JP7497650B2 - Boiler water treatment device and treatment method - Google Patents

Boiler water treatment device and treatment method Download PDF

Info

Publication number
JP7497650B2
JP7497650B2 JP2020142811A JP2020142811A JP7497650B2 JP 7497650 B2 JP7497650 B2 JP 7497650B2 JP 2020142811 A JP2020142811 A JP 2020142811A JP 2020142811 A JP2020142811 A JP 2020142811A JP 7497650 B2 JP7497650 B2 JP 7497650B2
Authority
JP
Japan
Prior art keywords
water
boiler
pure water
line
condensate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020142811A
Other languages
Japanese (ja)
Other versions
JP2022038353A (en
Inventor
隆史 仲本
和巳 塚本
智敬 久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Kurita Water Industries Ltd
Original Assignee
JFE Steel Corp
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp, Kurita Water Industries Ltd filed Critical JFE Steel Corp
Priority to JP2020142811A priority Critical patent/JP7497650B2/en
Publication of JP2022038353A publication Critical patent/JP2022038353A/en
Application granted granted Critical
Publication of JP7497650B2 publication Critical patent/JP7497650B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Treatment Of Water By Ion Exchange (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Physical Water Treatments (AREA)

Description

本発明は、産業、発電等に用いられるボイラ供給純水を処理する装置及び方法に関する。 The present invention relates to an apparatus and method for treating pure water supplied to boilers used in industry, power generation, etc.

産業、発電等に用いられるボイラ設備では、工業用水等から前処理(凝集固液分離と脱塩処理など)により純水を製造し、この純水を用いてボイラにより蒸気を発生させる。このようなボイラ設備では、ボイラブロー水を回収し、脱塩処理した後にボイラ用の純水として再利用するのが一般的である(特許文献1~3)。 In boiler facilities used in industry, power generation, etc., pure water is produced from industrial water etc. through pretreatment (such as coagulation/solid-liquid separation and desalination), and this pure water is used to generate steam in a boiler. In such boiler facilities, it is common to recover boiler blow water, desalinate it, and then reuse it as pure water for the boiler (Patent Documents 1 to 3).

ボイラ設備内では、ボイラ水の水質を管理しており、特に、腐食防止の為、イオン交換樹脂にて処理した後の電気伝導度を管理しているが、原水にTOCが想定以上に含まれていた場合(例えばTOC200ppb以上)、または前処理の純水製造におけるイオン交換樹脂から有機物が過度に溶出した場合は、電気伝導度が管理値を超過してしまうことが懸念される。 In boiler facilities, the quality of boiler water is controlled, and in particular the electrical conductivity after treatment with ion exchange resin is controlled to prevent corrosion. However, if the raw water contains more TOC than expected (e.g., TOC 200 ppb or more), or if excessive organic matter is leached from the ion exchange resin during pretreatment to produce pure water, there is concern that the electrical conductivity may exceed the control value.

特開2007-268397号公報JP 2007-268397 A 特開2010-216762号公報JP 2010-216762 A 特開2015-117913号公報JP 2015-117913 A

平成14年版 ボイラー年鑑、「第9節 自家発電用ボイラにおける原水・補給水水質とボイラ水質への影響および対応策について」Boiler Yearbook 2002, "Section 9: Raw water and makeup water quality in private power generation boilers and their impact on boiler water quality and countermeasures"

本発明は、原水又は前処理水のTOCが高濃度の場合でも安定して高品質の純水をボイラに給水することができるボイラ水処理装置及び処理方法を提供することを目的とする。 The present invention aims to provide a boiler water treatment device and treatment method that can stably supply high-quality pure water to a boiler even when the TOC concentration of raw water or pretreated water is high.

本発明のボイラ水処理装置は、原水を処理して純水を製造する前処理装置と、該前処理装置からの純水をボイラへ供給する純水供給ラインと、該ボイラからの濃縮排水であるボイラブロー水を脱塩処理する復水脱塩手段と、該ボイラブロー水を該復水脱塩手段に導入するボイラブロー水導入ラインと、該復水脱塩手段で脱塩処理された復水脱塩水を前記純水供給ラインに返送する復水脱塩水返送ラインとを有するボイラ水処理装置において、前記純水供給ラインから純水の一部を取り出し部から取り出してTOC除去手段でTOC除去処理し、この処理水を該取り出し部又はそれよりも上流側の該純水供給ラインに戻すTOC除去ラインと、該TOC除去ラインにおけるTOC除去手段の上流側に設けられた熱交換器と、前記ボイラブロー水導入ラインから分岐して、該ボイラブロー水導入ライン中のボイラブロー水の一部を分取して該熱交換器に導入する分岐ラインとを備え、該熱交換器により、TOC除去手段に供給される純水を該ボイラブロー水との熱交換で加熱することを特徴とするものである。 The boiler water treatment device of the present invention has a pretreatment device that treats raw water to produce pure water, a pure water supply line that supplies the pure water from the pretreatment device to a boiler, a condensate desalination means that desalinates boiler blow water, which is concentrated wastewater from the boiler, a boiler blow water introduction line that introduces the boiler blow water to the condensate desalination means, and a condensate desalination return line that returns the condensate desalination treated by the condensate desalination means to the pure water supply line, and a part of the pure water is taken out from the pure water supply line through an extraction section. The system is characterized in that it is equipped with a TOC removal line that performs TOC removal processing using a TOC removal means and returns the treated water to the outlet or the pure water supply line upstream of the outlet, a heat exchanger provided in the TOC removal line upstream of the TOC removal means, and a branch line branching off from the boiler blow water introduction line that separates a portion of the boiler blow water in the boiler blow water introduction line and introduces it into the heat exchanger, and the pure water supplied to the TOC removal means is heated by heat exchange with the boiler blow water using the heat exchanger.

