JP7489026B2 - バリアフィルムおよび包装材料 - Google Patents

バリアフィルムおよび包装材料 Download PDF

Info

Publication number
JP7489026B2
JP7489026B2 JP2019149155A JP2019149155A JP7489026B2 JP 7489026 B2 JP7489026 B2 JP 7489026B2 JP 2019149155 A JP2019149155 A JP 2019149155A JP 2019149155 A JP2019149155 A JP 2019149155A JP 7489026 B2 JP7489026 B2 JP 7489026B2
Authority
JP
Japan
Prior art keywords
film
barrier
layer
producing
packaging material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019149155A
Other languages
English (en)
Other versions
JP2020029095A (ja
Inventor
健太 小西
龍之介 塩田
聡 塩田
好弘 岸本
将徳 澤田
秀成 金高
愛 岡野
浩之 岩橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Nippon Printing Co Ltd
Original Assignee
Dai Nippon Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Printing Co Ltd filed Critical Dai Nippon Printing Co Ltd
Publication of JP2020029095A publication Critical patent/JP2020029095A/ja
Application granted granted Critical
Publication of JP7489026B2 publication Critical patent/JP7489026B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Wrappers (AREA)
  • Laminated Bodies (AREA)

Description

本発明は、バリアフィルムに関し、さらに詳細には、バリアコート層と、無機酸化物蒸着層と、基材層とをこの順に備えてなるバリアフィルムに関する。また、本発明は、該バリアフィルムを備えてなる包装材料にも関する。
従来、食品、日用品、および医薬品等の包装に用いられる包装材料は、内容物の変質を抑制し、それらの機能や性質を保持するために、包装材料を透過する酸素、水蒸気、その他内容物を変質させる気体による影響を防止する必要があり、これら気体を遮断するガスバリア性を備えることが求められてきた。そのため、高分子の中ではガスバリア性に優れる塩化ビニリデン系樹脂のフィルムまたはそれらの樹脂をコーティングしたフィルム等が良く用いられてきた。しかし、それらは温度や湿度等によるガスバリア性の影響が大きく、高度なガスバリア性の要求には対応できないという技術的課題が存在していた。
そこで、高度なガスバリア性を要求されるものについては、アルミニウム等の金属からなる金属箔等をガスバリア層として用いた包装材料が用いられてきた。しかし、アルミニウム等の金属からなる金属箔等を用いた包装材料は、温度や湿度の影響がなく高度なガスバリア性を持つが、包装材料を透視して内容物を確認することができない、使用後の廃棄の際は不燃物として処理しなければならない、検査の際に金属探知器が使用できない等の技術的課題が存在していた。
近年、これらの技術的課題を解決するために、酸化珪素、酸化アルミニウム、および酸化マグネシウム等の無機酸化物の蒸着薄膜層を真空蒸着法やスパッタリング法等の形成手段により高分子フィルム上に積層した蒸着フィルムが包装材料として使用されている。これらの蒸着フィルムは、金属箔等では得ることのできない透明性およびガスバリア性の両者を有する包装材料として好適とされている。しかしながら、このようなガスバリア積層フィルムであっても、高温で殺菌処理された時にガスバリア性が低下するという技術的課題が存在していた。
そこで、このような技術的課題を解決するために、樹脂基材と、該樹脂基材上に設けられ、主に無機化合物を含むガスバリア蒸着層と、該ガスバリア蒸着層上に設けられ、特定のケイ素化合物およびその加水分解物ならびに水酸基を有する水溶性高分子を含有する塗布液を塗布、乾燥して得られたガスバリア被覆層とを含むことを特徴とするガスバリア積層フィルムが提案されている(特許文献1参照)。
国際公開第2004-048081号
しかしながら、特許文献1で提案されているガスバリア積層フィルムであっても、湿熱殺菌処理後にはやはりガスバリア性が劣化するため、依然として、湿熱殺菌処理後でもガスバリア性が劣化し難いガスバリア性が要望されている。
本発明は上記の背景技術に鑑みてなされたものであり、その目的は、湿熱殺菌処理後もガスバリア性が劣化し難いバリアフィルムを提供することにある。また、このようなバリアフィルムを用いて、レトルト包装製品用のバリア性に優れる包装材料を提供することにある。
本発明者らは、上記課題を解決するため、鋭意検討した結果、バリアコート層と、無機酸化物蒸着層と、基材層とをこの順に備えてなるバリアフィルムにおいて、バリアコート層の表面のX線光電子分光法(XPS)により測定される珪素原子と炭素原子の比(Si/C)を特定の範囲内に調節することにより、上記課題を解決できることを知見した。本発明は、かかる知見に基づいて完成されたものである。
すなわち、本発明の一態様によれば、
バリアコート層と、無機酸化物蒸着層と、基材層とをこの順に備えてなる、バリアフィルムであって、
前記バリアコート層が、アルコキシシランの加水分解生成物および水溶性高分子を含むバリアコート組成物の硬化膜であり、
前記バリアコート層の表面は、X線光電子分光法(XPS)により測定される珪素原子と炭素原子の比(Si/C)が、1.0以上2.5以下である、バリアフィルムが提供される。
本発明の上記の態様においては、前記バリアコート層の表面は、X線光電子分光法(XPS)により測定される珪素原子と炭素原子の比(Si/C)が、1.6以上2.3以下であることが好ましい。
本発明の上記の態様においては、前記バリアコート層の表面は、X線光電子分光法(XPS)により測定される珪素原子と炭素原子の比(Si/C)が、1.0以上1.6未満であることが好ましい。
本発明の上記の態様においては、前記無機酸化物蒸着層が、酸化アルミニウム蒸着膜または酸化珪素蒸着膜であることが好ましい。
本発明の上記の態様においては、前記バリアコート組成物が、シランカップリング剤をさらに含むことが好ましい。
本発明の上記の態様においては、前記基材層が、バイオマス由来のポリエステルフィルムであることが好ましい。
本発明の上記の態様においては、前記無機酸化物蒸着層が、酸化アルミニウム蒸着膜であり、
前記酸化アルミニウム蒸着膜中には、前記基材層の表面と前記酸化アルミニウム蒸着膜との剥離強度を規定する遷移領域が形成されており、
前記遷移領域は、飛行時間型二次イオン質量分析法(TOF-SIMS)を用いてエッチングを行うことで検出される、水酸化アルミニウムに変成する元素結合AlHを含み、
前記バリアコート層と前記酸化アルミニウム蒸着膜とをTOF-SIMSを用いてエッチングを行うことで規定される前記酸化アルミニウム蒸着膜に対する、TOF-SIMSを用いて規定される前記変成される前記遷移領域の割合により定義される遷移領域の変成率が、5%以上60%以下であることが好ましい。
本発明の上記の態様においては、前記バリアフィルムは、温度23℃および湿度90%RHの環境下でJIS K7126法に準拠して測定した酸透過度が、0.10cc/m・atm・day以下であることが好ましい。
本発明の上記の態様においては、前記バリアフィルムは、温度40℃および湿度100%RH%の環境下でJIS K7129法に準拠して測定した水蒸気透過度が、1.00g/m・day以下であることが好ましい。
本発明の別の態様によれば、上記のバリアフィルムを備えてなる、包装材料が提供される。
本発明の別の態様においては、前記包装材料は、ヒートシール層と、中間層と、前記バリアフィルムからなるバリア層とをこの順に備えてなることが好ましい。
