JP7506566B2 - Sealing and coating materials - Google Patents

Sealing and coating materials Download PDF

Info

Publication number
JP7506566B2
JP7506566B2 JP2020154306A JP2020154306A JP7506566B2 JP 7506566 B2 JP7506566 B2 JP 7506566B2 JP 2020154306 A JP2020154306 A JP 2020154306A JP 2020154306 A JP2020154306 A JP 2020154306A JP 7506566 B2 JP7506566 B2 JP 7506566B2
Authority
JP
Japan
Prior art keywords
glass
sealing
mol
content
coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020154306A
Other languages
Japanese (ja)
Other versions
JP2022048472A (en
Inventor
浩三 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon Yamamura Glass Co Ltd
Original Assignee
Nihon Yamamura Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Yamamura Glass Co Ltd filed Critical Nihon Yamamura Glass Co Ltd
Priority to JP2020154306A priority Critical patent/JP7506566B2/en
Publication of JP2022048472A publication Critical patent/JP2022048472A/en
Application granted granted Critical
Publication of JP7506566B2 publication Critical patent/JP7506566B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Glass Compositions (AREA)

Description

本発明は封着・被覆ガラスを含んでなる材料に関し,より具体的には電子デバイス等の物品の製造過程における部材間の封着のための,また電子部品に形成された電極や抵抗体の保護,絶縁のための,封着・被覆用材に関する。 The present invention relates to a material comprising a sealing/coating glass, and more specifically to a sealing/coating material for sealing between components during the manufacturing process of products such as electronic devices, and for protecting and insulating electrodes and resistors formed on electronic components.

電子デバイス等の物品の製造において使用される封着用材には,できるだけ低温で対象物品と封着できること,それらの部品の熱膨張係数に近似していること,及び確実な封着のために焼成時に十分な流動性を示すこと等の特性が求められている。 Sealing materials used in the manufacture of electronic devices and other items are required to have properties such as the ability to seal to the target items at as low a temperature as possible, a thermal expansion coefficient close to that of those parts, and sufficient fluidity when fired to ensure a reliable seal.

また,電子部品の表面に使用される被覆用材においても,(1)被覆物と熱膨張係数が近いこと,(2)工程で酸を使用するため耐酸性があること,(3)比較的低温で焼成できること等の要求特性がある。 In addition, coating materials used on the surfaces of electronic components also have certain required characteristics, such as (1) a thermal expansion coefficient close to that of the coating, (2) acid resistance because acids are used in the process, and (3) the ability to be fired at relatively low temperatures.

上記の物品において封着や被覆用として使用されているガラスは,一般的にPbO-SiO-B系のものであり,またそれらの熱膨張係数を下げて電子部品のそれに適合させる目的で,コーディエライトのような低膨張性セラミックを添加して熱膨張係数を調節した材料も使用されてきた。 The glasses used for sealing or coating the above-mentioned articles are generally of the PbO-- SiO.sub.2 - B.sub.2O.sub.3 system, and materials whose thermal expansion coefficients have been adjusted by adding low-expansion ceramics such as cordierite in order to lower the thermal expansion coefficients and make them compatible with those of electronic components have also been used.

しかし,鉛を含むガラスは,環境上の観点から近年使用が避けられてきており,鉛を含有しないガラスの開発が行われている。鉛を含まないガラスとしては,Bi-SiOーB系ガラス(特許文献1)などが知られている。 However, in recent years, the use of lead-containing glass has been avoided from an environmental perspective, and lead-free glass has been developed. Known examples of lead-free glass include Bi2O3 - SiO2 - B2O3 - based glass (Patent Document 1).

しかし,これまで開発されてきた無鉛ガラスには,軟化温度が高くそのため焼成温度が高くなるという問題点や,軟化温度を下げるようZnOあるいはBiの割合を高めた組成とした場合,耐酸性が低下するという問題点がある。更に,Biの含有量を高めたものは焼成時に結晶化しやすくなるという問題がある。 However, the lead-free glasses developed so far have problems such as a high softening temperature, which requires a high firing temperature, and a problem that the acid resistance decreases when the ratio of ZnO or Bi2O3 is increased to lower the softening temperature. Furthermore, glasses with a high Bi2O3 content have a problem that they tend to crystallize during firing.

特開2011-230973Patent Publication 2011-230973

上記の背景において,本発明は,鉛及びアルカリ金属酸化物を含有せず、800℃以下という比較的低温で焼成でき,焼成時に結晶化せず,耐酸性に優れるガラスであって,熱膨張係数が55~80×10-7/℃である封着・被覆用ガラスを提供することにある。 In light of the above background, the present invention provides a sealing/coating glass which does not contain lead or alkali metal oxides, can be fired at a relatively low temperature of 800°C or less, does not crystallize during firing, has excellent acid resistance, and has a thermal expansion coefficient of 55 to 80× 10-7 /°C.

