JP7509351B2 - Porous body and method for producing same - Google Patents

Porous body and method for producing same Download PDF

Info

Publication number
JP7509351B2
JP7509351B2 JP2019203757A JP2019203757A JP7509351B2 JP 7509351 B2 JP7509351 B2 JP 7509351B2 JP 2019203757 A JP2019203757 A JP 2019203757A JP 2019203757 A JP2019203757 A JP 2019203757A JP 7509351 B2 JP7509351 B2 JP 7509351B2
Authority
JP
Japan
Prior art keywords
zeolite
mass
porous body
titanium
composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019203757A
Other languages
Japanese (ja)
Other versions
JP2021075422A (en
Inventor
祥吾 濱本
みずき 稲垣
佑一 中島
修 山田
純平 丸尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osu Corp
Nippon Zettoc Co Ltd
Original Assignee
Osu Corp
Nippon Zettoc Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osu Corp, Nippon Zettoc Co Ltd filed Critical Osu Corp
Priority to JP2019203757A priority Critical patent/JP7509351B2/en
Publication of JP2021075422A publication Critical patent/JP2021075422A/en
Application granted granted Critical
Publication of JP7509351B2 publication Critical patent/JP7509351B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Dental Preparations (AREA)
  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)
  • Water Treatment By Sorption (AREA)
  • Porous Artificial Stone Or Porous Ceramic Products (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Materials For Medical Uses (AREA)

Description

本発明は、多孔質体及びその製造方法に関する。より具体的には、炭素源と、チタン源と、ゼオライトとを混合して燃焼合成してなる多孔質体及びその製造方法に関する。 The present invention relates to a porous body and a method for producing the same. More specifically, the present invention relates to a porous body obtained by mixing a carbon source, a titanium source, and a zeolite and subjecting the mixture to combustion synthesis, and a method for producing the same.

従来よりセラミックス系多孔質材料は、水質浄化、空気浄化、土壌浄化等の分野において有害有機物等を除去するための浄化剤や触媒として利用されてきている。特に水には、人の健康に被害を生ずる恐れがある有機物が含まれており、それらをより効果的に除去する技術が求められている。それら有害有機物を分解・除去する化合物としては、炭化チタンが知られている。炭化チタンは、水、空気、土壌の浄化、これらの脱臭、抗菌及び汚染の予防に効果を発揮する(特許文献1)。しかし炭化チタンはこれら汚染物質の分解速度が遅く、かつ、分解には光エネルギーを必要とするため、実用化には改善の余地がある。 Ceramic porous materials have traditionally been used as purifying agents and catalysts to remove harmful organic matter in the fields of water purification, air purification, soil purification, etc. Water in particular contains organic matter that may be harmful to human health, and there is a demand for technology to remove them more effectively. Titanium carbide is known as a compound that decomposes and removes such harmful organic matter. Titanium carbide is effective in purifying water, air, and soil, and in deodorizing, antibacterial, and preventing pollution in these areas (Patent Document 1). However, titanium carbide decomposes these pollutants slowly, and light energy is required for decomposition, so there is room for improvement before it can be put to practical use.

特開2003-55063号公報JP 2003-55063 A

本発明は、吸着性に優れた新たなセラミックス系多孔質材料を提供することを目的とする。本発明は、また、水質浄化、空気浄化、土壌浄化の分野で有害有機物や微生物等を吸着、除去、分解、又はこれらの汚染を予防できる、新規な汚染の浄化又は予防用組成物を提供することを目的とする。本発明は、さらに、当該多孔質体の製造方法を提供することを目的とする。 The present invention aims to provide a new ceramic porous material with excellent adsorption properties. Another object of the present invention is to provide a novel composition for purifying or preventing contamination, which can adsorb, remove, or decompose harmful organic matter, microorganisms, etc., or prevent such contamination in the fields of water purification, air purification, and soil purification. Another object of the present invention is to provide a method for producing the porous body.

本発明者らは、数々の多孔質体を鋭意検討した結果、炭素源、チタン源及びゼオライトを混合して燃焼合成してなる多孔質体が優れた汚染の浄化効果等を奏することを見出した。より具体的には、本発明は以下の構成であり得る。
〔1〕
炭素源と、チタン源と、ゼオライトとを混合して燃焼合成してなる多孔質体。
〔2〕
前記ゼオライトが、構造コードLTA又はFAUのゼオライトである、前記〔1〕に記載の多孔質体。
〔3〕
前記多孔質体の質量に対する前記ゼオライトの質量割合が1~99質量%である、前記〔1〕又は〔2〕に記載の多孔質体。
〔4〕
前記燃焼合成が、1000~4000℃で1秒~10分間行われ、前記ゼオライトは細孔を有し、前記ゼオライトの細孔径が0.1~10Åである、前記〔1〕~〔3〕のいずれかに記載の多孔質体。
〔5〕
銀、銅、亜鉛、及び錫から選択される少なくとも1種の無機化合物を、前記炭素源、前記チタン源、及び前記ゼオライトと共に混合する、前記〔1〕~〔4〕のいずれかに記載の多孔質体。
〔6〕
前記〔1〕~〔5〕のいずれかに記載の多孔質体を含む、水、空気、土壌及び/又は物質の汚染の浄化又は予防用組成物。
〔7〕
前記汚染が、微生物、ウイルス、有機化合物、着色液体、アンモニア、窒素酸化物、硫黄化合物、及びアルデヒド類から選択される1種以上の汚染物質による、前記〔6〕に記載の汚染の浄化又は予防用組成物。
〔8〕
前記〔1〕~〔5〕のいずれかに記載の多孔質体を含む、酸化還元剤。
〔9〕
前記〔1〕~〔5〕のいずれかに記載の多孔質体を含む、ラジカル触媒。
〔10〕
(1)炭素源と、チタン源と、ゼオライトとを混合する工程、及び
(2)前記工程(1)で得られた混合物を成形し、得られた成形体を空気中又は酸化性雰囲気中、1000~4000℃で1秒~10分間燃焼合成して多孔質体を得る工程、
を含む、前記〔1〕~〔5〕のいずれかに記載の多孔質体の製造方法。
As a result of extensive investigations into various porous bodies, the present inventors have found that a porous body obtained by mixing a carbon source, a titanium source, and a zeolite and subjecting the mixture to combustion synthesis exhibits an excellent pollution purification effect, etc. More specifically, the present invention may have the following configurations.
[1]
A porous body obtained by mixing a carbon source, a titanium source, and a zeolite, and subjecting the mixture to combustion synthesis.
[2]
The porous body according to [1] above, wherein the zeolite is a zeolite having a structure code of LTA or FAU.
[3]
The porous body according to [1] or [2] above, wherein the mass ratio of the zeolite to the mass of the porous body is 1 to 99 mass%.
[4]
The porous body according to any one of [1] to [3] above, wherein the combustion synthesis is carried out at 1000 to 4000° C. for 1 second to 10 minutes, the zeolite has pores, and the pore diameter of the zeolite is 0.1 to 10 Å.
[5]
The porous body according to any one of [1] to [4] above, wherein at least one inorganic compound selected from silver, copper, zinc, and tin is mixed together with the carbon source, the titanium source, and the zeolite.
[6]
A composition for purifying or preventing contamination of water, air, soil and/or substances, comprising the porous body according to any one of [1] to [5] above.
[7]
The composition for purifying or preventing contamination according to [6] above, wherein the contamination is caused by one or more contaminants selected from microorganisms, viruses, organic compounds, colored liquids, ammonia, nitrogen oxides, sulfur compounds, and aldehydes.
[8]
An oxidation-reduction agent comprising the porous body according to any one of [1] to [5] above.
[9]
A radical catalyst comprising the porous body according to any one of [1] to [5] above.
[10]
(1) a step of mixing a carbon source, a titanium source, and a zeolite; and (2) a step of molding the mixture obtained in the step (1) and subjecting the obtained molded body to combustion synthesis at 1000 to 4000° C. for 1 second to 10 minutes in air or an oxidizing atmosphere to obtain a porous body.
The method for producing the porous body according to any one of [1] to [5] above, comprising:

本発明の好ましい態様により、吸着性に優れた新たなセラミックス系多孔質材料を提供することができる。本発明の好ましい態様により、水質浄化、空気浄化、土壌浄化の分野で有害有機物や微生物等を吸着、除去、分解、又はこれらの汚染を予防できる、新規な汚染の浄化又は予防用組成物を提供することができる。本発明により、当該多孔質体の製造方法を提供することができる。より具体的には、本発明の好ましい態様により、炭素源、チタン源及びゼオライトから構成される多孔質体による優れた汚染の浄化効果、汚染の防止効果を提供することができる。また、本発明の当該多孔質体は、汚染浄化等のための外部からの放射エネルギー(光)を必要とすることなく、多孔質体内のゼオライトに物質が吸着等されるため、汚染物質を効率的かつ短時間で分解、単離等することができる。従って、本発明の多孔質体は従来の炭化チタン系多孔質材料よりも高い汚染物質除去効果を示す。 A preferred embodiment of the present invention can provide a new ceramic-based porous material with excellent adsorption properties. A preferred embodiment of the present invention can provide a novel composition for purifying or preventing contamination, which can adsorb, remove, or decompose harmful organic matter, microorganisms, etc., or prevent such contamination in the fields of water purification, air purification, and soil purification. The present invention can provide a method for producing the porous body. More specifically, a preferred embodiment of the present invention can provide an excellent pollution purification effect and pollution prevention effect by a porous body composed of a carbon source, a titanium source, and zeolite. In addition, the porous body of the present invention can efficiently decompose and isolate pollutants in a short time, since substances are adsorbed to the zeolite in the porous body without requiring external radiation energy (light) for pollution purification, etc. Therefore, the porous body of the present invention shows a higher pollutant removal effect than conventional titanium carbide-based porous materials.

