JP7500483B2 - 水処理システム及び水処理方法 - Google Patents

水処理システム及び水処理方法 Download PDF

Info

Publication number
JP7500483B2
JP7500483B2 JP2021046127A JP2021046127A JP7500483B2 JP 7500483 B2 JP7500483 B2 JP 7500483B2 JP 2021046127 A JP2021046127 A JP 2021046127A JP 2021046127 A JP2021046127 A JP 2021046127A JP 7500483 B2 JP7500483 B2 JP 7500483B2
Authority
JP
Japan
Prior art keywords
chamber
separation unit
membrane separation
reverse osmosis
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021046127A
Other languages
English (en)
Other versions
JP2022144923A (ja
Inventor
敏弘 今田
昭子 鈴木
健二 佐野
忍 茂庭
厚 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba Infrastructure Systems and Solutions Corp
Original Assignee
Toshiba Corp
Toshiba Infrastructure Systems and Solutions Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Infrastructure Systems and Solutions Corp filed Critical Toshiba Corp
Priority to JP2021046127A priority Critical patent/JP7500483B2/ja
Publication of JP2022144923A publication Critical patent/JP2022144923A/ja
Application granted granted Critical
Publication of JP7500483B2 publication Critical patent/JP7500483B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/131Reverse-osmosis

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Separation Of Suspended Particles By Flocculating Agents (AREA)
  • Treatment Of Water By Ion Exchange (AREA)
  • Heat Treatment Of Water, Waste Water Or Sewage (AREA)
  • Physical Water Treatments (AREA)

