JP7493888B2 - Organic waste treatment method - Google Patents

Organic waste treatment method Download PDF

Info

Publication number
JP7493888B2
JP7493888B2 JP2020195116A JP2020195116A JP7493888B2 JP 7493888 B2 JP7493888 B2 JP 7493888B2 JP 2020195116 A JP2020195116 A JP 2020195116A JP 2020195116 A JP2020195116 A JP 2020195116A JP 7493888 B2 JP7493888 B2 JP 7493888B2
Authority
JP
Japan
Prior art keywords
tank
fermentation
organic waste
concentration
solids concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020195116A
Other languages
Japanese (ja)
Other versions
JP2022083667A (en
Inventor
恒久 田中
一真 村井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP2020195116A priority Critical patent/JP7493888B2/en
Publication of JP2022083667A publication Critical patent/JP2022083667A/en
Application granted granted Critical
Publication of JP7493888B2 publication Critical patent/JP7493888B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Treatment Of Sludge (AREA)

Description

本発明は、固形物を含む有機性廃棄物を基質として発酵槽に投入して嫌気性発酵処理する有機性廃棄物処理方法に関する。 The present invention relates to a method for treating organic waste in which solid-containing organic waste is put into a fermentation tank as a substrate and subjected to anaerobic fermentation treatment.

特許文献1には、生物処理により生成した生物処理汚泥を汚泥分と濾液とに固液分離し、前記汚泥分と嫌気性生物にて分解可能な有機物を含有する流動性を有した液状有機性廃棄物と嫌気性生物にて分解可能な固形状の有機物を含有する固形状有機性廃棄物とを攪拌混合してメタン発酵処理した後に固液分離して処理濾液を分集し、この処理濾液を前記濾液とともに好気性微生物により生物処理することを特徴とする廃棄物処理方法が開示されている。 Patent Document 1 discloses a waste treatment method in which biologically treated sludge produced by biological treatment is separated into a solid-liquid portion and a filtrate, the sludge portion is stirred and mixed with a liquid organic waste having fluidity containing organic matter decomposable by anaerobic organisms and a solid organic waste containing solid organic matter decomposable by anaerobic organisms, and subjected to methane fermentation treatment, followed by solid-liquid separation to collect the treated filtrate, and the treated filtrate is biologically treated together with the filtrate using aerobic microorganisms.

そして、メタン発酵処理する前に総固形物濃度を5%以上20%以下に水分調整することによりメタン発酵処理効率が向上することが開示されている。総固形物濃度が5%より低いとメタン発酵処理する有機物の濃度が低減し、運転エネルギーに対するメタンガスの発生量が低減してメタン発酵の効率が低下し、総固形物濃度が20%より高いと粘性が増大するとともに固形状の有機物の存在により、均一に短時間で有機物を分解処理できなくなりメタン発酵の効率が低下する。 It is also disclosed that the efficiency of methane fermentation treatment can be improved by adjusting the moisture content of the total solids concentration to 5% or more and 20% or less before the methane fermentation treatment. If the total solids concentration is lower than 5%, the concentration of organic matter to be subjected to methane fermentation treatment is reduced, and the amount of methane gas generated relative to the operating energy is reduced, decreasing the efficiency of methane fermentation. If the total solids concentration is higher than 20%, the viscosity increases and the presence of solid organic matter makes it impossible to decompose the organic matter uniformly and in a short time, decreasing the efficiency of methane fermentation.

特開平11-309438号公報Japanese Patent Application Laid-Open No. 11-309438

しかし、上述した従来のメタン発酵処理方法は、発酵処理する前に総固形物濃度を5%以上20%以下に水分調整するものであり、発酵槽の槽内の総固形物濃度が5%以上20%以下に調整されるものではなく、分解率によってはこの範囲を逸脱することがあった。特に分解率が高い場合には容易に総固形物濃度が5%より低くなるなど、発酵槽内の固形物濃度を安定させることができない。 However, the conventional methane fermentation treatment method described above adjusts the moisture content to between 5% and 20% before fermentation treatment, but does not adjust the total solids concentration in the fermenter to between 5% and 20%, and depending on the decomposition rate, it may deviate from this range. In particular, when the decomposition rate is high, the total solids concentration easily falls below 5%, making it difficult to stabilize the solids concentration in the fermenter.

本発明の目的は、上述した問題点に鑑み、発酵槽に投入された基質を希釈することにより、発酵に適した槽内固形物濃度を安定的に維持することができる有機性廃棄物処理方法を提供する点にある。 In view of the above-mentioned problems, the object of the present invention is to provide an organic waste treatment method that can stably maintain a solids concentration in the fermentation tank suitable for fermentation by diluting the substrate introduced into the fermentation tank.

上述の目的を達成するため、本発明による有機性廃棄物処理方法の第一の特徴構成は、固形物を含む有機性廃棄物を基質として発酵槽に投入して嫌気性発酵処理する有機性廃棄物処理方法であって、前記発酵槽へ投入する投入基質の固形物濃度を計測する第1ステップと、前記固形物濃度と、予め設定された前記投入基質の嫌気性発酵処理による分解率とに基づいて、前記投入基質が前記発酵槽で嫌気性発酵処理された発酵液の固形物濃度である槽内固形物濃度を想定し、前記槽内固形物濃度が所定の目標値になるように、前記投入基質の希釈率を設定する第2ステップと、前記希釈率になるように前記投入基質を希釈する第3ステップと、を含む点にある。 In order to achieve the above-mentioned object, a first characteristic configuration of the organic waste treatment method according to the present invention is an organic waste treatment method in which organic waste containing solids is fed as a substrate into a fermentation tank for anaerobic fermentation treatment, comprising the steps of: a first step of measuring the solid concentration of the input substrate fed into the fermentation tank; a second step of estimating a solid concentration in the tank, which is the solid concentration of the fermentation liquid obtained by subjecting the input substrate to anerobic fermentation treatment in the fermentation tank, based on the solid concentration and a predetermined decomposition rate by anaerobic fermentation treatment of the input substrate, and setting a dilution ratio of the input substrate so that the solid concentration in the tank becomes a predetermined target value; and a third step of diluting the input substrate to the dilution ratio.

第1ステップで計測された投入基質の固形物濃度に基づいて、第2ステップで発酵槽の槽内固形物濃度が所定の目標値になるように投入基質の希釈率が設定され、第3ステップで投入基質が希釈される結果、発酵槽の槽内固形物濃度が目標値に維持される。その結果、発酵槽を小型に構成しながらも発酵効率を安定させることができる。 Based on the solids concentration of the input substrate measured in the first step, the dilution rate of the input substrate is set in the second step so that the solids concentration in the fermenter is a predetermined target value, and in the third step the input substrate is diluted, so that the solids concentration in the fermenter is maintained at the target value. As a result, the fermenter can be made small while maintaining stable fermentation efficiency.