試験例5における、比較例1(写真の左側)と実施例3(写真の右側)の試験結果を示す写真である。1 is a photograph showing the test results of Comparative Example 1 (left side of the photograph) and Example 3 (right side of the photograph) in Test Example 5. 一般的なLTA型ゼオライトの骨格を示す化学構造式である。1 is a chemical structural formula showing the skeleton of a typical LTA type zeolite. 一般的なLTA型ゼオライトの骨格構造である。This is the framework structure of a typical LTA type zeolite.

以下、本発明をさらに詳細に説明する。
[混合物]
本発明の一態様は、炭素源と、チタン源と、ゼオライトとを混合して燃焼合成してなる多孔質体である。
ここで、炭素源は、燃焼合成時に炭素を提供する材料であれば、いかなる炭素の化合物や組成物であっても良く、例えば、無機炭素やアモルファスカーボン、黒鉛(グラファイト)のような炭素からなる元素鉱物(単体の炭素のみからなる物質)の他、カーボンブラックのような有機物質から製造される炭素粒子、有機化合物のような炭素化合物、炭素の酸化物、窒化物、塩類(硝酸塩、塩化物、硫酸塩、炭酸塩、酢酸塩、シュウ酸塩等)、水酸化物、炭化物セラミックス(炭化ケイ素、炭化ホウ素等)であってもよい。当該炭素源は、粉末であってもよい。炭素源の粉末を使用する場合、当該粉末の平均粒径は、レーザー回折・散乱法で測定した場合、例えば、0.01~500μm、好ましくは、0.05~200μm、より好ましくは、0.1~10μmである。
The present invention will now be described in further detail.
[blend]
One aspect of the present invention is a porous body obtained by mixing a carbon source, a titanium source, and a zeolite and subjecting the mixture to combustion synthesis.
Here, the carbon source may be any carbon compound or composition as long as it is a material that provides carbon during combustion synthesis, and may be, for example, inorganic carbon, amorphous carbon, elemental minerals (substances consisting only of elemental carbon) such as graphite, carbon particles produced from organic substances such as carbon black, carbon compounds such as organic compounds, oxides, nitrides, salts (nitrates, chlorides, sulfates, carbonates, acetates, oxalates, etc.), hydroxides, or carbide ceramics (silicon carbide, boron carbide, etc.). The carbon source may be a powder. When a powder of the carbon source is used, the average particle size of the powder is, for example, 0.01 to 500 μm, preferably 0.05 to 200 μm, and more preferably 0.1 to 10 μm, as measured by a laser diffraction/scattering method.

チタン源は、燃焼合成時にチタンを提供する材料であれば、いかなるチタンの化合物や組成物であっても良く、例えば、金属チタンからなる元素鉱物(単体のチタンのみからなる物質)の他、酸化チタン(IV)等のチタン酸化物、有機物チタン、チタン合金、チタンの炭化物、窒化物、ホウ化物、塩類(硝酸塩、塩化物、硫酸塩、炭酸塩、酢酸塩、シュウ酸塩等)、水酸化物であってもよい。チタン源として好ましくは、例えば金属チタンの粉末が挙げられる。チタン源の粉末を使用する場合、当該粉末の平均粒径は、レーザー回折・散乱法で測定した場合、例えば、0.01~500μm、好ましくは、0.1~200μm、より好ましくは、1~45μmである。 The titanium source may be any titanium compound or composition that provides titanium during combustion synthesis, and may be, for example, an elemental mineral of metallic titanium (a substance consisting of only elemental titanium), titanium oxide such as titanium oxide (IV), organic titanium, titanium alloy, titanium carbide, nitride, boride, salts (nitrate, chloride, sulfate, carbonate, acetate, oxalate, etc.), or hydroxide. A preferred titanium source is, for example, metallic titanium powder. When using a titanium source powder, the average particle size of the powder is, for example, 0.01 to 500 μm, preferably 0.1 to 200 μm, and more preferably 1 to 45 μm, as measured by a laser diffraction/scattering method.

上記炭素源とチタン源との混合割合は、用いる各原材料の種類、最終製品の用途等に応じて適宜設定すれば良いが、例えば、炭素源:チタン源(炭素元素及びチタン元素を基準とするモル比)=0.1~10:1程度、好ましくは0.5~5:1、より好ましくは0.9~1.1:1である。 The mixing ratio of the carbon source and titanium source may be set appropriately depending on the type of each raw material used, the application of the final product, etc., but for example, the carbon source:titanium source (molar ratio based on carbon element and titanium element) is about 0.1 to 10:1, preferably 0.5 to 5:1, and more preferably 0.9 to 1.1:1.

上記炭素源及びチタン源に加え、さらに、金属(銀、銅、亜鉛、錫、アルミニウム、ジルコニウム、ハフニウム、モリブデン、ステンレス鋼、鉄、白金及び白金-イリジウム合金等)、酸化物セラミックス(酸化ジルコニウム、酸化ハフニウム、酸化ホウ素、酸化ケイ素、酸化アルミニウム、酸化カルシウム、酸化マグネシウム等)、ホウ化物セラミックス(ホウ化ジルコニウム、ホウ化アルミニウム、ホウ化ハフニウム、ホウ化ケイ素等)、窒化物セラミックス(窒化ケイ素、窒化ホウ素、窒化アルミニウム等)、ケイ化物セラミックス(ケイ化アルミニウム、ケイ化チタン、ケイ化ジルコニウム、ケイ化ハフニウム等)、金属間化合物(チタンアルミニウム、ニッケルチタン等)、ホウ素、及びケイ素等から選択される少なくとも1種の他の無機化合物をゼオライトと共に混合して本発明の多孔質体を調製してもよい。当該他の無機化合物は、特に当該他の無機化合物として金属を使用する場合は、当該他の無機化合物の粉末を使用することができる。当該他の無機化合物粉末の平均粒径は、上記炭素源及びチタン源を粉末として使用する場合と同程度の平均粒径であればよく、具体的にはレーザー回折・散乱法で測定した場合、例えば、0.01~500μm、好ましくは、0.1~200μm、より好ましくは、1~100μmである。当該他の無機化合物の混合割合は、当該他の無機化合物の種類、形態等に応じて適宜決定できるが、燃焼合成前の炭素源、チタン源、並びにゼオライトを含む混合物全体の質量に対し、例えば、0.1~30質量%、好ましくは1~20質量%程度であってもよい。 In addition to the carbon source and titanium source, at least one other inorganic compound selected from metals (silver, copper, zinc, tin, aluminum, zirconium, hafnium, molybdenum, stainless steel, iron, platinum, platinum-iridium alloys, etc.), oxide ceramics (zirconium oxide, hafnium oxide, boron oxide, silicon oxide, aluminum oxide, calcium oxide, magnesium oxide, etc.), boride ceramics (zirconium boride, aluminum boride, hafnium boride, silicon boride, etc.), nitride ceramics (silicon nitride, boron nitride, aluminum nitride, etc.), silicide ceramics (aluminum silicide, titanium silicide, zirconium silicide, hafnium silicide, etc.), intermetallic compounds (titanium aluminum, nickel titanium, etc.), boron, and silicon may be mixed with the zeolite to prepare the porous body of the present invention. When a metal is used as the other inorganic compound, a powder of the other inorganic compound may be used. The average particle size of the other inorganic compound powder may be approximately the same as that when the carbon source and titanium source are used as powders, and specifically, when measured by a laser diffraction/scattering method, it is, for example, 0.01 to 500 μm, preferably 0.1 to 200 μm, and more preferably 1 to 100 μm. The mixing ratio of the other inorganic compound can be appropriately determined depending on the type, form, etc. of the other inorganic compound, but may be, for example, about 0.1 to 30 mass%, preferably about 1 to 20 mass%, based on the mass of the entire mixture containing the carbon source, titanium source, and zeolite before combustion synthesis.

上記炭素源及びチタン源とともに混合されるゼオライトは、シリカ及び/又はアルミナを含有する、結晶性アルミノケイ酸塩であって、酸化物セラミックス系多孔質材料とも呼ばれる多孔質結晶である。
一般に、ゼオライトが有する結晶構造(骨格構造ともいう)の基本的な単位は、ケイ素原子又はアルミニウム原子を取り囲んだ4個の酸素原子からなる四面体(TO4四面体構造、TはSi及び/又はAl)であり、これらが3次元方向に連なって結晶構造を形成している。ゼオライトの一般的な組成は、以下の式(I):
z+[(SiO2x(Al23yz- (I)
(式(I)中、Mはイオン交換可能なカチオン種であって、通常、1価又は2価の金属を表し、zはMの原子価であり、x及びyは任意の整数である)
で示すことができる。好ましくは、Mは1A~7A、8、及び1B~3B族から選択される金属原子であり、より好ましくは水素イオンリチウムイオン、カルシウムイオン、ナトリウムイオン、カリウムイオン、マグネシウムイオン及びバリウムイオンであり、x/y(SiO2/Al23モル比)は、例えば1~100、好ましくは2~6である。なお、上記式(I)で示されるゼオライトは、さらに水和物を含む一般式として表現してもよい。
The zeolite mixed with the carbon source and titanium source is a crystalline aluminosilicate containing silica and/or alumina, and is a porous crystal also called an oxide ceramic porous material.
Generally, the basic unit of the crystal structure (also called framework structure) of zeolite is a tetrahedron consisting of four oxygen atoms surrounding a silicon atom or an aluminum atom ( TO4 tetrahedral structure, T is Si and/or Al), which are connected in three dimensions to form the crystal structure. The general composition of zeolite is represented by the following formula (I):
Mz + [( SiO2 ) x ( Al2O3 ) y ] z- (I)
(In formula (I), M is an ion-exchangeable cationic species, typically a monovalent or divalent metal, z is the valence of M, and x and y are any integers.)
Preferably, M is a metal atom selected from Groups 1A to 7A, 8, and 1B to 3B, more preferably a hydrogen ion, lithium ion, calcium ion, sodium ion, potassium ion, magnesium ion, or barium ion, and x/y (SiO 2 /Al 2 O 3 molar ratio) is, for example, 1 to 100, preferably 2 to 6. The zeolite represented by the above formula (I) may be expressed as a general formula further including a hydrate.