本発明者は上述の従来技術の問題点の解決に向けて研究を重ねた結果,ある特定の成分範囲のガラス組成物にした場合,耐酸性がよく,800℃以下の温度で封着できるガラスが得られることを見出し,この知見に基づき更に検討を重ねて本発明を完成させるに至った。すなわち,本発明は以下を提供する。 As a result of extensive research aimed at solving the problems of the prior art described above, the inventors discovered that a glass composition with a certain range of components can produce glass that is acid-resistant and can be sealed at temperatures of 800°C or less. Based on this knowledge, the inventors conducted further research and completed the present invention. In other words, the present invention provides the following:

1.実質的に酸化鉛もアルカリ金属酸化物も含有せず,モル%で,
SiO :30~50%
Al :1~10%
:10~32%
BaO :5~25%
ZnO :1~10%
Bi3 :0~6%,及び
RO :18~40%
(Rは,Mg,Ca,Sr,Ba及びZnを包括的に表す。)
を含有することを特徴とする,封着・被覆用ガラス。
2.実質的に酸化鉛もアルカリ金属酸化物も含有せず,モル%で,
SiO :32~48%
Al :2~8%
:12~30%
BaO :8~22%
ZnO :1~8%
Bi3 :0~6%,及び
RO :21~38%
(Rは,Mg,Ca,S,Ba及びZnを包括的に表す。)
を含有することを特徴とする,封着・被覆用ガラス。
3.CaOとSrOのうち少なくとも1種を合計で1~20モル%含有する,上記1又は2の封着・被覆用ガラス。
4.SiOとBの合計含有量が50~70モル%である,上記1~3の何れかの封着・被覆用ガラス。
5.ROに対するSiOのモル比:
[SiO/RO]
が1~2である,上記1~4の何れかの封着・被覆用ガラス。
6.粉末の形態の上記1~5の何れかのガラスを含んでなる封着・被覆用材。
7.粉末の形態の上記1~5の何れかのガラスとフィラー粉末とを含んでなり,フィラー粉末の含有量が40重量%を超えないものである,封着・被覆用材。
8.有機バインダーと溶剤を更に含んでなるペーストの形態である,上記6又は7の封着・被覆用材。
1. Substantially free of lead oxide or alkali metal oxide, in mole percent:
SiO2 : 30-50%
Al2O3 : 1 to 10%
B2O3 : 10-32 %
BaO: 5 to 25%
ZnO: 1 to 10%
Bi2O3 : 0-6 %, and RO: 18-40%
(R collectively represents Mg, Ca, Sr, Ba and Zn.)
A sealing/coating glass comprising:
2. Substantially free of lead oxide or alkali metal oxide, in mole percent:
SiO2 : 32-48%
Al2O3 : 2-8 %
B2O3 : 12-30 %
BaO: 8-22%
ZnO: 1 to 8%
Bi2O3 : 0-6 %, and RO: 21-38%
(R collectively represents Mg, Ca, S, Ba and Zn.)
A sealing/coating glass comprising:
3. The sealing/coating glass according to 1 or 2 above, containing 1 to 20 mol % in total of at least one of CaO and SrO.
4. The sealing/coating glass according to any one of 1 to 3 above, wherein the total content of SiO 2 and B 2 O 3 is 50 to 70 mol %.
5. Molar ratio of SiO2 to RO:
[ SiO2 /RO]
5. The sealing/covering glass according to any one of 1 to 4 above, wherein
6. A sealing/covering material comprising any one of the glasses 1 to 5 above in powder form.
7. A sealing/coating material comprising any one of the glasses 1 to 5 above in powder form and a filler powder, the content of the filler powder not exceeding 40% by weight.
8. The sealing/covering material according to 6 or 7 above, which is in the form of a paste further comprising an organic binder and a solvent.

上記構成になる本発明の封着・被覆用材は800℃以下で焼成することができる。また本発明のガラス粉末は,セラミックフィラー粉末との混合物として焼成してもフィラーと反応せず結晶の析出が起こらないため,流動性に優れ,このため冷却固化後の機械的強度が高く,耐久性に優れた封着,被覆用材として使用することができる。また本発明の封着・被覆用材は,熱膨張係数を約55~80×10-7/℃の範囲で,更には約60~80×10-7/℃の範囲でも容易に調節することができる。従って,この点においても封着・被覆に適した材料として有利に使用することが可能である。 The sealing/coating material of the present invention having the above-mentioned configuration can be fired at 800°C or less. Furthermore, the glass powder of the present invention, even when fired as a mixture with a ceramic filler powder, does not react with the filler and does not cause crystal precipitation, so it has excellent fluidity, and therefore can be used as a sealing/coating material with high mechanical strength and excellent durability after cooling and solidifying. Furthermore, the sealing/coating material of the present invention can easily have a thermal expansion coefficient adjusted to within a range of about 55 to 80 x 10 -7 /°C, and even within a range of about 60 to 80 x 10 -7 /°C. Therefore, in this respect as well, it can be advantageously used as a material suitable for sealing/coating.

