なった結果および成
形品の外観を、第3表に合せて示した。
Using these epoxy resin compositions, No. 4 dumbbell test pieces according to JIS 6301 were molded by transfer molding at 80° C. for 3 hours. The results of measuring the volume resistivity of these test pieces and the appearance of the molded products are shown in Table 3.

第3表 I  J  K”ぴM“N1′ エポキシ樹脂 100 100 100 100 10
0 100PAN□陶     団1■ 硬化剤 110110110110110110硬化促
進剤  111111 体積固有を氏抗 0.063 0.014 0.49 
0.10 1.52 0.90(Ω・− 外  観      良好  良好  良好  良好 
ザラ・ンキ 不良*は比較例である。
Table 3 I J K"PiM"N1' Epoxy resin 100 100 100 100 10
0 100 PAN
0.10 1.52 0.90 (Ω・- Appearance Good Good Good Good
Zara Nki Defective * is a comparative example.

この結果から本発明品は成形性よく、また電導性も非常
によいことが判る。
This result shows that the product of the present invention has good moldability and very good electrical conductivity.

〔発明の効果〕〔Effect of the invention〕

以上の如く、本発明の導電性樹脂組成物は優れた加工性
および成形性を有し、また極め、て高い電導性を備えて
おり、従来より格段に高品質で安定した感電性複合材料
を容易に提供することができる。
As described above, the conductive resin composition of the present invention has excellent processability and moldability, and also has extremely high conductivity, making it possible to produce electrically sensitive composite materials of significantly higher quality and stability than before. can be easily provided.

特許出願人   矢崎総業株式会社Patent applicant: Yazaki Sogyo Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims]  高温帯域中に浮遊した超微粒金属触媒と炭化水素化合
物とを接触させて得た気相成長炭素繊維の黒鉛化物を硝
酸処理してなる層間化合物繊維であって結晶のc軸方向
の繰返し周期の長さが21〜25オングストロームの範
囲内にあるものが、合成樹脂マトリックス中に分散され
ていることを特徴とする導電性樹脂組成物。
This is an intercalation compound fiber obtained by treating a graphitized vapor-grown carbon fiber obtained by contacting a hydrocarbon compound with an ultrafine metal catalyst suspended in a high-temperature zone with nitric acid. 1. A conductive resin composition characterized in that a conductive resin composition having a length within a range of 21 to 25 angstroms is dispersed in a synthetic resin matrix.
JP62257437A 1987-10-14 1987-10-14 Electrically conductive resin composition Granted JPH01101343A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62257437A JPH01101343A (en) 1987-10-14 1987-10-14 Electrically conductive resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62257437A JPH01101343A (en) 1987-10-14 1987-10-14 Electrically conductive resin composition

Publications (2)

Publication Number Publication Date
JPH01101343A true JPH01101343A (en) 1989-04-19
JPH027979B2 JPH027979B2 (en) 1990-02-21

Family

ID=17306344

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62257437A Granted JPH01101343A (en) 1987-10-14 1987-10-14 Electrically conductive resin composition

Country Status (1)

Country Link
JP (1) JPH01101343A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05180136A (en) * 1991-12-26 1993-07-20 Yazaki Corp Element for noise prevention and noise preventive type high pressure cable device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05180136A (en) * 1991-12-26 1993-07-20 Yazaki Corp Element for noise prevention and noise preventive type high pressure cable device

Also Published As

Publication number Publication date
JPH027979B2 (en) 1990-02-21

Similar Documents

Publication Publication Date Title
KR101329974B1 (en) A resin composition for EMI shielding, comprising carbon hydride composite
US7056452B2 (en) Polyvinylidene fluoride composites and methods for preparing same
EP1485924B1 (en) Conductive polyolefins with good mechanical properties
US7214430B2 (en) Composite material
US20080099732A1 (en) Electroconductive Resin Composition, Production Method and Use Thereof
EP0296613B1 (en) High conductivity carbon fiber
JP2006526058A (en) Conductive composition and method for producing the same
JP2595396B2 (en) Manufacturing method of conductive composite
US5210116A (en) Resin composite material containing graphite fiber
US5254409A (en) Conductive resin composite
JPS63286437A (en) Fiber-resin composite composition
JP2005264134A (en) Conductive polymer, its preparation process and its application
JPH01185368A (en) Graphite fiber-containing composite resin composition
JPH0238614B2 (en)
JP2598143B2 (en) Conductive resin composition
JPH01101343A (en) Electrically conductive resin composition
JPH01101372A (en) Electrically conductive composite resin composition
JPH0645724B2 (en) Carbon fiber composite resin composition
JP2733568B2 (en) Fluorinated graphite fiber and its manufacturing method
Katsumata et al. Electrical properties of plastic composites using Br2-intercalated vapor-grown carbon fibers as a conductive filler
EP0299874B1 (en) Method of producing bromine-treated graphite fibers
US20020061447A1 (en) Battery electrode, production method thereof, and battery
JPH06104561B2 (en) Graphite intercalation compound

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080221

Year of fee payment: 18