本発明で用いる合成ゼオライトの結晶構造は、特に制限はなく、例えば、国際ゼオライト学会(International Zeolite Association)が定めるアルファベット3文字からなる構造コードにて表される各種の結晶構造が挙げられる。構造コードの例としては、例えば、LTA、FER、MWW、MFI、MOR、LTL、FAU、BEAの構造コードが挙げられる。また、本発明で用いる当該結晶構造の好適な一態様を結晶構造の名称で示すと、A型、X型、β型、Y型、L型、ZSM-5型、MCM-22型、フェリエライト型及びモルデナイト型である。
一般に合成ゼオライトは、その結晶構造中に、陽イオンを有しており、当該陽イオンが、アルミノケイ酸塩から構成される上記結晶構造中の負電荷を補償して、正電荷の不足を補っている。
本発明で用いることができるゼオライトは、特に制限はないが、当該陽イオンとして、好ましくは、水素イオンリチウムイオン、カルシウムイオン、ナトリウムイオン、カリウムイオン、マグネシウムイオン及びバリウムイオンからなる群より選ばれる少なくとも1種を含有するゼオライトであってもよい。そして、より好ましくは、当該陽イオンとして、水素イオン、リチウムイオン、カルシウムイオン、ナトリウムイオン及びカリウムイオンからなる群より選ばれる少なくとも1種を含有するゼオライト、更に好ましくは水素イオン、カルシウムイオン及びナトリウムイオンからなる群より選ばれる少なくとも1種を含有するゼオライトであってもよい。
さらに、ゼオライト骨格のシリコン元素全部または一部をリン(P)などの他の元素に置換したもの及びゼオライト骨格のアルミニウム元素をボロン(B)、ガリウム(Ga)、チタン(Ti)などの他の元素に全部または一部を置換したものであってもよい。
The crystal structure of the synthetic zeolite used in the present invention is not particularly limited, and examples thereof include various crystal structures represented by three-letter alphabet structure codes defined by the International Zeolite Association. Examples of the structure codes include LTA, FER, MWW, MFI, MOR, LTL, FAU, and BEA. In addition, preferred embodiments of the crystal structure used in the present invention are, in terms of the names of the crystal structures, A-type, X-type, β-type, Y-type, L-type, ZSM-5-type, MCM-22-type, ferrierite-type, and mordenite-type.
Generally, synthetic zeolites have cations in their crystal structure, which compensate for the negative charges in the crystal structure made of aluminosilicate, thereby making up for the lack of positive charges.
The zeolite that can be used in the present invention is not particularly limited, but may be a zeolite containing, as the cation, at least one selected from the group consisting of hydrogen ions, lithium ions, calcium ions, sodium ions, potassium ions, magnesium ions, and barium ions, more preferably a zeolite containing, as the cation, at least one selected from the group consisting of hydrogen ions, lithium ions, calcium ions, sodium ions, and potassium ions, and even more preferably a zeolite containing, as the cation, at least one selected from the group consisting of hydrogen ions, calcium ions, and sodium ions.
Furthermore, the silicon element in the zeolite framework may be entirely or partially replaced with another element such as phosphorus (P), and the aluminum element in the zeolite framework may be entirely or partially replaced with another element such as boron (B), gallium (Ga), or titanium (Ti).

ゼオライトは固有の細孔径、表面電場、イオン交換能、固体酸性質、吸着能などを有し、乾燥剤、吸着剤、分子ふるい型分離剤、イオン交換剤、触媒等の用途に用いられる。ここで使用されるゼオライトの細孔径は、ガス吸着法で測定して、例えば、0.01~100Åであり、好ましくは0.1~50Åであり、より好ましくは1~10Åである。ゼオライトの粉末を使用する場合、当該ゼオライトの平均粒径は、d50%メジアン径で、レーザー回折・散乱法によって測定した場合、例えば、0.01~100μm、好ましくは、0.1~50μm、より好ましくは、0.5~10μmである。 Zeolites have unique pore sizes, surface electric fields, ion exchange capacity, solid acid properties, adsorption capacity, etc., and are used in applications such as drying agents, adsorbents, molecular sieve-type separation agents, ion exchange agents, and catalysts. The pore size of the zeolite used here is, for example, 0.01 to 100 Å, preferably 0.1 to 50 Å, and more preferably 1 to 10 Å, as measured by a gas adsorption method. When zeolite powder is used, the average particle size of the zeolite is, for example, 0.01 to 100 μm, preferably 0.1 to 50 μm, and more preferably 0.5 to 10 μm, as measured by a laser diffraction/scattering method, as the d50% median size.

上記ゼオライトと共に、又は上記ゼオライトに代わって、当該ゼオライトと同様の効果を持つ吸着剤である、シリカ(フュームドシリカ若しくは沈降シリカ)、粘土(モンモリロナイト、カオリン)、天然ゼオライト、パーライトを用いることもできる。 In addition to or in place of the above zeolites, adsorbents with similar effects to the zeolites can be used, such as silica (fumed silica or precipitated silica), clay (montmorillonite, kaolin), natural zeolites, and perlite.

燃焼合成前の前記炭素源、チタン源、並びにゼオライトの混合物全体の質量(100質量%)に対する、炭素源の質量割合は、例えば、1~99質量%であり、好ましくは5~60質量%であり、より好ましくは10~30質量%である。上記混合物全体の質量に対する、チタン源の質量割合は、例えば、1~99質量%であり、好ましくは20~90質量%であり、より好ましくは40~80質量%である。上記混合物全体の質量に対する、ゼオライトの質量割合は、例えば、1~99質量%であり、好ましくは5~60質量%であり、より好ましくは10~40質量%、さらに好ましくは15~30質量%である。 The mass ratio of the carbon source to the total mass (100 mass%) of the mixture of the carbon source, titanium source, and zeolite before the combustion synthesis is, for example, 1 to 99 mass%, preferably 5 to 60 mass%, and more preferably 10 to 30 mass%. The mass ratio of the titanium source to the total mass of the mixture is, for example, 1 to 99 mass%, preferably 20 to 90 mass%, and more preferably 40 to 80 mass%. The mass ratio of the zeolite to the total mass of the mixture is, for example, 1 to 99 mass%, preferably 5 to 60 mass%, more preferably 10 to 40 mass%, and even more preferably 15 to 30 mass%.

[多孔質体]
上記炭素源と、チタン源と、ゼオライトとの混合物を、任意に金型に充填して成形体を得、さらに当該混合物又は成形体を燃焼することによって、多孔質体を合成することができる。
具体的に、本発明の多孔質体の製造方法は、以下の工程を含み得る。
(1)炭素源と、チタン源と、ゼオライトと、任意の他の無機化合物とを混合する工程、及び
(2)前記混合物を成形し、得られた成形体を空気中又は酸化性雰囲気中、1000~4000℃、好ましくは1500~3500℃、より好ましくは2000~3000℃で、1秒~10分、好ましくは5秒~5分、より好ましくは30秒~1分間燃焼合成する工程。
[Porous body]
A mixture of the carbon source, titanium source, and zeolite can be optionally filled into a mold to obtain a molded body, and the mixture or molded body can be combusted to synthesize a porous body.
Specifically, the method for producing a porous body of the present invention may include the following steps.
(1) a step of mixing a carbon source, a titanium source, a zeolite, and any other inorganic compound; and (2) a step of molding the mixture, and subjecting the obtained molded body to combustion synthesis in air or an oxidizing atmosphere at 1000 to 4000°C, preferably 1500 to 3500°C, and more preferably 2000 to 3000°C, for 1 second to 10 minutes, preferably 5 seconds to 5 minutes, and more preferably 30 seconds to 1 minute.

上記混合は、ミキサー及びミル等を利用することができる。ここで、上記成形体の成形方法は、上記特許文献1に記載された方法のような、公知のセラミックスの成形法に従って実施することができ、例えば、プレス成形、鋳込み成形、射出成形、静水圧成形等の成形法が挙げられる。成形の際の圧力等の成形条件は、用いる原材料の種類、最終製品の用途等に応じて適宜決定すればよいが、例えば、0.01~400MPa、好ましくは0.05~100MPa、より好ましくは0.1~10MPa等の条件を挙げることができる。また、成形体の形状も限定的でなく、柱状体、筒状体(パイプ状)、球状体、直方体、板状体等のいずれであっても良い。成形体の形状として好ましくは、直径10~30mm、高さ10~30mm程度の円柱形が適当である。 The above mixing can be carried out using a mixer, a mill, or the like. The molding method of the above molded body can be carried out according to a known ceramic molding method such as the method described in Patent Document 1, and examples of such molding methods include press molding, casting molding, injection molding, and hydrostatic molding. The molding conditions such as the pressure during molding can be appropriately determined depending on the type of raw material used and the use of the final product, and examples of such conditions include 0.01 to 400 MPa, preferably 0.05 to 100 MPa, and more preferably 0.1 to 10 MPa. The shape of the molded body is not limited, and may be any of a columnar body, a cylindrical body (pipe-shaped), a spherical body, a rectangular parallelepiped, a plate-shaped body, and the like. A cylindrical shape with a diameter of 10 to 30 mm and a height of about 10 to 30 mm is preferable as the shape of the molded body.