(1)封着・被覆用ガラス
本発明の封着・被覆用ガラスを構成する各成分と,本発明の目的の達成に適したそれらの含有量範囲は以下の通りである。
(1) Sealing/Coating Glass The components constituting the sealing/coating glass of the present invention and the content ranges thereof suitable for achieving the object of the present invention are as follows:

SiOはガラスを形成する成分であり,30~50モル%の範囲で含有させることが好ましい。SiOの含有量が30モル%より少ない場合,ガラスが得られないおそれがあり,また得られたとしても熱膨張係数が高くなり,封着ができなくなるおそれがある一方,SiOの含有量が50モル%より多くなると,ガラスが溶融しがたくなり,また製造時に融液中で未溶融物として溶け残るおそれがあるためである。これらの要素を考慮すると,SiOの含有量は32~48モル%とするのがより好ましく,35~45モル%とするのが更に好ましい。 SiO2 is a component that forms glass, and is preferably contained in the range of 30 to 50 mol%. If the SiO2 content is less than 30 mol%, glass may not be obtained, and even if it is obtained, the thermal expansion coefficient may be high and sealing may not be possible, while if the SiO2 content is more than 50 mol%, the glass may be difficult to melt, and may remain unmelted in the molten liquid during production. Considering these factors, the SiO2 content is more preferably 32 to 48 mol%, and even more preferably 35 to 45 mol%.

Alはガラスを形成する成分であり,1~10モル%の範囲で含有させることが好ましい。Alの含有量が1モル%より少ない場合,ガラスが得られないおそれがある一方,Alの含有量が10モル%より多い場合,製造時に融液中で未溶融物として溶け残るおそれがあるためである。これらの要素を考慮すると,Alの含有量は2~8モル%とするのがより好ましい。 Al 2 O 3 is a component that forms glass, and is preferably contained in the range of 1 to 10 mol %. If the content of Al 2 O 3 is less than 1 mol %, glass may not be obtained, while if the content of Al 2 O 3 is more than 10 mol %, it may remain unmelted in the molten liquid during production. Considering these factors, it is more preferable that the content of Al 2 O 3 is 2 to 8 mol %.

はガラスを形成する成分であり10~32モル%の範囲で含有させることが好ましい。Bの含有量が10モル%より少ない場合,ガラスが得られないおそれがあり,また得られたとしても軟化温度が高くなり,所望の温度での封着ができなくなるおそれがある一方,Bの含有量が32モル%より多くなると,ガラスの熱膨張係数が高くなり封着,被覆ができなくなるおそれがあるためである。これらの要素を考慮すると,Bの含有量は12~30モル%とするのがより好ましく,15~25モル%とするのが更に好ましい。 B 2 O 3 is a component that forms glass, and is preferably contained in the range of 10 to 32 mol %. If the content of B 2 O 3 is less than 10 mol %, glass may not be obtained, and even if it is obtained, the softening temperature may be high and sealing may not be possible at a desired temperature. On the other hand, if the content of B 2 O 3 is more than 32 mol %, the thermal expansion coefficient of the glass may be high and sealing and coating may not be possible. Considering these factors, the content of B 2 O 3 is more preferably 12 to 30 mol %, and even more preferably 15 to 25 mol %.

BaOはガラス形成性を高め,軟化温度を下げる成分であり,5~25モル%の範囲で含有させることが好ましい。BaOの含有量が5モル%より少ない場合,軟化温度を下げる効果がないおそれがある一方,BaOの含有量が25モル%より多い場合,ガラス形成性が却って悪くなるおそれがあるためである。これらの要素を考慮すると,BaOの含有量は8~22モル%とするのがより好ましく,10~20モル%とするのが更に好ましい。 BaO is a component that enhances glass formability and lowers the softening temperature, and is preferably contained in the range of 5 to 25 mol%. If the BaO content is less than 5 mol%, there is a risk that it will not be effective in lowering the softening temperature, while if the BaO content is more than 25 mol%, there is a risk that glass formability may actually worsen. Taking these factors into consideration, the BaO content is more preferably 8 to 22 mol%, and even more preferably 10 to 20 mol%.

ZnOはガラス形成性を上げる成分であり,1~10モル%の範囲で含有させることが好ましい。ZnOの含有量が1モル%より少ない場合,ガラスの形成性が悪くなるおそれがある一方,ZnOの含有量が10モル%より多い場合,ガラスの耐酸性が悪くなるおそれがあるためである。これらの要素を考慮すると,ZnOの含有量は1~8モル%とするのがより好ましく,3~8モル%とするのが更に好ましい。 ZnO is a component that improves glass formability, and is preferably contained in the range of 1 to 10 mol%. If the ZnO content is less than 1 mol%, the glass formability may be impaired, while if the ZnO content is more than 10 mol%, the acid resistance of the glass may be impaired. Taking these factors into consideration, the ZnO content is more preferably 1 to 8 mol%, and even more preferably 3 to 8 mol%.

Biは必須成分ではないが,ガラス状態を安定させ,軟化温度を下げる成分として含有させることができ,その場合含有量は6モル%以下とすることが好ましい。Biの含有量が6モル%を超えるとガラスの形成性が悪くなるあるいは焼成時に結晶が析出し易くなり,封着,被覆不良が発生するおそれがあるためである。これらの要素を考慮すると,Biの含有量は5モル%以下とするのがより好ましく,3モル%以下とするのが更に好ましい。 Bi2O3 is not an essential component, but it can be included as a component that stabilizes the glass state and lowers the softening temperature, and in that case , the content is preferably 6 mol% or less. If the Bi2O3 content exceeds 6 mol%, the glass formability may deteriorate or crystals may easily precipitate during firing, which may cause sealing and coating defects. Considering these factors, the Bi2O3 content is more preferably 5 mol% or less, and even more preferably 3 mol% or less.