Description

本発明の実施形態は、水処理システム及び水処理方法に関する。
近年、健全な水循環を実現するための法規制が強化されている。ZLD(Zero Liquid Discharge)とは、水質汚染リスクの低減、廃水の再生、及び再利用の視点から、工場内で水を再生して利用すると共に、さらに工場から外部に出される排水をゼロにまで低減することで水環境保全を図ることである。排水をゼロまで低減するためには、最終的に蒸発法で固形分と脱イオン水に分離する必要がある。蒸発法は、廃水を加熱して水蒸気を発生させて、この水蒸気を冷却して脱イオン水を得る、固形分と脱イオン水に分離する方法である。この方法は、2段フラッシュ蒸発法、多段フラッシュ蒸発法等が実用化され、非常に純度の高い脱イオン水が得られるという利点を有する。しかしながら、熱源を必要とするためにエネルギー効率が低い欠点がある。そのため、エネルギー消費量低減の観点から、廃水の濃縮度を可能な限り高めることによって、蒸発法で処理する廃水量を極力低減することが求められている。
このような要望から、蒸発法の前段階で固形分を含有(又は溶解)した濃縮廃水から真水を分離する、逆浸透(RO:Reverse Osmosis)膜(以下、「RO膜」と称する場合がある)が用いられている。RO膜を利用した脱塩・濃縮システムは、被処理水をRO膜に加圧導入し、RO膜を透過した水である脱イオン水と、RO膜を透過せずに濃縮された濃縮水とを得る基本プロセスから構成されている。
RO膜は、イオン性物質、微粒子、有機物、一部の溶存気体等ほぼ全てに対する除去効果があり、さらに目詰まりやトラブルが発生しない限り、再生等の不連続の工程の実施が不要であるため、広く用いられている。
しかしながら、RO膜はシリカ、硬度スケール、及びバイオファウリングによって目詰まりが生じる恐れがある。
RO膜に目詰まりが生じると、RO膜を洗浄するために、水処理システム全体を停止する必要がある。このため、水処理システムの稼働率が低下する。また、想定された濃縮度まで濃縮されていない濃縮水を蒸発処理することになり、結果として蒸発のために要する熱エネルギーが増加し、全体的な処理コストの増加も招く。
特開2018-069198号公報 特開2019-188330号公報
本発明の目的は、逆浸透膜の目詰まりの可能性を低減し、濃縮水の量を効率的に減少させることが可能な水処理システム及び水処理方法を提供することにある。
実施形態に係る水処理システムは、被処理水を昇圧して送出する導入ユニット;
導入ユニットの下流に配置される、第1の逆浸透膜エレメントを備えた脱塩用膜分離ユニットであって、第1の逆浸透膜エレメントは第1の逆浸透膜と、第1の逆浸透膜により区画され、第1の流路により導入ユニットに接続される第1のチャンバ及び第2のチャンバとを有し、第1の逆浸透膜エレメントの第1のチャンバが第1の流路により導入ユニットに接続される、脱塩用膜分離ユニット;脱塩用膜分離ユニットの下流に配置される第1の減圧ユニットであって、一端が第1の流路の接続箇所と異なる脱塩用膜分離ユニットの第1のチャンバの箇所に位置する第2の流路により、脱塩用膜分離ユニットの第1のチャンバに接続される第1の減圧装置を備える、第1の減圧ユニット;第1の減圧ユニットの下流に配置され、第2の逆浸透膜エレメントを備え、かつ、脱塩用膜分離ユニットの最大耐圧より低い最大耐圧を持つ第1の濃縮用膜分離ユニットであって、第2の逆浸透膜エレメントは、第2の逆浸透膜と、第2の逆浸透膜により区画された第1のチャンバ及び第2のチャンバとを有し、第2の逆浸透膜エレメントの第1のチャンバは第3の流路により第1の減圧ユニットに接続され、第2の逆浸透膜エレメントの第2のチャンバは第4の流路により導入ユニットに接続される、第1の濃縮用膜分離ユニット;第1の濃縮用膜分離ユニットより下流側に配置される、第3の逆浸透膜エレメントを備えた第2の濃縮用膜分離ユニットであって、第3の逆浸透膜エレメントは第3の逆浸透膜と、第3の逆浸透膜により区画された第1のチャンバ及び第2のチャンバとを有し、第3の逆浸透膜エレメントの第1のチャンバは第5の流路により第1の濃縮用膜分離ユニットの第1のチャンバに接続され、かつ第5の流路と異なる位置に第6の流路が接続され、第3の逆浸透膜エレメントの第2のチャンバは第7の流路により第1の濃縮用膜分離ユニットの第2のチャンバに接続される第2の濃縮用膜分離ユニット;及び第5の流路又は第6の流路に接続される第2の減圧ユニットであって、第8の流路により第5の流路又は第6の流路に接続され、かつ第9の流路により第2の濃縮用膜分離ユニットの第2のチャンバに接続される第2の減圧装置を備える、第2の減圧ユニット;を具備する。
第1の実施形態に係る水処理システムを示す概略図である。 図1の水処理システムの導入ユニットを示す概略図である。 図1の水処理システムにおける第1の減圧ユニットの変形例を示す概略図である。 第1の実施形態に係る水処理システムの変形例を示す概略図である。 第1の実施形態に係る水処理システムの別の変形例を示す概略図である。 第2の実施形態に係る水処理システムを示す概略図である。 第3の実施形態に係る水処理システムを示す概略図である。 第4の実施形態に係る水処理システムを示す概略図である。 第5の実施形態に係る水処理システムを示す概略図である。 第6の実施形態に係る水処理システムを示す概略図である。 第7の実施形態に係る水処理システムを示す概略図である。 第7の実施形態に係る水処理システムの変形例を示す概略図である。 第8の実施形態に係る水処理システムを示す概略図である。 第9の実施形態に係る水処理システムを示す概略図である。 第10の実施形態に係る水処理システムを示す概略図である。 第10の実施形態に係る水処理システムの変形例を示す概略図である。 第11の実施形態に係る水処理システムを示す概略図である。
以下、実施の形態について、図面を参照して説明する。
(第1の実施形態)
図1は、第1の実施形態に係る水処理システムの機能構成を示す概略図である。
水処理システム1は、被処理水を昇圧して送出する導入ユニット10を備えている。導入ユニット10は、例えば図2に示すように被処理水を貯液する液混和槽11を備えている。液混和槽11には、被処理液を供給する供給流路211、薬液供給流路12、ガス供給流路13、昇圧した被処理水を後述する脱塩用膜分離ユニットに送出するための第1の流路201及び後述する第1の濃縮用膜分離ユニットの第2のチャンバの戻り濃縮水を循環させる第4の流路204がそれぞれ挿入されている。供給流路211には、被処理液を液混和槽11に供給するためのポンプ14が介装されている。第1の流路201には、液混和槽11内の被処理水を昇圧して脱塩用膜分離ユニットに送出する昇圧ポンプ15が介装されている。また、液混和槽11内には水質計16が配置されている。液混和槽11内には撹拌機17が配置されている。
薬液供給流路12から液混和槽11に供給する薬液は、例えば、pH調整剤、殺菌剤、スケール防止剤、バイオファウリング防止剤及び膜洗浄剤等を含む。薬液は、例えば水質計16により計測される水質、及び後述する脱塩用膜分離ユニット、第1、第2の濃縮用膜分離ユニットで用いられる逆浸透膜の材質、性能等により使い分けられる。薬液はさらに、定常運転時、及びメンテナンス時等に応じて使い分けることもできる。pH調整剤としては、例えば、苛性ソーダ、水酸化カリウム等のアルカリ剤を用いる。これによって、導入ユニット10は液混和槽11において、被処理水のpHを調整、好ましくは3以上、8以下に調整する。
ガス供給流路13から液混和槽11に供給されるガスは、例えば空気又は二酸化炭素である。液混和槽11は溶存空気量が大きくなるように溶液を攪拌又は循環することが好ましい。例えば、溶存酸素量は2mg/L以上であることが望ましい。
水質計16は、液混和槽11に貯液された被処理水のpHを測定するpH計を含む。また、水質計16は液混和槽11に貯液された被脱気水の水位を測定する水位計、導電率を測定する導電率計、酸化還元電位を測定するORP計、ゼータ電位を測定するゼータ電位計、溶存酸素量を測定する溶存酸素計等を含んでいても良い。
昇圧ポンプ15は、液混和槽11に貯留された被処理水のpH等の水質が脱塩分離ユニットに導入するのに適切な値になったことが水質計16によって検出された場合に起動され、液混和槽11に貯液された被処理水を予め設定した圧力へ昇圧して脱塩用分離ユニットに導入する。なお、予め設定した圧力とは、例えば少なくとも被処理水の浸透圧よりも高い圧力及び後述する第1の濃縮用膜分離ユニットからの循環水の返流可能な圧力である。具体的には、約5MPa~12MPa、好ましくは10MPa以上である。
脱塩用膜分離ユニット20は、導入ユニット10の下流に配置されている。ここで、被処理水又は後述の濃縮水の流れを基準とし、その流れの下の方を下流、流れの上の方を上流と呼ぶ。脱塩用膜分離ユニット20は、第1の逆浸透エレメント21を備えている。第1の逆浸透エレメント21は、第1の密閉容器、例えば第1の耐圧密閉容器22と、第1の耐圧密閉容器22内に配置された第1の逆浸透膜23と、第1の逆浸透膜23より第1の耐圧密閉容器22を区画して形成された第1のチャンバ24と第2のチャンバ25とを含む。第1のチャンバ24が位置する第1の耐圧密閉容器22は、第1の流路201により導入ユニット10に接続されている。
このような構成の脱塩用膜分離ユニット20は、後述する第1、第2の濃縮用膜分離ユニット40,50に比べて昇圧された高い圧力の被処理水を第1のチャンバ24に導入するため、当該被処理水中の水を第1の逆浸透膜23から第2のチャンバ25に効率的に透過して透過水と、溶解固形分(塩分)が濃縮された濃縮水とに分離する。この「濃縮水」には、第1の逆浸透膜23の上述の正浸透作用によって濃縮されないまま第1チャンバ9を通過した被処理水も含まれ得るが、その作用によって濃縮された被処理水が、脱塩用膜分離ユニット20から第1の減圧ユニット30へと送出されることが、好ましい。
第1の耐圧密閉容器22は、10MPa以上の耐圧性を有することが好ましい。
第1の逆浸透膜23は、例えば、スパイラル状、及び中空糸状等の膜を用いることができる。
第1の減圧ユニット30は、脱塩用膜分離ユニット20の下流に配置され、減圧装置31を備えている。減圧装置31の入口は、第2の流路202により脱塩用膜分離ユニット20の第1のチャンバ24が位置する第1の耐圧密閉容器22に接続されている。減圧装置31は、例えば減圧弁を有し、脱塩用膜分離ユニット20の第1のチャンバ24から送出された高圧の濃縮水が減圧弁を通過する際に、濃縮水の圧力を急激に減圧する。
このような構成の第1の減圧ユニット30において、脱塩用膜分離ユニット20から送出された濃縮水の圧力低減量は、0.5MPa以上であることが好ましく、より好ましくは3MPa以上である。圧力低減量を0.5MPa以上にすることによって、後述するファインバブルの発生量が多くなり、スケール及びバイオファウリング防止効果が高まる。
また、第1の減圧ユニット30による濃縮水の圧力低減量は、脱塩用膜分離ユニット20への被処理水の圧力を10MPa以上その逆浸透膜の最大耐圧(例えば12MPa)以下の条件の下で、3MPa以上7MPa以下にすることがより好ましい。
第1の濃縮用膜分離ユニット40は、第1の減圧ユニット30の下流に配置されている。第1の濃縮用膜分離ユニット40は、脱塩用膜分離ユニット20の最大耐圧より低い最大耐圧を有する。第1の濃縮用膜分離ユニット40は、第2の逆浸透エレメント41を備えている。第2の逆浸透エレメント41は、第2の密閉容器、例えば第2の耐圧密閉容器42と、第2の耐圧密閉容器42内に配置された第2の逆浸透膜43と、第2の逆浸透膜43より第2の耐圧密閉容器42を区画して形成された例えば上部側の第1のチャンバ44と下部側の第2のチャンバ45とを含む。第1のチャンバ44が位置する第2の耐圧密閉容器42は、第3の流路203により第1の減圧ユニット30の出口に接続されている。第2のチャンバ45が位置する第2の耐圧密閉容器42は、第4の流路204により導入ユニット10に接続されている。
このような構成の第1の濃縮用膜分離ユニット40は、第1の減圧ユニット30から送出される濃縮水を第2の逆浸透エレメント41でさらに濃縮し、同時に第1のチャンバ44内の濃縮水の水を第2のチャンバ45に透過して、第2のチャンバ45内の戻り濃縮水(循環水)を希釈する。
第2の逆浸透膜43の形態は、特に制限されず、例えば中空糸状等の膜を用いることができる。
第2の濃縮用膜分離ユニット50は、第1の濃縮用膜分離ユニット40の下流に配置されている。第2の濃縮用膜分離ユニット50は、第3の逆浸透エレメント51を備えている。第3の逆浸透エレメント51は、第3の密閉容器、例えば第3の耐圧密閉容器52と、第3の耐圧密閉容器52内に配置された第3の逆浸透膜53と、第3の逆浸透膜53より第3の耐圧密閉容器52を区画して形成された例えば上部側の第1のチャンバ54と下部側の第2のチャンバ55とを含む。第1のチャンバ54が位置する第3の耐圧密閉容器52は、第5の流路205により第1の濃縮用膜分離ユニット40の第1のチャンバ44が位置する第2の耐圧密閉容器42に接続されている。第1のチャンバ54が位置する第3の耐圧密閉容器52は、第6の流路206が接続されている。第2のチャンバ55が位置する第3の耐圧密閉容器52は、第7の流路207により第1の濃縮用膜分離ユニット40の第2のチャンバ45が位置する第2の耐圧密閉容器42に接続されている。図1では第1の濃縮用膜分離ユニット40が備えるチャンバの右側面と第2の濃縮用膜分離ユニット50の備えるチャンバの左側面とが接続されているが、適宜調整することができる。
このような構成の第2の濃縮用膜分離ユニット50は、第1の濃縮用膜分離ユニット40から送出される濃縮水を第3の逆浸透エレメント51でさらに濃縮し、同時に第1のチャンバ54内の濃縮水の水を第2のチャンバ55に透過して第2のチャンバ55内の戻り濃縮水(循環水)を希釈する。