上記混合物又は成形体の燃焼合成は、上記特許文献1に記載された方法のような、公知のセラミックスの燃焼合成法に従って実施することがでる。例えば、まず、放電、レーザー照射、カーボンヒーター等による着火等により成形体を局部的に加熱することによって反応を開始させることができる。いったん反応が開始すれば、自発的な発熱により反応が進行し、最終的に目的とする多孔質体を得ることができる。反応時間は、成形体の大きさ等にもよるが、通常は数秒~数分程度である。燃焼反応は、大気中(空気中)、酸化性雰囲気中(酸素・オゾン・二酸化窒素を主として含む雰囲気)、不活性ガス中(アルゴン、窒素、ヘリウム等)、及び真空中(例えば、0.1気圧以下)等で行ってもよい。また、好ましい反応温度(燃焼合成温度)としては、例えば、1000℃以上、より好ましくは1500℃以上、さらに好ましくは1500~3500℃、特に好ましくは、2000~3000℃の範囲を挙げることができる。さらに、好ましい反応時間としては、例えば、1秒~10分、より好ましくは5秒~5分、さらに好ましくは30秒~1分を挙げることができる。 The combustion synthesis of the mixture or the molded body can be carried out according to a known method for the combustion synthesis of ceramics, such as the method described in Patent Document 1. For example, the reaction can be started by first locally heating the molded body by discharge, laser irradiation, ignition by a carbon heater, etc. Once the reaction starts, the reaction proceeds by spontaneous heat generation, and the desired porous body can finally be obtained. The reaction time depends on the size of the molded body, etc., but is usually about several seconds to several minutes. The combustion reaction may be carried out in the atmosphere (in air), in an oxidizing atmosphere (an atmosphere mainly containing oxygen, ozone, and nitrogen dioxide), in an inert gas (argon, nitrogen, helium, etc.), and in a vacuum (for example, 0.1 atmosphere or less). In addition, the preferred reaction temperature (combustion synthesis temperature) is, for example, 1000°C or higher, more preferably 1500°C or higher, even more preferably 1500 to 3500°C, and particularly preferably 2000 to 3000°C. Furthermore, preferred reaction times are, for example, 1 second to 10 minutes, more preferably 5 seconds to 5 minutes, and even more preferably 30 seconds to 1 minute.

当該多孔質体の細孔径は、d50%メジアン径で、BETの比表面積法で測定して、例えば、0.01~100μmであり、好ましくは0.02~10μmであり、より好ましくは0.05~5μmである。また、多孔質体の多孔度(多孔質体の全体積あたりの細孔が占める体積の割合)は、例えば、30~90%であり、好ましくは45~80%であり、より好ましくは50~70%である。上記多孔質体の相対密度は、例えば、20~70%程度、好ましくは30~50%とすることが望ましい。多孔度及び相対密度は、成形体の密度、燃焼温度、雰囲気、圧力等によって制御することができる。また、多孔質体は、三次元網目構造を有し、(a)表面の一部又は全部に形成された酸化物系セラミックス層と、(b)前記セラミックス層以外の部分に形成された非酸化物系セラミックス部分と、を含むことが好ましい。特に、上記多孔質材料中の細孔が貫通孔(連通孔)であることが好ましい。 The pore size of the porous body is, for example, 0.01 to 100 μm, preferably 0.02 to 10 μm, and more preferably 0.05 to 5 μm, as measured by the BET specific surface area method, as the d50% median diameter. The porosity of the porous body (the ratio of the volume of the pores to the total volume of the porous body) is, for example, 30 to 90%, preferably 45 to 80%, and more preferably 50 to 70%. The relative density of the porous body is, for example, about 20 to 70%, preferably 30 to 50%. The porosity and relative density can be controlled by the density of the molded body, the combustion temperature, the atmosphere, the pressure, and the like. The porous body has a three-dimensional network structure, and preferably includes (a) an oxide-based ceramic layer formed on a part or all of the surface, and (b) a non-oxide-based ceramic portion formed on the part other than the ceramic layer. In particular, it is preferable that the pores in the porous material are through holes (communicating holes).

上記多孔質体全体の質量(100質量%)に対する、炭素源の質量割合は、例えば、1~99質量%であり、好ましくは5~60質量%であり、より好ましくは10~30質量%である。上記混合物全体の質量に対する、チタン源の質量割合は、例えば、1~99質量%であり、好ましくは20~90質量%であり、より好ましくは40~80質量%である。上記多孔質体全体の質量に対する、ゼオライトの質量割合は、例えば、1~99質量%であり、好ましくは5~60質量%であり、より好ましくは10~40質量%である。上記多孔質体全体の質量に対する、上記他の無機化合物の質量割合は、例えば、0.1~30質量%、好ましくは1~20質量%である。上記多孔質体全体の質量に対する、上記多孔質体に存在する、上記炭素源とチタン源との存在割合は、例えば、炭素源:チタン源(炭素元素及びチタン元素を基準とするモル比)=0.1~10:1程度、好ましくは0.5~5:1、より好ましくは0.9~1.1:1である。 The mass ratio of the carbon source to the total mass (100% by mass) of the porous body is, for example, 1 to 99% by mass, preferably 5 to 60% by mass, and more preferably 10 to 30% by mass. The mass ratio of the titanium source to the total mass of the mixture is, for example, 1 to 99% by mass, preferably 20 to 90% by mass, and more preferably 40 to 80% by mass. The mass ratio of the zeolite to the total mass of the porous body is, for example, 1 to 99% by mass, preferably 5 to 60% by mass, and more preferably 10 to 40% by mass. The mass ratio of the other inorganic compounds to the total mass of the porous body is, for example, 0.1 to 30% by mass, and preferably 1 to 20% by mass. The ratio of the carbon source and titanium source present in the porous body to the total mass of the porous body is, for example, carbon source:titanium source (molar ratio based on carbon element and titanium element) = about 0.1 to 10:1, preferably 0.5 to 5:1, and more preferably 0.9 to 1.1:1.

本発明の多孔質体は、燃焼反応に先立って、予め成形体表面に金属及び金属酸化物の少なくとも1種を付与してもよい。これにより、燃焼合成時に金属及び/又は金属酸化物が成形体表面に溶融付着し、表面改質を行うことができる。金属及び金属酸化物としては、例えばチタン、ジルコニウム、ハフニウム、カルシウム、マグネシウム、アルミニウム、クロム、バナジウム、銅、銀、亜鉛、錫、金、白金、鉄、ニッケル、コバルト、チタニア、シリカ、カルシア、マグネシア、アルミナ、クロミア、ヘマタイト等を挙げることができる。また、これらを付与する方法としては、例えば金属及び金属酸化物の少なくとも1種の粉末を適当な溶媒に分散させた分散液又はペーストを塗付する方法のほか、ディッピング法、スプレー法、スピンコート法等の方法が挙げられる。 Prior to the combustion reaction, the porous body of the present invention may be provided with at least one of a metal and a metal oxide on the surface of the formed body. This allows the metal and/or metal oxide to melt and adhere to the surface of the formed body during combustion synthesis, thereby modifying the surface. Examples of metals and metal oxides include titanium, zirconium, hafnium, calcium, magnesium, aluminum, chromium, vanadium, copper, silver, zinc, tin, gold, platinum, iron, nickel, cobalt, titania, silica, calcia, magnesia, alumina, chromia, and hematite. Methods for providing these include, for example, a method of applying a dispersion or paste in which at least one of a powder of a metal and a metal oxide is dispersed in a suitable solvent, as well as a dipping method, a spraying method, a spin coating method, and the like.

理論に縛られないが、本発明の多孔質体は、ゼオライトを燃焼合成して得られた多孔質体の細孔中に、炭素、チタン及び炭化チタンがコーティング及び/又は結合されている状態にあると考えられる。炭素、チタン及び炭化チタンは、原材料の量、形態等にもよるが、多孔質体の細孔中の壁面に、分散されて付着及び/又は結合されているような状態にあり、細菌等の汚染物質等が当該細孔内に取り込まれ、吸着され、保持されている間に、細孔内に付着及び/又は結合した炭素、チタン及び炭化チタンの触媒効果によって当該汚染物質等が分解されることにより、汚染が浄化されるものと推測される。例えば、炭化チタンそれ自体は粒径がμオーダーであるため、炭化チタンとゼオライトを単に混合しただけでは、0.1~10Å程度の小さなゼオライト細孔内に入らない。従って、炭素源、チタン源及び/又は炭化チタンをゼオライトと混合したものと、これらを燃焼合成して得られたものとではその物性や特性を異にするものと思われる。 Without being bound by theory, it is believed that the porous body of the present invention is in a state where carbon, titanium and titanium carbide are coated and/or bonded in the pores of the porous body obtained by combustion synthesis of zeolite. Although it depends on the amount and form of the raw materials, carbon, titanium and titanium carbide are in a state where they are dispersed and attached and/or bonded to the wall surface of the pores of the porous body, and while contaminants such as bacteria are taken in, adsorbed and held in the pores, the contaminants are decomposed by the catalytic effect of the carbon, titanium and titanium carbide attached and/or bonded in the pores, and the contamination is purified. For example, titanium carbide itself has a particle size of the order of μ, so simply mixing titanium carbide with zeolite does not allow it to enter small zeolite pores of about 0.1 to 10 Å. Therefore, it is believed that the physical properties and characteristics of a mixture of a carbon source, titanium source and/or titanium carbide with zeolite are different from those of a mixture obtained by combustion synthesis of these.