CaO及びSrOは必須成分ではないが,ガラスの形成性を高める成分として含有させることができ,その場合,それらの合計含有量を20モル%以下とするのが好ましい。合計含有量が20モル%を超えるとガラスの形成性が悪くなるおそれがあるためである。これらの要素を考慮すると,CaOとSrOの合計含有量は1~20モル%とするのがより好ましい。 CaO and SrO are not essential components, but they can be included as components that enhance glass formability. In that case, it is preferable that their total content be 20 mol% or less. If the total content exceeds 20 mol%, glass formability may deteriorate. Taking these factors into consideration, it is more preferable that the total content of CaO and SrO be 1 to 20 mol%.

MgOは必須成分ではないが,他のアルカリ土類金属酸化物と併用するとガラスの液相温度を下げるように作用するため,含有させてもよい。但しMgOの含有量が5モル%を超える場合,ガラスが得られなくなるか又はガラスの結晶化を誘発するおそれがあるため,含有量は5モル%以下とする必要があり,またそのようなおそれの確実な防止のためには,MgOの含有量は1モル%以下とするのがより好ましく,含有しないことが更に好ましい。 MgO is not an essential component, but may be included because it acts to lower the liquidus temperature of glass when used in combination with other alkaline earth metal oxides. However, if the MgO content exceeds 5 mol%, glass may not be obtained or crystallization of the glass may be induced, so the content must be 5 mol% or less. To reliably prevent such risks, it is more preferable that the MgO content be 1 mol% or less, and even more preferable that it is not included at all.

ZrOは必須成分ではないが,ガラスの耐酸性を向上させる成分として含有させることができ,その場合含有量は7モル%以下とするのがが好ましい。ZrOが7モル%を超えるとガラスの形成性が悪くなるかあるいは焼成時に結晶が析出し易くなり,封着,被覆不良が発生するおそれがあるためである。 ZrO2 is not an essential component, but can be included as a component to improve the acid resistance of the glass, and in that case, the content is preferably 7 mol% or less. If ZrO2 exceeds 7 mol%, the glass formability may deteriorate or crystals may easily precipitate during firing, which may cause sealing and coating defects.

本発明の封着・被覆用ガラスは,RO(Rは,Mg,Ca,Sr,Ba,及びZnを包括的に表す。)の含有量を18~40モル%とすることが好ましい。含有量が18モル%より少ない場合750℃付近での焼成における流動性に悪影響を及ぼすおそれがあり,焼成のために高い温度が必要となるため好ましくない一方,含有量が40モル%を超える場合,ガラスの耐酸性が悪くなるおそれがあるためである。これらの要素を考慮すると,ROの含有量は21~38モル%とするのがより好ましく,25~36モル%とするのが更に好ましい。 The sealing/coating glass of the present invention preferably has an RO (R collectively represents Mg, Ca, Sr, Ba, and Zn) content of 18 to 40 mol%. A content of less than 18 mol% is undesirable because it may adversely affect the fluidity during firing at around 750°C, requiring a high firing temperature, while a content of more than 40 mol% may deteriorate the acid resistance of the glass. Taking these factors into consideration, the RO content is more preferably 21 to 38 mol%, and even more preferably 25 to 36 mol%.

上記成分に加えて,ガラス製造時の安定性の向上,結晶化の抑制,熱膨張係数の調整の目的で,La,Nb,TeO,CeO,TiOを合計で5モル%までの範囲で加えることができる。 In addition to the above components, La2O3 , Nb2O5 , TeO2 , CeO2 , and TiO2 may be added in a total amount of up to 5 mol % for the purposes of improving stability during glass production, suppressing crystallization, and adjusting the thermal expansion coefficient.

本発明の封着・被覆ガラスは,焼成時に電子部品等に影響がないよう800℃以下で焼成されることが好ましいため,その軟化温度は,おおよその目安ではあるが,約600℃~750℃の範囲にあることが好ましく,約650℃~730℃の範囲にあることがより好ましい。 The sealing/coating glass of the present invention is preferably fired at 800°C or less so as not to affect electronic components, etc., during firing, so its softening temperature is preferably in the range of approximately 600°C to 750°C, and more preferably in the range of approximately 650°C to 730°C, although this is only a rough guide.

(2)セラミックフィラー
本発明のガラスからなる粉末はそのまま封着・被覆用材として使用することができるが,熱膨張係数の調整及び強度の向上の目的で,必要に応じてセラミックフィラーとの混合粉末の形態の封着・被覆用材として使用することもできる。セラミックフィラーの配合量は,ガラスとの合計量の40重量%以下となるよう適宜設定することができる。配合するセラミックフィラーの例としては,コーディエライト,ジルコン,リン酸ジルコニウム,チタン酸アルミニウム,ムライト,アルミナ,ウィレマイト,シリカ(α―クォーツ,クリストバライト,トリジマイト)等が挙げられる。これらの中でリン酸ジルコニウム及びジルコンは,焼成時にガラスを結晶化させる懸念なしに熱膨張係数を調整できるものであり,その点から特に好ましい。
(2) Ceramic filler The powder made of the glass of the present invention can be used as a sealing/coating material as it is, but it can also be used as a sealing/coating material in the form of a mixed powder with a ceramic filler as necessary for the purpose of adjusting the thermal expansion coefficient and improving strength. The amount of ceramic filler to be mixed can be appropriately set so as to be 40% by weight or less of the total amount with the glass. Examples of ceramic fillers to be mixed include cordierite, zircon, zirconium phosphate, aluminum titanate, mullite, alumina, willemite, silica (α-quartz, cristobalite, tridymite), etc. Among these, zirconium phosphate and zircon are particularly preferred in that they can adjust the thermal expansion coefficient without the risk of crystallizing the glass during firing.