同第二の特徴構成は、上述した第一の特徴構成に加えて、前記希釈率は、以下の数式
槽内固形物濃度=投入基質の固形物濃度×(1-投入基質の分解率)
希釈率=槽内固形物濃度÷槽内固形物濃度の目標値
に基づいて設定される点にある。
The second characteristic feature of the present invention is, in addition to the first characteristic feature described above, that the dilution rate is expressed by the following formula: Solid concentration in tank = Solid concentration of input substrate x (1 - Decomposition rate of input substrate)
The dilution rate is set based on the target value of the dilution rate = solids concentration in the tank divided by the target value of the solids concentration in the tank.

槽内固形物濃度は、投入基質の固形物濃度×(1-投入基質の分解率)によって求まり、槽内固形物濃度を槽内固形物濃度の目標値で除すことにより希釈率が求まる。なお、投入基質の分解率は、予め測定した経験値を適用することができ、定期的に測定することも可能である。 The solids concentration in the tank is calculated by multiplying the solids concentration of the input substrate by (1 - decomposition rate of the input substrate), and the dilution rate is calculated by dividing the solids concentration in the tank by the target solids concentration in the tank. Note that the decomposition rate of the input substrate can be determined by an empirical value measured in advance, and can also be measured periodically.

同第三の特徴構成は、上述した第一または第二の特徴構成に加えて、前記槽内固形物濃度の目標値が5-15%の範囲の値に設定される点にある。 The third characteristic configuration, in addition to the first or second characteristic configuration described above, is that the target value of the solids concentration in the tank is set to a value in the range of 5-15%.

槽内固形物濃度の目標値を5-15%の範囲の値に設定することで、安定して発酵が促進される。 Setting the target solids concentration in the tank to a value in the range of 5-15% promotes stable fermentation.

同第四の特徴構成は、上述した第一から第三の何れかの特徴構成に加えて、前記槽内固形物濃度と前記発酵液の粘度である槽内粘度との間に定まる所定の相関関係に基づいて、前記槽内粘度が所定の目標粘度である槽内目標粘度以下となるように、前記槽内固形物濃度の目標値が設定される点にある。 The fourth characteristic configuration is, in addition to any of the first to third characteristic configurations described above, that a target value for the solids concentration in the tank is set so that the viscosity in the tank is equal to or lower than a predetermined target viscosity in the tank, based on a predetermined correlation between the solids concentration in the tank and the viscosity in the tank, which is the viscosity of the fermentation liquid.

槽内粘度を所定の目標粘度以下に設定することにより、槽内基質が適切に攪拌混合されるようになり、安定して発酵が促進されるようになる。 By setting the viscosity inside the tank below a specified target viscosity, the substrate inside the tank is properly stirred and mixed, promoting stable fermentation.

同第五の特徴構成は、上述した第四の特徴構成に加えて、前記槽内目標粘度が30000mPa・s以下の値に設定される点にある。 The fifth characteristic configuration is that, in addition to the fourth characteristic configuration described above, the target viscosity in the tank is set to a value of 30,000 mPa·s or less.

槽内目標粘度が30000mPa・s以下であれば、槽内基質が適切に攪拌混合される。 If the target viscosity in the tank is 30,000 mPa·s or less, the substrate in the tank will be properly stirred and mixed.

以上説明した通り、本発明によれば、発酵槽に投入された基質を希釈することにより、発酵に適した槽内固形物濃度を安定的に維持することができる有機性廃棄物処理方法を提供することができるようになった。 As explained above, the present invention provides an organic waste treatment method that can stably maintain a solids concentration in the fermentation tank suitable for fermentation by diluting the substrate added to the fermentation tank.

本発明による有機性廃棄物処理方法が適用される有機性廃棄物処理システムの説明図FIG. 1 is an explanatory diagram of an organic waste treatment system to which the organic waste treatment method according to the present invention is applied. 本発明による有機性廃棄物処理方法が適用される有機性廃棄物処理装置の説明図FIG. 1 is an explanatory diagram of an organic waste treatment apparatus to which the organic waste treatment method according to the present invention is applied. (a)は投入機構の平面視の説明図、(b)は投入機構の側面視の説明図、(c)は(b)のA断面説明図、(d)は(b)のB断面説明図、(e)は(b)のC断面説明図1A is a plan view of the feed mechanism, FIG. 1B is a side view of the feed mechanism, FIG. 1C is a cross-sectional view of FIG. 1B along line A, FIG. 1D is a cross-sectional view of FIG. 1B along line B, and FIG. 1E is a cross-sectional view of FIG. 1B along line C. 本発明による有機性廃棄物処理方法の説明図An explanatory diagram of the organic waste treatment method according to the present invention.

以下、図面を参照して本発明による有機性廃棄物処理方法を説明する。 The organic waste treatment method according to the present invention will be described below with reference to the drawings.

[有機性廃棄物処理方法が適用される有機性廃棄物処理システムの説明]
図1には、本発明による有機性廃棄物処理方法が適用される有機性廃棄物処理システムが示されている。都市ごみなどの有機性廃棄物を嫌気性微生物により処理する有機性廃棄物処理装置で、それら有機性廃棄物に含まれるエネルギーをメタンガスや二酸化炭素などのバイオガスとして回収するシステムである。
[Description of organic waste treatment system to which organic waste treatment method is applied]
An organic waste treatment system to which the organic waste treatment method of the present invention is applied is shown in Fig. 1. This is an organic waste treatment device that treats organic waste such as municipal waste with anaerobic microorganisms, and recovers the energy contained in the organic waste in the form of biogas such as methane gas and carbon dioxide.

一般家庭などから収集された紙ごみ、厨芥、樹脂等の可燃性ごみを、破砕機などを用いて小片に破砕し、有機性廃棄物処理に適した有機性固形廃棄物と有機性廃棄物処理に不適な樹脂や無機物、金属などに分別する前処理が行なわれ、有機性廃棄物処理不適物はごみ焼却設備で処理され、有機性廃棄物処理適物は有機性廃棄物処理装置に投入されてメタン発酵処理される。 Combustible waste such as paper waste, kitchen waste, and resin collected from ordinary households is crushed into small pieces using a crusher or other equipment, and a pre-processing step is carried out to separate organic solid waste suitable for organic waste treatment from resin, inorganic matter, metals, and other waste that is not suitable for organic waste treatment. Organic waste that is not suitable for organic waste treatment is treated in a garbage incineration facility, and organic waste that is suitable for treatment is put into an organic waste treatment device and treated with methane fermentation.