第2の減圧ユニット60は、第2の減圧装置61を備える。第2の減圧装置61は例えば前記第1の減圧ユニット30の減圧装置31と同様な構成である。第2の減圧装置61の吸入口は、第8の流路208により前記第6の流路206に接続されている。第2の減圧装置61の吐出口は、第9の流路209に接続され、第9の流路209は第2の濃縮用膜分離ユニット50の第2のチャンバ55が位置する第3の耐圧密閉容器52に接続されている。
このような構成の第2の減圧ユニット60は、第2の濃縮用膜分離ユニット50の第1のチャンバ54から第6の流路206及び第8の流路208を通して送出された濃縮水を減圧する。つまり、第2の減圧ユニット60は、第2のチャンバ55へと、戻り濃縮水を送るときに、当該第2の濃縮用膜分離ユニット50の第1のチャンバ54内の濃縮水の圧力を、第2のチャンバ55内の戻り濃縮水の圧力に比べて高くなるように設定する。第2のチャンバ55内に送出する戻り濃縮水の圧力低減量は、1MPa以上であることが好ましく、より好ましくは3MPa以上である。圧力低減量を3MPa以上にすることによって、第2の濃縮用膜分離ユニット50の第1のチャンバ54に送出される濃縮水の圧力を第2のチャンバ55の戻り濃縮水の圧力に比べて十分に高くすることが可能になり、第1のチャンバ54内の濃縮水に含まれる水を第3の逆浸透膜53を通して第2のチャンバ55に円滑に透過することが可能になる。
次に、図1および図2に示す第1の実施形態に係る水処理システムによる被処理水、例えば0.1%から数%程度の総溶解固形物(Total Dissolved Solids,TDS)濃度の廃水の処理方法を説明する。
まず、導入ユニット10において、図2に示すように被処理水の供給流路211からポンプ14の駆動により廃水を液混和槽11内に供給する。この時、必要に応じて薬液供給流路12及びガス供給流路13から所定の薬液、空気等のガスを液混和槽11内に供給し、撹拌機17で廃水300を撹拌する。つづいて、昇圧ポンプ15を駆動して液混和槽11内の廃水300を、第1の流路201を通して脱塩用膜分離ユニット20の第1のチャンバ24に昇圧して送出する。昇圧した廃水の圧力は、10MPa以上で第1の逆浸透膜23の最大耐圧(例えば12MPa)以下に設定することが好ましい。
脱塩用膜分離ユニット20の第1のチャンバ24に送出された高い圧力の廃水と第2のチャンバ25の間の大きな圧力差により廃水中の水は、第1の逆浸透膜23を通して第2のチャンバ25に透過し、第1のチャンバ24内の廃水が濃縮される。第2のチャンバ25に透過した水は、第10の流路210を通して外部に排出する。
次いで、脱塩用膜分離ユニット20の第1のチャンバ24内の濃縮水は、第2の流路202を通して第1の減圧ユニット30の減圧装置31に送出する。この「濃縮水」には、第1の逆浸透膜23の上述の正浸透作用によって濃縮されないまま第1チャンバ9を通過した被処理水も含まれ得るが、その作用によって濃縮された被処理水が、脱塩用膜分離ユニット20から第1の減圧ユニット30へと送出されることが、より好ましい。減圧装置31に送出された濃縮水は、減圧弁(図示せず)を通過して減圧される。脱塩用膜分離ユニット20から送出された濃縮水の圧力低減量は、0.5MPa以上であることが好ましく、より好ましくは3MPa以上、さらに好ましくは1MPa以上7MPa以下である。
このような急激な減圧によって、濃縮水に溶存している気体が膨張して気泡が生じる。気泡は、急激な圧力回復によって微細に粉砕されてファインバブルを発生する。
なお、前記減圧操作による1000nm以下のファインバブルの発生量は、第2の濃縮用膜分離ユニット50の第1のチャンバ54から第6の流路206を通して排出される濃縮水に1.0E+6個/mL以上含まれるように設定することが好ましい。第6の流路206を通して排出される濃縮水中のファインバブルの量は、例えばクラプオン式流量計を用いて測定することができる。ファインバブルは、水処理システム内を流れるうちに消失していく可能性があり、減圧ユニットよりも下流に配置される第1の濃縮用膜分離ユニット40及び第2の濃縮用膜分離ユニット50に供給されるファインバブルの量は、減圧ユニットにおいて発生させた量から低減している可能性がある。このような場合においても、本実施形態の水処理システムの最下流にあたる第6の流路206を通して排出される濃縮水に、少なくとも1.0E+6個/mLのファインバブルが含まれていれば、それよりも上流に配置された第2、第3の逆浸透膜43,53におけるスケール発生、バイオファウリングを防止することが可能である。
減圧された濃縮水は、第3の流路203を通して第1の濃縮用膜分離ユニット40の第1のチャンバ44に送出する。当該第1のチャンバ44内の濃縮水は、第5の流路205を通して第2の濃縮用膜分離ユニット50の第1のチャンバ54に送出する。第1のチャンバ54内の濃縮水は、第6の流路206を通して外部に送出する。第6の流路206を通過する濃縮水は、第6の流路206から分岐された第8の流路208を通して第2の減圧ユニット60の第2の減圧装置61に送出される。第2の減圧装置61に送出された濃縮水は、減圧弁(図示せず)を通過して減圧される。減圧された濃縮水は、第2の濃縮用膜分離ユニット50の第1のチャンバ54に送出された濃縮水より低い圧力に設定する。減圧された濃縮水は、第9の流路209を通して第2の濃縮用膜分離ユニット50の第2のチャンバ55に戻り濃縮水として送出する。第2のチャンバ55内に送出される戻り濃縮水の圧力低減量は、1MPa以上であることが好ましく、より好ましくは3MPa以上である。第2のチャンバ55内の戻り濃縮水は、第7の流路207を通して第1の濃縮用膜分離ユニット40の第2のチャンバ45に送出される。第2のチャンバ45内の戻り濃縮水は、第4の流路204を通して導入ユニット10の液混和槽11に戻される、つまり、循環される。
このように濃縮水を循環させる間、第1の濃縮用膜分離ユニット40において、第1の減圧ユニット30で減圧された濃縮水は第1のチャンバ44に送出され、かつ第2の濃縮用膜分離ユニット50における第2のチャンバ55内の戻り濃縮水は第2のチャンバ45に送出される。第2のチャンバ45内の戻り濃縮水は、第2の減圧ユニット60による減圧操作により第2のチャンバ45の第1のチャンバ44内の濃縮水に比べて低い圧力に設定される。このため、第1のチャンバ44内の濃縮水と第2のチャンバ45内の戻り濃縮水(例えば2MPa以下)との間の圧力差(濃縮水の圧力>戻り濃縮水の圧力)を利用して第1のチャンバ44内の濃縮水中の水を第2の逆浸透膜43から第2のチャンバ45に透過させる。この操作により、第1のチャンバ44に送出された濃縮水はさらに濃縮される。また、第2のチャンバ45内の戻り濃縮水は、第1のチャンバ44からの透過水により希釈される。
次いで、第1の濃縮用膜分離ユニット40における第1のチャンバ44内の濃縮水は、第5の流路205を通して第2の濃縮用膜分離ユニット50の第1のチャンバ54に送出され、第1のチャンバ54から送出された濃縮水は第2の減圧ユニット60により減圧し、第2のチャンバ55に戻り濃縮水として送出する。第2のチャンバ55内の戻り濃縮水は、第2の減圧ユニット60の減圧操作により、第1のチャンバ54内の濃縮水に比べて低い圧力に設定される。このため、第1のチャンバ54内の濃縮水と第2のチャンバ55内の戻り濃縮水との間の圧力差(濃縮水の圧力>戻り濃縮水の圧力)を利用して第1のチャンバ54内の濃縮水中に含まれる水は第3の逆浸透膜53から第2のチャンバ55に透過される。この操作により、第1のチャンバ54に送出された濃縮水はより一層濃縮される。また、第2のチャンバ55内の戻り濃縮水は、第1のチャンバ54からの透過水により希釈される。
第1の濃縮用膜分離ユニット40の第2のチャンバ45内の戻り濃縮水は、導入ユニット10の液混和槽11へと循環される。この戻り濃縮水は、第2の濃縮用膜分離ユニット50で第1のチャンバ54内の濃縮水中の水が第3の逆浸透膜53から第2のチャンバ55の戻り濃縮水へと透過されること、及び第1の濃縮用膜分離ユニット40で第1のチャンバ44内の濃縮水中の水が第2の逆浸透膜43から第2のチャンバ45の戻り濃縮水へと透過されること、により希釈される。このため、液混和槽11に循環される戻り濃縮水のTDS濃度は、例えば当初の戻り濃縮水のTDS濃度の60%程度に希釈され、これは被処理水と同程度以下である。
第2の濃縮用膜分離ユニット50の第1のチャンバ54内の濃縮水は、高い濃縮度の濃縮水として回収される。
前記被処理水は、0.1%から数%程度のTDS濃度の廃水に限定されず、例えば
有機物を含有している食品工場排水等の廃水を用いることができる。
第1の濃縮用膜分離ユニット40の第2のチャンバ45内の戻り濃縮水を導入ユニット10に循環させる際、導入ユニット10に供給される被処理水の流量と戻り濃縮水の流量の合計流量に対して、50~95%の流量であることが好ましい。
以上、第1の実施形態によれば、昇圧した高い圧力(10MPa以上で第1の逆浸透膜23の最大耐圧[例えば12MPa]以下)の被処理水を脱塩用膜分離ユニット20の第1のチャンバ24に導入することにより、第1のチャンバ24内の被処理水の水を第1の逆浸透膜23から第2のチャンバ25に効率的に透過して被処理水を濃縮できる。同時に、第1の逆浸透膜23を透過した脱イオン水を、第10の流路210から回収、生成できる。第1のチャンバ24の濃縮水を脱塩用膜分離ユニット20の下流で第1の減圧ユニット30で減圧し、減圧した濃縮水を第1、第2の濃縮用膜分離ユニット40、50に順次送出することにより、第2の濃縮用膜分離ユニット50の第1のチャンバ54から高い濃縮度を有する濃縮水を回収できる。すなわち、導入ユニット10に供給された廃水から効率的に減量した濃縮水を得ることができる。その結果、回収した濃縮水を蒸発処理する際、蒸発に要する熱エネルギーを低減できるため、全体的な処理コストを低下させることができる。
第1のチャンバ24の濃縮水を第1の減圧ユニット30で減圧(例えば圧力低減量0.5MPa以上)にすることによって、濃縮水に溶存している気体が膨張して気泡が生じる。気泡は、急激な圧力回復によって微細に粉砕されてファインバブルを発生する。
ファインバブルは、例えば平均径が1000nm以下であり、液中で高い安定性を有し、第1の減圧ユニット30の下流側に配置される第2、第3の逆浸透膜43,53に対して高い浸透性を有する。その結果、第2、第3の逆浸透膜43,53におけるスケール発生、バイオファウリングを防止することが可能になる。
さらに、ファインバブルは表面が疎水性で、帯電しているため、導入ユニット10で薬液供給流路12からスケール防止剤、バイオファウリング防止剤、殺菌剤、及び膜洗浄剤を液混和槽11に供給した場合、それらの薬剤を第2、第3の逆浸透膜43,53に容易に付着することが可能になる。その結果、第2、第3の逆浸透膜43,53におけるスケール発生、バイオファウリングをより効果的に防止することが可能になる。
その結果、第2、第3の逆浸透膜43,53のスケール発生、バイオファウリングに伴う目詰まりを抑制又は防止して第2、第3の逆浸透膜43,53の洗浄等の操作を軽減又は解消できるため、水処理システムの稼働率を増大できる。
なお、第1の実施形態に記載の第1の減圧ユニット30は、減圧弁を有する減圧装置31を備えた構成に限定されない。例えば図3に示す減圧装置32を備えてもよい。すなわち、減圧装置32は貯水タンク33を有する。脱塩用膜分離ユニットの第1のチャンバ24と接続する第2の流路202及び第1の濃縮用膜分離ユニットの第1のチャンバ44に接続する第3の流路203は、それぞれ貯水タンク33に挿入されている。第3の流路203には、ポンプ34が介装されている。
このような構成の第1の減圧ユニット30によれば、脱塩用膜分離ユニットの第1のチャンバ24と接続する第2の流路202を通して送出された濃縮水は、貯水タンク33に貯水することにより大気圧に減圧される。その後、第3の流路203のポンプ34を駆動して貯水タンク33内の濃縮水400を昇圧して第1の濃縮用膜分離ユニットの第1のチャンバに送出する。この時、ポンプ34の昇圧を脱塩用膜分離ユニットの第1のチャンバに導入したときの圧力よりも低くすることによって、第1の濃縮用膜分離ユニットの第1のチャンバ44に送出する濃縮水を減圧することが可能になる。ポンプ34の吐出圧は2MPa以下にすることが好ましい。
なお、貯水タンク33にはpH調整剤、殺菌剤、スケール防止剤、バイオファウリング防止剤及び膜洗浄剤等を供給する薬液供給流路35を設置してもよい。
また、貯水タンク33には空気又は二酸化炭素を供給するためのガス供給流路36を設置してもよい。
濃縮水400に含まれる成分を測定するセンサ、例えば、pH、導電率、酸化還元電位、ゼータ電位、残留塩素濃度等を測定するセンサを貯水タンク33に設けてもよい(図示せず)。
また、第1の実施形態において、第1、第2の濃縮用膜分離ユニット40、50の接続形態は図1に限定されない。例えば、図4及び図5に示す接続形態にしてもよい。図4及び図5において、図1と同様な部材は同符号を付して説明を省略する。
図4に示す水処理システム1において、第2の減圧ユニット60の第2の減圧装置61は、第9の流路209により第2の濃縮用膜分離ユニット50の第2のチャンバ55が位置する第3の耐圧密閉容器52の左側面に接続されている。第2の濃縮用膜分離ユニット50の第2のチャンバ55は、第2のチャンバ55が位置する第3の耐圧密閉容器52の右側面から延出する第7の流路207により、第1の濃縮用膜分離ユニット40の第2のチャンバ45が位置する第2の耐圧密閉容器42の左側面に接続されている。第1の濃縮用膜分離ユニット40の第2のチャンバ45は、第2のチャンバ45が位置する第2の耐圧密閉容器42から延出する第4の流路204により導入ユニット10に接続されている。
このような図4に示す構成によれば、第1の濃縮用膜分離ユニット40において第1のチャンバ44内を流れる濃縮水と第2のチャンバ45内を流れる戻り濃縮水とが同一方向になり、第2の濃縮用膜分離ユニット50においても第1のチャンバ54内を流れる濃縮水と第2のチャンバ55内を流れる戻り濃縮水とが同一方向になる。
