JPH01100027A - Production of plate barium ferrite magnetic powder for magnetic recording - Google Patents

Production of plate barium ferrite magnetic powder for magnetic recording

Info

Publication number
JPH01100027A
JPH01100027A JP62256202A JP25620287A JPH01100027A JP H01100027 A JPH01100027 A JP H01100027A JP 62256202 A JP62256202 A JP 62256202A JP 25620287 A JP25620287 A JP 25620287A JP H01100027 A JPH01100027 A JP H01100027A
Authority
JP
Japan
Prior art keywords
barium ferrite
particles
magnetic powder
fine particles
composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62256202A
Other languages
Japanese (ja)
Other versions
JPH0723223B2 (en
Inventor
Kyoji Odan
恭二 大段
Takayuki Kimura
隆幸 木村
Masahiko Kitajima
正彦 北島
Hiroshi Miura
洋 三浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP62256202A priority Critical patent/JPH0723223B2/en
Publication of JPH01100027A publication Critical patent/JPH01100027A/en
Publication of JPH0723223B2 publication Critical patent/JPH0723223B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Hard Magnetic Materials (AREA)
  • Compounds Of Iron (AREA)

Abstract

PURPOSE:To produce the titled magnetic powder having a small temperature change of coercive force and sharp distribution of anisotropic magnetic fields, by suspending specific fine plate barium ferrite particles in an aqueous solution containing a bivalent element, separating the resultant particles by filtration, drying and calcining the obtained particles. CONSTITUTION:Plate fine barium ferrite particles with a smaller content of one or more bivalent elements selected from Ni, Zn and Co than the composition of the formula (A one or more metallic atoms selected from Ti, Zr and Sn; n is 0.9-1.2; 0.5<x<2; 0.5<y<2; z+w<1; w<0.5) or without containing the bivalent elements are suspended in an aqueous solution containing a bivalent element in an amount so as to adjust the having of the fine particles to that of the above-mentioned formula. An amine (e.g. methylamine) is then added to apply the bivalent element to the particle surfaces. The resultant particles are separated by filtration, dried and heated at 500-900 deg.C for 10min-30hr or a compound of a bivalent element in an amount so as to adjust the composition of the fine particles to that of the aforementioned formula is blended with the above-mentioned fine particles and 10-180wt.% flux (e.g. NaCl), heated at 700-950 deg.C for 10min-30hr, washed, separated by filtration and dried to afford the aimed hexagonal magnetoplumbite type barium ferrite magnetic powder expressed by the formula.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、六方晶マグネトブランバイト型バリウムフェ
ライト磁性粉の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for producing hexagonal magnetoblanbite type barium ferrite magnetic powder.

さらに詳しくは、本発明は高密度記録用の磁気記録媒体
に用いるのに適した、比表面積が20〜70 rd/g
、保磁力が200〜15000eであり、飽和磁化が従
来のものと比較して飛曜的に向上しており、さらに保磁
力の温度変化が小さく、異方性磁界分布がシャープなマ
グネトブランバイト型バリウムフェライト磁性粉の製造
方法に関するものである。
More specifically, the present invention is suitable for use in magnetic recording media for high-density recording, and has a specific surface area of 20 to 70 rd/g.
, a magnetoblanbite type with a coercive force of 200 to 15,000e, significantly improved saturation magnetization compared to conventional ones, small temperature change in coercive force, and sharp anisotropic magnetic field distribution. The present invention relates to a method for producing barium ferrite magnetic powder.

近年、磁気記録の高密度化の要求に伴い、バリウムフェ
ライト磁性粉を磁気記録媒体として用いる垂直磁気記録
方式の開発が進められている。
In recent years, with the demand for higher density magnetic recording, development of perpendicular magnetic recording systems using barium ferrite magnetic powder as a magnetic recording medium has been progressing.

垂直磁気記録方式に用いられるバリウムフェライト磁性
粉としては、保磁力が適当な値(200〜15000e
)で、飽和磁化ができるだけ高く、保磁力の温度変化が
小さく、しかも異方性磁界分布がシャープなものが望ま
れている。
The barium ferrite magnetic powder used in the perpendicular magnetic recording system has a coercive force of an appropriate value (200 to 15,000e).
), it is desired that the saturation magnetization is as high as possible, the temperature change in coercive force is small, and the anisotropic magnetic field distribution is sharp.