有機性廃棄物処理で生成されたバイオガスに含まれるメタンガスは再生エネルギーとして回収され、有機性廃棄物処理残渣は脱水処理などの残渣処理が施された後に焼却処理される。有機性廃棄物処理残渣の脱水処理により生じた脱水ろ液は活性汚泥法などで生物処理され、当該生物処理で生じた余剰汚泥も有機性廃棄物処理適物として有機性廃棄物処理の対象とすることも可能である。 The methane gas contained in the biogas produced during organic waste treatment is recovered as renewable energy, and the organic waste treatment residue is incinerated after undergoing residue treatment such as dehydration. The dehydrated filtrate produced during the dehydration of the organic waste treatment residue is biologically treated using the activated sludge method, and the excess sludge produced during this biological treatment can also be used as a material suitable for organic waste treatment.

[有機性廃棄物処理装置の説明]
図2には、有機性廃棄物処理装置の全体構成が示されている。有機性廃棄物処理装置10は、発酵槽20と、投入機構30と、撹拌機構40と、ガス排出部50と、発酵液排出口60、発酵不適物排出機構70などを備えて構成され、被処理物である発酵適物、つまり固形物を含む有機性廃棄物を、別途の可溶化処理槽などを用いて可溶化処理することなく、発酵槽20に直接投入して嫌気性発酵処理する装置である。
[Explanation of organic waste treatment device]
The overall configuration of the organic waste treatment device is shown in Figure 2. The organic waste treatment device 10 is configured with a fermenter 20, a feeding mechanism 30, a stirring mechanism 40, a gas exhaust section 50, a fermentation liquid exhaust port 60, a mechanism for discharging material unsuitable for fermentation 70, etc., and is an apparatus in which the material suitable for fermentation, that is, organic waste containing solid matter, which is the material to be treated, is directly fed into the fermenter 20 and subjected to anaerobic fermentation treatment without solubilization treatment using a separate solubilization treatment tank or the like.

発酵槽20は、鋼板を用いて円筒状に形成された縦型の処理槽であり、側壁には熱媒体の流路となるジャケット22が設けられ、熱媒供給部23から供給される熱媒体がジャケット22を通過して熱媒排出部21から排出されるように構成されている。熱媒体として温水が好適に用いられ、例えば約57℃程度の温水がジャケット22に供給されることで槽内の発酵液が発酵に適した約55℃の温度に加温される。 The fermentation tank 20 is a vertical treatment tank formed into a cylindrical shape using steel plates, and a jacket 22 that serves as a flow path for the heat medium is provided on the side wall, and the heat medium supplied from the heat medium supply section 23 passes through the jacket 22 and is discharged from the heat medium discharge section 21. Warm water is preferably used as the heat medium, and for example, warm water of about 57°C is supplied to the jacket 22 to heat the fermentation liquid in the tank to a temperature of about 55°C suitable for fermentation.

発酵槽20の上端には、槽内が密閉されるように円盤状の蓋体25がフランジ部で着脱可能に固定されている。蓋体25には、撹拌機構40が支持されるとともに、嫌気性発酵処理で生成されたバイオガスを取り出すガス排出部50として機能するバイオガス排出バルブV3を備えた配管が接続され、さらに槽内部を目視確認するためののぞき窓26が設けられている。 A disk-shaped lid 25 is removably fixed to the top of the fermentation tank 20 by a flange so that the tank is sealed. The lid 25 supports the stirring mechanism 40 and is connected to a pipe equipped with a biogas exhaust valve V3 that functions as a gas exhaust section 50 for extracting the biogas generated by the anaerobic fermentation process, and is also provided with a viewing window 26 for visually checking the inside of the tank.

発酵槽20の側壁下端には下方側が次第に縮径されるロート状部24が形成され、底部中央には発酵不適物排出機構70が設けられている。 A funnel-shaped section 24 that gradually narrows downward is formed at the lower end of the side wall of the fermentation tank 20, and a mechanism 70 for discharging materials unsuitable for fermentation is provided at the center of the bottom.

発酵不適物排出機構70は、発酵液中に混入した砂、貝殻、金属類などの発酵不適物を発酵槽20から排出するための機構で、発酵槽20の底部下方に突出形成され発酵槽20より縮径された筒状部73と、筒状部73に設けられた二重ダンパ機構71,72で構成されている。下部ダンパ72を閉じた状態で上部ダンパ71を開放して発酵不適物を取り込んだ後に、上部ダンパ71を閉じて下部ダンパ72を開放することにより発酵不適物が槽外に取り出される。 The fermentation unsuitable material discharge mechanism 70 is a mechanism for discharging fermentation unsuitable materials such as sand, shells, and metals mixed in the fermentation liquid from the fermentation tank 20, and is composed of a cylindrical section 73 that protrudes downward from the bottom of the fermentation tank 20 and has a smaller diameter than the fermentation tank 20, and double damper mechanisms 71, 72 attached to the cylindrical section 73. With the lower damper 72 closed, the upper damper 71 is opened to take in the fermentation unsuitable materials, and then the upper damper 71 is closed and the lower damper 72 is opened to remove the fermentation unsuitable materials from the tank.

被処理物に混入する砂、金属、貝殻などの発酵不適物が発酵液中で次第に沈降して底部に堆積すると有効な発酵容積が減少して発酵効率が低下する虞がある。しかし、底部に形成された筒状部73に発酵不適物を堆積させて、二重ダンパ機構71,72を介して槽外に排出することにより、ポンプ装置などの大きな動力を要することなく、また嫌気状態を維持しながら発酵容積の減少を回避することができる。 When sand, metal, shells, and other materials unsuitable for fermentation that are mixed in with the material to be treated gradually settle in the fermentation liquid and accumulate at the bottom, there is a risk that the effective fermentation volume will decrease and the fermentation efficiency will decline. However, by accumulating the materials unsuitable for fermentation in the cylindrical section 73 formed at the bottom and discharging them outside the tank via the double damper mechanism 71, 72, it is possible to avoid a decrease in the fermentation volume without requiring a large power source such as a pump device and while maintaining an anaerobic state.

撹拌機構40は、発酵槽20に投入された有機性廃棄物を槽内で撹拌するために設けられ、蓋体25の上部に設置された撹拌用のモータ45と、蓋体25に回転可能に軸受で支持された鉛直姿勢の回転軸と、回転軸にカップリング43を介して接続された撹拌軸41と、撹拌軸41に固定された撹拌羽根42,44,46を備えて構成されている。撹拌軸41は発酵槽20の軸心と一致するように設置されている。 The stirring mechanism 40 is provided to stir the organic waste put into the fermentation tank 20 within the tank, and is composed of a stirring motor 45 installed on the top of the lid 25, a vertically oriented rotating shaft rotatably supported by bearings on the lid 25, a stirring shaft 41 connected to the rotating shaft via a coupling 43, and stirring blades 42, 44, and 46 fixed to the stirring shaft 41. The stirring shaft 41 is installed so as to coincide with the axis of the fermentation tank 20.