図5に示す水処理システム1において、第2の減圧ユニット60の第2の減圧装置61は、第9の流路209により第2の濃縮用膜分離ユニット50の第2のチャンバ55が位置する第3の耐圧密閉容器52に接続されている。第2の減圧装置61は、別の流路200により第2の濃縮用膜分離ユニット50の第2のチャンバ55と第1の濃縮用膜分離ユニット40の第2のチャンバ45を繋ぐ第7の流路207に接続されている。
このような図5に示す構成によれば、第2の濃縮用膜分離ユニット50において、第1のチャンバ54内の濃縮水と第2のチャンバ55内の戻り濃縮水との間の圧力差(濃縮水の圧力>戻り濃縮水の圧力)を利用して、第1のチャンバ54内の濃縮水中の水を第3の逆浸透膜53から第2のチャンバ55に透過させることができる。この透過した水は、第2のチャンバ55内の戻り濃縮水を希釈するとともに、戻り濃縮水の圧力を上昇させる。このような圧力上昇した戻り濃縮水を第7の流路207を通して第1の濃縮用膜分離ユニット40の第2のチャンバ45に送出させる過程で、第2の減圧装置61で減圧された戻り濃縮水を別の流路200を通して第7の流路207に送出させ、圧力上昇した戻り濃縮水に混ぜることができる。それによって、圧力上昇した戻り濃縮水を減圧して第1の濃縮用膜分離ユニット40の第2のチャンバ45に送出させることができる。その結果、第1の濃縮用膜分離ユニット40において、第1のチャンバ44内の濃縮水と第2のチャンバ45内の戻り濃縮水との間の圧力差(濃縮水の圧力>戻り濃縮水の圧力)を十分に大きくできる。それ故、第1の濃縮用膜分離ユニット40の第1のチャンバ44内の濃縮水中の水を第2の逆浸透膜43から第2のチャンバ45に効率的に透過することができる。
(第2の実施形態)
図6は、第2の実施形態に係る水処理システムを示す概略図である。図6において、第1の実施形態で説明した図1と同様な部材は同符号を付して説明を省略する。
図6に示す第2の実施形態に係る水処理システム1は、第1の濃縮用膜分離ユニット40において、例えば2つの第2の逆浸透エレメント41a、41bが互いに直列に接続されている。すなわち、前段の第2の逆浸透エレメント41aの第1のチャンバ44は、流路212により後段の第2の逆浸透エレメント41bの第1のチャンバ44に接続されている。前段の第2の逆浸透エレメント41aの第2のチャンバ45は、流路213により後段の第2の逆浸透エレメント41bの第2のチャンバ45に接続されている。また、前段の第2の逆浸透エレメント41aの第1のチャンバ44は、導入ユニット10に第4の流路204を通して接続されている。後段の第2の逆浸透エレメント41bの第1のチャンバ44は、それぞれ第5の流路205を通して、第2の濃縮用膜分離ユニット50の第1のチャンバ54に接続されている。後段の第2の逆浸透エレメント41bの第2のチャンバ45は、第7の流路207を通して、第2の濃縮用膜分離ユニット50の第2のチャンバ55に接続されている。
このような図6に示す構成の第2の実施形態によれば、第1の濃縮用膜分離ユニット40において、2つの第2の逆浸透エレメント41a、41bが互いに直列に接続されているため、図1に示す第1の実施形態に係る水処理システムに比べて第1の濃縮用膜分離ユニット40での濃縮水の高濃縮化が可能な水処理システムを実現できる。
(第3の実施形態)
図7は、第3の実施形態に係る水処理システムを示す概略図である。図7において、第1の実施形態で説明した図1と同様な部材は同符号を付して説明を省略する。
図7に示す第3の実施形態に係る水処理システム1は、第1の濃縮用膜分離ユニット40において、例えば5つの第2の逆浸透エレメント41a、41b、41c、41d、41eが直列及び並列に接続されている。すなわち、前段の3つの第2の逆浸透エレメント41a、41b、41cは並列的配置され、後段の2つの第2の逆浸透エレメント41d、41eは並列的配置されている。第1の減圧ユニット30に接続する第3の流路203から分岐した流路214~216は、それぞれ前段の3つの第2の逆浸透エレメント41a、41b、41cの各第1のチャンバ44が位置する第2の耐圧密閉容器42の例えば左側面に接続されている。前段の第2の逆浸透エレメント41a、41b、41cの各第1のチャンバ44が位置する第2の耐圧密閉容器42の例えば右側面は、分岐し、統合された流路217、流路218及び統合され、分岐した流路219により、後段の2つの第2の逆浸透エレメント41d、41eの第1のチャンバ44が位置する第2の耐圧密閉容器42の例えば左側面に接続されている。後段の2つの第2の逆浸透エレメント41d、41eの第1のチャンバ44が位置する第2の耐圧密閉容器42の右側面は、分岐され、統合された流路220及び第5の流路205により、第2の濃縮用膜分離ユニット50の第3の逆浸透エレメント51における第1のチャンバ54が位置する第3の耐圧密閉容器52の左側面に接続されている。
第2の濃縮用膜分離ユニット50の第3の逆浸透エレメント51における第2のチャンバ55が位置する第3の耐圧密閉容器52の例えば左側面は、第7の流路207、及び第7の流路207から分岐された2つの流路221、222により、後段の第2の逆浸透エレメント41d、41eの第2のチャンバ45が位置する第2の耐圧密閉容器42の例えば右側面にそれぞれ接続されている。後段の第2の逆浸透エレメント41d、41eの第2のチャンバ45が位置する第2の耐圧密閉容器42の例えば左側面は、分岐され、統合された流路223、流路224、及び統合され、分岐された流路225により前段の3つの第2の逆浸透エレメント41a、41b、41cの各第2のチャンバ45が位置する第2の耐圧密閉容器42の例えば右側面にそれぞれ接続されている。前段の3つの第2の逆浸透エレメント41a、41b、41cの各第2のチャンバ45が位置する第2の耐圧密閉容器42の例えば左側面は、3つの流路226~228及びこれらの流路226~228が統合される第4の流路204により導入ユニット10に接続される。第2の耐圧密閉容器42の流路の接続される面は適宜調整することができる。
この5つの第2の逆浸透エレメント41a、41b、41c、41d、41eの接続形態、及びこれらの第2の逆浸透エレメント41a、41b、41c、41d、41eと第2の濃縮用膜分離ユニット50の第3の逆浸透エレメント51との間の接続形態によって、前段の3つの第2の逆浸透エレメント41a、41b、41cは後段の2つの第2の逆浸透エレメント41d、41eに直列接続され、後段の2つの第2の逆浸透エレメント41d、41eは第2の濃縮用膜分離ユニット50の第3の逆浸透エレメント51に直列接続される。
このような第3の実施形態によれば、第1の濃縮用膜分離ユニット40において、並列的に配置された前段の3つの第2の逆浸透エレメント41a、41b、41cは、並列的に配置された後段の2つの第2の逆浸透エレメント41d、41eに直列接続され、後段の2つの第2の逆浸透エレメント41d、41eは第2の濃縮用膜分離ユニット50の第3の逆浸透エレメント51に直列接続されているため、図1に示す第1の実施形態に係る水処理システムに比べて第1の濃縮用膜分離ユニット40での濃縮水のより一層の高濃縮化が可能な水処理システムを実現できる。
第3の実施形態では第1の濃縮用膜分離ユニット40において、並列的に配置された前段及び後段の第2の逆浸透エレメントをそれぞれ3つ、2つに設定したが、これらに限定されず、任意の段数にすることが可能で、各段数の数も任意にすることが可能である。
(第4の実施形態)
図8は、第4の実施形態に係る水処理システムを示す概略図である。図8において、第3の実施形態で説明した図7と同様な部材は同符号を付して説明を省略する。
図8に示す第4の実施形態に係る水処理システム1は、第1の濃縮用膜分離ユニット40において、例えば5つの第2の逆浸透エレメント41a、41b、41c、41d、41eが直列及び並列に接続されている。すなわち、前述した第3の実施形態と同様に前段の3つの第2の逆浸透エレメント41a、41b、41cは並列的配置され、後段の2つの第2の逆浸透エレメント41d、41eは並列的配置され、さらにそれらの第2の逆浸透エレメント41a、41b、41c、41d、41eの接続形態も同様である。
また、第2の濃縮用膜分離ユニット50において、例えば2つの第3の逆浸透エレメント51a、52bが並列的に配置されている。第1の濃縮用膜分離ユニット40の後段の2つの第2の逆浸透エレメント41d、41eにおける第1のチャンバ44が位置する第2の耐圧密閉容器42の例えば右側面は、それぞれ流路229、230により、第2の濃縮用膜分離ユニット50の第3の逆浸透エレメント51a、51bにおける第1のチャンバ54が位置する第3の耐圧密閉容器52の例えば左側面に接続されている。第2の減圧ユニット60の第2の減圧装置61は、2つの流路231、232により第3の逆浸透エレメント51a、51bにおける第2のチャンバ55が位置する第3の耐圧密閉容器52の例えば右側面にそれぞれ接続されている。第3の逆浸透エレメント51a、51bにおける第2のチャンバ55が位置する第3の耐圧密閉容器52の例えば左側面は、分岐され、統合された流路233、流路234、及び統合され、分岐された流路235により第1の濃縮用膜分離ユニット40の後段の2つの第2の逆浸透エレメント41d、41eにおける第1のチャンバ44が位置する第2の耐圧密閉容器42の例えば右側面に接続されている。
この5つの第2の逆浸透エレメント41a、41b、41c、41d、41eの接続形態、及びこれらの第2の逆浸透エレメント41a、41b、41c、41d、41eと第2の濃縮用膜分離ユニット50の2つの第3の逆浸透エレメント51a、51bとの間の接続形態によって、前段の3つの第2の逆浸透エレメント41a、41b、41cは後段の2つの第2の逆浸透エレメント41d、41eに直列接続され、後段の2つの第2の逆浸透エレメント41d、41eは第2の濃縮用膜分離ユニット50の2つの第3の逆浸透エレメント51a、51bにそれぞれ直列接続される。
このような第4の実施形態によれば、図7に示す第3の実施形態に係る水処理システムに比べて第2の濃縮用膜分離ユニット50での濃縮水のより一層の高濃縮化が可能な水処理システムを実現できる。
第4の実施形態では第2の濃縮用膜分離ユニット50において2つの第3の逆浸透エレメントを並列的に配置したが、これらに限定されず、3つ以上の第3の逆浸透エレメントを並列的に配置してもよい。
(第5の実施形態)
図9は、第5の実施形態に係る水処理システムを示す概略図である。図9において、第1の実施形態で説明した図1と同様な部材は同符号を付して説明を省略する。
図9に示す第5の実施形態に係る水処理システム1は、第2の濃縮用膜分離ユニット50の第1のチャンバ54に接続された第6の流路206に熱処理ユニット70をさらに接続した構造を有する。熱処理ユニット70は、例えば、図示しない蒸発濃縮装置、及び蒸発乾燥機を備える。熱処理ユニット70は、流路236により第6の流路206に接続されている。また、熱処理ユニット70には固形塩分排出流路237及び水分排出流路238が接続されている。
このような図9に示す第5の実施形態によれば、第2の濃縮用膜分離ユニット50の第1のチャンバ54内の高濃縮度の濃縮水を第6の流路206及び流路236を通して熱処理ユニット70に送出する。熱処理ユニット70は、濃縮水を熱により濃縮・蒸発・乾燥処理を施す。第2の濃縮用膜分離ユニット50の第1のチャンバ54から送出される濃縮水中のイオン分の主成分が、例えば塩イオン分である場合、熱処理ユニット70の処理により、イオン分を固形分塩分として固形塩分排出流路237から取り出し、回収することができる。また、濃縮・蒸発・乾燥処理で蒸発された水分は水分排出流路238から回収できる。濃縮水の濃縮度が高いほど、濃縮水に含まれる水分の量はより少なくなるため、熱処理ユニット70における濃縮・蒸発乾燥処理の際に消費される熱エネルギーを低減できる。
なお、熱処理ユニット70は晶析装置、及び遠心分離装置等をさらに配置してもよい。これにより、固形塩分の回収をより円滑に遂行できる。
また、前述した第2~第4の実施形態及び後述する第9~11の実施形態においても、第2の濃縮用膜分離ユニット50の第1のチャンバ54の下流に第5の実施形態のように熱処理ユニット70を追加してもよい。
(第6の実施形態)
図10は、第6の実施形態に係る水処理システムを示す概略図である。図10において、第1の実施形態で説明した図1と同様な部材は同符号を付して説明を省略する。
図10に示す第6の実施形態に係る水処理システム1は、導入ユニット10の上流に前処理ユニット80をさらに配置した構造を有する。前処理ユニット80は、固形分・有機成分の除去装置81,軟水化処理装置82及び脱気装置83がこの順序で流れ方向に配置されている。被処理水の供給流路211は、除去装置81に接続されている。除去装置81と軟水化処理装置82は、図示しないポンプを介装した流路239により接続されている。軟水化処理装置82と脱気装置83は、図示しないポンプを介装した流路240により接続されている。脱気装置83は、流路241により導入ユニット10に接続されている。前処理ユニット80は、固形分・有機成分の除去装置81,軟水化処理装置82及び脱気装置83のうちいずれかひとつを備えていればよい。複数備える場合はこれらの配置の順番は問わず、適宜設定することができる。
なお、第6の実施形態に係る水処理システム1は、第5の実施形態と同様、第2の濃縮用膜分離ユニット50の第1のチャンバ54の第6の流路206に熱処理ユニット70が接続されている。
固形分・有機成分の除去装置81は、例えば精密ろ過(MF:Microfiltration)膜、限外ろ過(UF:Ultrafiltration)膜、及びMBR(Membrane Bioreactor)法等の膜分離装置を用いることができる。このような固形分・有機成分の除去装置81は、供給流路211を通して供給された被処理水をろ過し、被処理水から固形分・有機成分を除去する。固形分・有機成分を除去された被処理水は、図示しないポンプの駆動により固形分・有機成分の除去装置81から流路239を通して軟水化処理装置82に送出される。