(従来の技術およびその問題点) 従来、バリウムフェライト磁性粉の製造方法としては、
例えば共沈法、ガラス結晶化法、水熱合成法等種々の方
法が知られており、ガラス結晶化法については、特公昭
60−15574号公報、水熱合成法については、例え
ば特開昭59−175707号公報、特公昭60−12
973号公報、特公昭60−15576号公報、特開昭
60−137002号公報等で提案されている。
(Conventional technology and its problems) Conventionally, as a method for producing barium ferrite magnetic powder,
For example, various methods such as coprecipitation method, glass crystallization method, and hydrothermal synthesis method are known. Publication No. 59-175707, Special Publication No. 1986-12
This method has been proposed in Japanese Patent Publication No. 973, Japanese Patent Publication No. 15576/1982, Japanese Patent Application Laid-open No. 137002/1982, and the like.

しかしながら、前記いずれの方法においても得られるバ
リウムフェライト磁性粉は、比表面積が40 rrf/
g以上の微粒子になると55esu/g以下に低下して
しまい、また保磁力の温度変化が大きいという欠点があ
った。
However, the barium ferrite magnetic powder obtained by any of the above methods has a specific surface area of 40 rrf/
When the particle size is larger than 1 g, the coercive force decreases to 55 esu/g or less, and there is a drawback that the coercive force changes greatly with temperature.

一方、特開昭61−236104号公報、特開昭62−
16232号公報等には、Znを添加することにより飽
和磁化が向上することが開示されている。しかし、Zn
を添加して得られるバリウムフェライト磁性粉は異方性
磁界分布が広くなってしまうという問題があった。また
、Znを含有するバリウムフェライト磁性粉は一般に板
状比の高いものは得やすいが、板状比が7以下で、粒度
分布を揃えることが困難であった。また、板状比が高い
ものは、詰め率及び分散性(光沢度)の向上に過度の労
力が必要であった。
On the other hand, JP-A-61-236104, JP-A-62-
Publication No. 16232 and the like disclose that saturation magnetization is improved by adding Zn. However, Zn
The barium ferrite magnetic powder obtained by adding the above has a problem in that the anisotropic magnetic field distribution becomes wide. Further, barium ferrite magnetic powder containing Zn is generally easy to obtain with a high plate-like ratio, but when the plate-like ratio is 7 or less, it is difficult to make the particle size distribution uniform. Moreover, those with a high plate-like ratio required excessive effort to improve the filling rate and dispersibility (gloss).

(発明の目的) 本発明の目的は、前記問題点を解決し、微粒子で板状比
が7以下で粒度分布が狭(、比表面積が20〜70 r
rf/g、保磁力が200〜15000eであり、飽和
磁化が従来のものと比較して飛躍的に向上しており、さ
らに保磁力の温度変化が小さく、異方性磁界分布がシャ
ープであり、高密度記録用の磁気記録媒体に用いるのに
適したバリウムフェライト磁性粉の製造方法を提供する
ことにある。
(Objective of the Invention) The object of the present invention is to solve the above-mentioned problems, and to obtain fine particles with a platelet ratio of 7 or less, a narrow particle size distribution (and a specific surface area of 20 to 70 r
rf/g, coercive force is 200-15000e, saturation magnetization is dramatically improved compared to conventional ones, furthermore, temperature change in coercive force is small, anisotropic magnetic field distribution is sharp, An object of the present invention is to provide a method for producing barium ferrite magnetic powder suitable for use in magnetic recording media for high-density recording.

(問題点を解決するための手段) 本発明は一般式 %式%) (ただし、AはTi、 Zr及びSnから選ばれた一種
以上の金属原子を示し、n = 0.9〜1.2.0.
5 < xく2.0.5 < y < 2、z+w<l
、w < 0.5である。)で表される六方晶マグネト
ブランバイト型バリウムフェライト磁性粉を製造するに
際し、出発原料として、前記−最大の組成に比較してN
i、Zn及びCoから選ばれる一種以上の2価元素の割
合が少ないか又は該2価元素を含有しない板状バリウム
フェライト微粒子を用い、 (1)該微粒子の組成を前記−最大の組成に合わす量の
2価元素を含む水溶液に該微粒子を懸濁させ、アミン類
を添加して該2価元素を粒子表面に付着させた後、濾別
、乾燥し、500〜950℃で加熱するか、あるいは (2)該微粒子の組成を前記−最大の組成に合わす量の
2価元素の化合物と該微粒子および融剤を十分混合し、
700〜950℃で加熱した後、洗浄、濾別、乾燥する
ことにより、前記−最大の組成のバリウムフェライト磁
性粉を得ることを特徴とする磁気記録用板状バリウムフ
ェライト磁性粉の製造方法に関するものである。
(Means for Solving the Problems) The present invention is based on the general formula % (where A represents one or more metal atoms selected from Ti, Zr, and Sn, and n = 0.9 to 1.2 .0.
5 < x × 2.0.5 < y < 2, z + w < l
, w < 0.5. ) When producing a hexagonal magnetobrambite barium ferrite magnetic powder represented by
Using plate-shaped barium ferrite fine particles that have a small proportion of one or more divalent elements selected from i, Zn, and Co or do not contain the divalent element, (1) Adjust the composition of the fine particles to the maximum composition mentioned above. The fine particles are suspended in an aqueous solution containing an amount of divalent elements, amines are added to attach the divalent elements to the particle surface, and then filtered, dried, and heated at 500 to 950 ° C. or (2) sufficiently mixing the fine particles and a flux with a compound of a divalent element in an amount that matches the composition of the fine particles to the maximum composition;
A method for producing plate-shaped barium ferrite magnetic powder for magnetic recording, characterized in that barium ferrite magnetic powder having the maximum composition is obtained by heating at 700 to 950°C, followed by washing, filtering, and drying. It is.