更には,本発明の封着・被覆用材は,封止・被覆対象物の表面に適用するのに便利な形態,例えばペーストやシートの形態として提供することもできる。 Furthermore, the sealing/coating material of the present invention can be provided in a form that is convenient for application to the surface of the object to be sealed/coated, such as a paste or sheet.

ペーストの形態の封着・被覆用材の調製は,溶剤び有機バインダーの少なくとも1種と粉末形態の本発明のガラス及び該当する場合はフィラー粉末とを混合することにより行えばよい。本発明のガラスの平均粒径は,特に限定されないが,通常は1~10μmとするのが好ましく,2~8μmとするのがより好ましい。 The sealing/coating material in the form of a paste can be prepared by mixing at least one of a solvent and an organic binder with the glass of the present invention in powder form and, if applicable, a filler powder. The average particle size of the glass of the present invention is not particularly limited, but is usually preferably 1 to 10 μm, and more preferably 2 to 8 μm.

前記有機バインダーとして何を用いるかについては特に制限されず,封着・被覆用材の具体的用途に応じて,公知のバインダーの中から適宜採用することができる。例えば,エチルセルロース等のセルロース樹脂が挙げられるが,これらに限定されない。 There are no particular limitations on what is used as the organic binder, and any known binder can be appropriately selected depending on the specific application of the sealing/coating material. Examples include, but are not limited to, cellulose resins such as ethyl cellulose.

前記溶剤は,用いる有機バインダーに応じて適宜選択すればよく,例えばエタノール,メタノール,イソプロパノール等のアルコール類;テルピネオール(α-テルピネオール,又はα-テルピネオールを主成分としたβ-テルピネオール及びγ-テルピネオールとの混合物)等の有機溶剤が挙げられるが,これらに限定されない。なお溶剤は,単独で用いてもよく,2種以上を併用してもよい。 The solvent may be appropriately selected depending on the organic binder used, and examples thereof include, but are not limited to, alcohols such as ethanol, methanol, isopropanol, and organic solvents such as terpineol (α-terpineol, or a mixture of α-terpineol as the main component with β-terpineol and γ-terpineol). The solvents may be used alone or in combination of two or more kinds.

ペーストの調製においては,上記以外にも,必要に応じて,例えば可塑剤,増粘剤,増感剤,界面活性剤,分散剤等の公知の添加剤を適宜配合することができる。 In preparing the paste, in addition to the above, known additives such as plasticizers, thickeners, sensitizers, surfactants, and dispersants can be appropriately added as needed.

本発明の封着・被覆用材をシートの形態とするには,例えば,ペーストの形態の封着・被覆用材をを基材上に塗布し,塗膜を室温又は加熱下に乾燥させればよい。 To make the sealing/coating material of the present invention into a sheet form, for example, the sealing/coating material in the form of a paste may be applied to a substrate, and the coating film may be dried at room temperature or under heat.

以下,実施例をあげて本発明を更に詳細に説明するが,本発明がこれらの実施例により限定されることは意図しない。 The present invention will be described in more detail below with reference to examples, but it is not intended that the present invention be limited to these examples.

〔ガラス及びガラス粉末の製造〕
表1~3の実施例1~18及び表4の比較例1~4に示すガラス組成となるように原料を調合,混合し,該混合物を白金るつぼに入れ,1400~1500℃の温度で1時間溶融した。ガラス融液の大半を双ロール法で急冷してガラスフレークを得,これをポットミルを用いて粉砕してガラス粉末とし,後述のように熱示唆分析(DTA)にかけた。融液の残部は予め加熱しておいたカーボン板にブロック状に流し出し,ガラス転移温度より約50℃高い温度に設定した電気炉中での徐冷を経てガラスブロックとした。
[Production of Glass and Glass Powder]
Raw materials were prepared and mixed to obtain the glass compositions shown in Examples 1 to 18 in Tables 1 to 3 and Comparative Examples 1 to 4 in Table 4, and the mixtures were placed in platinum crucibles and melted at a temperature of 1400 to 1500°C for 1 hour. Most of the molten glass was quenched using a twin-roll method to obtain glass flakes, which were then pulverized using a pot mill to obtain glass powder, which was subjected to differential thermal analysis (DTA) as described below. The remaining part of the molten liquid was poured onto a preheated carbon plate in the form of a block, and slowly cooled in an electric furnace set at a temperature about 50°C higher than the glass transition temperature to obtain a glass block.

〔ガラスとフィラーの混合粉末の調整〕
表5の実施例19~21に示す割合でガラス粉末とセラミックフィラー粉末を調合し混合粉末をそれぞれ調製した。
[Preparation of mixed powder of glass and filler]
Glass powder and ceramic filler powder were mixed in the ratios shown in Examples 19 to 21 in Table 5 to prepare mixed powders.