撹拌軸41の上端は蓋体25に軸支された回転軸とカップリング43を介して接続され、撹拌軸41の下端は軸支されることなく自由端となっている。そのためメンテナンスが必要な場合には、分解することなくまた槽内の汚泥を引抜くことなく発酵槽20から蓋体25を取り外すことにより、発酵槽20の上端から撹拌羽根42,44,46と一体で撹拌軸41を引き抜くことが可能になる。 The upper end of the agitator shaft 41 is connected to a rotating shaft supported by the lid 25 via a coupling 43, and the lower end of the agitator shaft 41 is a free end that is not supported by a shaft. Therefore, when maintenance is required, the agitator shaft 41 can be pulled out from the upper end of the fermenter 20 together with the agitator blades 42, 44, and 46 by removing the lid 25 from the fermenter 20 without disassembly or removing the sludge from the tank.

最上段に位置する沈降促進羽根42は、撹拌軸41に嵌入固定されたスリーブ42bに中心角180°の角度となるように固定された2枚の平板状の羽根片42aで構成され、発酵槽20内の発酵液の液面を横切る位置、好ましくは羽根面の上下方向中央部に液面が位置するように位置決めされるとともに、先端が発酵槽20の内壁面の近傍位置まで延出形成されている。 The sedimentation promotion blade 42 located at the top is composed of two flat blade pieces 42a fixed to a sleeve 42b fitted and fixed to the agitator shaft 41 so that they form a central angle of 180°. It is positioned so that it crosses the liquid level of the fermentation liquid in the fermentation tank 20, preferably so that the liquid level is located in the vertical center of the blade surface, and its tip extends to a position close to the inner wall surface of the fermentation tank 20.

沈降促進羽根42より下方に分散羽根44が上下方向に3段設けられている。
分散羽根44は、撹拌軸41に固定されたスリーブに中心角180°の角度となるように固定された2枚の平板状の羽根片44aで構成され、各羽根片44aの径方向長さが沈降促進羽根42よりも短く、発酵槽20の内径の40~90%、好ましくは50~70%の範囲の長さに設定されている。平板状の羽根片44aであれば、発酵液の上下方向中間部の撹拌が効率よくできて、軽いものと重いものを振り分けることができる。
Below the settling promotion blade 42, three dispersion blades 44 are provided in the vertical direction.
The dispersion blade 44 is composed of two flat blade pieces 44a fixed to a sleeve fixed to the stirring shaft 41 so as to form a central angle of 180°, and the radial length of each blade piece 44a is shorter than that of the settling promotion blade 42, and is set to a length in the range of 40 to 90%, preferably 50 to 70%, of the inner diameter of the fermentation tank 20. The flat blade pieces 44a can efficiently stir the vertical middle part of the fermentation liquid, and can separate light and heavy matters.

分散羽根44より下方に掻き寄せ羽根46が設けられている。
掻き寄せ羽根46は、発酵槽20の底部位置で撹拌軸41に固定され、発酵液中で被処理物を分散させる下部分散羽根片46aと、下部分散羽根片46aの先端に固定され発酵液中に沈降した発酵不適物を発酵不適物排出機構70に掻き寄せる掻き寄せ羽根片46cとを備えている。
A scraping blade 46 is provided below the dispersion blade 44 .
The scraping blade 46 is fixed to the agitator shaft 41 at the bottom position of the fermentation tank 20 and is equipped with a lower dispersion blade piece 46a which disperses the material to be treated in the fermentation liquid, and a scraping blade piece 46c which is fixed to the tip of the lower dispersion blade piece 46a and scrapes the materials unsuitable for fermentation that have settled in the fermentation liquid toward the fermentation unsuitable material discharge mechanism 70.

図2及び図3(a)~(e)に示すように、投入機構30は、発酵槽20に有機性廃棄物を投入するための機構であり、水平面に対して所定の傾斜角度θとなる傾斜姿勢で発酵槽20の壁部に形成されたフランジ管36に、先端側が下向きとなるように挿入されフランジ固定された断面が矩形の筒状ケーシング31(図3(e)参照。)と、筒状ケーシング31に内装された断面が矩形の押圧体32と、筒状ケーシング31の軸心に沿って押圧体32を進退駆動する油圧式の駆動機構33とを備えた押込み投入機構30で構成されている。 As shown in Figures 2 and 3(a) to (e), the feeding mechanism 30 is a mechanism for feeding organic waste into the fermentation tank 20, and is composed of a cylindrical casing 31 (see Figure 3(e)) with a rectangular cross section that is inserted with its tip facing downward and flange-fixed to a flange pipe 36 formed on the wall of the fermentation tank 20 in an inclined position at a predetermined inclination angle θ with respect to the horizontal plane, a pressing body 32 with a rectangular cross section that is installed inside the cylindrical casing 31, and a hydraulic drive mechanism 33 that drives the pressing body 32 back and forth along the axis of the cylindrical casing 31.

筒状ケーシング31の先端部FEが発酵槽20内で発酵液中に浸漬するように、発酵槽20の側壁に備えたフランジ管36に挿入固定されている。本実施形態では、フランジ管36が水平面に対して約30°の傾斜姿勢に設定され、筒状ケーシング31の傾斜姿勢も水平面に対して約30°の傾斜姿勢に設定されている。 The tip FE of the cylindrical casing 31 is inserted and fixed into a flange pipe 36 provided on the side wall of the fermentation tank 20 so that it is immersed in the fermentation liquid inside the fermentation tank 20. In this embodiment, the flange pipe 36 is set to an inclination of about 30° with respect to the horizontal plane, and the inclination of the cylindrical casing 31 is also set to an inclination of about 30° with respect to the horizontal plane.

さらに、有機性廃棄物を筒状ケーシング31の先端から押込み投入機構30に供給するホッパー機構35が押込み投入機構30の上部に設けられている。ホッパー機構35は、開閉自在な蓋体35cを備えた投入部である上部開口35dから垂下する4枚の側壁35aにより角筒状の収容部が形成され、側壁35aのうち平面視で筒状ケーシング31の軸心を挟むように設けられた一対の対向壁に連なり、下端に向けて次第に幅狭となる傾斜壁部35bが形成されている。 Furthermore, a hopper mechanism 35 that supplies organic waste from the tip of the cylindrical casing 31 to the push-in feeding mechanism 30 is provided on the upper part of the push-in feeding mechanism 30. The hopper mechanism 35 has a rectangular cylindrical storage section formed by four side walls 35a that hang down from an upper opening 35d, which is an input section equipped with a lid body 35c that can be opened and closed, and a sloped wall section 35b that gradually narrows toward the lower end is formed and is connected to a pair of opposing walls of the side walls 35a that are arranged to sandwich the axis of the cylindrical casing 31 in a plan view.