軟水化処理装置82は、例えばイオン交換樹脂や凝集沈殿装置を用いることができる。軟水化処理装置82は、送出された被処理水中のカルシウム、マグネシウム等の硬度成分を除去し、被処理水を軟水化する。軟水化された被処理水は、図示しないポンプの駆動により軟水化処理装置82から流路240を通して脱気装置83に送出される。
脱気装置83は、純水製造等で用いられる既存のものが使用可能であり、例えば充填式脱炭酸塔、曝気装置、脱気装置、真空脱気装置を用いることができる。脱気装置83は、脱気効率の向上を目的として被処理水に塩酸、硫酸等の酸を添加し、被処理水のpHを7.0以下、好ましくはpHを5.5以下に下げて処理を行うことが望ましい。
従って、導入ユニット10の上流に前処理ユニット80をさらに配置することによって、塩分を含む廃水の他に、例えば工場廃水のような被処理水に対して、固形分・有機成分の除去、軟水化及び脱気を行うことができ、これらの処理がなされた被処理水を濃縮できる水処理システムを実現できる。
なお、前述した第2~第4及び後述する第9~11の実施形態の実施形態においても、導入ユニット10の上流に第6の実施形態のように前処理ユニット80を追加してもよい。
(第7の実施形態)
図11は、第7の実施形態に係る水処理システムを示す概略図である。図11において、第6の実施形態で説明した図10と同様な部材は同符号を付して説明を省略する。
図11に示す第7の実施形態に係る水処理システム1は、前処理ユニット80の下流で、導入ユニット10の上流に前処理用膜分離ユニット90をさらに備えた構造を有する。
前処理用膜分離ユニット90は、第4の逆浸透エレメント91を備えている。第4の逆浸透エレメント91は、第4の密閉容器、例えば第4の耐圧密閉容器92と、第4の耐圧密閉容器92内に配置された第4の逆浸透膜93と、第4の逆浸透膜93より第4の耐圧密閉容器92を区画して形成された第1のチャンバ94と第2のチャンバ95とを含む。前処理ユニット80は、流路241により前処理用膜分離ユニット90の第1のチャンバ94が位置する第4の耐圧密閉容器92に接続されている。流路241には、昇圧ポンプ101が介装されている。第1のチャンバ94が位置する第4の耐圧密閉容器92は、流路242により導入ユニット10に接続されている。第2のチャンバ95が位置する第4の耐圧密閉容器92は、流路243により脱塩用膜分離ユニット20の第2のチャンバ25から延出する第10の流路210に接続されている。
第4の逆浸透エレメント91の代わりにナノフィルトレーション膜エレメントを用いてもよい。当該ナノフィルトレーション膜エレメントは、前処理用膜分離ユニット90の第1のチャンバ94と第2のチャンバ95を区画するナノフィルトレーション膜を備える。
逆浸透膜又はナノフィルトレーション膜は、例えばスパイラル状、及び中空糸状等の膜を用いることができる。なお、逆浸透膜又はナノフィルトレーション膜は第4の耐圧密閉容器92内に複数もうけてもよい。
前処理用膜分離ユニット90は、前処理ユニット80から送出される被処理水の性状に合わせて逆浸透膜、ナノフィルトレーション膜を選定することが可能である。
このような構成の前処理用膜分離ユニット90は、前処理ユニット80の脱気装置83からの被処理水を昇圧ポンプ101で昇圧し、前処理用膜分離ユニット90の第1のチャンバ94に送出させることにより、当該被処理水中の水を第4の逆浸透膜93(又はナノフィルトレーション膜)から第2のチャンバ95に効率的に透過して過水と、固形分(塩分)が濃縮された濃縮水とに分離できる。
従って、第7の実施形態によれば、前処理用膜分離ユニット90の第1のチャンバ94から流路242を通して送出される濃縮水を被処理水として導入ユニット10に供給できる。その結果、脱塩用膜分離ユニット20での脱イオン操作、及び第1、第2の濃縮用膜分離ユニット40、50でのイオン濃縮操作に適した濃度の被処理水を、導入ユニット10に供給することが可能な水処理システムを実現できる。
なお、第7の実施形態では前処理用膜分離ユニット90から送出される濃縮された被処理水を導入ユニット10に供給する形態を説明したが、この形態に限定されない。例えば、図12に示すように前処理用膜分離ユニット90の第1のチャンバ94内の濃縮水を貯めるための貯水タンク102をさらに配置してもよい。貯水タンク102には、前処理用膜分離ユニット90の第1のチャンバ94内の濃縮された被処理水を供給する流路244が挿入されている。貯水タンク102の下部側面には、流路245が接続され、流路245の先端はポンプ103に接続されている。ポンプ103は、流路242を通して導入ユニット10に接続されている。
このような図12に示す水処理システムにおいて、前処理用膜分離ユニット90の第1のチャンバ94内の濃縮された被処理水は流路244を通して貯水タンク102に貯留する。貯水タンク102に貯留された濃縮水は、任意のタイミングでポンプ103の駆動により導入ユニット10に送出される。任意のタイミングとは、例えば、操作者の指示に応じたタイミング、指定された周期毎のタイミング、及び熱処理ユニット70を駆動させるタイミング等である。導入ユニット10は、ポンプ103の駆動により貯水タンク102から濃縮された被処理水が供給されると、第1の流路201の昇圧ポンプ(図示せず)により、被処理水を脱塩用膜分離ユニット20に送出させる。これによって、導入ユニット10を効率的に操作することが可能となる。
前述した第2~第4及び後述する第9~11の実施形態の実施形態においても、導入ユニット10の上流に第7の実施形態のように前処理ユニット80及び前処理用膜分離ユニット90を追加したり、或いは第7の実施形態の変形例にようにさらに貯水タンク102を追加したり、してもよい。
(第8の実施形態)
図13は、第8の実施形態に係る水処理システムを示す概略図である。図13において、第1の実施形態で説明した図1と同様な部材は同符号を付して説明を省略する。
図13に示す第8の実施形態に係る水処理システム1は、第2の濃縮用膜分離ユニット50の第1のチャンバ54の下流に動力回収ユニット110をさらに配置した構成を有する。動力回収ユニット110は、第2の濃縮用膜分離ユニット50の第1のチャンバ54から送出される高い圧力を持つ濃縮水の圧力エネルギーを回収する装置である。動力回収ユニット110は、例えば動力回収機構111、及びポンプ112を備える。動力回収機構111は、第6の流路206により第2の濃縮用膜分離ユニット50の第1のチャンバ54に接続されている。
動力回収機構111は、高塩分に適応可能に加工された例えばタービン又はピストンを備えている。動力回収機構111は、第2の濃縮用膜分離ユニット50の第1のチャンバ54内の濃縮水が第6の流路206を通して送出されると、濃縮水の圧力エネルギーをタービン又はピストンにより運動エネルギーに変換する。動力回収機構111は、圧力エネルギーを回収した濃縮水を流路246から送出する。
動力回収機構111は、運動エネルギーをポンプ112に伝達可能に接続されている。例えば、動力回収機構111のタービンの回転軸とポンプ112の回転軸とは直接的又は間接的に接続されている。その結果、動力回収機構111は取得した運動エネルギーをポンプ112に伝達する。
ポンプ112は、例えば被処理水の供給流路211に介装され、供給流路211に流れる被処理水の昇圧に利用できる。また、ポンプ112は前述した図2に示す第1の流路201に介装した昇圧ポンプ15に適用し、第1の流路201を流れる被処理水を高い圧力に昇圧して脱塩用膜分離ユニット20の第1のチャンバ24に導入することができる。
従って、第8の実施形態によれば、第2の濃縮用膜分離ユニット50の第1のチャンバ54内の濃縮水が持つ圧力を動力回収ユニット110で運動エネルギーに変換することによって、被処理水の昇圧にて有効に活用でき、導入ユニット10のエネルギー消費量を軽減することが可能となる。
前述した第2~第4の実施形態及び後述する第9~11の実施形態においても、第2の濃縮用膜分離ユニット50の第1のチャンバ54の下流に第8の実施形態のように動力回収ユニット110を追加してもよい。
(第9の実施形態)
図14は、第9の実施形態に係る水処理システムを示す概略図である。図14において、第1の実施形態で説明した図1と同様な部材は同符号を付して説明を省略する。
図14に示す第9の実施形態に係る水処理システムは、第2の減圧装置61を備える第2の減圧ユニット60の配置個所が図1に示す第1の実施形態に係る水処理システムと異なる。すなわち、第2の減圧装置61の吸込口は、第1、第2の濃縮用膜分離ユニット40,50の第1のチャンバ44,54を繋ぐ第5の流路205から分岐された、第8の流路208に接続されている。第2の減圧装置61の吐出口は、第9の流路209に接続され、第9の流路209は第2の濃縮用膜分離ユニット50の第2のチャンバ55が位置する第3の耐圧密閉容器52に接続されている。なお、第2の濃縮用膜分離ユニット50の第2のチャンバ55が位置する第3の耐圧密閉容器52は、第7の流路207により第1の濃縮用膜分離ユニット40の第2のチャンバ45が位置する第2の耐圧密閉容器42に接続されている。
第9の実施形態において、第2の減圧ユニット60は、第1の濃縮用膜分離ユニット40の第1のチャンバ44から第5の流路205及び第8の流路208を通して送出された濃縮水を減圧する。つまり第2の減圧ユニット60は、この濃縮水の圧力を低減して第2の濃縮用膜分離ユニット50の第2のチャンバ55に戻り濃縮水として送るときに、第2の濃縮用膜分離ユニット50の第1のチャンバ54内の濃縮水の圧力が第2のチャンバ55内の戻り濃縮水の圧力に比べて高くなるように設定する。第1、第2の濃縮用膜分離ユニット40,50の第1のチャンバ44,54を繋ぐ第5の流路205を流れる濃縮水は、第2の濃縮用膜分離ユニット50の第2のチャンバ55に接続する第9の流路209を流れる濃縮水に比べて圧力が高く、第2の減圧ユニット60による減圧度合いも大きくなるため、好ましい。例えば、第2のチャンバ55内に送出する戻り濃縮水の圧力低減量は、1MPa以上であることが好ましく、より好ましくは3MPa以上である。圧力低減量を3MPa以上にすることによって、第2の濃縮用膜分離ユニット50の第1のチャンバ54に送出される濃縮水の圧力を第2の濃縮用膜分離ユニット50の第2のチャンバ55の戻り濃縮水の圧力に比べて十分に高くすることが可能になり、第1のチャンバ54内の濃縮水に含まれる水を第3の逆浸透膜53を通して第2のチャンバ55に円滑に透過させることが可能になる。
第9の実施形態によれば、第2の減圧ユニット60の配置個所を図14のように変更しても、前述した第1の実施形態と同様に導入ユニット10に供給された廃水から効率的に減量した濃縮水を得ることができる。その結果、回収した濃縮水を蒸発処理する際、蒸発に要する熱エネルギーを低減できるため、全体的な処理コストを低下させることができる。
また、第1のチャンバ24の濃縮水を第1の減圧ユニット30で減圧(例えば圧力低減量0.5MPa以上)にすることによって、濃縮水に溶存している気体が膨張して気泡が生じ、その気泡は急激な圧力回復によって微細に粉砕されてファインバブルを発生する。ファインバブルは、例えば平均径が1000nm以下であり、液中で高い安定性を有するのみならず、第1の減圧ユニット30の下流側に配置される第2の逆浸透膜43、第3の逆浸透膜53に対して高い浸透性を有する。その結果、第2、第3の逆浸透膜43,53におけるスケール発生、バイオファウリングを防止することが可能になる。その結果、第2、第3の逆浸透膜43,53のスケール発生、バイオファウリングに伴う目詰まりを抑制又は防止して第2、第3の逆浸透膜43,53の洗浄等の操作を軽減又は解消できるため、水処理システムの稼働率を増大できる。
なお、第9の実施形態において、第1の濃縮用膜分離ユニット40の第2の逆浸透膜エレメント41を前述した第3の実施形態のように直列及び並列的に複数配置したり、さらに、第1の濃縮用膜分離ユニット40の第2の逆浸透膜エレメント41を第4の実施形態のように並列に複数配置したり、してもよい。
(第10の実施形態)
図15は、第10の実施形態に係る水処理システムを示す概略図である。図10において、第2の実施形態で説明した図6と同様な部材は同符号を付して説明を省略する。
図15に示す第10の実施形態に係る水処理システム1は、例えば2つの第2の逆浸透エレメント41a、41bが互いに直列に接続された第1の濃縮用膜分離ユニット40を備え、さらに第2の減圧装置61を備える第2の減圧ユニット60の配置個所が図6に示す第2の実施形態に係る水処理システムと異なる。すなわち、第2の減圧装置61の吸込口は、第1の濃縮用膜分離ユニット40の後段の第2の逆浸透エレメント41bにおける第1のチャンバ44と第2の濃縮用膜分離ユニット50の第1のチャンバ54とを繋ぐ第5の流路205から分岐された、第8の流路208に接続されている。第2の減圧装置61の吐出口は第9の流路209に接続され、当該第9の流路209は、第2の濃縮用膜分離ユニット50の第2のチャンバ55が位置する第3の耐圧密閉容器52に接続されている。なお、第2の濃縮用膜分離ユニット50の第2のチャンバ55が位置する第3の耐圧密閉容器52は、第7の流路207により第1の濃縮用膜分離ユニット40の後段の第2の逆浸透エレメント41bにおける第2のチャンバ45が位置する第2の耐圧密閉容器42に接続されている。
第10の実施形態において、前述した第9の実施形態と同様に、第2の減圧ユニット60は、第1の濃縮用膜分離ユニット40の後段の第2の逆浸透エレメント41bにおける第1のチャンバ44から第5の流路205及び第8の流路208を通して送出された、濃縮水を減圧する。つまり、第2の濃縮用膜分離ユニット50の第2のチャンバ55に戻り濃縮水が圧力を低減されて送出されるときに、第2の濃縮用膜分離ユニット50の第1のチャンバ54内の濃縮水の圧力が第2のチャンバ55内の戻り濃縮水の圧力に比べて高くなるように、第2の減圧ユニット60が設定されている。