本発明において、前記−最大のAはTi5Zr及びSn
から選ばれた一種以上の金属原子であり、n=0.9〜
1.2.0.5 < x < 2.0.5 < y <
 2.2+w<l、w < 0.5である@ XS)’
、ZおよびWが前記範囲を外れると、板状比が高くなっ
たり、粒度分布が広くなる。さらに飽和磁化が高く、保
磁力の温度変化が小さ(、異方性磁界分布がシャープな
ものを得ることが困難となる。
In the present invention, the maximum A is Ti5Zr and Sn
One or more metal atoms selected from n=0.9~
1.2.0.5 < x < 2.0.5 < y <
2.2+w<l, w<0.5@XS)'
, Z and W are out of the above ranges, the plate ratio becomes high or the particle size distribution becomes wide. Furthermore, the saturation magnetization is high, and the temperature change in coercive force is small (which makes it difficult to obtain a material with a sharp anisotropic magnetic field distribution).

本発明の出発原料である、前記−最大の組成に比較して
Nl5Zn及びCoから選ばれる一種以上の2価元素の
割合が少ないか又は該2価元素を含有しない板状バリウ
ムフェライト微粒子としては、特に制限はなく、水熱合
成法により水溶液中から生成したもの、およびこれを加
熱焼成したもの、あるいは共沈法、ガラス結晶化法によ
り得られたもののいずれをも用いることができる。含有
するNi、Zn及びCoから選ばれる2価元素の量は合
計でバリウムフェライト1分子当たり、1.0原子以下
が好ましく、特にZnは0.4原子以下が望ましい。こ
れらの2価元素、特にZnが多く存在すると出発原料の
バリウムフェライト粒子が大きくなり、粒度分布も広(
なってしまうので好ましくない。
The plate-shaped barium ferrite fine particles, which are the starting materials of the present invention, have a smaller proportion of one or more divalent elements selected from Nl5Zn and Co than the maximum composition or do not contain the divalent elements, as follows: There are no particular limitations, and any of those produced from an aqueous solution by a hydrothermal synthesis method, those obtained by heating and baking this, or those obtained by a coprecipitation method or a glass crystallization method can be used. The total amount of divalent elements selected from Ni, Zn, and Co contained is preferably 1.0 atoms or less per molecule of barium ferrite, and particularly preferably 0.4 atoms or less of Zn. When these divalent elements, especially Zn, are present in large amounts, the barium ferrite particles used as the starting material become large and the particle size distribution becomes wide (
This is not desirable because it becomes

本発明においては、出発原料である、前記−最大の組成
に比較してNi、 Zn及びCoから選ばれる一種以上
の2価元素の割合が少ないか又は該2価元素を含有しな
い板状バリウムフェライト微粒子を用いて以下の(1)
及び(2)の方法により前記−最大のバリウムフェライ
ト磁性粉を製造する。
In the present invention, the starting material is plate-shaped barium ferrite that has a smaller proportion of one or more divalent elements selected from Ni, Zn, and Co, or does not contain the divalent element, compared to the above-mentioned maximum composition. The following (1) using fine particles
and (2) to produce the largest barium ferrite magnetic powder.