図3(a)には説明の便宜上、蓋体35cを破線で示している。当該蓋体35は一端部で側壁35aにヒンジ機構hを介して開閉自在に取り付けられている。また、図3(c)で示す符号35hは点検窓である。 For the sake of convenience, the cover 35c is indicated by a broken line in Fig. 3(a). One end of the cover 35c is attached to the side wall 35a via a hinge mechanism h so as to be able to be opened and closed. Reference numeral 35h in Fig. 3(c) denotes an inspection window.

上部開口35dからから収容部に投入された発酵適物が、傾斜壁部35bの下端開口から押込み投入機構30の筒状ケーシング31に形成された開口部31aを介して筒状ケーシング31内に落下供給されるように構成されている。 The material suitable for fermentation is introduced into the storage section from the upper opening 35d, and is dropped into the cylindrical casing 31 through the opening 31a formed in the cylindrical casing 31 of the push-in introduction mechanism 30 from the lower end opening of the inclined wall section 35b.

つまり、投入機構30の一部を構成する筒状ケーシング31の上部に、長手方向が筒状ケーシング31の軸心に沿う形状の開口部31aが形成され、開口部31aの各長手方向縁部に傾斜壁部35bの各下端35u(図3(a)参照。)が段差なく連なるように配置されている。 In other words, an opening 31a is formed in the upper part of the cylindrical casing 31 that constitutes part of the feeding mechanism 30, and the longitudinal direction of the opening 31a is shaped to follow the axis of the cylindrical casing 31. The lower ends 35u (see FIG. 3(a)) of the inclined wall portion 35b are arranged so as to be connected to the longitudinal edges of the opening 31a without any steps.

筒状ケーシング31の先端FEが押圧体32の最大進出位置よりさらに先端側に延出形成されている。そのため、押圧体32が後退駆動された場合に、押圧体32により押圧され圧密化された有機性廃棄物が筒状ケーシング31の先端FEに残存してシール機能が発揮されるようになる。その結果、発酵槽20内の発酵液が筒状ケーシング31内に多量に流入するようなことがなく、また発酵ガスが筒状ケーシング31内に漏洩するようなことが回避できる。 The tip FE of the cylindrical casing 31 is formed to extend further toward the tip side than the maximum advance position of the pressing body 32. Therefore, when the pressing body 32 is driven backward, the organic waste pressed and compacted by the pressing body 32 remains at the tip FE of the cylindrical casing 31, and a sealing function is exerted. As a result, a large amount of fermentation liquid in the fermenter 20 does not flow into the cylindrical casing 31, and leakage of fermentation gas into the cylindrical casing 31 can be prevented.

ホッパー機構35の筒状ケーシング31壁部への連通位置CA近傍が発酵槽20内の発酵液の液面となるようにホッパー機構35の筒状ケーシング31への取付け位置が設定されている(図3(b)参照。)。 The attachment position of the hopper mechanism 35 to the cylindrical casing 31 is set so that the liquid level of the fermentation liquid in the fermenter 20 is near the connection position CA of the hopper mechanism 35 to the wall of the cylindrical casing 31 (see FIG. 3(b)).

ホッパー機構35は、矩形形状の上部開口から垂下する側壁35aを備えた角筒状の収容部と、収容部の下端が筒状ケーシング31に向けて先窄まり形状となる傾斜壁部35bで構成されるロート状部を備えて構成され、収容部に投入された有機性固形廃棄物である可燃性ごみを選別した発酵適物に加えて、し尿や浄化槽汚泥さらには下水汚泥が一緒に投入され、内部に堆積された状態で混合されつつ押込み投入機構30により発酵槽20内部に投入される。 The hopper mechanism 35 is configured with a square cylindrical storage section with side walls 35a hanging down from a rectangular upper opening, and a funnel-shaped section whose lower end is composed of an inclined wall section 35b that tapers toward the cylindrical casing 31. In addition to the fermentation-suitable materials selected from combustible garbage, which is organic solid waste, that are fed into the storage section , human waste, septic tank sludge, and even sewage sludge are also fed in, and while they are piled up inside, they are mixed and fed into the fermentation tank 20 by the pushing-in feeding mechanism 30.

筒状ケーシング31に連接されるホッパー機構35の側壁35aのうち押圧体32の進出方向側の前壁部35eが筒状ケーシング31との連接部位で押圧体32の進出方向に向けた傾斜姿勢に形成されている(図3(b),(d)参照。)。 Of the side wall 35a of the hopper mechanism 35 connected to the cylindrical casing 31, a front wall portion 35e on the side in the advancing direction of the pressing body 32 is formed in an inclined posture toward the advancing direction of the pressing body 32 at the connection portion with the cylindrical casing 31 (see Figures 3(b) and (d)).

押圧体32により筒状ケーシング31内を押圧される有機性廃棄物は、筒状ケーシング31に連接された前壁部35eとの間で圧密される際に前壁部35e及び押圧体32に圧密応力が作用する。このとき、押圧体32の進出方向側の前壁部35eが筒状ケーシング31との連接部位で押圧体32の進出方向に向けた傾斜姿勢に形成されていると、押圧体32の上部近傍の有機性廃棄物の一部が傾斜姿勢の前壁部35eに形成された空間に逃げるため、急激な圧密作用が回避され、円滑に押圧供給されるようになる。 When the organic waste is pressed inside the cylindrical casing 31 by the pressing body 32, a consolidation stress acts on the front wall 35e and the pressing body 32 when it is consolidated between the front wall 35e connected to the cylindrical casing 31. At this time, if the front wall 35e on the advancing side of the pressing body 32 is formed in an inclined position toward the advancing direction of the pressing body 32 at the connection part with the cylindrical casing 31, part of the organic waste near the top of the pressing body 32 escapes into the space formed by the inclined front wall 35e, so a sudden consolidation action is avoided and the waste is smoothly pressed and supplied.

筒状ケーシング31に連接されるホッパー機構35の側壁35aのうち押圧体32の後退方向側の後壁部35fは、開口部31aより押圧体32の後退方向側に位置している。 A rear wall portion 35f of a side wall 35a of the hopper mechanism 35 connected to the cylindrical casing 31 on the retreating direction side of the pressing body 32 is located on the retreating direction side of the pressing body 32 with respect to the opening 31a.