本発明の別の態様においては、前記包装材料は、135℃で40分間の湿熱殺菌処理後に、温度23℃および湿度90%RHの環境下でJIS K7126法に準拠して測定した酸透過度が、0.50cc/m・atm・day以下であることが好ましい。
本発明の別の態様においては、前記包装材料は、135℃で40分間の湿熱殺菌処理後に、温度40℃および湿度100%RHの環境下でJIS K7129法に準拠して測定した水蒸気透過度が、1.20g/m・day以下であることが好ましい。
本発明の別の態様によれば、上記のバリアフィルムを備えてなる包装材料であって、
135℃で40分間の湿熱殺菌処理後に、JIS K6854-2に準拠して測定された前記基材層と前記酸化アルミニウム蒸着膜との常態剥離強度が1.0N以上であることが好ましい。
本発明の別の態様によれば、上記のバリアフィルムを備えてなる包装材料であって、135℃で40分間の湿熱殺菌処理後に、JIS K6854-2に準拠して測定された前記基材層と前記酸化アルミニウム蒸着膜との水付け剥離強度が1.0N以上であることが好ましい。
本発明の別の態様においては、前記包装材料が、レトルト包装製品用であることが好ましい。
本発明によれば、湿熱殺菌処理後でもガスバリア性が劣化し難いバリアフィルムを提供することができる。また、このようなバリアフィルムを用いて、レトルト包装製品用のバリア性に優れる包装材料を提供することができる。
本発明のバリアフィルムの一実施形態を示した概略断面図である。 酸化アルミニウム蒸着膜を備えるバリアフィルムの飛行時間型二次イオン質量分析法による分析結果のグラフ解析図である。 酸素プラズマ前処理および酸化アルミニウム蒸着膜の成膜を行う装置の一例を示す平面図である。 本発明の包装材料の一実施形態を示した概略断面図である。 剥離強度の測定方法の一例を示す図である。 剥離強度の測定方法の一例を示す図である。 剥離強度を測定するために2つのフィルムを引っ張る一対のつかみ具の間の間隔に対する引張応力の変化を示す図である。
<バリアフィルム>
本発明によるバリアフィルムは、バリアコート層と、無機酸化物蒸着層と、基材層とをこの順に備えてなる。このような層構成のバリアフィルムは、湿熱殺菌処理後でもガスバリア性が劣化し難いものとなる。このようなバリアフィルムは、湿熱殺菌処理後でもガスバリア性を要求されるレトルト包装製品用のバリア層として好適に使用することができる。
バリアフィルムは、温度23℃および湿度90%RHの環境下でJIS K7126法に準拠して測定した酸透過度が、好ましくは0.10cc/m・atm・day以下であり、より好ましくは0.08cc/m・atm・day以下であり、さらに好ましくは0.06cc/m・atm・day以下であり、さらにより好ましくは0.05cc/m・atm・day以下である。バリアフィルムの酸素透過度が上記数値範囲を満たせば、好適な酸素バリア性を有しているため、包装材料のバリア層として用いた場合に、包装材料の内容物に対する悪影響を抑制することができる。
バリアフィルムは、温度40℃および湿度100%RHの環境下でJIS K7129法に準拠して測定した水蒸気透過度が、好ましくは1.00g/m・day以下であり、より好ましくは0.70g/m・day以下であり、さらに好ましくは0.60g/m・day以下であり、さらにより好ましくは0.50g/m・day以下である。
バリアフィルムの水蒸気透過度が上記数値範囲を満たせば、好適な水蒸気バリア性を有しているため、包装材料のバリア層として用いた場合に、包装材料の内容物に対する悪影響を抑制することができる。
本発明のバリアフィルムの層構成を、図面を参照しながら説明する。図1に示すバリアフィルム11は、基材層12の一方の面上に無機酸化物蒸着層13を備え、無機酸化物蒸着層13上にバリアコート層14を備える。以下、本発明のバリアフィルムを構成する各層について説明する。
(基材層)
本発明のバリアフィルムにおいて使用される基材層としては、特に限定されないが、化学的ないし物理的強度に優れ、無機酸化物の蒸着膜を製膜化する条件等に耐え、また、その膜特性を損なうことなく良好に保持し得ることができる樹脂のフィルム(以下、基材フィルムとも称する)を使用することができる。具体的には、例えば、ポリエチレン系樹脂あるいはポリプロピレン系樹脂等のポリオレフィン系樹脂、環状ポリオレフィン系樹脂、ポリスチレン系樹脂、アクリロニトリル-スチレン共重合体(AS樹脂)、アクリロニトリル-ブタジエン-スチレン共重合体(ABS樹脂)、ポリ(メタ)アクリル系樹脂、ポリカーボネート系樹脂、ポリビニルアルコール系樹脂、エチレン-ビニルエステル共重合体ケン化物、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリエチレンフラノエート等のポリエステル系樹脂、各種のナイロン等のポリアミド系樹脂、ポリウレタン系樹脂、アセタール系樹脂、セルロース系樹脂等の各種の樹脂のフィルムを使用することができる。本発明においては、上記の樹脂のフィルムの中でも、特に、ポリエステル系樹脂、ポリオレフィン系樹脂、または、ポリアミド系樹脂のフィルムを使用することが好ましいものである。なお、基材層は、上記樹脂の未延伸フィルムや一軸方向または二軸方向に延伸した樹脂のフィルム等のいずれのものでも使用することができる。
ポリエステル系樹脂のフィルムとしては一般的な石化燃料由来のポリエチレンテレフタレート以外にも、以下のポリエステルフィルムを使用できる。
(ポリブチレンテレフタレートフィルム(PBT))
ポリブチレンテレフタレートフィルムは、熱変形温度が高く、機械的強度、電気的特性にすぐれ、成型加工性も良いことなどから、食品等の内容物を収容する包装袋に用いると、レトルト処理を施す際に包装袋が変形したり、その強度が低下したりすることを抑制することができる。ポリブチレンテレフタレートフィルムは、主成分としてポリブチレンテレフタレート(以下、PBTとも記す)を含むフィルムであり、好ましく、60質量%以上のPBTを含む樹脂フィルムである。
(バイオマス由来のポリエステルフィルム)
バイオマス由来のポリエステルフィルムは、ジオール単位とジカルボン酸単位とからなるポリエステルを主成分として含んでなる樹脂組成物からなり、前記樹脂組成物が、ジオール単位がバイオマス由来のエチレングリコールである。バイオマス由来のポリエステルフィルムは、ジカルボン酸単位が化石燃料由来のジカルボン酸であるポリエステルを、樹脂組成物全体に対して、好ましくは50~95質量%、より好ましくは50~90質量%含むものであってもよい。
バイオマス由来のエチレングリコールは、サトウキビ、トウモロコシ等のバイオマスを原料として製造されたエタノール(バイオマスエタノール)を原料としたものである。例えば、バイオマスエタノールを、従来公知の方法により、エチレンオキサイドを経由してエチレングリコールを生成する方法等により、バイオマス由来のエチレングリコールを得ることができる。また、市販のバイオマスエチレングリコールを使用してもよく、例えば、インディアグライコール社から市販されているバイオマスエチレングリコールを好適に使用することができる。
ポリエステルのジカルボン酸単位は、化石燃料由来のジカルボン酸を使用する。ジカルボン酸としては、芳香族ジカルボン酸、脂肪族ジカルボン酸、およびそれらの誘導体を使用することができる。芳香族ジカルボン酸としては、テレフタル酸およびイソフタル酸等が挙げられ、芳香族ジカルボン酸の誘導体としては、芳香族ジカルボン酸の低級アルキルエステル、具体的には、メチルエステル、エチルエステル、プロピルエステルおよびブチルエステル等が挙げられる。これらの中でも、テレフタル酸が好ましく、芳香族ジカルボン酸の誘導体としては、ジメチルテレフタレートが好ましい。
バイオマス由来のポリエステルフィルムを形成する樹脂組成物は、化石燃料由来のポリエステル、化石燃料由来のポリエステル製品のリサイクルポリエステル、バイオマス由来のポリエステル製品のリサイクルポリエステルを1種または2種以上含んでもよい。バイオマス由来のポリエステルフィルムを形成する樹脂組成物は、5~45質量%の割合で、化石燃料由来のポリエステル、化石燃料由来のポリエステル製品のリサイクルポリエステル、バイオマス由来のポリエステル製品のリサイクルポリエステルを1種または2種以上含んでもよい。
大気中の二酸化炭素には、14Cが一定割合(105.5pMC)で含まれているため、大気中の二酸化炭素を取り入れて成長する植物、例えばトウモロコシ中の14C含有量も105.5pMC程度であることが知られている。また、化石燃料中には14Cが殆ど含まれていないことも知られている。したがって、ポリエステル中の全炭素原子中に含まれる14Cの割合を測定することにより、バイオマス由来の炭素の割合を算出することができる。