本発明の一態様のボイラ水処理装置は、前記熱交換器を通過したボイラブロー水を前記ボイラブロー水導入ラインにおける前記分岐ラインの分岐点よりも下流側に返送する分岐水返送ラインを備える。 The boiler water treatment device of one embodiment of the present invention is equipped with a branched water return line that returns the boiler blow water that has passed through the heat exchanger to the boiler blow water inlet line downstream of the branch point of the branch line.

本発明の一態様のボイラ水処理装置は、前記純水供給ライン中の純水の水温を測定する測定手段と、該測定手段の測定値が所定値以下のときに前記分岐ラインに前記ボイラブロー水の一部を通水するか、前記ボイラブロー水の前記分岐ラインへの流量を増加させる分岐流量制御手段を備える。 The boiler water treatment device of one embodiment of the present invention includes a measuring means for measuring the temperature of the pure water in the pure water supply line, and a branch flow control means for passing a portion of the boiler blow water through the branch line or increasing the flow rate of the boiler blow water into the branch line when the measured value of the measuring means is equal to or lower than a predetermined value.

本発明のボイラ水処理方法は、原水を前処理装置で処理して純水を製造し、該前処理装置からの純水を純水供給ラインを経由してボイラへ供給し、該ボイラからの排気蒸気を凝縮させてボイラブロー水として該ボイラから排出し、該ボイラブロー水を復水脱塩手段で脱塩処理し、該復水脱塩手段で脱塩処理された復水脱塩水を前記純水供給ラインに返送するボイラ水処理方法において、前記純水供給ラインから純水の一部を取り出し部から取り出してTOC除去手段でTOC除去処理し、この処理水を該取り出し部又はそれよりも上流側の該純水供給ラインに戻し、前記ボイラから前記復水脱塩手段に送給されるボイラブロー水の一部を分取し、該分取したボイラブロー水と、該TOC除去手段に供給される純水とを熱交換器で熱交換して該純水を加熱することを特徴とするものである。 The boiler water treatment method of the present invention is characterized in that it treats raw water in a pretreatment device to produce pure water, supplies the pure water from the pretreatment device to a boiler via a pure water supply line, condenses exhaust steam from the boiler to be discharged from the boiler as boiler blow water, desalinates the boiler blow water in a condensate desalination means, and returns the condensate desalination means to the pure water supply line, in which a portion of the pure water is taken from the pure water supply line at an outlet and TOC is removed by a TOC removal means, the treated water is returned to the outlet or the pure water supply line upstream thereof, a portion of the boiler blow water fed from the boiler to the condensate desalination means is separated, and the separated boiler blow water and the pure water fed to the TOC removal means are heat exchanged in a heat exchanger to heat the pure water.

本発明の一態様のボイラ水処理方法では、前記熱交換器を通過した前記ボイラブロー水を、前記復水脱塩手段に供給して脱塩処理する。 In one embodiment of the boiler water treatment method of the present invention, the boiler blow water that has passed through the heat exchanger is supplied to the condensate desalination means for desalination.

本発明の一態様のボイラ水処理方法では、前記純水供給ライン中の純水の水温を測定し、該測定値が所定値以下のときに前記ボイラブロー水の一部を分取して前記熱交換器で前記純水と熱交換するか、或いは、前記熱交換器で前記純水と熱交換するボイラブロー水の流量を増加させる。 In one embodiment of the boiler water treatment method of the present invention, the temperature of the pure water in the pure water supply line is measured, and when the measured value is equal to or lower than a predetermined value, a portion of the boiler blow water is separated and heat exchanged with the pure water in the heat exchanger, or the flow rate of the boiler blow water that is heat exchanged with the pure water in the heat exchanger is increased.

本発明では、前処理装置からの純水をボイラに供給する純水供給ライン(メインライン)にTOC除去手段を設けるのではなく、該純水供給ラインから分岐したTOC除去ライン(オフライン)にTOC除去手段を設けている。そのため、TOC除去手段を、純水供給ライン(メインライン)での純水供給制御とは別に制御することができる。
しかも、ボイラブロー水を利用してこのTOC除去手段の給水を加熱するため、TOC除去手段の効率を安定に維持することができる。特に立地や気候による水温低下の際に有効となる。
In the present invention, the TOC removal means is provided not in the pure water supply line (main line) that supplies the pure water from the pretreatment device to the boiler, but in the TOC removal line (offline) branched off from the pure water supply line, so that the TOC removal means can be controlled separately from the pure water supply control in the pure water supply line (main line).
Moreover, since the feed water for the TOC removal means is heated using boiler blowdown water, the efficiency of the TOC removal means can be stably maintained, which is particularly effective when the water temperature drops due to location or climate.