[多孔質体の用途]
本発明の多孔質体は、汚染の浄化又は予防用の組成物として有用である。理論に縛られないが、本発明の多孔質体は、主に多孔質部分に汚染物質を取り込むことによって、汚染の浄化又は予防を行うことができると考えられる。汚染の浄化又は予防を行う対象としては、水、空気、土壌及び/又は物質を挙げることができる。ここで、物質としては、プラスチック、ガラス、布、皮、木材、金属、コンクリート、紙及び紙パルプ等を挙げることができる。また、汚染としては、細菌、真菌、ウイルス、バイオフィルム等の微生物類;農薬、殺虫剤、殺鼠剤、抗菌剤、環境ホルモン、排気ガス等の化学物質;フェノール、トルエン、ベンゼン等の有機化合物;コーヒー、紅茶、ワイン、醤油、ソース等の液体類;アンモニア、窒素酸化物等の窒素化合物;硫化水素、メチルメルカプタンなどの硫黄化合物;アルデヒド類等を挙げることができる。細菌としては、緑膿菌、大腸菌、黄色ブドウ球菌、サルモネラ菌、芽胞菌等を挙げることができる。真菌としては、酵母菌、カンジタ菌、カビ等が挙げられる。さらなる用途としては、抗菌材、化学物質除去剤、水質浄化剤、漂白剤、消臭剤等が挙げられる。
加えて、本発明の多孔質体は、酸化還元剤及び触媒としても利用できる。例えば、過マンガン酸カリウム、ニクロム酸カリウム、オゾン等の化学物質の酸化還元反応を促進するために本発明の多孔質体を用いることができる。また、本発明の多孔質体が触媒する反応としては、例えばチタン、炭素及び炭化チタンにおけるラジカル反応を挙げることができ、過酸化水素、ヨウ化カリウム等のラジカル分解反応として作用するために本発明の多孔質体を用いることができる(ラジカル触媒としての用途)。
ここで言う汚染の浄化には、有害有機物や細菌等の汚染を吸着、除去、及び/又は分解することが含まれる。また、汚染の予防には、有害有機物や細菌等で汚染されないように抑制・防止し、又は汚染を遅延することが含まれる。
[Uses of porous bodies]
The porous body of the present invention is useful as a composition for purifying or preventing pollution. Without being bound by theory, it is believed that the porous body of the present invention can purify or prevent pollution by mainly incorporating pollutants into the porous portion. Examples of targets for purifying or preventing pollution include water, air, soil, and/or materials. Here, examples of materials include plastic, glass, cloth, leather, wood, metal, concrete, paper, and paper pulp. Examples of contamination include microorganisms such as bacteria, fungi, viruses, and biofilms; chemical substances such as pesticides, insecticides, rodenticides, antibacterial agents, environmental hormones, and exhaust gases; organic compounds such as phenol, toluene, and benzene; liquids such as coffee, black tea, wine, soy sauce, and sauces; nitrogen compounds such as ammonia and nitrogen oxides; sulfur compounds such as hydrogen sulfide and methyl mercaptan; and aldehydes. Examples of bacteria include Pseudomonas aeruginosa, Escherichia coli, Staphylococcus aureus, Salmonella, and spore-forming bacteria. Examples of fungi include yeast, Candida, and mold. Further uses include antibacterial agents, chemical removers, water purifiers, bleaching agents, and deodorisers.
In addition, the porous body of the present invention can be used as an oxidation-reduction agent and catalyst. For example, the porous body of the present invention can be used to promote the oxidation-reduction reaction of chemical substances such as potassium permanganate, potassium dichromate, and ozone. In addition, the reaction catalyzed by the porous body of the present invention can be, for example, a radical reaction in titanium, carbon, and titanium carbide, and the porous body of the present invention can be used to act as a radical decomposition reaction of hydrogen peroxide, potassium iodide, etc. (use as a radical catalyst).
Purification of contamination here includes the adsorption, removal, and/or decomposition of contaminants such as harmful organic matter and bacteria, etc. Prevention of contamination also includes the suppression or prevention of contamination by harmful organic matter, bacteria, etc., or the delay of contamination.

本発明の多孔質体は、従来の多孔質材料が使用される各種用途に幅広く使用することができる。例えば、フィルター、触媒又は触媒担体、センサー、生体材料(人工骨、人工歯根、人工関節等)、抗菌・防汚材料、気化器、放熱板又は熱交換器、電極材料、半導体ウェハー吸着板、吸着材、ガス放出用ベントホール、防振・防音材料、発熱体(ダイオキシン分解用発熱体等)等が挙げられる。 The porous body of the present invention can be used in a wide variety of applications in which conventional porous materials are used. Examples include filters, catalysts or catalyst carriers, sensors, biomaterials (artificial bones, artificial dental roots, artificial joints, etc.), antibacterial and antifouling materials, vaporizers, heat sinks or heat exchangers, electrode materials, semiconductor wafer adsorption plates, adsorbents, vent holes for releasing gas, vibration and soundproofing materials, heating elements (heating elements for decomposing dioxins, etc.), etc.

本発明の多孔質体は加工性が良好であり、上記のような各種の用途に応じて加工し、所望の形状とすることができる。加工方法は、例えば切削等の公知の加工方法(装置)によって実施することができる。 The porous body of the present invention has good processability and can be processed into a desired shape according to the various applications described above. The processing method can be carried out by known processing methods (apparatuses) such as cutting.

本発明の多孔質体は、フィルター(セラミックスフィルター)としても好適に用いることができる。フィルターとしての使用方法は限定的でなく、公知のセラミックスフィルターと同様の方法で用いることができる。また、気相用又は液相用のいずれの用途にも使用できる。例えば、廃水、廃液、汚染水、濁水等の液体をろ過するためのフィルターとして上記多孔質体を用いることができる。これらは、抗菌又は防汚機能を発揮し得ることから、難分解性有害物質の酸化除去等に有効である。 The porous body of the present invention can also be suitably used as a filter (ceramic filter). There is no limitation on the method of use as a filter, and it can be used in the same manner as known ceramic filters. It can also be used for either gas phase or liquid phase applications. For example, the porous body can be used as a filter for filtering liquids such as wastewater, waste liquid, polluted water, and turbid water. These can exert antibacterial or antifouling functions, and are therefore effective for the oxidative removal of persistent harmful substances.

本発明の多孔質体は、加熱することによって再利用を図ることができる。加熱により、細孔内又は表面部に蓄積した介在物がガス化して多孔質体外に放散され、これにより所望の機能を再現することが可能である。加熱温度は、再利用可能になるような温度であれば限定されないが、通常は500℃以上の範囲内で適宜決定すれば良い。 The porous body of the present invention can be reused by heating it. By heating, the inclusions accumulated in the pores or on the surface are gasified and dispersed outside the porous body, making it possible to reproduce the desired function. There are no limitations on the heating temperature as long as it is a temperature that allows reuse, but it is usually sufficient to determine it appropriately within the range of 500°C or higher.

本発明の多孔質体は、光照射してもしなくても上記触媒等の作用を発揮し得るが、暗室のような光が無い状態であっても、微生物、ウイルス、化学物質、有機化合物、着色液体、アンモニア、窒素酸化物、硫黄化合物、及びアルデヒド類などから選択される1種以上の汚染物質の吸着及び分解ができる。「光が無い状態」は、可視光、紫外線及び赤外線を含むすべての光(エネルギー線)を遮光する場合を含む。また、本発明の多孔質体は、可視光、紫外線及び赤外線を含むすべての光(エネルギー線)又は可視光、紫外線及び赤外線のいずれかを照射しても、微生物、ウイルス、化学物質、有機化合物、着色液体、アンモニア、窒素酸化物、硫黄化合物、及びアルデヒド類などから選択される1種以上の汚染物質の吸着及び分解ができる。照射する光強度は、対象物質によって適宜決定すれば良い。 The porous body of the present invention can exert the above-mentioned catalytic action with or without light irradiation, but even in a state without light such as a darkroom, it can adsorb and decompose one or more pollutants selected from microorganisms, viruses, chemical substances, organic compounds, colored liquids, ammonia, nitrogen oxides, sulfur compounds, and aldehydes. The "state without light" includes the case where all light (energy rays) including visible light, ultraviolet light, and infrared light are blocked. In addition, the porous body of the present invention can adsorb and decompose one or more pollutants selected from microorganisms, viruses, chemical substances, organic compounds, colored liquids, ammonia, nitrogen oxides, sulfur compounds, and aldehydes, even when irradiated with all light (energy rays) including visible light, ultraviolet light, and infrared light, or with visible light, ultraviolet light, and infrared light. The intensity of the light to be irradiated may be appropriately determined depending on the target substance.

以下、本発明の具体的な実施例について説明するが、当該実施例は本発明の範囲を限定する意図ではないことを確認的に明記しておく。 Specific examples of the present invention are described below, but it should be clearly stated that these examples are not intended to limit the scope of the present invention.

(原材料)
以下の実施例及び比較例で使用する原材料の詳細は以下の通りである。
・チタン粉末
チタン元素(Ti)の粉末、平均粒径(レーザー回折・散乱法による):40μm
・炭素粉末
炭素元素(C)の粉末、平均粒径(レーザー回折・散乱法による):0.2μm
・LTA型ゼオライト粉末(構造コード:LTA、ゼオライトタイプ:A型)
SiO2/Al23モル比:2.0、ゼオライトの細孔径(ガス吸着法で測定):4.1Å、ゼオライトの平均粒径(レーザー回折・散乱法による):2.6μm、下記式(I)Mz+[(SiO2x(Al23yz- (I)
で示す場合、式(I)中、MはNa、zは1、x/yは2.0
(raw materials)
Details of the raw materials used in the following examples and comparative examples are as follows.
Titanium powder: Powder of titanium element (Ti), average particle size (by laser diffraction/scattering method): 40 μm
Carbon powder Powder of carbon element (C), average particle size (by laser diffraction/scattering method): 0.2 μm
・LTA type zeolite powder (Structure code: LTA, Zeolite type: A type)
SiO2 / Al2O3 molar ratio: 2.0, zeolite pore size (measured by gas adsorption method): 4.1 Å, zeolite average particle size (measured by laser diffraction/scattering method): 2.6 μm, and the following formula (I) Mz + [( SiO2 ) x ( Al2O3 ) y ] z- (I)
In the formula (I), M is Na, z is 1, and x/y is 2.0.