発酵液排出口60となるフランジ管が発酵槽20の側壁下部に設けられ、嫌気性発酵処理後の発酵液、つまり消化液が排出される。 A flange pipe that serves as the fermentation liquid outlet 60 is provided at the bottom of the side wall of the fermentation tank 20, and the fermentation liquid after anaerobic fermentation treatment, i.e., the digestive liquid, is discharged.

[有機性廃棄物処理方法の説明]
図4に示すように、可燃ごみが破砕選別装置に投入されて破砕され、有機性廃棄物処理適物として選別された所定量の有機性廃棄物が投入基質として有機性廃棄物処理装置10のホッパー機構35に所定インタバルで投入される。ホッパー機構35に投入された有機性廃棄物は押圧体32によって発酵槽20に押し込み投入され、発酵槽20の内部で発酵処理される。
[Explanation of organic waste treatment method]
As shown in Figure 4, combustible waste is fed into a crushing and sorting device and crushed, and a predetermined amount of organic waste selected as suitable for organic waste treatment is fed as a feed substrate into a hopper mechanism 35 of the organic waste treatment device 10 at predetermined intervals. The organic waste fed into the hopper mechanism 35 is pushed into the fermentation tank 20 by a pressing body 32, and is subjected to fermentation treatment inside the fermentation tank 20.

選別された有機性廃棄物の一部がサンプリングされて測定器で測定されて投入基質の固形物濃度が測定される。投入基質の含水率をWとすると、固形物濃度TS=1-Wの関係があり、測定器は固形物濃度TSを測定可能な公知の測定器または含水率を測定可能な公知の測定器の何れであってもよい。なお、固形物濃度TSは乾重量/湿重量で求まる。 A portion of the sorted organic waste is sampled and measured with a measuring device to determine the solids concentration of the input substrate. If the moisture content of the input substrate is W, then there is a relationship of solids concentration TS = 1-W, and the measuring device may be any known measuring device capable of measuring solids concentration TS or moisture content. The solids concentration TS is calculated by dry weight/wet weight.

測定器で測定された投入基質の固形物濃度は制御部に入力され、ホッパー機構35に投入される有機性廃棄物が所定の希釈率で希釈されるように、希釈液の供給配管に備えたバルブの開度が制御部によって制御される。発酵処理が終了して固液分離された水を硝化脱窒する生物処理装置で処理された処理水や生物処理装置から引き抜かれた汚泥、さらには上水などが希釈液として用いられる。希釈液は直接ホッパー機構35に投入してもよいし、発酵槽20に備えた蓋体25に希釈液投入用の管を取り付けて、発酵槽20に直接投入してもよい。 The solids concentration of the input substrate measured by the measuring device is input to the control unit, and the control unit controls the opening of a valve provided in a supply pipe for the dilution liquid so that the organic waste input to the hopper mechanism 35 is diluted at a predetermined dilution rate. Treated water treated in a biological treatment device which performs nitrification and denitrification on water separated from solids and liquids after the completion of fermentation treatment, sludge withdrawn from the biological treatment device, and even clean water are used as the dilution liquid. The dilution liquid may be directly input to the hopper mechanism 35, or may be directly input to the fermentation tank 20 by attaching a pipe for inputting the dilution liquid to the lid 25 provided on the fermentation tank 20.

投入基質の固形物濃度の測定インタバルは15分から24時間程度のラフなインタバルでよく、例えば15分単位の測定値を24時間蓄積した値の平均値を用いて翌日の希釈率を設定してもよい。発酵槽20での水理学的滞留時間HRTは10~40日程度であるため、数日の遅れは問題にならない。 The measurement interval for the solids concentration of the input substrate can be a rough interval of about 15 minutes to 24 hours. For example, the dilution rate for the next day can be set using the average value of measurements accumulated over 24 hours at 15-minute intervals. Since the hydraulic retention time (HRT) in the fermenter 20 is about 10 to 40 days, a delay of several days is not a problem.

所定の希釈率とは、発酵槽20の槽内固形物濃度が所定の目標値になる希釈率をいい、以下の数式(1)、(2)に基づいて設定される。
(1)槽内固形物濃度=投入基質の固形物濃度×(1-投入基質の分解率)
(2)希釈率=槽内固形物濃度÷槽内固形物濃度の目標値
The predetermined dilution rate refers to a dilution rate at which the solid concentration in the fermenter 20 becomes a predetermined target value, and is set based on the following formulas (1) and (2).
(1) Solid concentration in the tank = solid concentration of the input substrate × (1 - decomposition rate of the input substrate)
(2) Dilution rate = concentration of solids in the tank ÷ target concentration of solids in the tank

つまり、固形物を含む有機性廃棄物を基質として発酵槽に投入して嫌気性発酵処理する有機性廃棄物処理方法は、発酵槽20への投入基質の固形物濃度を計測する第1ステップと、発酵槽20の槽内固形物濃度が所定の目標値になるように、投入基質の希釈率を設定する第2ステップと、前記希釈率になるように投入基質を希釈する第3ステップと、を含む。 In other words, the organic waste treatment method in which organic waste containing solids is fed as a substrate into a fermentation tank and subjected to anaerobic fermentation treatment includes a first step of measuring the solids concentration of the substrate fed into the fermentation tank 20, a second step of setting a dilution ratio of the substrate fed into the fermentation tank 20 so that the solids concentration in the tank becomes a predetermined target value, and a third step of diluting the substrate fed into the fermentation tank 20 to the dilution ratio.

槽内固形物濃度は、投入基質の固形物濃度×(1-投入基質の分解率)によって求まり、槽内固形物濃度を槽内固形物濃度の目標値で除すことにより希釈率が求まる。なお、投入基質の分解率は、発酵槽20への投入基質の組成が大きく変化することがないため、予め測定した経験値を適用することができ、さらに定期的に測定することも可能である。 The solids concentration in the tank is calculated by multiplying the solids concentration of the input substrate by (1 - decomposition rate of the input substrate), and the dilution rate is calculated by dividing the solids concentration in the tank by the target solids concentration in the tank. Note that, since the composition of the substrate input to the fermenter 20 does not change significantly, the decomposition rate of the input substrate can be determined by applying an empirical value measured in advance, and can also be measured periodically.