(1)該微粒子の組成を前記−最大の組成に合わす量の
2価元素を含む水溶液に該微粒子を懸濁させ、アミン類
を添加して該2価元素を粒子表面に付着させた後、濾別
、乾燥し、500〜950℃で加熱する。
(1) After suspending the fine particles in an aqueous solution containing an amount of divalent elements that matches the composition of the fine particles to the above-mentioned maximum composition, and adding amines to attach the divalent elements to the particle surfaces, Separate by filtration, dry and heat at 500-950°C.

Ni、 Zn及びCoの化合物としては、それらの塩化
物、硝酸塩等が用いられる。
As the compounds of Ni, Zn and Co, their chlorides, nitrates, etc. are used.

アミン類としては、メチルアミン、エチルアミン、ブチ
ルアミンなどの低級アルキル基を有する第一アミン、シ
クロヘキシルアミンなどの第一アミン、ジメチルアミン
、ジエチルアミンなどの低級アルキル基を有する第三ア
ミン、トリエチルアミンなどの低級アルキル基を有する
第三アミンを挙げることができる。これらのアミン類は
単独に使用してもよく、また水、アルコール類に溶解さ
せて使用してもよい。
Examples of amines include primary amines having a lower alkyl group such as methylamine, ethylamine, and butylamine, primary amines such as cyclohexylamine, tertiary amines having a lower alkyl group such as dimethylamine and diethylamine, and lower alkyl groups such as triethylamine. Mention may be made of tertiary amines having groups. These amines may be used alone or dissolved in water or alcohol.

加熱温度は500〜950℃、好ましくは7゜0〜93
0°Cである。温度が低すぎるとNi、 Zn及びCo
の結晶格子への組み入れが十分に進まず、飽和磁化が低
くなる。また温度が高すぎると粒子が大きくなったり、
焼結が起こるので好ましくない。
Heating temperature is 500~950℃, preferably 7℃~93℃
It is 0°C. If the temperature is too low, Ni, Zn and Co
Incorporation into the crystal lattice does not proceed sufficiently, resulting in low saturation magnetization. Also, if the temperature is too high, the particles will become larger,
This is not preferred because sintering occurs.

加熱時間は10分〜30時間程度が適当である。Appropriate heating time is about 10 minutes to 30 hours.

加熱雰囲気は特に制限されないが、一般に空気雰囲気が
便利である。また、加熱において、塩化ナトリウム、塩
化バリウムなどの融剤を加えてもよい。
The heating atmosphere is not particularly limited, but an air atmosphere is generally convenient. Further, during heating, a fluxing agent such as sodium chloride or barium chloride may be added.

(2)該微粒子の組成を前記−最大の組成に合わす量の
2価元素の化合物と該微粒子および融剤を十分混合し、
700〜950 ’Cで加熱した後、洗浄、濾別、乾燥
する。
(2) sufficiently mixing the fine particles and a flux with a divalent element compound in an amount that matches the composition of the fine particles to the maximum composition;
After heating at 700-950'C, it is washed, filtered and dried.

Ni、 Zn及びCoの化合物としては、それらの塩化
物、酸化物、水酸化物、硝酸塩等が用いられる。
As the compounds of Ni, Zn and Co, their chlorides, oxides, hydroxides, nitrates, etc. are used.

融剤としては、塩化ナトリウム、塩化バリウム、塩化カ
リウム、塩化ストロンチウム、フッ化ナトリウムなどが
用いられる。融剤の使用量はバリウムフェライト微粒子
に対して、10〜180重量%、特に30〜120重量
%が好ましい。融剤の量が少なすぎると粒子の焼結が起
こり、また多すぎても多くしたことによる利点はな(,
7経済的でない。バリウムフェライト微粒子、融剤およ
びNi1Zn及びCoの化合物の混合方法は特に制限は
なく、水を加えて湿式混合した後、乾燥してもよ(、ま
た乾式混合してもよい。
As the flux, sodium chloride, barium chloride, potassium chloride, strontium chloride, sodium fluoride, etc. are used. The amount of the flux used is preferably 10 to 180% by weight, particularly 30 to 120% by weight, based on the barium ferrite fine particles. If the amount of flux is too small, sintering of the particles will occur, and if it is too large, there will be no benefit from adding more.
7 It is not economical. There is no particular restriction on the method of mixing the barium ferrite fine particles, the flux, and the Ni1Zn and Co compounds, and the mixture may be wet-mixed by adding water and then dried (or may be dry-mixed).