本発明において、「バイオマス度」とは、バイオマス由来成分の重量比率を示すものである。PETを例にとると、PETは、2炭素原子を含むエチレングリコールと8炭素原子を含むテレフタル酸とがモル比1:1で重合したものであるため、エチレングリコールとしてバイオマス由来のもののみを使用した場合、PET中のバイオマス由来成分の重量比率は31.25%であるため、バイオマス度は31.25%となる(バイオマス由来のエチレングリコール由来の分子量/ポリエステルの重合1単位の分子量=60÷192)。
また、化石燃料由来のポリエステルのバイオマス由来成分の重量比率は0%であり、化石燃料由来のポリエステルのバイオマス度は0%となる。本発明において、基材層中のバイオマス度は、5.0%以上であることが好ましく、10.0%以上であることがより好ましい。また、基材層中のバイオマス度は、30.0%以下であることが好ましい。
(リサイクルポリエチレンテレフタレート)
メカニカルリサイクルによりリサイクルされたポリエチレンテレフタレートを含むポリエチレンテレフタレートフィルムで、具体的には、PETボトルをメカニカルリサイクルによりリサイクルしたPETを含み、このPETは、ジオール成分がエチレングリコールであり、ジカルボン酸成分がテレフタル酸およびイソフタル酸を含む。イソフタル酸成分の含有量は、PETを構成する全ジカルボン酸成分中に、0.5モル%以上5モル%以下であることが好ましく、1.0モル%以上2.5モル%以下であることがより好ましい。
ここで、メカニカルリサイクルとは、一般に、回収されたPETボトル等のポリエチレンテレフタレート樹脂製品を粉砕、アルカリ洗浄してPET樹脂製品の表面の汚れ、異物を除去した後、高温・減圧下で一定時間乾燥してPET樹脂の内部に留まっている汚染物質を拡散させ除染を行い、PET樹脂からなる樹脂製品の汚れを取り除き、再びPET樹脂に戻す方法である。
リサイクルポリエチレンテレフタレートは、リサイクルPETを50重量%以上95重量%以下の割合で含むことが好ましく、ヴァージンPETを含んでいてもよい。ヴァージンPETとしては、一般的なジオール成分がエチレングリコールであり、ジカルボン酸成分がテレフタル酸のもの、さらにおよびイソフタル酸を含むものであってもよい。
上記の各種の樹脂のフィルムとしては、例えば、上記の各種の樹脂の1種ないしそれ以上を使用し、押出法、キャスト成形法、Tダイ法、切削法、インフレーション法等の製膜化法を用いて、上記の各種の樹脂を単独で製膜化する方法、あるいは、2種以上の各種の樹脂を使用して多層共押し出し製膜化する方法、さらには、2種以上の樹脂を使用し、製膜化する前に混合して製膜化する方法等により、各種の樹脂のフィルムを製造し、さらに、要すれば、例えば、テンター方式、あるいは、チューブラー方式等を利用して1軸ないし2軸方向に延伸してなる各種の樹脂のフィルムを使用することができる。
各種の樹脂のフィルムの膜厚としては、好ましくは6~2000μm程度、より好ましくは9~100μm程度が望ましい。
上記の各種の樹脂の1種ないしそれ以上を使用し、その製膜化に際して、例えば、フィルムの加工性、耐熱性、耐候性、機械的性質、寸法安定性、抗酸化性、滑り性、離形性、難燃性、抗カビ性、電気的特性、強度等を改良、改質する目的で、種々のプラスチック配合剤や添加剤等を添加することができ、その添加量としては、極く微量から数十%まで、その目的に応じて、任意に添加することができる。
上記において、一般的な添加剤としては、例えば、滑剤、架橋剤、酸化防止剤、紫外線吸収剤、光安定剤、充填剤、補強剤、帯電防止剤、顔料等を使用することができ、さらには、改質用樹脂等も使用することができる。
本発明では、上記の基材層に無機酸化物蒸着膜を形成する前に、予め基材層に表面処理をおこなってもよい。これによって無機酸化物蒸着膜との接着性を向上させることができる。同様に、蒸着層上に表面処理を行い、ガスバリア性塗布膜との接着性を向上させることもできる。このような表面処理としては、コロナ放電処理、オゾン処理、酸素ガス若しくは窒素ガス等を用いた低温プラズマ処理、グロー放電処理、化学薬品等を用いて処理する酸化処理等の前処理等がある。
また、プライマーコート剤、アンダーコート剤、あるいは、蒸着アンカーコート剤等を任意に塗布し、表面処理とすることもできる。なお、前記コート剤としては、例えば、ポリエステル系樹脂、ポリアミド系樹脂、ポリウレタン系樹脂、エポキシ系樹脂、フェノール系樹脂、(メタ)アクリル系樹脂、ポリ酢酸ビニル系樹脂、ポリエチレンあるいはポリプロピレン等のポリオレフィン系樹脂あるいはその共重合体ないし変性樹脂、セルロース系樹脂等をビヒクルの主成分とする樹脂組成物を使用することができる。
このような表面処理の中でも、特に、コロナ処理やプラズマ処理を行うことが好適である。例えばプラズマ処理としては、気体をアーク放電により電離させることにより生じるプラズマガスを利用して表面改質を行なうプラズマ処理がある。プラズマガスとしては、酸素ガス、窒素ガス、アルゴンガス、ヘリウムガス等の無機ガスを使用することができる。例えば、インラインでプラズマ処理を行うことにより、基材層の表面の水分、塵等を除去すると共にその表面の平滑化、活性化等の表面処理を可能とすることができる。また、蒸着後にプラズマ処理を行い、接着性を向上させることもできる。本発明では、プラズマ処理としては、プラズマ出力、プラズマガスの種類、プラズマガスの供給量、処理時間、その他の条件を考慮してプラズマ放電処理を行うことが好ましい。また、プラズマを発生する方法としては、直流グロー放電、高周波放電、マイクロ波放電等の装置を使用することができる。また、大気圧プラズマ処理法によりプラズマ処理を行なうこともできる。
(無機酸化物蒸着層)
本発明によるバリアフィルムを構成する蒸着層は、化学気相成長法(CVD法)または物理気相成長法(PVD法)により形成される無機酸化物の蒸着膜である。
無機酸化物は特に限定されるものではないが、珪素、アルミニウム、マグネシウム、カルシウム、カリウム、スズ、ナトリウム、ホウ素、チタン、鉛、ジルコニウム、イットリウム等の酸化物の蒸着膜を使用することができる。特に、無機酸化物蒸着層は、酸化アルミニウムまたは酸化珪素の蒸着膜であることが好ましく、酸化アルミニウムの蒸着膜であることがより好ましい。無機酸化物の表記は、例えば、AlO、SiO等のようにMO(ただし、式中、Mは無機元素を表し、Xの値は無機元素によってそれぞれ範囲がことなる。)で表される。本発明においては、透明性やガスバリア性の観点から、Mがアルミニウム(Al)の場合、Xの値は好ましくは0.5~2.0であり、Mが珪素(Si)の場合、Xの値は好ましくは1~2である。
無機酸化物蒸着層としては、蒸着材料としての扱いやすさから、物理気相成長法により、酸化アルミニウム蒸着膜を設けることが好ましい。物理気相成長法により形成される酸化アルミニウム蒸着膜は、ガスバリア性塗布膜表面との接着性に優れる。物理気相成長法としては、例えば、真空蒸着法、スパッタリング法、イオンプレーティング法、イオンクラスタービーム法等の物理気相成長法(Physical Vapor Deposition法、PVD法)が挙げられる。
具体的には、アルミニウムまたはその酸化物を原料とし、これを加熱して蒸気化し、これを基材層の一方の上に蒸着する真空蒸着法、例えば、原料としてアルミニウムまたはその酸化物を使用し、酸素を導入して酸化させて基材層の一方の上に蒸着する酸化反応蒸着法、さらに酸化反応をプラズマで助成するプラズマ助成式の酸化反応蒸着法等を用いて蒸着膜を形成することができる。なお、蒸着材料の加熱方式としては、例えば、抵抗加熱方式、高周波誘導加熱方式、エレクトロンビーム加熱方式(EB)等にて行うことができる。
また、無機酸化物蒸着層が酸化珪素蒸着膜の場合、耐屈曲性やガスバリア性の観点から、化学気相成長法により、酸化珪素蒸着膜を設けることが好ましい。化学気相成長法としては、例えば、プラズマ化学気相成長法、低温プラズマ化学気相成長法、熱化学気相成長法、光化学気相成長法等の化学気相成長法(Chemical Vapor Deposition法、CVD法)等がある。具体的には、基材層の一方の面に、有機珪素化合物等の蒸着用モノマーガスを原料とし、キャリヤーガスとして、アルゴンガス、ヘリウムガス等の不活性ガスを使用し、さらに、酸素供給ガスとして、酸素ガス等を使用し、低温プラズマ発生装置等を利用する低温プラズマ化学気相成長法を用いて酸化珪素蒸着膜を形成することができる。低温プラズマ発生装置としては、例えば、高周波プラズマ、パルス波プラズマ、マイクロ波プラズマ等の発生装置を使用することができる。高活性の安定したプラズマが得られる点で、高周波プラズマ方式による発生装置を使用することが好ましい。