(実施例1)
炭素粉末(2.88g(燃焼合成前の出発原料に対して18質量%))及びチタン粉末(11.52g(燃焼合成前の出発原料に対して72質量%))を準備し、炭素粉末:チタン粉末が1:1(モル比)である混合粉末(14.4g(燃焼合成前の出発原料に対して90質量%))にLTA型ゼオライト粉末(1.6g(燃焼合成前の出発原料に対して10質量%))を加え、これら3種からなる混合粉末16gを調製した。この混合粉末を金型に充填し、プレス成形して直径20mm、高さ25mmの円柱状の成形体を得た。この成形体密度は2.3g/cm3であった。次いで、空気中、黒鉛板上に置いた上記成形体の上部一端を放電により着火し、約2300℃の高温燃焼波を自己伝播させ、当該成形体は45秒間燃焼した。当該燃焼合成反応により、炭素・チタン・ゼオライト多孔質体(細孔径(BET比表面積法で測定、d50%メジアン径):0.2μm、多孔度:53%、相対密度:47%)が得られた。なお、実施例1は本願発明の要件を満たさない参考例である。
Example 1
Carbon powder (2.88 g (18% by mass relative to the starting materials before the combustion synthesis)) and titanium powder (11.52 g (72% by mass relative to the starting materials before the combustion synthesis) were prepared, and LTA-type zeolite powder (1.6 g (10% by mass relative to the starting materials before the combustion synthesis)) was added to a mixed powder (14.4 g (90% by mass relative to the starting materials before the combustion synthesis) in which the carbon powder:titanium powder was 1:1 (molar ratio) to prepare 16 g of a mixed powder consisting of these three kinds. This mixed powder was filled into a mold and pressed to obtain a cylindrical molded body with a diameter of 20 mm and a height of 25 mm. The density of this molded body was 2.3 g/cm 3. Next, one end of the upper part of the molded body placed on a graphite plate in air was ignited by discharge, and a high-temperature combustion wave of about 2300 ° C. was self-propagated, and the molded body burned for 45 seconds. By this combustion synthesis reaction, a carbon-titanium-zeolite porous body (pore size (measured by BET specific surface area method, d50% median size): 0.2 μm, porosity: 53%, relative density: 47%) was obtained. It should be noted that Example 1 is a reference example that does not satisfy the requirements of the present invention.

(実施例2)
炭素粉末(2.72g(燃焼合成前の出発原料に対して17質量%))及びチタン粉末(10.88g(燃焼合成前の出発原料に対して68質量%))を準備し、LTA型ゼオライト粉末が、燃焼合成前の炭素粉末、チタン粉末、及び当該ゼオライト粉末の3種の粉末混合物の合計質量に対して15質量%になるように当該LTA型ゼオライト粉末を加えること、この成形体密度が2.2g/cm3であること、高温燃焼波による燃焼温度が約2200℃であることを除き、上記実施例1と同様に燃焼合成反応を行い、炭素・チタン・ゼオライト多孔質体(細孔径(BET比表面積法で測定、d50%メジアン径):0.2μm、多孔度:55%、相対密度:45%)を得た。
Example 2
Carbon powder (2.72 g (17 mass % with respect to the starting materials before the combustion synthesis)) and titanium powder (10.88 g (68 mass % with respect to the starting materials before the combustion synthesis)) were prepared, and the LTA zeolite powder was added so that the LTA zeolite powder accounted for 15 mass % with respect to the total mass of the three types of powder mixture of the carbon powder, titanium powder, and the zeolite powder before the combustion synthesis, the density of this molded body was 2.2 g/cm 3 , and the combustion temperature by the high-temperature combustion wave was about 2200° C., and a combustion synthesis reaction was performed in the same manner as in Example 1 above, to obtain a carbon-titanium-zeolite porous body (pore diameter (measured by BET specific surface area method, d50% median diameter): 0.2 μm, porosity: 55%, relative density: 45%).

(実施例3)
炭素粉末(2.24g(燃焼合成前の出発原料に対して14質量%))及びチタン粉末(8.96g(燃焼合成前の出発原料に対して56質量%))を準備し、LTA型ゼオライト粉末が、燃焼合成前の炭素粉末、チタン粉末、及び当該ゼオライト粉末の3種の粉末混合物の合計質量に対して30質量%になるように当該LTA型ゼオライト粉末を加えること、この成形体密度が2.0g/cm3であること、高温燃焼波による燃焼温度が約2100℃であることを除き、上記実施例1と同様に燃焼合成反応を行い、炭素・チタン・ゼオライト多孔質体(細孔径(BET比表面積法で測定、d50%メジアン径):0.2μm、多孔度:60%、相対密度:40%)を得た。
Example 3
Carbon powder (2.24 g (14 mass % with respect to the starting materials before the combustion synthesis)) and titanium powder (8.96 g (56 mass % with respect to the starting materials before the combustion synthesis)) were prepared, and the LTA zeolite powder was added so that the LTA zeolite powder accounted for 30 mass % with respect to the total mass of the three types of powder mixture of the carbon powder, titanium powder, and the zeolite powder before the combustion synthesis, the density of this molded body was 2.0 g/cm 3 , and the combustion temperature by the high-temperature combustion wave was about 2100° C., and a combustion synthesis reaction was performed in the same manner as in Example 1 above, to obtain a carbon-titanium-zeolite porous body (pore diameter (measured by BET specific surface area method, d50% median diameter): 0.2 μm, porosity: 60%, relative density: 40%).

(実施例4)
炭素粉末(1.92g(燃焼合成前の出発原料に対して12質量%))及びチタン粉末(7.68g(燃焼合成前の出発原料に対して48質量%))を準備し、LTA型ゼオライト粉末が、燃焼合成前の炭素粉末、チタン粉末、及び当該ゼオライト粉末の3種の粉末混合物の合計質量に対して40質量%になるように当該LTA型ゼオライト粉末を加えること、この成形体密度が1.9g/cm3であること、高温燃焼波による燃焼温度が約2000℃であることを除き、上記実施例1と同様に燃焼合成反応を行い、炭素・チタン・ゼオライト多孔質体(細孔径(BET比表面積法で測定、d50%メジアン径):0.2μm、多孔度:63%、相対密度:36%)を得た。
Example 4
Carbon powder (1.92 g (12 mass % with respect to the starting materials before the combustion synthesis)) and titanium powder (7.68 g (48 mass % with respect to the starting materials before the combustion synthesis)) were prepared, and the LTA zeolite powder was added so that the LTA zeolite powder accounted for 40 mass % with respect to the total mass of the three types of powder mixture of the carbon powder, titanium powder, and the zeolite powder before the combustion synthesis, the density of this molded body was 1.9 g/cm 3 , and the combustion temperature by the high-temperature combustion wave was about 2000° C., and a combustion synthesis reaction was performed in the same manner as in Example 1 above, to obtain a carbon-titanium-zeolite porous body (pore diameter (measured by BET specific surface area method, d50% median diameter): 0.2 μm, porosity: 63%, relative density: 36%).

(比較例2)
ゼオライトを含有せず、炭素粉末:チタン粉末が0.9:1(モル比)である混合粉末を調製した。得られた混合粉末を金型に充填し、プレス成形して直径50mm、高さ100mmの円柱状の成形体を得た。次いで、空気中、黒鉛板上に置いた上記成形体の上部一端を放電により着火し、約2800℃の高温燃焼波を自己伝播させ、当該成形体を約2800℃で5秒間燃焼した。当該燃焼合成反応により、炭化チタンを得た。
(Comparative Example 2)
A mixed powder containing no zeolite and having a carbon powder:titanium powder ratio of 0.9:1 was prepared. The resulting mixed powder was filled into a mold and pressed to obtain a cylindrical molded body with a diameter of 50 mm and a height of 100 mm. Next, the upper end of the molded body placed on a graphite plate in air was ignited by discharge, and a high-temperature combustion wave of about 2800°C was self-propagated, burning the molded body at about 2800°C for 5 seconds. Titanium carbide was obtained by this combustion synthesis reaction.

(比較例3)
LTA型ゼオライト粉末で、SiO2/Al23モル比:2.0、ゼオライトの細孔径(ガス吸着法で測定):4.1Å、ゼオライトの平均粒径(レーザー回折・散乱法による):2.6μm、下記式(I):
z+[(SiO2x(Al23yz- (I)
で示す場合、式(I)中、MはNa、zは1、x/yは2.0
(Comparative Example 3)
LTA type zeolite powder, SiO2 / Al2O3 molar ratio: 2.0, zeolite pore size (measured by gas adsorption method): 4.1 Å, zeolite average particle size (measured by laser diffraction/scattering method): 2.6 μm, and the following formula (I):
Mz + [( SiO2 ) x ( Al2O3 ) y ] z- (I)
In the formula (I), M is Na, z is 1, and x/y is 2.0.

(比較例4)
ゼオライトを含有せず、炭素粉末:チタン粉末が0.9:1(モル比)である混合粉末を調製した。得られた混合粉末を用いて直径50mm×高さ100mmの円柱状成形体を製造した。次いで、空気中、黒鉛板上に置いた上記成形体の上部一端を放電により着火し、約2800℃の高温燃焼波を自己伝播させ、当該成形体を約2800℃で5秒間燃焼した。当該燃焼合成反応により、炭化チタンが得られた。得られた炭化チタンとLTA型ゼオライトとを70:30(質量%)となるように混合した。なお得られた混合物は、炭化チタンとゼオライトを単に混合しただけであるので、炭化チタンはゼオライトの細孔内に入っていない構造と推測される。
(Comparative Example 4)
A mixed powder containing no zeolite and having a carbon powder:titanium powder ratio of 0.9:1 was prepared. A cylindrical molded body having a diameter of 50 mm and a height of 100 mm was produced using the obtained mixed powder. Next, the upper end of the molded body placed on a graphite plate in air was ignited by discharge, and a high-temperature combustion wave of about 2800°C was self-propagated, and the molded body was burned at about 2800°C for 5 seconds. Titanium carbide was obtained by the combustion synthesis reaction. The obtained titanium carbide was mixed with LTA type zeolite at a ratio of 70:30 (mass%). It is assumed that the obtained mixture is a simple mixture of titanium carbide and zeolite, and therefore titanium carbide does not enter the pores of the zeolite.