加熱温度は700〜950°C1好ましくは800〜9
30°Cである。温度が低すぎるとNi、 Zn及びC
oの結晶格子への組み入れが十分に進まず、飽和磁化が
低くなる。また温度が高すぎると粒子が大きくなったり
、焼結が起こるので好ましくない。
Heating temperature is 700-950°C, preferably 800-9
It is 30°C. If the temperature is too low, Ni, Zn and C
The incorporation of o into the crystal lattice does not progress sufficiently, resulting in low saturation magnetization. Furthermore, if the temperature is too high, the particles become large and sintering occurs, which is not preferable.

加熱時間は10分〜30時間程度が適当である。Appropriate heating time is about 10 minutes to 30 hours.

加熱雰囲気は特に制限されないが、一般に空気雰囲気が
便利である。洗浄は融剤、過剰のバリウムなどの不純物
を十分に除去できればどのような方法で行ってもよい、
洗浄液としては、水や硝酸、塩酸などの無機酸、酢酸、
プロピオン酸などの有機酸などを用いることができる。
The heating atmosphere is not particularly limited, but an air atmosphere is generally convenient. Cleaning may be performed by any method that can sufficiently remove impurities such as flux and excess barium.
Cleaning liquids include water, inorganic acids such as nitric acid and hydrochloric acid, acetic acid,
Organic acids such as propionic acid can be used.

(実施例) 以下に実施例および比較例を示し、さらに詳しく本発明
について説明する。
(Example) The present invention will be explained in more detail by showing Examples and Comparative Examples below.

実施例1 脱イオン水1300dに、硝酸第二鉄[Fe(NOz)
s・9HzO]1225.7g、硝酸コバルト[C0(
NOり z”68.0]53.5g、硝酸ニッケル[N
i (NO+) z・6H20コ8.9g、硝酸亜鉛[
Zn(NO,)g・6HzO]9.2gおよび四塩化チ
タンETiC1a117.4gを溶解し、別に娩イオン
水1300dに、水酸化バリウム[Ba(OH) g・
811zO]145.Ogおよびカセイソ−ダ(NaQ
H) 1480gを溶解し、再溶液を混合して沈澱物を
生成させた。
Example 1 Ferric nitrate [Fe(NOz)] was added to 1300 d of deionized water.
s・9HzO] 1225.7g, cobalt nitrate [C0(
NOri z"68.0] 53.5g, nickel nitrate [N
i (NO+) z・6H20 8.9g, zinc nitrate [
9.2 g of Zn(NO,)g・6HzO] and 117.4 g of titanium tetrachloride ETiC1a were dissolved, and separately, barium hydroxide [Ba(OH)
811zO]145. Og and caustic soda (NaQ
H) 1480 g was dissolved and remixed to form a precipitate.

得られた沈澱物を含むスラリをオートクレーブに入れ、
145°Cで8時間水熱処理を行った。次いで得られた
沈澱物を十分に水洗した後、濾過、乾燥し、これに融剤
としてNaC1とBaC1,・2H30の重量比が1:
1の混合物を沈澱物に対して100重景%加えて混合し
た。この混合物を空気雰囲気下で860°Cで2時間焼
成した。得られた焼成物を水で十分洗浄した後、濾過、
乾燥してバリウムフェライト微粒子を得た。
The resulting slurry containing the precipitate was placed in an autoclave;
Hydrothermal treatment was performed at 145°C for 8 hours. Next, the obtained precipitate was thoroughly washed with water, filtered and dried, and a flux of NaCl and BaCl,.2H30 in a weight ratio of 1:1 was added to the precipitate.
1 was added to the precipitate in an amount of 100% by weight and mixed. This mixture was calcined at 860°C for 2 hours under an air atmosphere. After washing the obtained baked product thoroughly with water, filtration,
After drying, barium ferrite fine particles were obtained.

この微粒子を硝酸亜鉛45.7gおよび硝酸ニッケル4
4.5gを脱イオン水2001dlに溶解した溶液に懸
濁させ、ジエチルアミン20mを含む水溶液100.d
を加えた。得られたスラリを濾別、洗浄した後、乾燥し
、850’Cで熱処理して、バリウムフェライト磁性粉
を得た。
The fine particles were mixed with 45.7 g of zinc nitrate and 4 g of nickel nitrate.
4.5 g of an aqueous solution containing 20 m of diethylamine are suspended in 2001 dl of deionized water. d
added. The resulting slurry was filtered, washed, dried, and heat treated at 850'C to obtain barium ferrite magnetic powder.