酸化珪素蒸着膜を形成する有機珪素化合物の蒸着用モノマーガスとしては、例えば、1,1,3,3-テトラメチルジシロキサン、ヘキサメチルジシロキサン、ビニルトリメチルシラン、メチルトリメチルシラン、ヘキサメチルジシラン、メチルシラン、ジメチルシラン、トリメチルシラン、ジエチルシラン、プロピルシラン、フェニルシラン、ビニルトリエトキシシラン、ビニルトリメトキシシラン、テトラメトキシシラン、テトラエトキシシラン、フェニルトリメトキシシラン、メチルトリエトキシシラン、オクタメチルシクロテトラシロキサン等を使用することができる。これらの中でも、1,1,3,3-テトラメチルジシロキサン、または、ヘキサメチルジシロキサンを原料として使用することが、その取り扱い性、形成された連続膜の特性等から、特に好ましい。なお、上記において、不活性ガスとしては、例えば、アルゴンガス、ヘリウムガス等を使用することができる。
酸化珪素の蒸着膜は、酸化珪素を主体とするものであるが、さらに、炭素、水素、珪素または酸素の1種類または2種類以上の元素からなる化合物の少なくとも1種類を化学結合等により含有してもよい。例えば、C-H結合を有する化合物、Si-H結合を有する化合物、または、炭素単位がグラファイト状、ダイヤモンド状、フラーレン状等になっている場合、さらに、原料の有機珪素化合物やそれらの誘導体を化学結合等によって含有する場合がある。例えば、CH部位を持つハイドロカーボン、SiHシリル、SiHシリレン等のハイドロシリカ、SiHOHシラノール等の水酸基誘導体等を挙げることができる。なお、上記以外でも、蒸着過程の条件等を変化させることにより、酸化珪素蒸着膜中に含有される化合物の種類、量等を変化させることができる。
無機酸化物蒸着層の膜厚は、好ましくは3~50nm、より好ましくは8~30nm、さらに好ましくは9~14nmである。無機酸化物蒸着層の膜厚が上記範囲内であれば、湿熱殺菌処理後でもガスバリア性が劣化し難いものとなる。
本発明の好ましい実施形態において、無機酸化物蒸着層は、酸化アルミニウム蒸着膜であり、酸化アルミニウム蒸着膜中には、基材層の表面と酸化アルミニウム蒸着膜との剥離強度を規定する遷移領域が形成されており、該遷移領域は、飛行時間型二次イオン質量分析法(TOF-SIMS)を用いてエッチングを行うことで検出される、水酸化アルミニウムに変成する元素結合AlHを含み、バリアコート層と酸化アルミニウム蒸着膜とをTOF-SIMSを用いてエッチングを行うことで規定される酸化アルミニウム蒸着膜に対する、TOF-SIMSを用いて規定される該変成される該遷移領域の割合により定義される遷移領域の変成率が、5%以上60%以下である。これにより、135℃、40分間の湿熱殺菌処理(ハイレトルト処理)後、または121℃、40分間の湿熱殺菌処理(セミレトルト処理)後における、バリアフィルムの基材層と酸化アルミニウム蒸着膜との界面の常態密着性および耐水密着性を向上することができ、ガスバリア性がより劣化し難いものとすることができる。遷移領域の変成率は、5%以上45%以下であることが好ましく、5%以上30%以下であることがより好ましい。
遷移領域は、飛行時間型二次イオン質量分析法(TOF-SIMS)を用いてエッチングを行うことで検出される水酸化アルミニウムに変成する元素結合AlHを含み、TOF-SIMSを用いてエッチングを行うことで規定される酸化アルミニウム蒸着膜に対する、TOF-SIMSを用いて規定される。
二次イオン質量分析(SIMS:secondary Ion MassSpectrometry)は、一次イオンビームを被分析試料表面に照射して、試料表面からスパッタリングされて放出される二次イオンを質量分析する元素濃度分布の分析方法である。この二次イオン質量分析法では、スパッタリングを進行させつつ二次イオン強度を検出する。従って、二次イオン、即ち被検出元素イオンまたは被検出元素と結合した分子イオンのイオン強度の時間推移のデータに対して、推移時間を深さに換算することで、試料表面の深さ方向の被検出元素の濃度分布を知ることができる。
推移時間の深さへの換算は、一次イオンの照射により試料表面に形成された窪みの深さを表面粗さ計を用いて測定し、この窪みの深さと推移時間とから平均スパッタ速度を算出し、スパッタ速度が一定であるとの仮定の下に、照射時間(即ち、推移時間)を深さ(スパッタ量)に換算することでなされている。
バリフィルムの酸化アルミニウム蒸着膜に対し、Cs(セシウム)イオン銃により上記した一定の速度でソフトエッチングを繰り返しながら、飛行時間型二次イオン質量分析法(TOF-SIMS)を用いて、酸化アルミニウム蒸着膜由来のイオンと、基材層に由来するイオンを測定することにより、基材層表面と形成された酸化アルミニウム蒸着膜を主体する蒸着膜との間に剥離強度を規定する遷移領域が形成されている。該遷移領域は、飛行時間型二次イオン質量分析法(TOF-SIMS)を用いてエッチングを行うことで検出される水酸化アルミニウムに変成する元素結合AlHを含み、飛行時間型二次イオン質量分析法(TOF-SIMS)を用いてエッチングを行うことで規定される酸化アルミニウム蒸着膜に対する、飛行時間型二次イオン質量分析法を用いて規定される該変成される遷移領域の割合により定義される水酸化アルミニウムに変成する遷移領域の変成率を規定することで常態密着性および耐水密着性が向上したバリア性を備えるバリアフィルムを特定できる。
具体的には、飛行時間型二次イオン質量分析計を用いてCsにより、酸化アルミニウム蒸着膜の最表面からエッチングを行い、酸化アルミニウム蒸着膜と基材層との界面の元素結合および蒸着膜の元素結合を測定し、測定された元素および元素結合について、それぞれの実測グラフを得(図2:グラフ解析図)、酸化アルミニウム蒸着膜における水酸化アルミニウムが形成する基材層と蒸着膜の界面の遷移領域を極力狭くするために、元素結合AlHに注目し、1)元素Cのグラフの強度が半分になる位置を、基材層と酸化アルミニウムの界面として、表面から界面までを酸化アルミニウム蒸着膜として求め、2)元素結合AlHを表すグラフにおけるピークを求め、そのピークから界面までを遷移領域とし、求め、3)(元素結合AlHのピークから界面までの遷移領域/酸化アルミニウム蒸着膜)×100(%)として遷移領域の水酸化アルミニウムへの変成率を求めるものである。
一実施形態において、酸化アルミニウム蒸着膜の成膜は、基材層の表面に、以下で説明するプラズマ前処理装置を用いた酸素プラズマ前処理を行うことが好ましい。これにより、上記遷移領域の変成率を有する酸化アルミニウム蒸着膜の形成することができ、基材層と酸化アルミニウム蒸着膜との常態密着性および耐水密着性を向上させることができる。酸素プラズマ処理は、基材層に垂直にバイアス電圧を持った状態で行う酸素プラズマ処理である。酸素プラズマ前処理は、各種樹脂のフィルムまたはシートと酸化アルミニウム蒸着膜との常態密着性および耐水密着性をより強化、改善するための前処理であって、次のような装置において実施することができる。
酸化アルミニウム蒸着膜を有するバリアフィルムの製造に好適に用いられるローラー式連続蒸着膜成膜装置20は、図3に示すように、減圧チャンバ22内に隔壁45a~45cが形成されている。該隔壁45a~45cにより、基材搬送室22A、プラズマ前処理室22B、成膜室22Cが形成され、特に、隔壁と隔壁45a~45cで囲まれた空間としてプラズマ前処理室22Bおよび成膜室22Cが形成され、各室は、必要に応じて、さらに内部に排気室が形成される。
プラズマ前処理室22B内には、前処理が行われる基材フィルムSを搬送し、かつプラズマ処理を可能にするプラズマ前処理ローラー30の一部が基材搬送室22Aに露出するように設けられており、基材フィルムSは巻き取られながらプラズマ前処理室22Bに移動するようになっている。
プラズマ前処理室22Bおよび成膜室22Cは、基材搬送室22Aと接して設けられており、基材フィルムSを大気に触れさせないままに移動可能である。また、前処理室22Bと基材搬送室22Aの間は、矩形の穴により接続されており、その矩形の穴を通じてプラズマ前処理ローラー30の一部が基材搬送室22A側に飛び出しており、該搬送室の壁と該前処理ローラー30の間に隙間が開いており、その隙間を通じて基材フィルムSが基材搬送室22Aから成膜室22Cへ移動可能である。基材搬送室22Aと成膜室22Cとの間も同様の構造となっており、基材フィルムSを大気に触れさせずに移動可能である。
基材搬送室22Aは、成膜ローラー33により再度基材搬送室22Aに移動させられた、片面に蒸着膜が成膜された基材フィルムSをロール状に巻き取るため、巻取り手段としての巻き取りローラーが設けられ、蒸着膜を成膜された基材フィルムSを巻き取り可能とするようになっている。