投入基質の分解率は運転結果や実験結果などから設定することができる。例えば、投入基質の固形物濃度TSとの発酵槽の槽内固形物濃度TSの其々のデータを蓄積しておき、その関係から分解率を求めたり、或いは投入基質の固形物濃度TSにおける、生ごみ、紙ゴミ等の混合割合と一般的な分解率から平均的な分解率を求めたりすることができる。 The decomposition rate of the input substrate can be set from the results of operation and experiments. For example, data on the solids concentration TS of the input substrate and the solids concentration TS in the fermentation tank can be accumulated, and the decomposition rate can be calculated from the relationship, or the average decomposition rate can be calculated from the mixture ratio of food waste, paper waste, etc. in the solids concentration TS of the input substrate and the general decomposition rate.

槽内分解率が多少変動しても、発酵槽20の槽内固形物濃度TSが目標値に維持される結果、発酵槽20を小型に構成しながらも発酵効率を安定させることができる。 Even if the decomposition rate in the tank fluctuates slightly, the solids concentration TS in the fermenter 20 is maintained at the target value, so that the fermentation efficiency can be stabilized even if the fermenter 20 is configured to be small.

槽内固形物濃度の目標値が5-15%の範囲の値に設定されることが好ましく、6-12%の範囲の値に設定されることがさらに好ましい。槽内固形物濃度の目標値が5%を下回ると有機物濃度が低下して発酵効率が低下し、槽内固形物濃度の目標値が15%を超えると円滑な攪拌が困難になり、短時間に有機物を分解できず発酵効率が低下する。 The target value for the solids concentration in the tank is preferably set to a value in the range of 5-15%, and more preferably to a value in the range of 6-12%. If the target value for the solids concentration in the tank falls below 5%, the organic matter concentration will fall and the fermentation efficiency will decrease, and if the target value for the solids concentration in the tank exceeds 15%, smooth stirring will become difficult, organic matter will not be decomposed in a short time, and the fermentation efficiency will decrease.

さらに、数式(1)、(2)に基づいて設定した槽内固形物濃度の目標値が、槽内固形物濃度と槽内粘度との間に定まる所定の相関関係に基づいて、槽内粘度が所定の目標粘度以下となるように、調整されることが好ましい。
槽内目標粘度は30000mPa・s以下であることが好ましく、20000mPa・s以下であることがさらに好ましい。30000mPa・sを超えると発酵槽20の内部で発酵液が良好に攪拌されず発酵効率が低下する。
Furthermore, it is preferable that the target value of the solid concentration in the tank set based on formulas (1) and (2) is adjusted so that the viscosity in the tank is equal to or lower than a predetermined target viscosity based on a predetermined correlation established between the solid concentration in the tank and the viscosity in the tank.
The target viscosity in the tank is preferably 30,000 mPa·s or less, and more preferably 20,000 mPa·s or less. If the viscosity exceeds 30,000 mPa·s, the fermentation liquid inside the fermenter 20 will not be stirred well, and the fermentation efficiency will decrease.

なお、槽内粘度は槽内固形物濃度と相関があり、槽内固形物濃度を変数とする2次以上の高次の関数や、槽内固形物濃度を変数とする指数関数などで近似することができる。 The viscosity in the tank is correlated with the solids concentration in the tank, and can be approximated by a higher-order function (second order or higher) with the solids concentration in the tank as a variable, or an exponential function with the solids concentration in the tank as a variable.

上述した実施形態では、数式(1)、(2)に基づいて設定した槽内固形物濃度の目標値を槽内粘度が所定の目標粘度以下となるように調整する例を説明したが、逆に槽内粘度と槽内固形物濃度との間に相関関係に基づいて、槽内粘度が目標粘度となるように槽内固形物濃度の目標値を設定し、その後に数式(1)、(2)に基づいて希釈率を設定してもよい。 In the above embodiment, an example was described in which the target value of the solids concentration in the tank, which was set based on formulas (1) and (2), was adjusted so that the viscosity in the tank was equal to or lower than a predetermined target viscosity. Conversely, the target value of the solids concentration in the tank may be set so that the viscosity in the tank is equal to the target viscosity based on the correlation between the viscosity in the tank and the solids concentration in the tank, and then the dilution rate may be set based on formulas (1) and (2).

上述した発酵槽20に投入される発酵適物は、生ごみや紙ごみなどの有機性固形廃棄物、下水汚泥、し尿や浄化槽汚泥以外に、家畜糞尿、農業系残渣、食品廃棄物などのバイオマスなども対象となり、それらが単独または混合された有機性廃棄物を対象とすることができる。 The materials suitable for fermentation that are put into the fermentation tank 20 described above include organic solid waste such as food waste and paper waste, sewage sludge, human waste, and septic tank sludge, as well as biomass such as livestock manure, agricultural residues, and food waste, and these organic wastes can be used alone or in mixtures.

本発明が適用可能な有機性廃棄物処理装置10は上述した発酵槽20と、投入機構30と、撹拌機構40と、ガス排出部50と、発酵液排出口60、発酵不適物排出機構70などを備えた構成が好ましいが、各部の具体的な構成は特に限定されるものではない。少なくとも固形物を含む有機性廃棄物を別途の可溶化処理槽などを用いて可溶化処理することなく、直接投入して嫌気性発酵処理が可能な発酵処理装置であればよい。 The organic waste treatment device 10 to which the present invention can be applied is preferably configured to include the above-mentioned fermentation tank 20, the input mechanism 30, the stirring mechanism 40, the gas exhaust section 50, the fermentation liquid outlet 60, and the fermentation unsuitable material discharge mechanism 70, but the specific configuration of each section is not particularly limited. It is sufficient that the fermentation treatment device is capable of directly inputting organic waste containing at least solids and subjecting it to anaerobic fermentation treatment without solubilizing it using a separate solubilization treatment tank or the like.

上述した実施形態は本発明の一態様であり、該記載により本発明が限定されるものではなく、各部の具体的な構造、サイズ、材料などは本発明の作用効果が奏される範囲で適宜変更設計可能であることはいうまでもない。 The above-described embodiment is one aspect of the present invention, and the present invention is not limited to this description. It goes without saying that the specific structure, size, materials, etc. of each part can be appropriately modified and designed within the scope of the effects of the present invention.