得られたバリウムフェライト磁性粉はX線粉末回折スペ
クトルおよび組成分析の結果、Ba04.0(Few、
 Jio、 6Zna、 &C011,1Tio、 3
01?、 zs)の均一な六方晶の結晶であった。
As a result of X-ray powder diffraction spectrum and composition analysis, the obtained barium ferrite magnetic powder was Ba04.0 (Few,
Jio, 6Zna, &C011,1Tio, 3
01? , zs) was a uniform hexagonal crystal.

またこのバリウムフェライト磁性粉について、粒子形状
、磁気特性、塗膜の光沢度を測定した結果を第1表に示
す。
Table 1 shows the results of measuring the particle shape, magnetic properties, and coating gloss of this barium ferrite magnetic powder.

実施例2〜3 実施例1において、Ni、 ZnおよびCoの添加を、
最初に硝酸コバル) 53.5g、次いで硝酸ニッケル
53.4gおよび硝酸亜鉛63.9gとかえた(実施例
2)、最初に硝酸ニッケル62.3g、次いで硝酸コバ
ルト53.5gおよび硝酸亜鉛54.8gとかえた(実
施例3)ほかは実施例1と同様にしてバリウムフェライ
ト磁性粉を得た。
Examples 2 to 3 In Example 1, the addition of Ni, Zn and Co was
First 53.5 g of cobalt nitrate, then 53.4 g of nickel nitrate and 63.9 g of zinc nitrate (Example 2), first 62.3 g of nickel nitrate, then 53.5 g of cobalt nitrate and 54.8 g of zinc nitrate, etc. (Example 3) Barium ferrite magnetic powder was obtained in the same manner as in Example 1 except for the following.

このバリウムフェライト磁性粉について、粒子形状、磁
気特性、塗膜の光沢度を測定した結果を第1表に示す。
Table 1 shows the results of measuring the particle shape, magnetic properties, and coating gloss of this barium ferrite magnetic powder.

実施例4 脱イオン水1300al!に、硝酸第二鉄1287.6
g、硝酸コバル) 44.6gおよび四塩化チタン23
.2gを溶解し、別に脱イオン水1300dに、水酸化
バリウム145.0gおよびカセイソーダ1480gを
溶解し、再溶液を混合して沈澱物を生成させた。
Example 4 Deionized water 1300al! , ferric nitrate 1287.6
g, cobal nitrate) 44.6 g and titanium tetrachloride 23
.. Separately, 145.0 g of barium hydroxide and 1480 g of caustic soda were dissolved in 1300 d of deionized water, and the solutions were mixed again to form a precipitate.

得られた沈澱物を含むスラリをオートクレーブに入れ、
270°Cで2時間水熱処理を行った。次いで得られた
沈澱物を十分に水洗した後、濾過、乾燥し、これに硝酸
ニッケル53.4gと硝酸亜鉛54.8gと融剤として
NaC1とBaCjz’2HtOの重量比が1:1の混
合物を200g加えて混合した。この混合物を空気雰囲
気下で880℃で2時間焼成した。得られた焼成物を水
で十分洗浄した後、濾過、乾燥してバリウムフェライト
磁性粉を得た。
The resulting slurry containing the precipitate was placed in an autoclave;
Hydrothermal treatment was performed at 270°C for 2 hours. Next, the obtained precipitate was thoroughly washed with water, filtered and dried, and a mixture of 53.4 g of nickel nitrate, 54.8 g of zinc nitrate, and a mixture of NaCl and BaCjz'2HtO in a weight ratio of 1:1 as a flux was added to the precipitate. 200g was added and mixed. This mixture was calcined at 880° C. for 2 hours under an air atmosphere. The obtained fired product was thoroughly washed with water, filtered and dried to obtain barium ferrite magnetic powder.

得られたバリウムフェライト磁性粉はX線粉末回折スペ
クトルおよび組成分析の結果、BaO’1.0(Fe+
o、 Jio、 hZno、 5coo、 5Tio、
 4o1 ?+ 4)の均一な六方晶の結晶であった。
As a result of X-ray powder diffraction spectrum and composition analysis, the obtained barium ferrite magnetic powder was found to have BaO'1.0 (Fe+
o, Jio, hZno, 5coo, 5Tio,
4o1? +4) uniform hexagonal crystals.

またこのバリウムフェライト磁性粉について、粒子形状
、磁気特性、塗膜の光沢度を測定した結果を第1表に示
す。
Table 1 shows the results of measuring the particle shape, magnetic properties, and coating gloss of this barium ferrite magnetic powder.