酸化アルミニウム蒸着膜を有するバリアフィルムを製造する際、前記プラズマ前処理室22Bは、プラズマが生成する空間を他の領域と区分し、対向空間を効率よく真空排気できるように構成されることで、プラズマガス濃度の制御が容易となり、生産性が向上する。その減圧して形成する前処理圧力は、0.1Pa~100Pa程度に設定、維持することができ、特に、酸化アルミニウム蒸着膜の好ましい遷移領域の変成率とするため酸素プラズマ前処理の処理圧力としては、1~20Paが好ましい。
基材フィルムSの搬送速度は、特に限定されないが、生産効率の観点から、少なくとも200~1000m/minにすることができ、特に、酸化アルミニウム蒸着膜の遷移領域の変成率とするため酸素プラズマ前処理の搬送速度としては、300~800m/minが好ましい。
プラズマ前処理装置を構成するプラズマ前処理ローラー30は、基材フィルムSがプラズマ前処理手段によるプラズマ処理時の熱による基材の収縮や破損を防ぐこと、酸素プラズマPを基材フィルムSに対して均一にかつ広範囲に適用することを目的とするものである。
前処理ローラー30は、前処理ローラー内を循環させる温度調節媒体の温度を調整することにより、-20℃から100℃の間で、一定温度に調節することが可能であることが好ましい。
プラズマ前処理手段は、プラズマ供給手段および磁気形成手段を含むものである。プラズマ前処理手段はプラズマ前処理ローラー30と協働し、基材フィルムS表面近傍に酸素プラズマPを閉じ込める。
プラズマ前処理手段は、前処理ローラー30の一部を覆うように設けられている。具体的には、前処理ローラー30の外周近傍の表面に沿ってプラズマ前処理手段を構成するプラズマ供給手段と磁気形成手段を配置して、前処理ローラー30とプラズマ原料ガスを供給するとともにプラズマPを発生させる電極ともなるプラズマ供給ノズル32a~32cとプラズマPの発生を促進するためマグネット31等を有する磁気形成手段とにより挟まれた空隙を形成するように設置する。
それにより、該空隙の空間にプラズマ供給ノズル32a~32cを開口させてプラズマを基材表面に向かって噴射し、該空隙内をプラズマ形成領域とし、さらに、前処理ローラー30と基材フィルムSの表面近傍にプラズマ密度の高い領域を形成することで、基材フィルムSの片面にプラズマ処理面を形成する酸素プラズマ前処理が行えるように構成されている。
プラズマ前処理手段のプラズマ供給手段は、減圧チャンバ22の外部に設けたプラズマ供給ノズルに接続された原料揮発供給装置28と、該装置から原料ガス供給を供給する原料ガス供給ラインを含むものである。供給されるプラズマ原料ガスは、酸素単独または酸素ガスと不活性ガスとの混合ガスが、ガス貯留部から流量制御器を介することでガスの流量を計測しつつ供給される。不活性ガスとしては、アルゴン、ヘリウム、窒素なる群から選ばれる、1種または2種以上の混合ガスが挙げられる。プラズマ原料ガスとして酸素ガスと不活性ガスとの混合ガスが用いられる場合、基材フィルムと酸化アルミニウム蒸着膜との常態密着性および耐水密着性の観点から、酸素分圧が不活性ガスの分圧よりも高い混合ガスを用いることが好ましい。
これら供給されるガスは、必要に応じて所定の比率で混合されて、プラズマ原料ガス単独またはプラズマ形成用混合ガスに形成され、プラズマ供給手段に供給される。その単独または混合ガスは、プラズマ供給手段のプラズマ供給ノズル32a~32cに供給され、プラズマ供給ノズル32a~32cの供給口が開口する前処理ローラー30の外周近傍に供給される。
そのノズル開口は前処理ローラー30上の基材フィルムSに向けられ、基材フィルムSの表面全体に均一に酸素プラズマPを拡散、供給させることが可能となるように配置、構成され、基材フィルムSの大面積の部分に均一なプラズマ前処理が可能となる
酸化アルミニウム蒸着膜の遷移領域の変成率とするため酸素プラズマ前処理としては、酸素ガスと前記不活性ガスとの混合比率、酸素ガス/不活性ガスは、1/1~6/1が好ましく、3/2.5~3/1がより好ましい。
混合比率を1/1~6/1とすることで、基材フィルム上での蒸着アルミニウムの膜形成エネルギーが増加し、さらに3/2.5~3/1とすることで、水酸化アルミニウムの形成が基材の界面近傍で形成される、すなわち該遷移領域の変成率が低下する。また、混合比率を3/2.5~3/1とすることで、プラズマ放電を安定させることができる。
前記プラズマ供給ノズル32a~32cは、前処理ローラー30の対向電極として機能するもので、電極機能を有するようにできているものであり、前処理ローラー30との間に供給される高周波電圧、低周波電圧等による電位差によって供給されたプラズマ原料ガスが励起状態になり、プラズマPが発生し、供給される。
具体的には、プラズマ前処理手段のプラズマ供給手段は、プラズマ電源としてプラズマ前処理ローラーを設置し、対向電極との間に周波数が10Hzから2.5GHzの交流電圧を印加し、投入電力制御または、インピーダンス制御等を行い、プラズマ前処理ローラー30との間に任意の電圧を印加した状態にすることができるものであり、基材の表面物性を物理的ないしは化学的に改質する処理ができる酸素プラズマPを正電位にするバイアス電圧を印加できる電源42を備えている。
本発明で採用する単位面積あたりのプラズマ強度として50~8000W・sec/m2であり、50W・sec/m未満では、プラズマ前処理の効果がみられず、また、8000W・sec/mを超えると、基材の消耗、破損着色、焼成等プラズマによる基材の劣化が起きる傾向にある。特に、酸化アルミウム蒸着膜の遷移領域の変成率とするため酸素プラズマ前処理のプラズマ強度としては、100~500W・sec/mが好ましい。基材フィルムに垂直にバイアス電圧を持ち上記プラズマ強度を与えることにより、安定的に酸化アルミニウム蒸着膜との常態密着性および耐水密着性を従来法より強化される。
プラズマ前処理手段は、磁気形成手段を有している。磁気形成手段として、マグネットケース内に絶縁性スペーサ、ベースプレートが設けられ、このベースプレートにマグネット31が設けられる。マグネットケースに絶縁性シールド板が設けられ、この絶縁性シールド板に電極が取り付けられる。
したがって、マグネットケースと電極は電気的に絶縁されており、マグネットケースを減圧チャンバ22内に設置、固定しても電極は電気的にフローティングレベルとすることが可能である。
電極には電力供給配線41が接続され、電力供給配線41は電源42に接続される。また、電極内部には電極およびマグネット31の冷却のための温度調節媒体配管が設けられる。
マグネット31は、電極兼プラズマ供給手段であるプラズマ供給ノズル32a~32cからの酸素プラズマPが基材フィルムSに集中して適用するために設けられる。マグネット31を設けることにより、基材表面近傍での反応性が高くなり、良好なプラズマ前処理面を高速で形成することが可能となる。
マグネット31は、基材フィルムSの表面位置での磁束密度が10ガウスから10000ガウスである。基材フィルムS表面での磁束密度が10ガウス以上であれば、基材表面近傍での反応性を十分高めることが可能となり、良好な前処理面を高速で形成することができる。
電極のマグネット31の配置構造によりプラズマ前処理時に形成されるイオン、電子がその配置構造に従って運動するため、例えば、1m以上の大面積の基材フィルムSに対してプラズマ前処理をする場合においても電極表面全体にわたり、電子やイオン、基材の分解物が均一に拡散され、基材フィルムSが大面積の場合にも所望のプラズマ強度で、均一かつ安定した目的の前処理が可能となるものである。
次に、特殊酸化プラズマ処理された基材フィルムSは、次の成膜室22Cに導くためのガイドロール24a~24dにより基材搬送室22Aから成膜室22Cに移動し、成膜区画で酸化アルミニウム蒸着膜が形成される。酸化アルミニウム蒸着膜の製膜について、以下説明する。
減圧された成膜室22C内に配置され、プラズマ前処理装置で前処理された基材フィルムSの処理面を外側にして基材フィルムSを巻きかけて搬送し、成膜処理する成膜ローラー33と、該成膜ローラーに対向して配置された成膜源34のターゲットを蒸発させて基材フィルム表面に蒸着膜を成膜する。
蒸着膜成膜手段34は抵抗加熱方式であり、アルミニウムを蒸発源としてアルミニウムの金属線材を用い、酸素を供給ししてアルミニウム蒸気を酸化しつつ、基材フィルムSの表面に酸化アルミニウム蒸着膜を成膜させる。
一実施形態においては、舟形(「ボートタイプ」という)蒸着容器に、ローラー33の軸方向にアルミニウムの金属線材を複数配置し、抵抗加熱式により加熱する。このようにすることで、供給される熱、熱量を抑えてアルミニウムの金属材料を蒸発させることができ、基材フィルムSの熱的変形性を極力抑えながら酸化アルミニウム蒸着膜を成膜することができる。