本発明の実施の形態に係るボイラ水処理装置のフロー図である。1 is a flow diagram of a boiler water treatment system according to an embodiment of the present invention. 別の実施の形態に係るボイラ水処理装置のフロー図である。FIG. 11 is a flow diagram of a boiler water treatment device according to another embodiment.

以下、図面を参照して実施の形態について説明する。 The following describes the embodiment with reference to the drawings.

図1は、第1の実施の形態に係るボイラ水処理装置のフロー図である。原水としての工水(工業用水)は、前処理装置1で前処理されて純水となり、配管2を介して純水タンク3に導入される。純水タンク3内の純水は、ポンプ4を有する配管5を介してIPP発電装置などの発電装置6のボイラへ供給される。この実施の形態では、純水供給ラインは、配管2、純水タンク3、ポンプ4及び配管5を有したものとなっている。発電装置6のボイラで生じたボイラブロー水は、配管7、圧力調整手段24、冷却手段8及び配管9を有した導入ラインを介して脱塩手段としての復水脱塩装置10に導入され、脱塩処理される。 Figure 1 is a flow diagram of a boiler water treatment system according to a first embodiment. Industrial water (industrial water) as raw water is pretreated in a pretreatment device 1 to become pure water, which is introduced into a pure water tank 3 via a pipe 2. The pure water in the pure water tank 3 is supplied to a boiler of a power generation device 6 such as an IPP power generation device via a pipe 5 having a pump 4. In this embodiment, the pure water supply line includes the pipe 2, the pure water tank 3, the pump 4, and the pipe 5. The boiler blow water generated in the boiler of the power generation device 6 is introduced into a condensate demineralizer 10 as a desalination means via an introduction line including a pipe 7, a pressure adjustment means 24, a cooling means 8, and a pipe 9, and is desalination-treated.

この実施の形態では、復水脱塩装置10は直列に複数段(この実施の形態では2段)配置された逆浸透膜分離装置(RO装置)11,12と、電気脱塩装置13とを有する。ボイラブロー水は、RO処理及び電気脱塩処理により脱塩されて純水となり、配管14を介して純水タンク3に返送される。 In this embodiment, the condensate demineralization system 10 has reverse osmosis membrane separation devices (RO devices) 11, 12 arranged in series in multiple stages (two stages in this embodiment), and an electrical demineralization device 13. The boiler blow water is desalted by RO processing and electrical demineralization processing to become pure water, which is returned to the pure water tank 3 via piping 14.

純水タンク3内の純水の一部を取り出してTOC除去処理及び脱塩処理するために、TOC除去ラインが設けられている。即ち、純水タンク3内の純水が配管15、熱交換器16、ポンプ17を介してRO装置18へ供給され、RO透過水が配管19を介して純水タンク3に返送される。RO濃縮水は系外へ排出される。 A TOC removal line is provided to extract a portion of the pure water in the pure water tank 3 for TOC removal and desalination. That is, the pure water in the pure water tank 3 is supplied to the RO device 18 via piping 15, heat exchanger 16, and pump 17, and the RO permeate is returned to the pure water tank 3 via piping 19. The RO concentrated water is discharged outside the system.

熱交換器16は、純水タンク3からRO装置18に供給される純水を加熱するためのものであり、その高温流体側には、分岐ラインとして配管7の圧力調整手段24の上流側から分岐した配管22を介して高温のボイラブロー水が通水される。このように高温のボイラブロー水が熱交換器16に送給されるため、熱交換による加熱効率が高い。熱交換器16の高温流体側を通過したボイラブロー水は、配管23を介して配管7の圧力調整手段24の下流側へ返送される。圧力調整手段24としては、背圧弁、オリフィスなどが例示される。 The heat exchanger 16 is used to heat the pure water supplied from the pure water tank 3 to the RO device 18, and high-temperature boiler blow water is passed through the high-temperature fluid side via pipe 22, which branches off from the upstream side of the pressure adjustment means 24 of pipe 7 as a branch line. Since high-temperature boiler blow water is supplied to the heat exchanger 16 in this way, the heating efficiency by heat exchange is high. The boiler blow water that passes through the high-temperature fluid side of the heat exchanger 16 is returned via pipe 23 to the downstream side of the pressure adjustment means 24 of pipe 7. Examples of the pressure adjustment means 24 include a back pressure valve and an orifice.

冷却手段8は、復水脱塩装置10に送水されるボイラブロー水を降温させるためのものである。 The cooling means 8 is used to lower the temperature of the boiler blowdown water sent to the condensate demineralizer 10.

このボイラ水処理装置にあっては、ポンプ17を必要時に稼働させて、純水タンク3内の純水をRO装置18によってRO処理することにより、純水タンク3内の純水の水質を所定範囲に維持することができる。 In this boiler water treatment device, the pump 17 is operated when necessary, and the pure water in the pure water tank 3 is subjected to RO treatment by the RO device 18, so that the water quality of the pure water in the pure water tank 3 can be maintained within a specified range.