比較例1 脱イオン水1300dに、硝酸第二鉄1225.7g、
硝酸コバル) 53.5g、硝酸ニッケル53.4g、
硝酸亜鉛54.8gおよび四塩化チタン17.4gを溶
解し、別に脱イオン水1300dに、水酸化バリウム1
45.0gおよびカセイソーダ1480gを溶解し、再
溶液を混合して沈澱物を生成させた。
Comparative Example 1 1225.7 g of ferric nitrate in 1300 d of deionized water,
Cobal nitrate) 53.5g, nickel nitrate 53.4g,
Dissolve 54.8 g of zinc nitrate and 17.4 g of titanium tetrachloride, and separately add 1 g of barium hydroxide in 1300 d of deionized water.
45.0 g and 1480 g of caustic soda were dissolved and the re-solutions were mixed to form a precipitate.

得られた沈澱物を含むスラリをオートクレーブに入れ1
.145℃で8時間水熱処理を行った。次いで得られた
沈澱物を十分に水洗した後、濾過、乾燥し、これに融剤
としてNaC1とBaCl1.・2H30の重量比が1
:1の混合物を沈澱物に対してioo重量%加えて混合
した。この混合物を空気雰囲気下で860″Cで2時間
焼成した。得られた焼成物を水で十”分洗浄した後、濾
過、乾燥してバリウムフェライト磁性粉を得た。
Put the slurry containing the obtained precipitate into an autoclave 1
.. Hydrothermal treatment was performed at 145°C for 8 hours. Next, the obtained precipitate was thoroughly washed with water, filtered and dried, and NaCl1 and BaCl1.・2H30 weight ratio is 1
A mixture of :1 was added in an amount of 100% by weight based on the precipitate and mixed. This mixture was fired in an air atmosphere at 860"C for 2 hours. The resulting fired product was washed with water for a sufficient amount of time, filtered and dried to obtain barium ferrite magnetic powder.

得られたバリウムフェライト磁性粉はX線粉末回折スペ
クトルおよび組成分析の結果、Ba04.0(Few、
 dJi@、 hZno、 6CO11,aTia、 
301 ?、 zs)の均一な六方晶の結晶であった。
As a result of X-ray powder diffraction spectrum and composition analysis, the obtained barium ferrite magnetic powder was Ba04.0 (Few,
dJi@, hZno, 6CO11, aTia,
301? , zs) was a uniform hexagonal crystal.

またこのバリウムフェライト磁性粉について、粒子形状
、磁気特性、塗膜の光沢度を測定した結′i− 果を第1真に示す。
In addition, the results of measuring the particle shape, magnetic properties, and coating gloss of this barium ferrite magnetic powder are shown in the first column.

第1表 比較例2 比較例1と同様な操作により、 Ba()1.0(Fete、 Jio、 zZno、4
CO11,1T1o、 4017.6)の組成のバリウ
ムフェライト磁性粉を得た。
Table 1 Comparative Example 2 By the same operation as Comparative Example 1, Ba()1.0(Fete, Jio, zZno, 4
Barium ferrite magnetic powder having a composition of CO11,1T1o, 4017.6) was obtained.

このバリウムフェライト磁性粉について、粒子形状、磁
気特性、塗膜の光沢度を測定した結果を第1表に示す。
Table 1 shows the results of measuring the particle shape, magnetic properties, and coating gloss of this barium ferrite magnetic powder.

特許出願人  宇部興産株式会社Patent applicant: Ube Industries Co., Ltd.

Claims (1)