一実施形態において、内容物のハイレトルト処理を行う包装材料の用途では、酸素ガスと不活性ガスとの混合比率を3/2.5~3/1、前処理圧力を1~20Pa、およびプラズマ強度を100~500W・sec/mとして酸素プラズマ前処理を行い、さらに、無機酸化物蒸着層の厚さを9~14nmとすることが特に好ましい。これにより、バリアフィルムの基材層と酸化アルミニウム蒸着膜との界面の常態密着性および耐水密着性をより向上することができ、ガスバリア性がより劣化し難いものとすることができる。
(バリアコート層)
本発明によるバリアフィルムを構成するバリアコート層は、ガスバリア性を有する層であり、アルコキシシランの加水分解生成物および水溶性高分子を含むバリアコート組成物の硬化膜であり、バリアコート組成物はシランカップリング剤をさらに含んでもよい。本発明においては、バリアコート層表面において、X線光電子分光法(XPS)により測定される珪素原子と炭素原子の比(Si/C)を、1.0以上2.5以下に調節することで、優れたバリア性能を実現できる。Si/Cが1.0未満であると、アルコキシシランの加水分解生成物および水溶性高分子を含むバリアコート組成物の硬化膜において、アルコキシシランの加水分解生成物に対して水溶性高分子の割合が多いために、135℃で40分間の湿熱殺菌処理によって、水溶性高分子の膨潤劣化をアルコキシシランの脱水縮合物で抑制することができなくなるため、水蒸気バリア性が劣化する恐れがある。また、Si/Cが2.5を超えると、水溶性高分子に対してアルコキシシランの加水分解生成物の割合が多いために、膜が疎になって脆くなり、膜にクラックを生じたり、バリア性が劣ったりする恐れがある。
また、本発明の一態様においては、バリアコート層表面において、X線光電子分光法(XPS)により測定される珪素原子と炭素原子の比(Si/C)を、好ましくは1.6以上2.3以下に、より好ましくは1.7以上2.2以下に調節することで、包装材料の湿熱殺菌処理(レトルト処理)後であっても、優れた水蒸気バリア性を実現することができる。
また、本発明の別の態様においては、バリアコート層表面において、X線光電子分光法(XPS)により測定される珪素原子と炭素原子の比(Si/C)を、好ましくは1.0以上1.6未満に、より好ましくは1.1以上1.5以下に調節することで、バリアフィルムの引張試験後であっても、優れた酸素バリア性を実現することができる。
バリアコート層は、例えば、下記のガスバリア性塗布膜により形成することができる。
ガスバリア性塗布膜は、高温多湿環境下でのガスバリア性を保持する塗膜であり、一般式R Si(OR(ただし、式中、R、Rは、炭素数1~8の有機基を表し、nは、0以上の整数を表し、mは、1~4の整数を表し、n+mは、4である。)で表される少なくとも1種以上のアルコキシシランと、水溶性高分子とを含有し、さらに、ゾルゲル法触媒、酸、水、および、有機溶剤の存在下に、ゾルゲル法によって重縮合してなるバリアコート組成物からなる塗布膜である。
上記一般式R Si(OR中、Rとしては、分岐を有していてもよい炭素数1~8、好ましくは1~5、より好ましくは1~4のアルキル基であり、例えば、メチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、i-ブチル基、sec-ブチル基、t-ブチル基、n-ヘキシル基、n-オクチル基等を挙げることができる。
上記一般式R Si(OR中、Rとしては、分岐を有していてもよい炭素数1~8、より好ましくは1~5、特に好ましくは1~4のアルキル基であり、例えば、メチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、sec-ブチル基等を挙げることができる。なお、同一分子中に複数の(OR)が存在する場合には、(OR)は同一であっても、異なってもよい。
上記一般式R Si(ORで表されるアルコキシシランとしては、アルコキシシランの部分加水分解生成物、アルコキシシランの加水分解縮合物の少なくとも1種以上を使用することができ、また、上記アルコキシシランの部分加水分解生成物としては、アルコキシ基のすべてが加水分解されるものに限定されず、1個以上が加水分解されているもの、および、その混合物であってもよく、さらに、加水分解の縮合物としては、部分加水分解アルコキシドの2量体以上のもの、具体的には、2~6量体のものを使用してもよい。
本発明では、上記一般式R Si(ORで表されるアルコキシシランを好適に使用することができる。好適なアルコキシシランとしては、例えば、テトラメトキシシランSi(OCH、テトラエトキシシランSi(OC、テトラプロポキシシランSi(OC、テトラブトキシシランSi(OC、メチルトリメトキシシランCHSi(OCH、メチルトリエトキシシランCHSi(OC、ジメチルジメトキシシラン(CHSi(OCH、ジメチルジエトキシシラン(CHSi(OC等が挙げられる。本発明において、これらのアルコキシシランの縮重合物も使用することができ、具体的には、例えば、ポリテトラメトキシシラン、ポリテトラエメトキシシラン等を使用することができる。
本発明で使用する水溶性高分子は、ポリビニルアルコール系樹脂、またはエチレン・ビニルアルコ一ル共重合体を単独で各々使用することができ、あるいは、ポリビニルアルコ一ル系樹脂およびエチレン・ビニルアルコール共重合体を組み合わせて使用することができる。本発明では、ポリビニルアルコール系樹脂および/またはエチレン・ビニルアルコール共重合体を使用することにより、ガスバリア性、耐水性、耐候性、その他等の物性を著しく向上させることができる。
ポリビニルアルコ一ル系樹脂としては、一般に、ポリ酢酸ビニルをケン化して得られるものを使用することができる。ポリビニルアルコール系樹脂としては、酢酸基が数十%残存している部分ケン化ポリビニルアルコール系樹脂でも、酢酸基が残存しない完全ケン化ポリビニルアルコールでも、OH基が変性された変性ポリビニルアルコール系樹脂でもよく、特に限定されるものではない。
エチレン・ビニルアルコール共重合体としては、エチレンと酢酸ビニルとの共重合体のケン化物、すなわち、エチレン-酢酸ビニルランダム共重合体をケン化して得られるものを使用することができる。例えば、酢酸基が数十モル%残存している部分ケン化物から、酢酸基が数モル%しか残存していないかまたは酢酸基が残存しない完全ケン化物まで含み、特に限定されるものではない。ただし、ガスバリア性の観点から好ましいケン化度は、80モル%以上、より好ましくは、90モル%以上、さらに好ましくは、95モル%以上であるものを使用することが好ましい。なお、上記エチレン・ビニルアルコール共重合体中のエチレンに由来する繰り返し単位の含量(以下「エチレン含量」ともいう)は、通常、0~50モル%、好ましくは、20~45モル%であるものことが好ましい。
また、上記のバリアコート組成物にシランカップリング剤を添加してもよい。例えば、メトキシ基、エトキシ基のようなアルコキシ基、アセトキシ基、アミノ基、エポキシ基等の反応基を有するシランカップリング剤が使用できる。より具体的には、シランカップリング剤としては、3-グリシドキシプロピルメチルジメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、3-グリシドキシプロピルメチルトリエトキシシラン等が挙げられる。
さらに、上記のバリアコート組成物に用いられる有機溶媒としては、例えば、メチルアルコール、エチルアルコール、n-プロピルアルコール、イソプロピルアルコール、n-ブタノール等を用いることができる。なお、上記ポリビニルアルコール系樹脂および/またはエチレン・ビニルアルコール共重合体は、上記アルコキシドやシランカップリング剤等を含む塗工液中で溶解した状態で取り扱われることが好ましく、上記有機溶媒の中から適宜選択することができる。例えば、ポリビニルアルコール系樹脂とエチレン・ビニルアルコール共重合体とを組み合わせて使用する場合には、n-ブタノールを使用することが好ましい。
バリアコート層は、以下の方法で製造することができる。まず、上記アルコキシシラン、水溶性高分子、必要に応じてシランカップリング剤、ゾルゲル法触媒、酸、水、有機溶媒等を混合し、バリアコート組成物(バリアコート液)を調製する。
次いで、該バリアコート組成物を上記第1の無機酸化物蒸着層の上に塗布する。バリアコート組成物を塗布する方法としては、例えば、グラビアロールコーター等のロールコート、スプレーコート、スピンコート、ディッピング、刷毛、バーコード、アプリケータ等の塗布手段により、1回あるいは複数回の塗布で塗布膜を形成することができる。