また、RO装置18へ供給される純水を熱交換器16で加熱することにより、RO処理効率を高くすることができる。また、温度の高いRO透過水が純水タンク3に流入することにより、純水タンク3内の水温が高くなり、発電装置6のボイラへの純水の加熱の負荷を軽減することができる。 In addition, the efficiency of the RO treatment can be increased by heating the pure water supplied to the RO device 18 with the heat exchanger 16. In addition, by flowing high-temperature RO permeate water into the pure water tank 3, the water temperature in the pure water tank 3 increases, and the load of heating the pure water on the boiler of the power generation device 6 can be reduced.

なお、図1では、配管15は純水タンク3に接続されているが、配管15は純水タンク3の下流側の配管5に接続されてもよい。 In FIG. 1, the pipe 15 is connected to the pure water tank 3, but the pipe 15 may be connected to the pipe 5 downstream of the pure water tank 3.

図2は、第2の実施の形態に係るボイラ水処理装置のフロー図であり、純水タンク3内の純水の水質維持用のTOC除去装置として、RO装置18の代わりにUV(紫外線)酸化装置25とイオン交換装置26とが設置されている。イオン交換樹脂としては、アニオン交換樹脂又は混床樹脂を用いることが好ましい。UV酸化装置(例えば、低圧UV酸化装置)25では、UVを被処理水(純水タンク3からの純水)に照射して有機物を有機酸さらにはCOまで分解する。分解により生じた有機酸、CO等は、後段のイオン交換装置26で除去される。イオン交換装置26を通過した有機物濃度の低い純水が配管19から純水タンク3に返送される。 FIG. 2 is a flow diagram of a boiler water treatment device according to a second embodiment, in which a UV (ultraviolet) oxidation device 25 and an ion exchange device 26 are installed instead of the RO device 18 as TOC removal devices for maintaining the water quality of the pure water in the pure water tank 3. As the ion exchange resin, it is preferable to use an anion exchange resin or a mixed bed resin. In the UV oxidation device (e.g., a low-pressure UV oxidation device) 25, UV is irradiated onto the water to be treated (pure water from the pure water tank 3) to decompose organic matter into organic acids and even CO2 . The organic acids, CO2 , etc. generated by the decomposition are removed by the subsequent ion exchange device 26. The pure water with a low organic matter concentration that has passed through the ion exchange device 26 is returned to the pure water tank 3 through the pipe 19.

図2において、その他の構成は図1と同一であり、同一符号は同一部分を示している。 In Figure 2, the other configuration is the same as in Figure 1, and the same symbols indicate the same parts.

図1,2は本発明の一例であり、本発明は図示以外の形態とされてもよい。例えば、図1,2では、熱交換器16で降温したボイラブロー水は、配管23を介して配管7に返送されているが、復水脱塩装置10又はその上流側の配管9、前処理装置1又はその上流側の原水配管や原水タンクに返送されてもよい。なお、図1,2のように配管7に返送すると、高温のボイラブロー水が降温され、冷却手段8への負荷を低減できるため、ボイラブロー水の回収が容易となる。 Figures 1 and 2 are one example of the present invention, and the present invention may be in a form other than that shown. For example, in Figures 1 and 2, the boiler blow water cooled in the heat exchanger 16 is returned to the pipe 7 via the pipe 23, but it may also be returned to the condensate demineralizer 10 or the pipe 9 upstream thereof, or to the pretreatment device 1 or the raw water pipe or raw water tank upstream thereof. Note that when the boiler blow water is returned to the pipe 7 as in Figures 1 and 2, the high-temperature boiler blow water is cooled, and the load on the cooling means 8 is reduced, making it easier to recover the boiler blow water.

図1,2のボイラ水処理装置の構成機器の好適例、機能等について以下に説明する。 The following describes suitable examples and functions of the components of the boiler water treatment device shown in Figures 1 and 2.

(1) 前処理装置1
前処理装置1は、例えば、工業用水(市水、地下水など)等の原水に対して、凝集処理、固液分離(沈殿分離や加圧浮上分離など)、二層濾過を順次行った後に脱塩処理(カチオン交換樹脂塔、脱炭酸塔、アニオン交換樹脂塔、混床樹脂塔、電気脱塩装置などによる処理)を行うことにより、純水を製造する。
(1) Pretreatment device 1
The pretreatment device 1 produces pure water by sequentially performing coagulation treatment, solid-liquid separation (sedimentation separation or pressurized flotation separation, etc.), and two-layer filtration on raw water such as industrial water (city water, groundwater, etc.), and then performing desalination treatment (treatment using a cation exchange resin tower, a decarbonation tower, an anion exchange resin tower, a mixed bed resin tower, an electrical demineralization device, etc.).

(2) 純水タンク3
純水タンク3では、前処理により製造された純水が貯留され、水質や水量の調整が行われる。
(2) Pure water tank 3
In the pure water tank 3, the pure water produced by the pretreatment is stored and the water quality and amount are adjusted.