第10の実施形態によれば、第2の減圧ユニット60の配置個所を図15のように変更しても、前述した第2の実施形態と同様に、導入ユニット10に供給された廃水から効率的に減量した濃縮水が得られる。また、第1の濃縮用膜分離ユニット40において、2つの第2の逆浸透エレメント41a、41bが互いに直列に接続されているため、図14に示す第9の実施形態に係る水処理システムに比べて、第1の濃縮用膜分離ユニット40での濃縮水をより高濃縮化することが可能な水処理システムを実現できる。
なお、第10の実施形態では、第2の減圧装置61を、第1の濃縮用膜分離ユニット40の後段の第2の逆浸透エレメント41bにおける第1のチャンバ44と第2の濃縮用膜分離ユニット50の第1のチャンバ54とを繋ぐ第5の流路205に接続したが、これに限定されない。例えば、図16に示すように第2の減圧装置61の配置個所を変更してよい。すなわち、第2の減圧装置61の吸込口は、第1の濃縮用膜分離ユニット40の前段、後段の第2の逆浸透エレメント41a、41bにおける第1のチャンバ44、44間を繋ぐ流路212から分岐された、第8の流路208に接続されている。第2の減圧装置61の吐出口は第9の流路209に接続され、第9の流路209は、第2の濃縮用膜分離ユニット50の第2のチャンバ55が位置する第3の耐圧密閉容器52に接続されている。第2の濃縮用膜分離ユニット50の第2のチャンバ55が位置する第3の耐圧密閉容器52は、第7の流路207により、第1の濃縮用膜分離ユニット40の後段の第2の逆浸透エレメント41bにおける第2のチャンバ45が位置する第2の耐圧密閉容器42に接続されている。
このような図16に示す構成によれば、導入ユニット10に供給された廃水から効率的に減量した濃縮水を得ることができ、かつ、第1の濃縮用膜分離ユニット40での濃縮水の高濃縮化が可能な水処理システムを実現できる。
(第11の実施形態)
図17は、第11の実施形態に係る水処理システムを示す概略図である。図17において、第9の実施形態で説明した図14と同様な部材は同符号を付して説明を省略する。
図17に示す第11の実施形態に係る水処理システム1は、第3の減圧ユニット120をさらに追加した構成を有する、第3の減圧ユニット120は、例えば第3の減圧装置121を備える。第3の減圧装置121の吸入口は、第1の減圧ユニット30から減圧された濃縮水を第1の濃縮用膜分離ユニット40の第1のチャンバ44に送出する第3の流路203から分岐した、流路247に接続されている。第3の減圧装置121の吐出口は流路248に接続され、流路248は第1の濃縮用膜分離ユニット40の第2のチャンバ45が位置する第2の耐圧密閉容器42に接続されている。第2のチャンバ45が位置する第2の耐圧密閉容器42は、第4の流路204により導入ユニット10に接続されている。また、第2の濃縮用膜分離ユニット50の第2のチャンバ55に接続された第7の流路207は、図14に示す第9の実施形態のように第1の濃縮用膜分離ユニット40の第2のチャンバ45に接続されず、導入ユニット10に接続されている第4の流路204に接続される。
このような第11の実施形態によれば、第1の濃縮用膜分離ユニット40において、第1の減圧ユニット30により減圧された濃縮水が第3の流路203を通して第1のチャンバ44に送出されるとともに、第3の流路203を流れる濃縮水が第3の減圧ユニット120でさらに減圧されて、第2のチャンバ45に戻り濃縮水として送出される。このため、第1のチャンバ44内の濃縮水と第2のチャンバ45内の戻り濃縮水との間の圧力差(濃縮水の圧力>戻り濃縮水の圧力)によって、第1のチャンバ44内の濃縮水中の水は、第2の逆浸透膜43から第2のチャンバ45に透過する。この操作により、第1のチャンバ44に送出された濃縮水はさらに濃縮される。また、第2のチャンバ45内の戻り濃縮水は、第1のチャンバ44からの透過水により希釈される。
また、第2の濃縮用膜分離ユニット50において、第1の濃縮用膜分離ユニット40の第1のチャンバ44内の濃縮水は、第5の流路205を通して第2の濃縮用膜分離ユニット50の第1のチャンバ54に送出されるとともに、第5の流路205を流れる濃縮水が第2の減圧ユニット60でさらに減圧されて、第2のチャンバ55に戻り濃縮水として送出される。このため、第1のチャンバ54内の濃縮水と第2のチャンバ55内の戻り濃縮水との間の圧力差(濃縮水の圧力>戻り濃縮水の圧力)によって、第1のチャンバ54内の濃縮水中の水が、第3の逆浸透膜53から第2のチャンバ55に透過する。この操作により、第1のチャンバ54に送出された濃縮水はより一層濃縮される。また、第2のチャンバ55内の戻り濃縮水は、第1のチャンバ54からの透過水により希釈される。
このような図17に示す構成によれば、第1の濃縮用膜分離ユニット40及び第2の濃縮用膜分離ユニット50の各逆浸透膜エレメントに、最適な濃縮水量と戻り濃縮水量を分配できるので、被処理水の水質、水量が変化しても高濃縮化することが可能な水処理システムを実現できる。
なお、前述した第9~第11の実施形態において、以下のように別の部材を追加してもよい。
(1)第2の濃縮用膜分離ユニット50の第1のチャンバ54の下流に第5の実施形態のように熱処理ユニット70を追加する。
(2)導入ユニット10の上流に第6の実施形態のように前処理ユニット80を追加する。
(3)導入ユニット10の上流に第7の実施形態のように前処理ユニット80及び前処理用膜分離ユニット90を追加したり、或いは第7の実施形態の変形例にようにさらに貯水タンク102を追加したり、する。
(4)第2の濃縮用膜分離ユニット50の第1のチャンバ54の下流に第8の実施形態のように動力回収ユニット110を追加する。
本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更、組み合わせを行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。
以下に、本願出願の当初特許請求の範囲に記載された発明を付記する。
[1]
被処理水を昇圧して送出する導入ユニット;
前記導入ユニットの下流に配置される、第1の逆浸透膜エレメントを備えた脱塩用膜分離ユニットであって、前記第1の逆浸透膜エレメントは第1の逆浸透膜と、前記第1の逆浸透膜により区画され、第1の流路により前記導入ユニットに接続される第1のチャンバ及び第2のチャンバとを有し、前記第1の逆浸透膜エレメントの前記第1のチャンバが第1の流路により前記導入ユニットに接続される、前記脱塩用膜分離ユニット;
前記脱塩用膜分離ユニットの下流に配置される第1の減圧ユニットであって、一端が前記第1の流路の接続箇所と異なる前記脱塩用膜分離ユニットの前記第1のチャンバの箇所に位置する第2の流路により、前記脱塩用膜分離ユニットの前記第1のチャンバに接続される第1の減圧装置を備える、前記第1の減圧ユニット;
前記第1の減圧ユニットの下流に配置され、第2の逆浸透膜エレメントを備え、かつ、前記脱塩用膜分離ユニットの最大耐圧より低い最大耐圧を持つ第1の濃縮用膜分離ユニットであって、前記第2の逆浸透膜エレメントは、第2の逆浸透膜と、前記第2の逆浸透膜により区画された第1のチャンバ及び第2のチャンバとを有し、前記第2の逆浸透膜エレメントの前記第1のチャンバは第3の流路により前記第1の減圧ユニットに接続され、前記第2の逆浸透膜エレメントの前記第2のチャンバは第4の流路により前記導入ユニットに接続される、前記第1の濃縮用膜分離ユニット;
前記第1の濃縮用膜分離ユニットより下流側に配置される、第3の逆浸透膜エレメントを備えた第2の濃縮用膜分離ユニットであって、前記第3の逆浸透膜エレメントは第3の逆浸透膜と、前記第3の逆浸透膜により区画された第1のチャンバ及び第2のチャンバとを有し、前記第3の逆浸透膜エレメントの前記第1のチャンバは第5の流路により前記第1の濃縮用膜分離ユニットの前記第1のチャンバに接続され、かつ前記第5の流路と異なる位置に第6の流路が接続され、前記第3の逆浸透膜エレメントの前記第2のチャンバは第7の流路により前記第1の濃縮用膜分離ユニットの前記第2のチャンバに接続される前記第2の濃縮用膜分離ユニット;及び
前記第5の流路又は前記第6の流路に接続される第2の減圧ユニットであって、第8の流路により前記第5の流路又は前記第6の流路に接続され、かつ第9の流路により前記第2の濃縮用膜分離ユニットの前記第2のチャンバに接続される第2の減圧装置を備える、前記第2の減圧ユニット;を具備する水処理システム。
[2]
前記脱塩用膜分離ユニットは、10MPa以上、前記第1の逆浸透膜の最大耐圧以下で運転可能である[1]の水処理システム。
[3]
前記第1の濃縮用膜分離ユニットは、前記第2の逆浸透膜エレメントを直列に複数備える[1]又は[2]の水処理システム。
[4]
前記第1の濃縮用膜分離ユニットは、前記第2の逆浸透膜エレメントを並列に複数備え、前記第2の濃縮用膜分離ユニットは、前記第3の逆浸透膜エレメントを、前記第2の逆浸透膜エレメントの数以下で、並列に複数備える[1]乃至[3]のいずれか一つの水処理システム。
[5]
前記導入ユニットの上流に配置され、固形分除去、有機成分除去、硬度成分除去、及び炭酸成分除去の少なくとも1つを行う前処理ユニットであって、前記前処理ユニットは第10の流路により前記導入ユニットに接続される[1]乃至[4]いずれか一つの水処理システム。
[6]
前記前処理ユニットと前記導入ユニットの間に前処理用膜分離ユニットをさらに備え、
前記前処理用膜分離ユニットは、第4の逆浸透膜並びに前記第4の逆浸透膜により区画される第1のチャンバ及び第2のチャンバを有する第4の逆浸透膜エレメントと、一端が前記前処理ユニットに接続され、他端が前記前処理用膜分離ユニットの前記第1のチャンバに接続される第11の流路と、一端が前記前処理用膜分離ユニットの前記第1のチャンバに接続され、他端が前記導入ユニットに接続される第12の流路とを備える[5]の水処理システム。
[7]
前記第2の濃縮用膜分離ユニットに前記第6の流路を通して接続される熱処理ユニットをさらに備える[1]乃至[6]のいずれか一つの水処理システム。
[8]
前記第2の濃縮用膜分離ユニットに前記第6の流路を通して接続される動力回収ユニットをさらに備える[1]乃至[6]のいずれか一つの水処理システム。
[9]
前記第2の濃縮用膜分離ユニットの前記第1のチャンバから送出される水に、1000nm以下のファインバブルを1.0E+6個/mL以上含ませるように構成される[1]乃至[8]のいずれか一つの水処理システム。
[10]
被処理水を昇圧して送出する導入ユニット;
前記導入ユニットより下流に配置され、第1の逆浸透膜と当該第1の逆浸透膜により区画される第1のチャンバ及び第2のチャンバとを有する第1の逆浸透膜エレメントを備える、脱塩用膜分離ユニット;
前記脱塩用膜分離ユニットより下流に配置され、前記脱塩用膜分離ユニットの前記第1のチャンバから送出される濃縮水を減圧する第1の減圧ユニット;
前記第1の減圧ユニットより下流に配置され、前記脱塩用膜分離ユニットの最大耐圧より低い最大耐圧を持つ第2の逆浸透膜と当該第2の逆浸透膜により区画される第1のチャンバ及び第2のチャンバとを有する第2の逆浸透膜エレメントを備える、第1の濃縮用膜分離ユニット;
前記第1の濃縮用膜分離ユニットより下流に配置され、第3の逆浸透膜と当該第3の逆浸透膜により区画される第1のチャンバ及び第2のチャンバとを有する第3の逆浸透膜エレメントを備える、第2の濃縮用膜分離ユニット;及び
前記第1の濃縮用膜分離ユニットより下流側に配置され、前記第1の濃縮用膜分離ユニットの前記第1のチャンバから送出された濃縮液を減圧する、又は、前記第2の濃縮用膜分離ユニットより下流側に配置され、前記第2の濃縮用膜分離ユニットの前記第1のチャンバから送出された濃縮液を減圧する、第2の減圧ユニット;を具備する水処理システムを用意する工程と、
前記導入ユニットから昇圧した被処理水を前記脱塩用膜分離ユニットの前記第1のチャンバに送出する工程と、
前記脱塩用膜分離ユニットの前記第1のチャンバ内で濃縮された濃縮水を前記第1の減圧ユニットに送出し、減圧する工程と、
前記第1の減圧ユニットによって減圧された前記濃縮水を前記第1の濃縮用膜分離ユニットの前記第1のチャンバに送出する工程と、
前記第1の濃縮用膜分離ユニットの前記第1のチャンバ内で濃縮された前記濃縮水を前記第2の濃縮用膜分離ユニットの前記第1のチャンバに送出する工程と、
前記第1の濃縮用膜分離ユニットの前記第1のチャンバ又は前記第2の濃縮用膜分離ユニットの前記第1のチャンバから送出された濃縮水を前記第2の減圧ユニットに送出し、前記第2の濃縮用膜分離ユニットの前記第1のチャンバに送出される前記濃縮水より低い圧力に減圧する工程と、
前記第2の減圧ユニットによって減圧された戻り濃縮水を前記第2の濃縮用膜分離ユニットの前記第2のチャンバに送出する工程と、
前記第2の濃縮用膜分離ユニットの前記第2のチャンバ内で濃縮された戻り濃縮水を前記第1の濃縮用膜分離ユニットの前記第2のチャンバに送出する工程と、
前記第1の濃縮用膜分離ユニットの前記第2のチャンバ内で濃縮された戻り濃縮水を前記導入ユニットに循環する工程と
を含み、
前記第1の濃縮用膜分離ユニットの前記第2のチャンバ内で濃縮された前記戻り濃縮水を前記導入ユニットに循環し、
前記第2の濃縮用膜分離ユニットの前記第1のチャンバ内で濃縮された前記濃縮水を高濃縮度の濃縮水として回収する水処理方法。
[11]
前記第2の濃縮用膜分離ユニットの前記第1のチャンバから送出される濃縮水に、1000nm以下のファインバブルが1.0E+6個/mL以上含まれている[10]の水処理方法。
1…水処理システム、10…導入ユニット、20…脱塩用膜分離ユニット、21…第1の逆浸透エレメント、22…第1の耐圧密閉容器、23…第1の逆浸透膜、24…第1のチャンバ、25…第2のチャンバ、30…第1の減圧ユニット、40…第1の濃縮用膜分離ユニット、41…第2の逆浸透エレメント、42…第2の耐圧密閉容器、43…第2の逆浸透膜、44…第1のチャンバ、45…第2のチャンバ、50…第2の濃縮用膜分離ユニット、51…第3の逆浸透エレメント、52…第3の耐圧密閉容器、53…第3の逆浸透膜、54…第1のチャンバ、55…第2のチャンバ、60…第2の減圧ユニット