【特許請求の範囲】 一般式 BaO・n(Fe_1_2_x_y_z_wNi_xZ
n_yCo_zA_wO_1_8_−_(_x_+_y
_+_z_−_w_)_/_2)(ただし、AはTi、
Zr及びSnから選ばれた一種以上の金属原子を示し、
n=0.9〜1.2、0.5<x<2、0.5<y<2
、z+w<1、w<0.5である。)で表される六方晶
マグネトプランバイト型バリウムフェライト磁性粉を製
造するに際し、出発原料として、前記一般式の組成に比
較してNi、Zn及びCoから選ばれる一種以上の2価
元素の割合が少ないか又は該2価元素を含有しない板状
バリウムフェライト微粒子を用い、 (1)該微粒子の組成を前記一般式の組成に合わす量の
2価元素を含む水溶液に該微粒子を懸濁させ、アミン類
を添加して該2価元素を粒子表面に付着させた後、濾別
、乾燥し、500〜950℃で加熱するか、あるいは (2)該微粒子の組成を前記一般式の組成に合わす量の
2価元素の化合物と該微粒子および融剤を十分混合し、
700〜950℃で加熱した後、洗浄、濾別、乾燥する
ことにより、前記一般式の組成のバリウムフェライト磁
性粉を得ることを特徴とする磁気記録用板状バリウムフ
ェライト磁性粉の製造方法。
[Claims] General formula BaO・n(Fe_1_2_x_y_z_wNi_xZ
n_yCo_zA_wO_1_8_-_(_x_+_y
_+_z_−_w_)_/_2)(A is Ti,
Indicates one or more metal atoms selected from Zr and Sn,
n=0.9-1.2, 0.5<x<2, 0.5<y<2
, z+w<1, w<0.5. ) When producing the hexagonal magnetoplumbite type barium ferrite magnetic powder represented by Using plate-shaped barium ferrite fine particles containing little or no divalent element, (1) suspending the fine particles in an aqueous solution containing an amount of divalent elements that matches the composition of the fine particles to the composition of the general formula, and After the divalent element is attached to the surface of the particles by adding a compound of sufficiently mixing the divalent element compound, the fine particles and the flux,
A method for producing plate-shaped barium ferrite magnetic powder for magnetic recording, which comprises heating at 700 to 950°C, followed by washing, filtering, and drying to obtain barium ferrite magnetic powder having the composition of the general formula.
JP62256202A 1987-10-13 1987-10-13 Method for producing plate-shaped barium ferrite magnetic powder for magnetic recording Expired - Lifetime JPH0723223B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62256202A JPH0723223B2 (en) 1987-10-13 1987-10-13 Method for producing plate-shaped barium ferrite magnetic powder for magnetic recording

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62256202A JPH0723223B2 (en) 1987-10-13 1987-10-13 Method for producing plate-shaped barium ferrite magnetic powder for magnetic recording

Publications (2)

Publication Number Publication Date
JPH01100027A true JPH01100027A (en) 1989-04-18
JPH0723223B2 JPH0723223B2 (en) 1995-03-15

Family

ID=17289334

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62256202A Expired - Lifetime JPH0723223B2 (en) 1987-10-13 1987-10-13 Method for producing plate-shaped barium ferrite magnetic powder for magnetic recording

Country Status (1)

Country Link
JP (1) JPH0723223B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03108303A (en) * 1989-09-20 1991-05-08 Toshiba Glass Co Ltd Magnetic powder for high-density magnetic recording
JPH04214605A (en) * 1990-10-11 1992-08-05 Toshiba Corp Magnetic powder for magnetic recording use

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03108303A (en) * 1989-09-20 1991-05-08 Toshiba Glass Co Ltd Magnetic powder for high-density magnetic recording
JPH04214605A (en) * 1990-10-11 1992-08-05 Toshiba Corp Magnetic powder for magnetic recording use

Also Published As

Publication number Publication date
JPH0723223B2 (en) 1995-03-15

Similar Documents

Publication Publication Date Title
EP0150580A1 (en) Production of barium ferrite particles
JPH01100027A (en) Production of plate barium ferrite magnetic powder for magnetic recording
JPH08702B2 (en) Method for producing ferromagnetic fine powder for magnetic recording
JPS63233017A (en) Magnetic powder of barium ferrite and its production
JPS61141625A (en) Production of barium ferrite powder
JPH01282129A (en) Barium ferrite magnetic powder and its production
JP2577945B2 (en) Barium ferrite magnetic powder and method for producing the same
JPS63307122A (en) Barium ferrite magnetic powder and production thereof
JPH0645462B2 (en) Method for manufacturing barium ferrite powder
JPH0688794B2 (en) Method for producing ferromagnetic fine powder for magnetic recording
JPH0432005B2 (en)
JPS627633A (en) Plate goethite and preparation of the same
JPH04362020A (en) Ferritic magnetic powder and its production
JPS61295236A (en) Production of particular magnet plumbite-type ferrite
JPH02133323A (en) Production of magnetic powder of magnetoplumbite type ferrite
JPH01282130A (en) Barium ferrite magnetic powder and its production
JPH01305825A (en) Production of magnetoplumbite ferrite magnet powder
JPS59102823A (en) Production of magnetic powder for high-density recording
JPS6256325A (en) Production of barium ferrite powder
JPH0234518A (en) Production of magnetic magnetoplumbite type ferrite powder
JPS63195124A (en) Barium ferrite magnetic powder and production thereof
JPH0649578B2 (en) Method for producing hexagonal magnetoplumbite ferrite magnetic powder
JPH04362019A (en) Ferritic magnetic powder and its production
JPH0314782B2 (en)
JPS63265829A (en) Barium ferrite magnetic powder and its production