(3) TOC除去手段
工業用水等の原水に含まれるTOC濃度が高い場合は、前処理によってTOC濃度を所定以下(例えば100ppb未満)まで低減することが困難となる場合がある。TOC濃度が100ppb以上になるとボイラへの負担が大きくなり将来的に故障が生じる懸念がある。また、季節や気候などにより水温が変動する(例えば5~35℃)。水温が15℃以下になると発電用ボイラへの負担が大きくなり燃料使用量が多くなってしまう。
(3) TOC Removal Means When the TOC concentration in raw water, such as industrial water, is high, it may be difficult to reduce the TOC concentration to a predetermined level (e.g., less than 100 ppb) by pretreatment. If the TOC concentration exceeds 100 ppb, the burden on the boiler increases, and there is a concern that it may break down in the future. In addition, the water temperature varies depending on the season and weather (e.g., 5 to 35°C). If the water temperature falls below 15°C, the burden on the power generation boiler increases, resulting in increased fuel consumption.

そのため、純水タンク3内の純水のTOCが常に所定値以下(例えば100ppb以下)に維持されるように、純水供給ラインを構成する純水タンク3から分取した純水をRO装置18、又はUV酸化装置25及びイオン交換装置26よりなるTOC除去手段でTOC除去処理を行う。TOC除去手段として物理化学的手段を用いることにより、処理水に不純物が残留することを抑制できる。TOC除去手段を、純水供給ラインから分岐したTOC除去ラインに設置することにより、例えば膜逆洗に伴う通水停止に影響されないなど、純水供給ラインと異なる制御やメンテナンスが可能となる。また、既設のボイラ給水装置に追加工事でTOC除去手段を容易に設置することができる。 Therefore, in order to keep the TOC of the pure water in the pure water tank 3 below a predetermined value (for example, below 100 ppb), the pure water taken from the pure water tank 3 that constitutes the pure water supply line is subjected to TOC removal processing using the RO device 18 or a TOC removal means consisting of a UV oxidation device 25 and an ion exchange device 26. By using a physicochemical means as the TOC removal means, it is possible to prevent impurities from remaining in the treated water. By installing the TOC removal means in a TOC removal line branching off from the pure water supply line, it is possible to perform control and maintenance different from the pure water supply line, for example, without being affected by the water flow stop caused by membrane backwashing. In addition, the TOC removal means can be easily installed in an existing boiler feed water system by additional work.

(4) 発電装置6としては、高圧ボイラを備えたIPP発電装置など各種のものを用いることができる。 (4) Various types of power generation equipment can be used as the power generation equipment 6, such as an IPP power generation equipment equipped with a high-pressure boiler.

(5)ボイラブロー水排出ライン~復水脱塩手段~復水返送ライン
ボイラ蒸気の凝縮水は一般には高温であり(例えば70~97℃)、ボイラブロー水としてボイラから排出された後に冷却手段8(密閉冷却塔、熱交換器など)により20~40℃程度に冷却された上で、復水脱塩装置10に供給される。
(5) Boiler blow water discharge line - condensate desalination means - condensate return line The condensate of boiler steam is generally at a high temperature (e.g., 70 to 97°C). After being discharged from the boiler as boiler blow water, it is cooled to approximately 20 to 40°C by cooling means 8 (such as a closed cooling tower or heat exchanger) and then supplied to the condensate desalination system 10.

図1,2では、復水脱塩装置10として、直列2段RO処理→電気脱塩を例示しているが、脱塩処理できる物理化学的手段であれば特に限定されない。 In Figures 1 and 2, the condensate demineralization device 10 is illustrated as a series two-stage RO process followed by electrical demineralization, but there are no particular limitations as long as the physicochemical means is capable of demineralization.

(6) 冷却手段8
図1のように、復水脱塩装置10のボイラブロー水供給ライン前段に配置される温度低減のための熱交換器。TOC除去手段としてRO装置18を用いる場合、常温程度(5~35℃)のRO濃縮水が排出される。
(6) Cooling means 8
As shown in Figure 1, this is a heat exchanger for reducing temperature, which is placed in front of the boiler blow water supply line of the condensate demineralization unit 10. When the RO unit 18 is used as the TOC removal means, RO concentrated water at about room temperature (5 to 35°C) is discharged.

(7) 熱交換器16
純水タンク3の水温が所定値以下(例えば15℃以下)に低下しやすい場合は、ボイラブロー水を分取して熱交換器16にて純水と熱交換し、加温する。これにより、TOC除去手段で効率的にTOC除去することが可能である。また、これによって純水タンク3の水温が例えば20~35℃に維持されるようにすれば、IPP発電設備の高圧ボイラの負担を軽減することができる。
(7) Heat exchanger 16
If the water temperature of the pure water tank 3 is likely to drop below a predetermined value (for example, below 15°C), the boiler blown water is separated and heated by heat exchange with the pure water in the heat exchanger 16. This makes it possible to efficiently remove TOC using the TOC removal means. Furthermore, if the water temperature of the pure water tank 3 is thereby maintained at, for example, 20 to 35°C, the burden on the high-pressure boiler of the IPP power generation facility can be reduced.