〔評価1〕
実施例1~18,比較例1~4について,ガラス粉末を用いてガラス転移温度,軟化温度,及び結晶化温度を,並びにガラスブロックの熱膨張係数を,次の方法により測定した。結果を表1~4に示す。
[Evaluation 1]
For Examples 1 to 18 and Comparative Examples 1 to 4, the glass transition temperature, softening temperature, and crystallization temperature were measured by the following methods using glass powder, as well as the thermal expansion coefficient of the glass block. The results are shown in Tables 1 to 4.

(1)ガラス転移温度,軟化温度,結晶化温度
ガラス粉末約60~80mgを白金セルに充填し,DTA測定装置(リガク社製Thermo Plus EVO2 TG-DTA8122)を用いて,室温から20℃/分で1000℃まで昇温させてガラス転移温度(Tg),軟化温度(Ts),及び結晶化温度(Tp)を測定した。
(1) Glass transition temperature, softening temperature, and crystallization temperature Approximately 60 to 80 mg of glass powder was filled into a platinum cell, and the glass transition temperature (Tg), softening temperature (Ts), and crystallization temperature (Tp) were measured by heating the glass powder from room temperature to 1000° C. at a rate of 20° C./min using a DTA measuring device (Rigaku Thermo Plus EVO2 TG-DTA8122).

(2)ガラスの熱膨張係数
上記のガラスブロックを約5×5×15mmに切り出し,研磨して測定用のサンプルとした。TMA測定装置を用いて,室温から10℃/分で昇温したときに得られる熱膨張曲線から,50℃と300℃の2点に基づく熱膨張係数(α)を求めた。
(2) Thermal expansion coefficient of glass The above glass block was cut into a size of about 5 × 5 × 15 mm and polished to prepare a measurement sample. Using a TMA measuring device, the thermal expansion coefficient (α) was calculated based on two points, 50 ° C and 300 ° C, from the thermal expansion curve obtained when the temperature was raised from room temperature at a rate of 10 ° C / min.

〔評価2〕
ガラスの耐酸性
実施例1~18,及び比較例1~3の各ガラスについて,次の方法により耐酸性を測定した。即ち,上記のガラスブロックを約5×5×15mmに切り出し,70%硝酸に浸漬して室温で2時間静置した。浸漬前に対する浸漬後のガラスブロックの重量変化の割合(%)を求めた。結果は表1~4に示す。
[Evaluation 2]
Acid resistance of glass The acid resistance of each of the glasses of Examples 1 to 18 and Comparative Examples 1 to 3 was measured by the following method. That is, the above glass blocks were cut into approximately 5 x 5 x 15 mm, immersed in 70% nitric acid, and left to stand at room temperature for 2 hours. The ratio (%) of the weight change of the glass block after immersion to the weight before immersion was calculated. The results are shown in Tables 1 to 4.

〔評価3〕
流動性(750℃焼成)
実施例1~18,及び比較例1~3の各ガラスについて,次の方法により750℃で焼成した際の流動性を調べた。即ち,各ガラス粉末約5gを内径20mmの金型に入れ,プレス成形して圧粉体にし,それらを昇温速度200℃/時間で750℃まで昇温し,その温度に1時間保持した後,それらの焼成状態を観察した。結果を表1~4に示す。表面にガラス光沢があり,流動したものを○,表面にガラス光沢がなく,流動性がなかったものを×とした。
[Evaluation 3]
Fluidity (750℃ firing)
The fluidity of each of the glasses of Examples 1 to 18 and Comparative Examples 1 to 3 was examined when fired at 750°C by the following method. That is, about 5 g of each glass powder was placed in a mold with an inner diameter of 20 mm and pressed into a green compact, which was then heated to 750°C at a heating rate of 200°C/hour and held at that temperature for one hour, after which the fired state was observed. The results are shown in Tables 1 to 4. Glasses that had a glassy luster on the surface and flowed were marked with an O, and glasses that did not have a glassy luster on the surface and had no fluidity were marked with an X.

〔評価4〕
ガラとフィラーの混合粉末の圧粉体の熱膨張係数
実施例19,20及び21の各混合粉末約5gをそれぞれ内径20mmの金型に入れ,プレス成形して圧粉体とした。各圧粉体を750℃で1時間焼成し,得られた焼結体を約5×5×15mmに切り出し,試験体を作製した。試験体につき,TMA測定装置を用いて,室温から10℃/分で昇温したときに得られる熱膨張曲線から50℃と300℃の2点に基づく熱膨張係数(α)を求めた。結果を表1~4に示す。
[Evaluation 4]
Thermal expansion coefficient of compacts of glass and filler mixed powders Approximately 5 g of each of the mixed powders of Examples 19, 20, and 21 were placed in a mold with an inner diameter of 20 mm, and pressed to form compacts. Each compact was sintered at 750°C for 1 hour, and the resulting sintered bodies were cut into approximately 5 x 5 x 15 mm to prepare test specimens. For each test specimen, the thermal expansion coefficient (α) was determined based on two points at 50°C and 300°C from the thermal expansion curve obtained when the temperature was raised from room temperature at a rate of 10°C/min using a TMA measuring device. The results are shown in Tables 1 to 4.