Claims (10)

  1. 被処理水を昇圧して送出する導入ユニット;
    前記導入ユニットの下流に配置される、第1の逆浸透膜エレメントを備えた脱塩用膜分離ユニットであって、前記第1の逆浸透膜エレメントは第1の逆浸透膜と、前記第1の逆浸透膜により区画され、第1の流路により前記導入ユニットに接続される第1のチャンバ及び第2のチャンバとを有し、前記第1の逆浸透膜エレメントの前記第1のチャンバが第1の流路により前記導入ユニットに接続される、10MPa以上、前記第1の逆浸透膜の最大耐圧以下で運転可能になるように構成される前記脱塩用膜分離ユニット;
    前記脱塩用膜分離ユニットの下流に配置される第1の減圧ユニットであって、一端が前記第1の流路の接続箇所と異なる前記脱塩用膜分離ユニットの前記第1のチャンバの箇所に位置する第2の流路により、前記脱塩用膜分離ユニットの前記第1のチャンバに接続される第1の減圧装置を備える、前記第1の減圧ユニット;
    前記第1の減圧ユニットの下流に配置され、第2の逆浸透膜エレメントを備え、かつ、前記脱塩用膜分離ユニットの最大耐圧より低い最大耐圧を持つ第1の濃縮用膜分離ユニットであって、前記第2の逆浸透膜エレメントは、第2の逆浸透膜と、前記第2の逆浸透膜により区画された第1のチャンバ及び第2のチャンバとを有し、前記第2の逆浸透膜エレメントの前記第1のチャンバは第3の流路により前記第1の減圧ユニットに接続され、前記第2の逆浸透膜エレメントの前記第2のチャンバは第4の流路により前記導入ユニットに接続される、前記第1の濃縮用膜分離ユニット;
    前記第1の濃縮用膜分離ユニットより下流側に配置される、第3の逆浸透膜エレメントを備えた第2の濃縮用膜分離ユニットであって、前記第3の逆浸透膜エレメントは第3の逆浸透膜と、前記第3の逆浸透膜により区画された第1のチャンバ及び第2のチャンバとを有し、前記第3の逆浸透膜エレメントの前記第1のチャンバは第5の流路により前記第1の濃縮用膜分離ユニットの前記第1のチャンバに接続され、かつ前記第5の流路と異なる位置に第6の流路が接続され、前記第3の逆浸透膜エレメントの前記第2のチャンバは第7の流路により前記第1の濃縮用膜分離ユニットの前記第2のチャンバに接続される前記第2の濃縮用膜分離ユニット;及び
    前記第5の流路又は前記第6の流路に接続される第2の減圧ユニットであって、第8の流路により前記第5の流路又は前記第6の流路に接続され、かつ第9の流路により前記第2の濃縮用膜分離ユニットの前記第2のチャンバに接続される第2の減圧装置を備える、前記第2の減圧ユニット;を具備する水処理システム。
  2. 前記第1の濃縮用膜分離ユニットは、前記第2の逆浸透膜エレメントを直列に複数備える請求項に記載の水処理システム。
  3. 前記第1の濃縮用膜分離ユニットは、前記第2の逆浸透膜エレメントを並列に複数備え、前記第2の濃縮用膜分離ユニットは、前記第3の逆浸透膜エレメントを、前記第2の逆浸透膜エレメントの数以下で、並列に複数備える請求項1又は2に記載の水処理システム。
  4. 前記導入ユニットの上流に配置され、固形分除去、有機成分除去、硬度成分除去、及び炭酸成分除去の少なくとも1つを行う前処理ユニットであって、前記前処理ユニットは第10の流路により前記導入ユニットに接続される請求項1乃至いずれか1項に記載の水処理システム。
  5. 前記前処理ユニットと前記導入ユニットの間に前処理用膜分離ユニットをさらに備え、
    前記前処理用膜分離ユニットは、第4の逆浸透膜並びに前記第4の逆浸透膜により区画される第1のチャンバ及び第2のチャンバを有する第4の逆浸透膜エレメントと、一端が前記前処理ユニットに接続され、他端が前記前処理用膜分離ユニットの前記第1のチャンバに接続される第11の流路と、一端が前記前処理用膜分離ユニットの前記第1のチャンバに接続され、他端が前記導入ユニットに接続される第12の流路とを備える請求項に記載の水処理システム。
  6. 前記第2の濃縮用膜分離ユニットに前記第6の流路を通して接続される熱処理ユニットをさらに備える請求項1乃至のいずれか1項に記載の水処理システム。
  7. 前記第2の濃縮用膜分離ユニットに前記第6の流路を通して接続される動力回収ユニットをさらに備える請求項1乃至のいずれか1項に記載の水処理システム。
  8. 前記第2の濃縮用膜分離ユニットの前記第1のチャンバから送出される水に、1000nm以下のファインバブルを1.0E+6個/mL以上含ませるように構成される請求項1乃至のいずれか1項に記載の水処理システム。
  9. 被処理水を昇圧して送出する導入ユニット;
    前記導入ユニットより下流に配置され、第1の逆浸透膜と当該第1の逆浸透膜により区画される第1のチャンバ及び第2のチャンバとを有する第1の逆浸透膜エレメントを備える、10MPa以上、前記第1の逆浸透膜の最大耐圧以下で運転可能になるように構成される脱塩用膜分離ユニット;
    前記脱塩用膜分離ユニットより下流に配置され、前記脱塩用膜分離ユニットの前記第1のチャンバから送出される濃縮水を減圧する第1の減圧ユニット;
    前記第1の減圧ユニットより下流に配置され、前記脱塩用膜分離ユニットの最大耐圧より低い最大耐圧を持つ第2の逆浸透膜と当該第2の逆浸透膜により区画される第1のチャンバ及び第2のチャンバとを有する第2の逆浸透膜エレメントを備える、第1の濃縮用膜分離ユニット;
    前記第1の濃縮用膜分離ユニットより下流に配置され、第3の逆浸透膜と当該第3の逆浸透膜により区画される第1のチャンバ及び第2のチャンバとを有する第3の逆浸透膜エレメントを備える、第2の濃縮用膜分離ユニット;及び
    前記第1の濃縮用膜分離ユニットより下流側に配置され、前記第1の濃縮用膜分離ユニットの前記第1のチャンバから送出された濃縮液を減圧する、又は、前記第2の濃縮用膜分離ユニットより下流側に配置され、前記第2の濃縮用膜分離ユニットの前記第1のチャンバから送出された濃縮液を減圧する、第2の減圧ユニット;を具備する水処理システムを用意する工程と、
    前記導入ユニットから10MPa以上、前記第1の逆浸透膜の最大耐圧以下に昇圧した被処理水を前記脱塩用膜分離ユニットの前記第1のチャンバに送出する工程と、
    前記脱塩用膜分離ユニットの前記第1のチャンバ内で濃縮された濃縮水を前記第1の減圧ユニットに送出し、減圧する工程と、
    前記第1の減圧ユニットによって減圧された前記濃縮水を前記第1の濃縮用膜分離ユニットの前記第1のチャンバに送出する工程と、
    前記第1の濃縮用膜分離ユニットの前記第1のチャンバ内で濃縮された前記濃縮水を前記第2の濃縮用膜分離ユニットの前記第1のチャンバに送出する工程と、
    前記第1の濃縮用膜分離ユニットの前記第1のチャンバ又は前記第2の濃縮用膜分離ユニットの前記第1のチャンバから送出された濃縮水を前記第2の減圧ユニットに送出し、前記第2の濃縮用膜分離ユニットの前記第1のチャンバに送出される前記濃縮水より低い圧力に減圧する工程と、
    前記第2の減圧ユニットによって減圧された戻り濃縮水を前記第2の濃縮用膜分離ユニットの前記第2のチャンバに送出する工程と、
    前記第2の濃縮用膜分離ユニットの前記第2のチャンバ内で希釈された戻り濃縮水を前記第1の濃縮用膜分離ユニットの前記第2のチャンバに送出する工程と、
    前記第1の濃縮用膜分離ユニットの前記第2のチャンバ内で希釈された戻り濃縮水を前記導入ユニットに循環する工程と
    を含み、
    前記第1の濃縮用膜分離ユニットの前記第2のチャンバ内で希釈された前記戻り濃縮水を前記導入ユニットに循環し、
    前記第2の濃縮用膜分離ユニットの前記第1のチャンバ内で濃縮された前記濃縮水を高濃縮度の濃縮水として回収する水処理方法。
  10. 前記第2の濃縮用膜分離ユニットの前記第1のチャンバから送出される濃縮水に、1000nm以下のファインバブルが1.0E+6個/mL以上含まれている請求項に記載の水処理方法。
JP2021046127A 2021-03-19 2021-03-19 水処理システム及び水処理方法 Active JP7500483B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021046127A JP7500483B2 (ja) 2021-03-19 2021-03-19 水処理システム及び水処理方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021046127A JP7500483B2 (ja) 2021-03-19 2021-03-19 水処理システム及び水処理方法