なお、配管22に弁を設けておき、純水供給ライン(配管2、純水タンク3、配管5等)や、TOC除去ライン(配管15,19等)中の水温を測定し、測定値が所定値以下にまで低温になったときに、配管7から配管22にボイラブロー水の一部を供給するように弁を切り替えて本機構による昇温を行うように制御してもよい。また、水温測定値に基づいて配管22への分岐流量を調整するように流量制御しても構わない。これによりボイラ給水の水温が所定範囲に維持され、ボイラへの負荷が一定範囲内に維持されるので好ましい。 In addition, a valve may be provided in pipe 22 to measure the water temperature in the pure water supply line (pipe 2, pure water tank 3, pipe 5, etc.) and the TOC removal line (pipes 15, 19, etc.), and when the measured value falls below a predetermined value, the valve may be switched to supply part of the boiler blow water from pipe 7 to pipe 22, thereby heating the system. In addition, flow control may be performed to adjust the branch flow rate to pipe 22 based on the measured water temperature value. This is preferable because it maintains the temperature of the boiler feed water within a predetermined range and maintains the load on the boiler within a constant range.

[実施例1]
千葉県工業用水(TOC濃度2~3ppm;水温10℃)を図1のボイラ水処理装置によって処理し、IPP発電装置6のボイラに給水すると共に、ボイラブロー水回収を行った。前処理装置1では、凝集処理、加圧浮上分離、二層濾過、2床3塔型イオン交換(陽イオン交換、脱炭酸、陰イオン交換)を行って純水を製造した。主な条件を下記及び表1に示す。また、結果を表1に示す。
[Example 1]
Industrial water from Chiba Prefecture (TOC concentration 2-3 ppm; water temperature 10°C) was treated by the boiler water treatment device shown in Figure 1 and supplied to the boiler of an IPP power generation plant 6, while also recovering boiler blowdown water. In the pretreatment device 1, pure water was produced by carrying out coagulation treatment, pressurized floatation separation, double-layer filtration, and two-bed, three-tower ion exchange (cation exchange, decarbonation, anion exchange). The main conditions are shown below and in Table 1. The results are also shown in Table 1.

工水の平均供給量(配管2平均流量):35m/hr
純水タンク3容積:400m
IPP発電ボイラへの平均給水量(配管5平均流量):35m/hr
ボイラブロー水平均流量(配管7平均流量):10~12m/hr
RO装置18平均給水量(配管15平均流量):34m/hr
RO装置18平均透過水量(配管19平均流量):30m/hr
冷却手段8給水平均流量:10~12m/hr
分岐ブロー水平均流量(配管22平均流量):5~15m/hr
Average supply of industrial water (average flow rate of pipe 2): 35 m3 /hr
Pure water tank 3 volume: 400 m
Average water supply to IPP power generation boiler (average flow rate of pipe 5): 35 m3 /hr
Boiler blowdown water average flow rate (average flow rate of pipe 7): 10 to 12 m3 /hr
Average water supply volume of RO device 18 (average flow rate of pipe 15): 34 m3 /hr
Average permeate volume of RO device 18 (average flow rate of pipe 19): 30 m 3 /hr
Cooling means 8 water supply average flow rate: 10 to 12 m 3 /hr
Average flow rate of branched blow water (average flow rate of pipe 22): 5 to 15 m 3 /hr

[実施例2]
ボイラ水処理装置を図2のボイラ水処理装置としたこと以外は実施例1と同一条件で運転を行った。結果を表1に示す。
[Example 2]
The operation was carried out under the same conditions as in Example 1, except that the boiler water treatment device was the boiler water treatment device shown in Figure 2. The results are shown in Table 1.

[比較例1]
実施例1において、熱交換器16へのボイラブロー水給水量(配管22流量)を0m/hr(通水停止)としたこと以外は実施例1と同一条件で運転を行った。結果を表1に示す。
[Comparative Example 1]
The operation was carried out under the same conditions as in Example 1, except that the amount of boiler blow water supplied to the heat exchanger 16 (flow rate through the pipe 22) was set to 0 m 3 /hr (water supply stopped).

Figure 0007497650000001
Figure 0007497650000001

表1の通り、実施例1,2は、TOC除去ラインの予備加熱を行わなかった比較例1に比べてボイラ給水のTOC濃度は低く、温度は高く、ボイラへの負荷が低減されると共に、後段のボイラへの負荷が低減されることが認められた。また、実施例1,2では、ボイラブロー水の一部を純水の予備加熱に利用し、降温されたボイラブロー水を返送したことにより、復水脱塩装置に導入されるボイラブロー水の水温(配管23からの返送水合流後の配管7の水温)が下がり、冷却手段8への負荷が低減されることが認められた。 As shown in Table 1, in Examples 1 and 2, the TOC concentration of the boiler feedwater was lower and the temperature was higher than in Comparative Example 1, in which the TOC removal line was not preheated, and it was confirmed that the load on the boiler was reduced and the load on the downstream boiler was also reduced. In addition, in Examples 1 and 2, a portion of the boiler blow water was used to preheat the pure water, and the cooled boiler blow water was returned, which reduced the temperature of the boiler blow water introduced into the condensate demineralizer (the water temperature of pipe 7 after the return water from pipe 23 was merged), and reduced the load on the cooling means 8.