10:有機性廃棄物処理装置
20:発酵槽
30:投入機構
31:筒状ケーシング
32:押圧体
36:フランジ管
37:フランジ管
40:撹拌機構
41:撹拌軸
42:沈降促進羽根
44:分散羽根
36:掻き寄せ羽根
50:ガス排出部
60:発酵液排出口
70:発酵不適物排出機構
71:二重ダンパ機構
72:二重ダンパ機構
73:筒状部
10: Organic waste treatment device 20: Fermentation tank 30: Feeding mechanism 31: Cylindrical casing 32: Pressing body 36: Flange pipe 37: Flange pipe 40: Stirring mechanism 41: Stirring shaft 42: Settling promotion blade 44: Dispersion blade 36: Scraping blade 50: Gas exhaust section 60: Fermentation liquid exhaust port 70: Fermentation unsuitable material exhaust mechanism 71: Double damper mechanism 72: Double damper mechanism 73: Cylindrical section

Claims (5)

固形物を含む有機性廃棄物を基質として発酵槽に投入して嫌気性発酵処理する有機性廃棄物処理方法であって、
前記発酵槽へ投入する投入基質の固形物濃度を計測する第1ステップと、
前記固形物濃度と、予め設定された前記投入基質の嫌気性発酵処理による分解率とに基づいて、前記投入基質が前記発酵槽で嫌気性発酵処理された発酵液の固形物濃度である槽内固形物濃度を想定し、前記槽内固形物濃度が所定の目標値になるように、前記投入基質の希釈率を設定する第2ステップと、
前記希釈率になるように前記投入基質を希釈する第3ステップと、
を含む有機性廃棄物処理方法。
A method for treating organic waste, comprising: feeding organic waste containing solid matter as a substrate into a fermentation tank and subjecting the substrate to anaerobic fermentation treatment,
A first step of measuring a solids concentration of an input substrate to be input to the fermenter;
A second step of setting a dilution rate of the input substrate so that the solid concentration in the tank is a predetermined target value, the solid concentration being the solid concentration of the fermentation liquid obtained by anaerobically fermenting the input substrate in the fermenter , based on the solid concentration and a previously set decomposition rate by anaerobic fermentation of the input substrate;
a third step of diluting the input substrate to the dilution ratio;
A method for treating organic waste comprising the steps of:
前記希釈率は、以下の数式
槽内固形物濃度=投入基質の固形物濃度×(1-投入基質の分解率)
希釈率=槽内固形物濃度÷槽内固形物濃度の目標値
に基づいて設定される請求項1記載の有機性廃棄物処理方法。
The dilution rate is calculated by the following formula: Solid concentration in tank = Solid concentration of input substrate x (1 - Decomposition rate of input substrate)
2. The organic waste treatment method according to claim 1, wherein the dilution rate is set based on a target value of the dilution rate = solid matter concentration in the tank divided by the solid matter concentration in the tank.
前記槽内固形物濃度の目標値が5-15%の範囲の値に設定される請求項1または2記載の有機性廃棄物処理方法。 The organic waste treatment method according to claim 1 or 2, in which the target value of the solids concentration in the tank is set to a value in the range of 5-15%. 前記槽内固形物濃度と前記発酵液の粘度である槽内粘度との間に定まる所定の相関関係に基づいて、前記槽内粘度が所定の目標粘度である槽内目標粘度以下となるように、前記槽内固形物濃度の目標値が設定される請求項1から3の何れかに記載の有機性廃棄物処理方法。 4. An organic waste treatment method according to claim 1, wherein a target value of the solids concentration in the tank is set so that the viscosity in the tank is equal to or lower than a target viscosity in the tank, which is a predetermined target viscosity, based on a predetermined correlation between the solids concentration in the tank and the viscosity in the tank, which is the viscosity of the fermentation liquid. 前記槽内目標粘度が30000mPa・s以下の値に設定される請求項4記載の有機性廃棄物処理方法。
5. The organic waste treatment method according to claim 4, wherein the target viscosity in the tank is set to a value of 30,000 mPa.s or less.
JP2020195116A 2020-11-25 2020-11-25 Organic waste treatment method Active JP7493888B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020195116A JP7493888B2 (en) 2020-11-25 2020-11-25 Organic waste treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020195116A JP7493888B2 (en) 2020-11-25 2020-11-25 Organic waste treatment method

Publications (2)

Publication Number Publication Date
JP2022083667A JP2022083667A (en) 2022-06-06
JP7493888B2 true JP7493888B2 (en) 2024-06-03

Family

ID=81855475

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020195116A Active JP7493888B2 (en) 2020-11-25 2020-11-25 Organic waste treatment method

Country Status (1)

Country Link
JP (1) JP7493888B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010234203A (en) 2009-03-30 2010-10-21 Meiji Milk Prod Co Ltd Methane fermentation method and methane fermentation apparatus
JP2019130486A (en) 2018-01-31 2019-08-08 栗田工業株式会社 Operation method of wet type methane fermentation facility

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010234203A (en) 2009-03-30 2010-10-21 Meiji Milk Prod Co Ltd Methane fermentation method and methane fermentation apparatus
JP2019130486A (en) 2018-01-31 2019-08-08 栗田工業株式会社 Operation method of wet type methane fermentation facility

Also Published As

Publication number Publication date
JP2022083667A (en) 2022-06-06

Similar Documents

Publication Publication Date Title
CN102836863A (en) Comprehensive treatment method for kitchen waste, town excrement and municipal sludge
CN102268310A (en) Method for preparing biomass fuel by utilizing food wastes
CN111992568A (en) Integrated kitchen waste recycling system
JP7132118B2 (en) Fermentation processing equipment
JP5574398B2 (en) Method and system for methane fermentation of organic solid waste
US7727396B1 (en) Anaerobic reactor with auger in the effluent line
JP4991832B2 (en) Methane fermentation method and methane fermentation apparatus
JP5040641B2 (en) Organic waste slurry storage method and fuel conversion method, biomass fuel, and organic waste slurry storage device
JP4408233B2 (en) Sludge treatment equipment
JP7493888B2 (en) Organic waste treatment method
JP7502166B2 (en) Apparatus for feeding material to be treated, fermentation treatment apparatus, and method for operating the fermentation treatment apparatus
DE102005040839B4 (en) Wastewater treatment plant and process for the treatment of contaminated wastewater
JP2021104499A (en) Fermentation treatment method and fermentation treatment apparatus
WO2023223549A1 (en) Organic waste treatment method
CN111170585A (en) Fermentation system and fermentation method for livestock and poultry manure recycling treatment engineering
JP7128737B2 (en) Appropriate Fermentation Apparatus
CN1871069A (en) Putrescible organic waste treatment
JP2007229638A (en) Waste treating apparatus
JP2002167209A (en) Activated carbon manufacturing apparatus, its manufacturing method, and activated carbon manufacturing system
JP6893380B2 (en) Methane fermentation treatment method and system for kitchen waste
JP5222755B2 (en) Anaerobic treatment apparatus and waste treatment system provided with the same
JP2000189932A (en) Device for organic waste treatment
JP7319185B2 (en) Fermentation processing equipment
JP7324702B2 (en) Fermentation processing equipment
KR100229860B1 (en) Treatment apparatus for kitchen refuse

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230622

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240314

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240326

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240426

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240521

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240521

R150 Certificate of patent or registration of utility model

Ref document number: 7493888

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150