次いで、上記バリアコート組成物を塗布したフィルムを20℃~200℃、かつ蒸着フィルムの融点以下の温度、好ましくは、50℃~180℃の範囲の温度で、3秒~10分間加熱・乾燥する。これによって、重縮合が行われ、バリアコート層を形成することができる。また、上記バリアコート組成物を上記第1の無機酸化物蒸着層の上に重ねて塗布して塗布膜を2層以上重層し、20℃~200℃、かつ、上記樹脂基材の融点以下の温度で3秒~10分間加熱乾燥処理して、ガスバリア性塗布膜を2層以上重層した複合ポリマー層を形成してもよい。以上により、上記バリアコート組成物によるバリアコート層を1層ないし2層以上形成することができる。
バリアコート層の厚さは、好ましくは10~5000nm、より好ましくは50~1000nmであり、さらに好ましくは100~500nmである。バリアコート層の厚さが上記範囲程度であれば、割れずに蒸着膜表面を被覆することができる。
<包装材料>
本発明による包装材料は、ヒートシール層と、中間層と、上記のバリアフィルムからなるバリア層とをこの順に備えてなる。本発明の包装材料はこのような層構成であるため、湿熱殺菌処理後でもガスバリア性が劣化し難い。そのため、本発明の包装材料は、湿熱殺菌処理後でもガスバリア性を要求されるレトルト包装製品用の包装材料として好適に用いることができる。
本発明の包装材料の層構成を、図面を参照しながら説明する。図4に示す包装材料50は、最外層側から順に、基材層52(最外層)、無機酸化物蒸着層53、およびバリアコート層54を有するバリア層51(バリアフィルム)を備え、バリア層51のバリアコート層54側(内側)に、中間層55と、ヒートシール層56(最内層)とをこの順に備える。また、バリアコート層54と中間層55の間、中間層55とヒートシール層56の間には、それぞれ接着層(図示せず)が存在していてもよい。
包装材料は、135℃で40分間の湿熱殺菌処理後に、温度23℃および湿度90%RHの環境下でJIS K7126法に準拠して測定した酸透過度が、好ましくは0.50cc/m・atm・day以下であり、より好ましくは0.25cc/m・atm・day以下であり、さらに好ましくは0.20cc/m・atm・day以下である。包装材料は、湿熱殺菌処理後の酸素透過度が上記数値範囲を満たせば、好適な酸素バリア性を有しているため、レトルト包装製品であっても包装材料の内容物に対する悪影響を抑制することができる。
包装材料は、135℃で40分間の湿熱殺菌処理後に、温度40℃および湿度100%RHの環境下でJIS K7129法に準拠して測定した水蒸気透過度が、好ましくは1.20g/m・day以下であり、より好ましくは1.00g/m・day以下であり、さらに好ましくは0.70g/m・day以下であり、さらにより好ましくは0.50g/m・day以下であり、特に好ましくは0.40g/m・day以下である。包装材料は、湿熱殺菌処理後の水蒸気透過度が上記数値範囲を満たせば、好適な水蒸気バリア性を有しているため、レトルト包装製品であっても包装材料の内容物に対する悪影響を抑制することができる。
上記特殊酸素プラズマ前処理が行われたバリアフィルムを備える包装材料は、135℃で40分間の湿熱殺菌処理後に、JIS K6854-2に準拠して測定された基材層と酸化アルミニウム蒸着膜との常態剥離強度が、好ましくは1.0N以上であり、より好ましくは2.0N以上である。本発明における常態剥離強度は、以下の方法によって測定されたものである。
引張試験機としては、株式会社オリエンテック社製のテンシロン万能材料試験機を用いる。まず、図5に示すように、例えば、基材層52側と、ヒートシール層56側(例えば、無機酸化物蒸着層53、バリアコート層54、中間層55およびヒートシール層56)とを長辺方向において15mm剥離させた状態の矩形状の試験片60を準備する。試験片60の幅(短辺の長さ)は15mmとする。その後、図6に示すように、基材層52側およびヒートシール層56側のうち既に剥離されている部分をそれぞれ、測定器のつかみ具61およびつかみ具62で把持する。また、つかみ具61,62をそれぞれ、基材層52側とヒートシール層56側とがまだ積層されている部分の面方向に対して直交する方向において互いに逆向きに(180°剥離:T字剥離法)、50mm/分の速度で引っ張り、安定領域(図7参照)における引張応力の平均値を測定する。引っ張りを開始する際の、つかみ具61,62間の間隔Sは30mmとし、引っ張りを終了する際の、つかみ具61,62間の間隔Sは60mmとする。図7は、つかみ具61,62間の間隔Sに対する引張応力の変化を示す図である。図7に示すように、間隔Sに対する引張応力の変化は、第1領域を経て、第1領域よりも変化率の小さい第2領域(安定領域)に入る。安定領域における引張応力の平均値を測定し、その値をバリアフィルムの基材層と酸化アルミウム蒸着膜との剥離強度とする。
上記特殊酸素プラズマ前処理が行われたバリアフィルムを備える包装材料は、135℃で40分間の湿熱殺菌処理後に、JIS K6854-2に準拠して測定された基材層と酸化アルミニウム蒸着膜との水付け剥離強度が、好ましくは1.0N以上であり、より好ましくは2.0N以上である。本発明における水付け剥離強度は、以下の方法によって測定されたものである。
水付け剥離強度は、以下に記載する点を除き、常態剥離強度を測定する方法と同様の方法によって測定する。水付け剥離強度の測定においては、試験片の基材層側とヒートシール層側とを15mm引き剥がした上で、基材層側とヒートシール層側との接着界面の剥離強度を測定する。また、水付け剥離強度の測定においては、剥離強度の測定を行う際に、試験片の長手方向にそってみた場合における、基材層側とヒートシール層側とが接合を維持している部分と、基材層側とヒートシール層側とが引き剥がされている部分との境界部分にスポイトで水を滴下した状態で、測定を行う。
以下、本発明の包装材料を構成する各層について説明する。なお、包装材料におけるバリア層は、既に詳述したバリアフィルムであるため、ここでの説明は省略する。
(中間層)
本発明の包装材料において、包装材料としての耐久性や耐屈曲性等を付与するための中間層として各種の樹脂層や樹脂フィルムを用いることができる。例えば、中間層としては、ポリエステル系樹脂、ポリオレフィン系樹脂、または、ポリアミド系樹脂を用いることができ、ポリアミド系樹脂を用いることが好ましい。ポリアミド系樹脂としては、ポリカプロアミド(ナイロン6)、ポリ-ω-アミノヘプタン酸(ナイロン7)、ポリ-9-アミノノナン酸(ナイロン9)、ポリウンデカンアミド(ナイロン11)、ポリラウリンラクタム(ナイロン12)、ポリエチレンジアミンアジパミド(ナイロン2,6)、ポリテトラメチレンアジパミド(ナイロン4,6)、ポリヘキサメチレンジアジパミド(ナイロン6,6)、ポリヘキサメチレンセバカミド(ナイロン6,10)、ポリヘキサメチレンドデカミド(ナイロン6,12)、ポリオクタメチレンアジパミド(ナイロン8,6)、ポリデカメチレンアジパミド(ナイロン10,6)、ポリデカメチレンセバカミド(ナイロン10,10)、ポリドデカメチレンドデカミド(ナイロン12,12)、メタキシレンジアミン-6ナイロン(MXD6)等のナイロン類を挙げることができる。また、ナイロン6とナイロン6,6との共重合体であるナイロン6-6,6、ナイロン6とナイロン6-12との共重合体であるナイロン6-12等も用いることができる。これらのナイロン類を用いることで、包装材料に耐屈曲性を付与することができる。中間層の形成方法は、特に限定されず、従来公知の方法により形成することができる。例えば、中間層は、樹脂を押出成形により形成してもよいし、樹脂フィルムを用いてもよい。
中間層の厚さは、特に限定されないが、好ましくは5μm~100μm程度であり、より好ましくは10μm~50μm程度である。
(ヒートシール層)
本発明の包装材料において、ヒートシール層としては熱可塑性樹脂を用いることができる。具体的には、熱可塑性樹脂としては、例えば、低密度ポリエチレン、中密度ポリエチレン、高密度ポリエチレン、直鎖状(線状)低密度ポリエチレン、メタロセン触媒を使用して重合したエチレン-α・オレフィン共重合体、ポリプロピレン、エチレン-酢酸ビニル共重合体、アイオノマー樹脂、エチレン-アクリル酸共重合体、エチレン-アクリル酸エチル共重合体、エチレン-メタクリル酸共重合体、エチレン-メタクリル酸メチル共重合体、エチレン-プロピレン共重合体、メチルペンテンポリマー、ポリブテンポリマー、ポリエチレンまたはポリプロピレン等のポリオレフィン系樹脂、これらのポリオレフィン系樹脂をアクリル酸、メタクリル酸、マレイン酸、無水マレイン酸、フマル酸、イタコン酸等の不飽和カルボン酸で変性した酸変性ポリオレフィン樹脂、ポリ酢酸ビニル系樹脂、ポリ(メタ)アクリル系樹脂、ポリ塩化ビニル系樹脂等を使用することができる。