[評価]
(試験例1)
上記実施例及び比較例で調製した多孔質体等の試料について、水質浄化剤としてのフェノール分解能を評価した。具体的には、水の質量に対してフェノールの質量割合が1ppmとなるようにフェノール溶液を調製し、さらに上記実施例及び比較例の各試料を、懸濁液全体に対する試料の最終濃度が1質量%となるように当該フェノール溶液に加え、懸濁液を調製した。室温(25℃)・暗所で1時間攪拌後、各試料を含む懸濁液を0.45μmのメンブレンフィルターでろ過し、試料を除去してろ液を得た。液体クロマトグラフィーを用いて、当該ろ液中のフェノールの濃度を測定した。多孔質体等の試料を使用せずに調製したろ液をコントロール(比較例1)とし、当該コントロールを100としたときのフェノールの残存率(%)を算出した。
(結果1)
比較例1~比較例4と比較して、本発明の多孔質体である実施例~4に、良好なフェノール分解能が認められた。


[evaluation]
(Test Example 1)
The phenol decomposition ability as a water purification agent was evaluated for the samples such as the porous bodies prepared in the above examples and comparative examples. Specifically, a phenol solution was prepared so that the mass ratio of phenol was 1 ppm relative to the mass of water, and each sample of the above examples and comparative examples was added to the phenol solution so that the final concentration of the sample relative to the entire suspension was 1 mass% to prepare a suspension. After stirring at room temperature (25°C) in a dark place for 1 hour, the suspension containing each sample was filtered through a 0.45 μm membrane filter, and the sample was removed to obtain a filtrate. The concentration of phenol in the filtrate was measured using liquid chromatography. A filtrate prepared without using a sample such as a porous body was used as a control (Comparative Example 1), and the residual rate (%) of phenol was calculated when the control was set to 100.
(Result 1)
Compared with Comparative Example 1 to Comparative Example 4, Examples 2 to 4, which are the porous bodies of the present invention, were found to have good phenol decomposition ability.


表1

Figure 0007509351000001
Table 1
Figure 0007509351000001

(試験例2)
上記実施例及び比較例で調製した多孔質体等の試料について、土壌浄化剤としてのダイアジノン(登録商標)分解能を評価した。具体的には、エタノール水溶液(水:エタノール質量比=1:1)の質量に対してダイアジノン(登録商標)の質量割合が10ppmとなるようにダイアジノン(登録商標)溶液を調製し、さらに上記実施例及び比較例の各試料を、懸濁液全体に対する試料の最終濃度が1質量%となるように当該ダイアジノン(登録商標)溶液に加え、懸濁液を調製した。室温(25℃)・暗所で1時間攪拌後、各試料を含む懸濁液を0.45μmのメンブレンフィルターでろ過し、試料を除去してろ液を得た。液体クロマトグラフィーを用いて、当該ろ液中のダイアジノン(登録商標)の濃度を測定した。多孔質体等の試料を使用せずに調製したろ液をコントロール(比較例1)とし、当該コントロールを100としたときのダイアジノンの残存率(%)を算出した。
(結果2)
比較例1~比較例4と比較して、本発明の多孔質体である実施例3に、良好なダイアジノン(登録商標)分解能が認められた。
(Test Example 2)
The samples of the porous bodies prepared in the above examples and comparative examples were evaluated for their ability to decompose Diazinon (registered trademark) as a soil purification agent. Specifically, a Diazinon (registered trademark) solution was prepared so that the mass ratio of Diazinon (registered trademark) to the mass of the ethanol aqueous solution (water:ethanol mass ratio = 1:1) was 10 ppm, and each sample of the above examples and comparative examples was added to the Diazinon (registered trademark) solution so that the final concentration of the sample relative to the entire suspension was 1 mass% to prepare a suspension. After stirring at room temperature (25 ° C.) in a dark place for 1 hour, the suspension containing each sample was filtered with a 0.45 μm membrane filter, and the sample was removed to obtain a filtrate. The concentration of Diazinon (registered trademark) in the filtrate was measured using liquid chromatography. A filtrate prepared without using a sample such as a porous body was used as a control (Comparative Example 1), and the residual rate (%) of Diazinon was calculated when the control was set to 100.
(Result 2)
Compared with Comparative Examples 1 to 4, Example 3, which is the porous body of the present invention, was found to have a good ability to decompose Diazinon (registered trademark).

表2

Figure 0007509351000002
Table 2
Figure 0007509351000002

(試験例3)
上記実施例及び比較例で調製した多孔質体等の試料について、防汚剤及び洗浄剤としてのワイン脱色能を評価した。具体的には、ワイン(サントリー製、製品名:グラン ロモ マルベック トリヴェント アルゼンチン(赤ワイン))10mLに蒸留水90mLを加え、計100mLのワイン希釈液を調製した。さらに上記実施例及び比較例の各試料を、懸濁液全体に対する試料の最終濃度が1質量%となるように当該ワイン希釈液に加え、懸濁液を調製した。室温(25℃)・暗所で10分間攪拌後、各試料を含む懸濁液を0.45μmのメンブレンフィルターでろ過し、試料を除去してろ液を得た。分光光度計を用いて、ろ液の吸光度を測定した。多孔質体等の試料を使用せずに調製したろ液をコントロール(比較例1)とし、当該コントロールを100として色の残存率(%)を算出した。
(結果3)
比較例1~比較例4と比較して、本発明の多孔質体である実施例3に、良好なワイン脱色能が認められた。
(Test Example 3)
The samples of the porous bodies prepared in the above examples and comparative examples were evaluated for their wine decolorization ability as antifouling agents and cleaning agents. Specifically, 90 mL of distilled water was added to 10 mL of wine (manufactured by Suntory, product name: Gran Lomo Malbec Trivento Argentina (red wine)) to prepare a total of 100 mL of wine dilution. Furthermore, each sample of the above examples and comparative examples was added to the wine dilution so that the final concentration of the sample relative to the entire suspension was 1 mass % to prepare a suspension. After stirring for 10 minutes at room temperature (25 ° C.) in a dark place, the suspension containing each sample was filtered through a 0.45 μm membrane filter, and the sample was removed to obtain a filtrate. The absorbance of the filtrate was measured using a spectrophotometer. The filtrate prepared without using a sample such as a porous body was used as a control (Comparative Example 1), and the color retention rate (%) was calculated by setting the control to 100.
(Result 3)
Compared with Comparative Examples 1 to 4, Example 3, which is the porous body of the present invention, was found to have a good wine decolorizing ability.

表3

Figure 0007509351000003
Table 3
Figure 0007509351000003

(試験例4)
上記実施例及び比較例で調製した多孔質体等の試料について、酸化還元剤としての過マンガン酸カリウムに対する酸化還元反応を評価した。具体的には、水の質量に対して過マンガン酸カリウムの濃度が0.1mMとなるように過マンガン酸カリウム溶液を調製し、さらに上記実施例及び比較例の各試料を当該過マンガン酸カリウム溶液に加えて、懸濁液全体に対する試料の最終濃度が1質量%である懸濁液を調製した。室温(25℃)・暗所で10分間攪拌後、各試料を含む懸濁液を0.45μmのメンブレンフィルターでろ過し、試料を除去してろ液を得た。分光光度計を用いて、当該ろ液の吸光度を求めた。多孔質体等の試料を使用せずに調製したろ液をコントロール(比較例1)とし、当該コントロールを100としたときの過マンガン酸カリウムの残存率(%)を算出した。
(結果4)
比較例1~比較例4と比較して、本発明の多孔質体である実施例3に、良好な過マンガン酸カリウム還元能が認められた。
(Test Example 4)
The redox reaction of the samples such as porous bodies prepared in the above examples and comparative examples with potassium permanganate as an oxidizing and reducing agent was evaluated. Specifically, a potassium permanganate solution was prepared so that the concentration of potassium permanganate was 0.1 mM relative to the mass of water, and each sample from the above examples and comparative examples was added to the potassium permanganate solution to prepare a suspension in which the final concentration of the sample relative to the entire suspension was 1 mass%. After stirring for 10 minutes at room temperature (25°C) in a dark place, the suspension containing each sample was filtered through a 0.45 μm membrane filter to remove the sample and obtain a filtrate. The absorbance of the filtrate was measured using a spectrophotometer. A filtrate prepared without using a sample such as a porous body was used as a control (Comparative Example 1), and the residual rate (%) of potassium permanganate was calculated when the control was set to 100.
(Result 4)
Compared with Comparative Examples 1 to 4, Example 3, which is the porous body of the present invention, was found to have a good potassium permanganate reducing ability.

表4

Figure 0007509351000004
Table 4
Figure 0007509351000004

(試験例5)
上記実施例及び比較例で調製した多孔質体等の試料について、工業用途触媒としての過酸化水素に対する触媒活性を評価した。過酸化水素水(30質量%)に上記実施例及び比較例の各試料を加え、当該試料の最終濃度が1質量%となるように室温(25℃)・暗所で懸濁し、懸濁液を調製した。当該懸濁液を5日間静置し、目視で泡の発生の有無を確認した(図1も参照)。泡が発生した場合は過酸化水素の分解として評価した。泡の発生した場合を〇(良好)と判定し、泡の発生が認められなかった場合を×(不良)と判定した。
(結果5)
コントロール(比較例1)と比較して本発明の多孔質体である実施例3に、過酸化水素の分解が認められた(図1)。
(Test Example 5)
The catalytic activity of the porous bodies and other samples prepared in the above Examples and Comparative Examples as industrial catalysts for hydrogen peroxide was evaluated. Each sample from the above Examples and Comparative Examples was added to hydrogen peroxide water (30% by mass), and suspended in a dark place at room temperature (25°C) so that the final concentration of the sample was 1% by mass to prepare a suspension. The suspension was left to stand for 5 days, and the presence or absence of bubbles was visually confirmed (see also Figure 1). If bubbles were generated, it was evaluated as decomposition of hydrogen peroxide. If bubbles were generated, it was judged as ◯ (good), and if no bubbles were observed, it was judged as × (bad).
(Result 5)
Decomposition of hydrogen peroxide was observed in Example 3, which is the porous body of the present invention, compared with the control (Comparative Example 1) (FIG. 1).