1 前処理装置
3 純水タンク
6 発電装置
8 冷却手段
10 復水脱塩装置
16 熱交換器
11,12,18 RO装置
13 電気脱塩装置
24 圧力調整手段
25 UV酸化装置
26 イオン交換装置
REFERENCE SIGNS LIST 1 Pretreatment device 3 Pure water tank 6 Power generation device 8 Cooling means 10 Condensate demineralization device 16 Heat exchanger 11, 12, 18 RO device 13 Electric demineralization device 24 Pressure adjustment means 25 UV oxidation device 26 Ion exchange device

Claims (4)

原水を処理して純水を製造する前処理装置と、
該前処理装置からの純水をボイラへ供給する純水供給ラインと、
該ボイラからの濃縮排水であるボイラブロー水を脱塩処理する復水脱塩手段と、該ボイラブロー水を該復水脱塩手段に導入するボイラブロー水導入ラインと、
該復水脱塩手段で脱塩処理された復水脱塩水を前記純水供給ラインに返送する復水脱塩水返送ラインとを有するボイラ水処理装置において、
前記純水供給ラインから純水の一部を取り出し部から取り出してTOC除去手段でTOC除去処理し、この処理水を該取り出し部又はそれよりも上流側の該純水供給ラインに戻すTOC除去ラインと、
該TOC除去ラインにおけるTOC除去手段の上流側に設けられた熱交換器と、
前記ボイラブロー水導入ラインから分岐して、該ボイラブロー水導入ライン中のボイラブロー水の一部を分取して該熱交換器に導入する分岐ラインと
前記熱交換器を通過したボイラブロー水を前記ボイラブロー水導入ラインにおける前記分岐ラインの分岐点よりも下流側に返送する分岐水返送ラインを備え、
該熱交換器により、TOC除去手段に供給される純水を該ボイラブロー水との熱交換で加熱することを特徴とするボイラ水処理装置。
a pretreatment device for treating raw water to produce pure water;
a pure water supply line for supplying the pure water from the pretreatment device to a boiler;
a condensate desalination means for desalination of boiler blow water which is concentrated wastewater from the boiler; and a boiler blow water introduction line for introducing the boiler blow water into the condensate desalination means.
a condensate desalinated water return line for returning the condensate desalinated by the condensate desalting means to the pure water supply line,
a TOC removal line for removing a part of the pure water from the pure water supply line through an outlet portion, subjecting the part to TOC removal treatment by a TOC removal means, and returning the treated water to the outlet portion or to the pure water supply line upstream of the outlet portion;
a heat exchanger provided upstream of the TOC removal means in the TOC removal line;
a branch line branching off from the boiler blow water inlet line for separating a portion of the boiler blow water in the boiler blow water inlet line and introducing the portion into the heat exchanger ;
A branched water return line is provided for returning the boiler blow water that has passed through the heat exchanger to a downstream side of the branch point of the branched line in the boiler blow water inlet line ,
The boiler water treatment device according to claim 1, wherein the pure water supplied to the TOC removal means is heated by heat exchange with the boiler blow water by the heat exchanger.
請求項1において、前記純水供給ライン中の純水の水温を測定する測定手段と、該測定手段の測定値が所定値以下のときに前記分岐ラインに前記ボイラブロー水の一部を通水するか、前記ボイラブロー水の前記分岐ラインへの流量を増加させる分岐流量制御手段を備えたことを特徴とするボイラ水処理装置。 2. A boiler water treatment device according to claim 1 , further comprising: a measuring means for measuring the temperature of the pure water in the pure water supply line; and a branch flow rate control means for passing a portion of the boiler blow water through the branch line or increasing the flow rate of the boiler blow water to the branch line when the measured value of the measuring means is below a predetermined value. 原水を前処理装置で処理して純水を製造し、
該前処理装置からの純水を純水供給ラインを経由してボイラへ供給し、
該ボイラからの排気蒸気を凝縮させてボイラブロー水として該ボイラから排出し、
該ボイラブロー水を復水脱塩手段で脱塩処理し、
該復水脱塩手段で脱塩処理された復水脱塩水を前記純水供給ラインに返送するボイラ水処理方法において、
前記純水供給ラインから純水の一部を取り出し部から取り出してTOC除去手段でTOC除去処理し、この処理水を該取り出し部又はそれよりも上流側の該純水供給ラインに戻し、
前記ボイラから前記復水脱塩手段に送給されるボイラブロー水の一部を分取し、該分取したボイラブロー水と、該TOC除去手段に供給される純水とを熱交換器で熱交換して該純水を加熱し、
前記熱交換器を通過した前記ボイラブロー水を、前記復水脱塩手段に供給して脱塩処理することを特徴とすることを特徴とするボイラ水処理方法。
The raw water is treated in a pretreatment device to produce pure water.
The pure water from the pretreatment device is supplied to a boiler via a pure water supply line;
condensing exhaust steam from the boiler and discharging it from the boiler as boiler blowdown water;
The boiler blow water is desalted by a condensate desalting means,
In the boiler water treatment method, the condensate desalted by the condensate desalting means is returned to the pure water supply line,
A part of the pure water is taken out from the pure water supply line through an outlet, and the part is subjected to TOC removal treatment by a TOC removal means, and the treated water is returned to the outlet or to the pure water supply line upstream of the outlet;
a part of the boiler blown water fed from the boiler to the condensate demineralization means is separated, and the separated boiler blown water is heat exchanged with the pure water to be fed to the TOC removal means in a heat exchanger to heat the pure water ;
A boiler water treatment method comprising : supplying the boiler blow water having passed through the heat exchanger to the condensate demineralization means for desalination .
請求項において、前記純水供給ライン中の純水の水温を測定し、該測定値が所定値以下のときに前記ボイラブロー水の一部を分取して前記熱交換器で前記純水と熱交換するか、或いは、前記熱交換器で前記純水と熱交換するボイラブロー水の流量を増加させることを特徴とするボイラ水処理方法。 4. A boiler water treatment method according to claim 3 , characterized in that the temperature of the pure water in the pure water supply line is measured, and when the measured temperature is below a predetermined value, a portion of the boiler blow water is separated and heat exchanged with the pure water in the heat exchanger, or the flow rate of the boiler blow water that is heat exchanged with the pure water in the heat exchanger is increased.
JP2020142811A 2020-08-26 2020-08-26 Boiler water treatment device and treatment method Active JP7497650B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020142811A JP7497650B2 (en) 2020-08-26 2020-08-26 Boiler water treatment device and treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020142811A JP7497650B2 (en) 2020-08-26 2020-08-26 Boiler water treatment device and treatment method