Publications (2)

Publication Number Publication Date
JP2022144923A JP2022144923A (ja) 2022-10-03
JP7500483B2 true JP7500483B2 (ja) 2024-06-17

Family

ID=83454156

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021046127A Active JP7500483B2 (ja) 2021-03-19 2021-03-19 水処理システム及び水処理方法

Country Status (1)

Country Link
JP (1) JP7500483B2 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011121007A (ja) 2009-12-11 2011-06-23 Sumitomo Electric Ind Ltd 水処理システムの前処理装置及び前処理方法
JP2012170841A (ja) 2011-02-17 2012-09-10 Hitachi Plant Technologies Ltd 複合淡水化システム
JP2019188330A (ja) 2018-04-25 2019-10-31 株式会社東芝 水処理装置
JP2020124668A (ja) 2019-02-04 2020-08-20 株式会社東芝 水処理システム及び水処理方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011121007A (ja) 2009-12-11 2011-06-23 Sumitomo Electric Ind Ltd 水処理システムの前処理装置及び前処理方法
JP2012170841A (ja) 2011-02-17 2012-09-10 Hitachi Plant Technologies Ltd 複合淡水化システム
JP2019188330A (ja) 2018-04-25 2019-10-31 株式会社東芝 水処理装置
JP2020124668A (ja) 2019-02-04 2020-08-20 株式会社東芝 水処理システム及び水処理方法

Also Published As

Publication number Publication date
JP2022144923A (ja) 2022-10-03

Similar Documents

Publication Publication Date Title
US10427957B2 (en) Osmotic separation systems and methods
JP4996925B2 (ja) 浸透膜蒸留のための装置及び方法
CN114096342A (zh) 脱盐盐水浓缩***及方法
JP6965680B2 (ja) 海水淡水化方法および海水淡水化システム
JP6957405B2 (ja) 水処理装置
WO2008053700A1 (fr) Procédé de désalinisation, appareil correspondant et générateur de bulles
JP7454330B2 (ja) 被処理水中のホウ素除去方法、ホウ素除去システム、超純水製造システム及びホウ素濃度の測定方法
JP2013158732A (ja) 逆浸透膜モジュールの洗浄装置
JP2018001111A (ja) 塩水の淡水化処理方法、および、塩水の淡水化処理システム
WO2016057764A1 (en) Osmotic separation systems and methods
KR20120068066A (ko) 삼투막 및 나노필터를 이용한 정삼투 담수화 장치 및 방법
CN106315935A (zh) 水质淡化装置及利用该装置淡化水质的方法
WO2020041542A1 (en) Liquid solution concentration system comprising isolated subsystem and related methods
US20180104652A1 (en) Reverse osmosis membrane cleaning method and reverse osmosis membrane cleaning apparatus
JP2013063372A (ja) 淡水化システム
JP5757110B2 (ja) 水処理方法及び水処理システム
JP2007307561A (ja) 高純度水の製造装置および方法
JP2000093751A (ja) 逆浸透分離装置及び逆浸透分離方法
JP7500483B2 (ja) 水処理システム及び水処理方法
JP2000051663A (ja) 逆浸透膜分離装置および逆浸透膜分離方法
KR20170069614A (ko) 염수 담수화 시스템
JP7106465B2 (ja) 水処理システム及び水処理方法
WO2022080035A1 (ja) 液処理装置、純水製造システム及び液処理方法
JP7118823B2 (ja) 水処理システム及び水処理方法
JPH10128325A (ja) 海水淡水化装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230209

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20231129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240507

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240605

R150 Certificate of patent or registration of utility model

Ref document number: 7500483

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150