表5

Figure 0007509351000005
Table 5
Figure 0007509351000005

(試験例6)
上記実施例及び比較例で調製した多孔質体等の試料について、抗菌剤としての緑膿菌に対する殺菌効果を評価した。具体的には、記実施例及び比較例の各試料を滅菌水に加え、当該試料の最終濃度0.1質量%となるように試料溶液を調製した。当該試料溶液に対し、生理食塩水にて調製した緑膿菌(106 CFU/mL)を最終濃度が1質量%になるように添加し、室温(25℃)・暗所で24時間攪拌した。BBLTM TrypticaseTM Soy Agar with Lecithin and Polysorbate 80培地を用いて、混釈平板培養法にて32.5℃、5日間培養し、コロニー数を測定し、生菌数を算出した。
(結果6)
コントロール(比較例1)と比較して本発明の多孔質体である実施例3に、緑膿菌に対する殺菌効果が認められた。
(Test Example 6)
The bactericidal effect against Pseudomonas aeruginosa as an antibacterial agent was evaluated for the samples such as the porous bodies prepared in the above Examples and Comparative Examples. Specifically, each sample in the Examples and Comparative Examples was added to sterilized water to prepare a sample solution so that the final concentration of the sample was 0.1% by mass. Pseudomonas aeruginosa (10 6 CFU/mL) prepared in physiological saline was added to the sample solution so that the final concentration was 1% by mass, and the solution was stirred for 24 hours at room temperature (25°C) in a dark place. The sample was cultured for 5 days at 32.5°C by pour plate culture using BBL Trypticase Soy Agar with Lecithin and Polysorbate 80 medium, and the number of colonies was measured and the number of viable bacteria was calculated.
(Result 6)
In comparison with the control (Comparative Example 1), the porous body of the present invention, Example 3, was found to have a bactericidal effect against Pseudomonas aeruginosa.

表6

Figure 0007509351000006
Table 6
Figure 0007509351000006

Claims (9)

炭素源と、チタン源と、ゼオライトとを混合して燃焼合成してなる多孔質体を含前記多孔質体の質量に対する前記ゼオライトの質量割合が15~40質量%である、水、空気、土壌及び/又は物質の汚染の浄化又は予防用組成物。 A composition for purifying or preventing contamination of water, air, soil and/or substances, comprising a porous body obtained by mixing a carbon source, a titanium source and a zeolite, and subjecting the mixture to combustion synthesis, wherein the mass ratio of the zeolite to the mass of the porous body is 15 to 40 mass%. 前記ゼオライトが、構造コードLTA又はFAUのゼオライトである、請求項1に記載の汚染の浄化又は予防用組成物。 The composition for purification or prevention of contamination according to claim 1, wherein the zeolite is a zeolite having a structure code of LTA or FAU. 前記多孔質体の質量に対する前記ゼオライトの質量割合が1530質量%である、請求項1又は2に記載の汚染の浄化又は予防用組成物。 3. The composition for purification or prevention of contamination according to claim 1, wherein the mass ratio of said zeolite to the mass of said porous body is 15 to 30 mass%. 前記燃焼合成が、1000~4000℃で1秒~10分間行われ、前記ゼオライトは細孔を有し、前記ゼオライトの細孔径が0.1~10Åである、請求項1~3のいずれかに記載の汚染の浄化又は予防用組成物。 The composition for purification or prevention of pollution according to any one of claims 1 to 3, wherein the combustion synthesis is carried out at 1000 to 4000°C for 1 second to 10 minutes, the zeolite has pores, and the pore diameter of the zeolite is 0.1 to 10 Å. 銀、銅、亜鉛、及び錫から選択される少なくとも1種の無機化合物を、前記炭素源、前記チタン源、及び前記ゼオライトと共に混合する、請求項1~4のいずれかに記載の汚染の浄化又は予防用組成物。 The composition for purifying or preventing contamination according to any one of claims 1 to 4, wherein at least one inorganic compound selected from silver, copper, zinc, and tin is mixed with the carbon source, the titanium source, and the zeolite. 前記汚染が、微生物、ウイルス、有機化合物、着色液体、アンモニア、窒素酸化物、硫黄化合物、及びアルデヒド類から選択される1種以上の汚染物質による、請求項1~5のいずれかに記載の汚染の浄化又は予防用組成物。 A composition for purifying or preventing contamination according to any one of claims 1 to 5, wherein the contamination is caused by one or more contaminants selected from microorganisms, viruses, organic compounds, colored liquids, ammonia, nitrogen oxides, sulfur compounds, and aldehydes. 請求項1~6のいずれかに記載の汚染の浄化又は予防用組成物を含む、酸化還元剤。 An oxidation-reduction agent comprising a pollution purification or prevention composition according to any one of claims 1 to 6. 請求項1~6のいずれかに記載の汚染の浄化又は予防用組成物を含む、ラジカル触媒。 A radical catalyst comprising a pollution purification or prevention composition according to any one of claims 1 to 6. (1)炭素源と、チタン源と、ゼオライトとを混合する工程、及び
(2)前記工程(1)で得られた混合物を成形し、得られた成形体を空気中又は酸化性雰囲気中、1000~4000℃で1秒~10分間燃焼合成して多孔質体を得る工程、
を含む、請求項1~6のいずれかに記載の汚染の浄化又は予防用組成物の製造方法。
(1) a step of mixing a carbon source, a titanium source, and a zeolite; and (2) a step of molding the mixture obtained in the step (1) and subjecting the obtained molded body to combustion synthesis at 1000 to 4000° C. for 1 second to 10 minutes in air or an oxidizing atmosphere to obtain a porous body.
A method for producing the composition for cleaning or preventing pollution according to any one of claims 1 to 6, comprising:
JP2019203757A 2019-11-11 2019-11-11 Porous body and method for producing same Active JP7509351B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019203757A JP7509351B2 (en) 2019-11-11 2019-11-11 Porous body and method for producing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019203757A JP7509351B2 (en) 2019-11-11 2019-11-11 Porous body and method for producing same

Publications (2)

Publication Number Publication Date
JP2021075422A JP2021075422A (en) 2021-05-20
JP7509351B2 true JP7509351B2 (en) 2024-07-02

Family

ID=75899230

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019203757A Active JP7509351B2 (en) 2019-11-11 2019-11-11 Porous body and method for producing same

Country Status (1)

Country Link
JP (1) JP7509351B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115676832A (en) * 2022-11-25 2023-02-03 长沙新立硅材料科技有限公司 Preparation method of cellulose-supported porous MXene material

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000281464A (en) 1999-03-31 2000-10-10 Railway Technical Res Inst Inorganic inclination material and its production
JP2003055063A (en) 2001-06-07 2003-02-26 Osamu Yamada Method for manufacturing ceramic porous material
JP2013221746A (en) 2012-04-12 2013-10-28 Carbo Tec:Kk Cesium adsorbent

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2561368B2 (en) * 1990-05-30 1996-12-04 有限会社みかづき文化会館 Circulation system and circulation filtration device using the same
JPH11179158A (en) * 1997-10-15 1999-07-06 Ngk Insulators Ltd Adsorbent and adsorber for cleaning of exhaust gas of automobile containing fine hole porous body and exhaust gas cleaning system using them and method for cleaning of exhaust gas

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000281464A (en) 1999-03-31 2000-10-10 Railway Technical Res Inst Inorganic inclination material and its production
JP2003055063A (en) 2001-06-07 2003-02-26 Osamu Yamada Method for manufacturing ceramic porous material
JP2013221746A (en) 2012-04-12 2013-10-28 Carbo Tec:Kk Cesium adsorbent

Also Published As

Publication number Publication date
JP2021075422A (en) 2021-05-20

Similar Documents

Publication Publication Date Title
JP3678606B2 (en) Metal-modified apatite and method for producing the same
EP0634363B1 (en) Process for preparing a photocatalyst and process for purifying water
KR101142040B1 (en) Multiple seperation filter and antioxidant water made thereby
Petrik et al. Silver/zeolite nano composite-based clay filters for water disinfection
JP7509351B2 (en) Porous body and method for producing same
JP7482497B2 (en) Porous ceramic body and its manufacturing method
JP4320393B2 (en) Photocatalyst material and method for producing the same
JP2585946B2 (en) Sterilization adsorption function body using optical semiconductor
US20190218111A1 (en) Filtration medium for removal or inactivation of microorganisms from water
JP2002253973A (en) Photocatalytic body and manufacturing method thereof and application thereof
EP2874952A1 (en) Biocidal filter medium
JP4052549B2 (en) Photocatalyst based on granulated artificial lightweight aggregate, production method thereof and use thereof
JPS59193134A (en) Water purifying material
JPH09239277A (en) Photocatalytic powder, photocatalyst using the powder and environment cleaning method using them
JP2005329360A (en) Cleaning material and its manufacturing method
JP4224598B2 (en) Metal-modified apatite and method for producing the same
JPH09300515A (en) Building material having photocatalytic function and its production
JPH0623265A (en) Water purifying material, production therefor and purifying method
AU2004228833B2 (en) Ultraviolet-responsive thin film photocatalyst and application thereof
JP2005343725A (en) Production method of porous sintered compact
JPH10258274A (en) Purifying agent and its production
JP4182210B2 (en) Process for producing titanium oxide composite coated with silicate
SALIM SYNTHESIS AND CHARACTERIZATION OF CETYLTRIMETHYL AMMONIUM BROMIDE AND SILVER SUPPORTED NaY ZEOLITES FOR ANTIBACTERIAL APPLICATION
JP4324660B2 (en) Metal-modified apatite and method for producing the same
JPH08105178A (en) Tile having light catalytic function

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220822

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230511

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230601

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230727

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20231026

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240124

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20240314

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20240408

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20240408

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20240408

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240527

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240611