Figure 0007506566000001
Figure 0007506566000001

Figure 0007506566000002
Figure 0007506566000002

Figure 0007506566000003
Figure 0007506566000003

Figure 0007506566000004
Figure 0007506566000004

Figure 0007506566000005
Figure 0007506566000005

上記の表に見られるように,実施例1~18のガラスは,軟化温度が664℃~763℃の範囲にあり,何れも800℃を超えない温度(750℃)において十分な流動性を持たせた状態での焼成が可能である。また,何れの実施例のガラスも室温から1000℃までの範囲で結晶化温度の存在が検出されないため,800℃以下での焼成時に結晶化が起こるおそれはない。更に,何れの実施例のガラスも,本発明における好ましい55~80×10-7/℃の範囲内の膨張係数を示している。これらに対し,Bi含有量が本発明のガラスより高い(9.0モル%)比較例1のガラスは,耐酸性試験での重量減少が顕著である。Bi含有量が同様に高い比較例2のガラスでは,Al含有量が高い(18.0モル%)ため耐酸性試験での重量減少は抑制されているものの,その高いAl含有量により1000℃までの範囲に結晶化温度が存在するようになり,焼成時に結晶が析出して流動性が悪くなる。また,B含有量がやや高く(33モル%)RO含有量がやや低い(17.0モル%)比較例3のガラスは,熱膨張係数が50×10-7/℃と小さ過ぎ,本発明の目的には適さない。また比較例4のガラスは,RO含有量が低く(15モル%),その結果流動性が悪い。 As can be seen from the above table, the glasses of Examples 1 to 18 have softening temperatures in the range of 664°C to 763°C, and can be fired at a temperature not exceeding 800°C (750°C) while retaining sufficient fluidity. In addition, no crystallization temperature is detected in any of the glasses of Examples from room temperature to 1000°C, so there is no risk of crystallization occurring when fired at 800°C or lower. Furthermore, all of the glasses of Examples show expansion coefficients in the range of 55 to 80×10 -7 /°C, which is preferable in the present invention. In contrast, the glass of Comparative Example 1, which has a higher Bi 2 O 3 content (9.0 mol%) than the glass of the present invention, shows a significant weight loss in the acid resistance test. In the glass of Comparative Example 2, which has a similarly high Bi2O3 content, the weight loss in the acid resistance test is suppressed due to the high Al2O3 content (18.0 mol%), but the high Al2O3 content causes the crystallization temperature to be in the range up to 1000°C, and crystals are precipitated during firing, resulting in poor fluidity. In addition, the glass of Comparative Example 3 , which has a slightly high B2O3 content (33 mol%) and a slightly low RO content (17.0 mol%), has a thermal expansion coefficient of 50 x 10-7 /°C, which is too small for the purpose of the present invention. In addition, the glass of Comparative Example 4 has a low RO content (15 mol%), resulting in poor fluidity.

このように,本発明のガラスは,軟化温度,熱膨張係数の点で半導体などの物品の封着に適しており,且つ耐酸性に優れたものとしても提供できるため,広範な種々の電子デバイスや電子部品各部の封着や接着に用いることが可能である。 As such, the glass of the present invention is suitable for sealing items such as semiconductors in terms of its softening temperature and thermal expansion coefficient, and can also be provided with excellent acid resistance, making it suitable for use in sealing and bonding a wide variety of electronic devices and various parts of electronic components.

本発明のガラスはその粉末単独でもあるいはこれとセラミックフィラー粉末との混合物としても,900℃以下の温度で封着・被覆用材として使用することができる。また,本発明のガラスはセラミックフィラーと反応しないため,それらの混合物も封着・被覆用材としての使用時(焼成時)の流動性に優れ,冷却固化後の機械的強度及び耐久性が高い。従って本発明の封着・被覆用剤は,半導体素子の封着,被覆に適した材料として使用することができる。
The glass of the present invention can be used as a sealing/coating material at temperatures below 900° C. either as a powder alone or as a mixture with a ceramic filler powder. In addition, since the glass of the present invention does not react with the ceramic filler, the mixture also has excellent fluidity when used as a sealing/coating material (when fired), and has high mechanical strength and durability after cooling and solidifying. Therefore, the sealing/coating agent of the present invention can be used as a material suitable for sealing and coating semiconductor elements.

Claims (8)