Publications (2)

Publication Number Publication Date
JP2022038353A JP2022038353A (en) 2022-03-10
JP7497650B2 true JP7497650B2 (en) 2024-06-11

Family

ID=80499005

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020142811A Active JP7497650B2 (en) 2020-08-26 2020-08-26 Boiler water treatment device and treatment method

Country Status (1)

Country Link
JP (1) JP7497650B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009039599A (en) 2007-08-06 2009-02-26 Kurita Water Ind Ltd Water treatment system
JP2013202581A (en) 2012-03-29 2013-10-07 Kurita Water Ind Ltd Ultrapure water production apparatus
WO2018051552A1 (en) 2016-09-14 2018-03-22 栗田工業株式会社 Ultrapure water manufacturing device
WO2018207492A1 (en) 2017-05-12 2018-11-15 栗田工業株式会社 Boiler water treatment apparatus and treatment method
JP2020070952A (en) 2018-10-30 2020-05-07 栗田工業株式会社 Boiler water processing device and processing method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009039599A (en) 2007-08-06 2009-02-26 Kurita Water Ind Ltd Water treatment system
JP2013202581A (en) 2012-03-29 2013-10-07 Kurita Water Ind Ltd Ultrapure water production apparatus
WO2018051552A1 (en) 2016-09-14 2018-03-22 栗田工業株式会社 Ultrapure water manufacturing device
JP2018043191A (en) 2016-09-14 2018-03-22 栗田工業株式会社 Ultrapure water manufacturing device
WO2018207492A1 (en) 2017-05-12 2018-11-15 栗田工業株式会社 Boiler water treatment apparatus and treatment method
JP2018192385A (en) 2017-05-12 2018-12-06 栗田工業株式会社 Boiler water treatment apparatus and treatment method
JP2020070952A (en) 2018-10-30 2020-05-07 栗田工業株式会社 Boiler water processing device and processing method

Also Published As

Publication number Publication date
JP2022038353A (en) 2022-03-10

Similar Documents

Publication Publication Date Title
US7531096B2 (en) System and method of reducing organic contaminants in feed water
JP5082661B2 (en) Water treatment system
US20150315055A1 (en) Water Treatment Process
US20120055875A1 (en) Method to treat produced waters from thermally induced heavy crude oil production (tar sands)
Čuda et al. Reverse osmosis in water treatment for boilers
WO2018150980A1 (en) Reverse osmosis treatment device and reverse osmosis treatment method
KR20150114507A (en) Osmotic separation systems and methods
WO2009099485A1 (en) Methods and systems for processing waste water
WO2015012054A1 (en) Method and device for treating boron-containing water
US11655162B2 (en) Method of removing boron from water to be treated, boron-removing system, ultrapure water production system, and method of measuring concentration of boron
KR102107924B1 (en) Ultrapure water production equipment
JP5953726B2 (en) Ultrapure water production method and apparatus
CN104093672A (en) Method for treating industrial or urban wastewater for reuse, and facility for implementing this method
CN113573799A (en) Boron removal apparatus, boron removal method, pure water production apparatus, and pure water production method
WO2017066534A1 (en) Hybrid cooling and desalination system
JP7497650B2 (en) Boiler water treatment device and treatment method
US20160052812A1 (en) Reject recovery reverse osmosis (r2ro)
JP5962135B2 (en) Ultrapure water production equipment
JP6447663B2 (en) Boiler water treatment apparatus and treatment method
Singh Production of high-purity water by membrane processes
EP3286144A1 (en) Scale removal system
JP2020070952A (en) Boiler water processing device and processing method
CN115461133B (en) Liquid treatment apparatus, pure water production system, and liquid treatment method
JP7106465B2 (en) Water treatment system and water treatment method
JP2009162514A (en) System for purifying system water in secondary system of nuclear power plant with pressurized water reactor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230725

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240227

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240311

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240430

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240513

R150 Certificate of patent or registration of utility model

Ref document number: 7497650

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150