実質的に酸化鉛もアルカリ金属酸化物も含有せず,モル%で,
SiO :30~50%
Al :1~10%
:10~32%
BaO :~25%
ZnO :1~10%
Bi3 :0~6%,及び
RO : 18~40%
(Rは,Mg,Ca,Sr,Ba及びZnを包括的に表す。)
を含有し、但し
MgOの含有量は1%以下
であることを特徴とする,封着・被覆用ガラス。
Substantially free of lead oxide or alkali metal oxide, in mole percent:
SiO2 : 30-50%
Al2O3 : 1 to 10%
B2O3 : 10-32 %
BaO: 8 to 25%
ZnO: 1 to 10%
Bi2O3 : 0-6 %, and RO: 18-40%
(R collectively represents Mg, Ca, Sr, Ba and Zn.)
Contains , however,
MgO content is less than 1%
A sealing and covering glass characterized by :
実質的に酸化鉛もアルカリ金属酸化物も含有せず,モル%で,
SiO :32~48%
Al :2~8%
:12~30%
BaO :8~22%
ZnO :1~8%
Bi3 :0~6%,及び
RO :21~38%
(Rは,Mg,Ca,S,Ba及びZnを包括的に表す。)
を含有し、但し
MgOの含有量は1%以下
であることを特徴とする,封着・被覆用ガラス。
Substantially free of lead oxide or alkali metal oxide, in mole percent:
SiO2 : 32-48%
Al2O3 : 2-8 %
B2O3 : 12-30 %
BaO: 8-22%
ZnO: 1 to 8%
Bi2O3 : 0-6 %, and RO: 21-38%
(R collectively represents Mg, Ca, S, Ba and Zn.)
Contains , however,
MgO content is less than 1%
A sealing and covering glass characterized by :
CaOとSrOのうち少なくとも1種を合計で1~20モル%含有する,請求項1又は2の封着・被覆用ガラス。 The sealing/coating glass of claim 1 or 2, containing 1 to 20 mol % in total of at least one of CaO and SrO. SiOとBの合計含有量が50~70モル%である,請求項1~3の何れかの封着・被覆用ガラス。 4. The sealing/coating glass according to claim 1, wherein the total content of SiO 2 and B 2 O 3 is 50 to 70 mol %. ROに対するSiOのモル比:
[SiO/RO]
が1~2である,請求項1~4の何れかの封着・被覆用ガラス。
Molar ratio of SiO2 to RO:
[ SiO2 /RO]
The sealing/coating glass according to any one of claims 1 to 4, wherein is 1 or 2.
粉末の形態の請求項1~5の何れかのガラスを含んでなる封着・被覆用材。 A sealing/coating material comprising any one of the glasses of claims 1 to 5 in powder form. 粉末の形態の請求項1~5の何れかのガラスとフィラー粉末とを含んでなり,フィラー粉末の含有量が40重量%を超えないものである,封着・被覆用材。 A sealing/coating material comprising the glass of any one of claims 1 to 5 in powder form and a filler powder, the content of the filler powder not exceeding 40% by weight. 有機バインダーと溶剤を更に含んでなるペーストの形態である,請求項6又は7の封着・被覆用材。
8. The sealing/covering material according to claim 6 or 7, which is in the form of a paste further comprising an organic binder and a solvent.
JP2020154306A 2020-09-15 2020-09-15 Sealing and coating materials Active JP7506566B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020154306A JP7506566B2 (en) 2020-09-15 2020-09-15 Sealing and coating materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020154306A JP7506566B2 (en) 2020-09-15 2020-09-15 Sealing and coating materials

Publications (2)

Publication Number Publication Date
JP2022048472A JP2022048472A (en) 2022-03-28
JP7506566B2 true JP7506566B2 (en) 2024-06-26

Family

ID=80844116

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020154306A Active JP7506566B2 (en) 2020-09-15 2020-09-15 Sealing and coating materials

Country Status (1)

Country Link
JP (1) JP7506566B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018058716A (en) 2016-10-04 2018-04-12 日本電気硝子株式会社 Borosilicate glass, composite powder material, and composite powder material paste
JP2020097511A (en) 2018-12-17 2020-06-25 Agc株式会社 Glass composition, composite powder material, composite powder material paste, printer head for laser printer, and thermal printer head

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018058716A (en) 2016-10-04 2018-04-12 日本電気硝子株式会社 Borosilicate glass, composite powder material, and composite powder material paste
JP2020097511A (en) 2018-12-17 2020-06-25 Agc株式会社 Glass composition, composite powder material, composite powder material paste, printer head for laser printer, and thermal printer head

Also Published As

Publication number Publication date
JP2022048472A (en) 2022-03-28

Similar Documents

Publication Publication Date Title
US6171987B1 (en) Cadmium-free and lead-free glass compositions, thick film formulations containing them and uses thereof
JP4930897B2 (en) Bi2O3-B2O3 sealing material
JP2003095697A (en) Sealing composition
JP4874492B2 (en) Glass composition and glass-forming material containing the composition
KR101570310B1 (en) Bismuth-based glass composition
JP2003238199A (en) Press frit
JP2006143480A (en) Bi2O3-B2O3-BASED GLASS COMPOSITION AND Bi2O3-B2O3-BASED SEALING MATERIAL
JP2001322832A (en) Sealing composition
JP7506566B2 (en) Sealing and coating materials
JP6934352B2 (en) Sealing material
JP2007161524A (en) Bismuth-based glass composition
JP2001261369A (en) Low melting point glass composition
JP7491020B2 (en) Glass for covering semiconductor elements and semiconductor covering material using the same
JPS638060B2 (en)
JP7216323B2 (en) Semiconductor device coating glass and semiconductor coating material using the same
JP5026121B2 (en) Antimony phosphate glass composition
WO2021149633A1 (en) Sealing/coating glass with low thermal expandability
WO2010013692A1 (en) Lead-free glass composition
JP7117256B2 (en) glass composition
US20230303425A1 (en) Glass composition and sealing material
JP2022155512A (en) Sealing composition
JP2778012B2 (en) Low temperature sealing composition
JPH0416420B2 (en)
WO2024057824A1 (en) Bismuth-based glass powder and composite powder including same
KR950004481B1 (en) Glass solders

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230818

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240228

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240228

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240403

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240611

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240614