上記の1種ないし2種以上の熱可塑性樹脂を使用して、これを押出機等を用いて、所望によりアンカーコート層等を介して中間層上に溶融押出して、ヒートシール層を形成することができる。あるいは、上記の1種ないし2種以上の熱可塑性樹脂を使用して、予め該樹脂のフィルムないしシートを製造し、製造したフィルムないしシートを、ラミネート用接着剤層等を介して中間層上にドライラミネート積層して、ヒートシール層を形成することもできる。
所望の性質を得るために、上記の樹脂に、他の樹脂をブレンドして用いることもできる。また、種々の添加剤、例えば酸化防止剤、紫外線吸収剤、帯電防止剤、アンチブロッキング剤、滑剤(脂肪酸アミド等)、難燃化剤、無機ないし有機充填剤、染料、顔料等を任意に添加して使用することができる。
ヒートシール層の厚さは、特に限定されないが、シール不良を防ぐために、好ましくは10μm~300μm程度であり、より好ましくは20μm~100μm程度である。
(接着層)
本発明の包装材料において、包装材料は、バリア層と中間層の間、中間層とヒートシール層の間に、それぞれ接着層をさらに備えてもよい。接着層としては、接着性樹脂層や接着剤層等が挙げられる。包装材料は接着層を備えることにより、各層の界面のラミネート強度を向上させることができる。
接着性樹脂層に使用できる熱可塑性樹脂としては、ポリエチレン系樹脂、ポリプロピレン系樹脂、または環状ポリオレフィン系樹脂、またはこれら樹脂を主成分とする共重合樹脂、変性樹脂、または、混合体(アロイでを含む)を用いることができる。ポリオレフィン系樹脂としては、例えば、低密度ポリエチレン(LDPE)、中密度ポリエチレン(MDPE)、高密度ポリエチレン(HDPE)、直鎖状(線状)低密度ポリエチレン(LLDPE)、ポリプロピレン(PP)、メタロセン触媒を利用して重合したエチレン-α・オレフィン共重合体、エチレン・ポリプロピレンのランダムもしくはブロック共重合体、エチレン-酢酸ビニル共重合体(EVA)、エチレン-アクリル酸共重合体(EAA)、エチレン・アクリル酸エチル共重合体(EEA)、エチレン-メタクリル酸共重合体(EMAA)、エチレン-メタクリル酸メチル共重合体(EMMA)、エチレン・マレイン酸共重合体、アイオノマー樹脂、また、層間の密着性を向上させるために、上記したポリオレフィン系樹脂を、アクリル酸、メタクリル酸、マレイン酸、無水マレイン酸、フマル酸、イタコン酸等の不飽和カルボン酸で変性した酸変性ポリオレフィン系樹脂等を用いることができる。また、ポリオレフィン樹脂に、不飽和カルボン酸、不飽和カルボン酸無水物、エステル単量体をグラフト重合、または、共重合した樹脂等を用いることができる。これらの材料は、一種単独または二種以上を組み合わせて使用することができる。環状ポリオレフィン系樹脂としては、例えば、エチレン-プロピレン共重合体、ポリメチルペンテン、ポリブテン、ポリノルボネン等の環状ポリオレフィン等を用いることができる。これらの樹脂は、単独または複数を組み合せて使用できる。
接着剤としては、例えば、1液型あるいは2液型の硬化ないし非硬化タイプのビニル系、(メタ)アクリル系、ポリアミド系、ポリエステル系、ポリエーテル系、ポリウレタン系、エポキシ系、ゴム系、その他等の溶剤型、水性型、あるいは、エマルジョン型等の接着剤を用いることができる。上記のラミネート用接着剤のコーティング方法としては、例えば、ダイレクトグラビアロールコート法、グラビアロールコート法、キスコート法、リバースロールコート法、フォンテン法、トランスファーロールコート法、その他の方法でバリア性積層体を構成する層の塗布面に塗布することができる。塗布量としては、0.1g/m以上10g/m以下(乾燥状態)が好ましく、1g/m以上5g/m以下(乾燥状態)がより好ましい。
以下、実施例により本発明をより具体的に説明するが、本発明は以下の実施例に限定されるものではない。
<<実験I>>
<バリアフィルムおよび包装材料の製造>
[実施例1-1]
基材層として、厚さ12μmの2軸延伸ポリエチレンテレフタレートフィルム(以下、PETフィルム)を準備した。該PETフィルムの無機酸化物蒸着層を形成する面にプラズマ前処理を施し、連続してプラズマ処理面上に下記条件において真空蒸着法の加熱手段として反応性抵抗加熱方式により、厚さ12nmの酸化アルミニウム蒸着膜(無機酸化物蒸着層)を形成した。
(酸化アルミニウム成膜条件)
・真空度:8.1×10-2Pa
また、表1に示す組成に従って、調製した組成Aの混合液に、予め調製した組成Bの加水分解液を加えて攪拌し、無色透明のバリアコート組成物を得た。なお、表1の数値は、質量部を意味する。
次に、PETフィルムの酸化アルミニウム蒸着膜上に、上記で調製したバリアコート組成物をダイレクトグラビア法によりコーティングした。その後、150℃で60秒間、加熱処理して、厚さ300nm(乾操状態)のバリアコート層を形成し、さらに、55℃で72時間の加熱処理を行い、バリアフィルムを得た。
続いて、上記で得られたバリアフィルムのバリアコート層上に、接着剤を介して、ナイロンフィルム(厚さ15μm)を積層した。さらに、該ナイロンフィルム上に、接着剤を介して、無軸延伸ポリプロピレンフィルム(CPP、厚さ70μm)を積層して、包装材料(層構成:基材層/酸化アルミニウム蒸着膜/バリアコート層/ナイロンフィルム(中間層)/CPPフィルム(シーラント層))を得た。
[実施例1-2]
バリアコート組成物の組成を表1の記載の配合に変更した以外は、実施例1-1と同様にして、バリアフィルムを得た。
続いて、上記で得られたバリアフィルムを用いて、実施例1-1と同様にして、包装材料を得た。
[実施例1-3]
バリアコート組成物の組成を表1の記載の配合に変更した以外は、実施例1-1と同様にして、バリアフィルムを得た。
続いて、上記で得られたバリアフィルムを用いて、実施例1-1と同様にして、包装材料を得た。
[実施例1-4]
バリアコート組成物の組成を表1の記載の配合に変更した以外は、実施例1-1と同様にして、バリアフィルムを得た。
続いて、上記で得られたバリアフィルムを用いて、実施例1-1と同様にして、包装材料を得た。
[実施例1-5]
バリアコート組成物の組成を表1の記載の配合に変更した以外は、実施例1-1と同様にして、バリアフィルムを得た。
続いて、上記で得られたバリアフィルムを用いて、実施例1-1と同様にして、包装材料を得た。
[実施例1-6]
バリアコート組成物の組成を表1の記載の配合に変更した以外は、実施例1-1と同様にして、バリアフィルムを得た。
続いて、上記で得られたバリアフィルムを用いて、実施例1-1と同様にして、包装材料を得た。
[比較例1-1]
バリアコート組成物の組成を表1の記載の配合に変更した以外は、実施例1-1と同様にして、バリアフィルムを得た。
続いて、上記で得られたバリアフィルムを用いて、実施例1-1と同様にして、包装材料を得た。
[比較例1-2]
ガスバリア性組成物の組成を表1の記載の配合に変更した以外は、実施例1-1と同様にして、バリアフィルムを得た。
続いて、上記で得られたバリアフィルムを用いて、実施例1-1と同様にして、包装材料を得た。
Figure 0007489026000001
<バリアフィルムの性能評価>
上記の実施例1-1~1-6および比較例1-1~1-2で製造したバリアフィルムについて、下記の測定を行った。
(バリアコート層表面の元素分析)
上記の実施例1-1~1-6および比較例1-1~1-2で製造したバリアフィルムについて、X線光電子分光法(XPS)により、下記の測定条件のナロースキャン分析で、バリアコート層表面に存在するSi元素とC元素の比を測定した。測定結果を表2に示した。
[測定条件]
使用機器:「ESCA-3400」(Kratos製)(株式会社島津製作所)
[1]スペクトル採取条件
入射X線:MgKα(単色化X線、hν=1486.6eV)
X線出力:150W(10kV・15mA)
測定面積:6mmφ
光電子取込角度:90度
[2]イオンスパッタ条件
イオン種:Ar
加速電圧:0.2(kV)
エミッション電流:20(mA)
etch範囲:10mmφ
イオンスパッタ時間(※): 30秒+30秒+60秒(トータル120s)で実施し、スペクトルを採取。
(酸素透過度の測定)
上記の実施例1-1~1-6および比較例1-1~1-2で製造したバリアフィルムについて、酸素透過度測定装置(モダンコントロール(MOCON)社製〔機種名:オクストラン(OX-TRAN)2/21〕)を用いて、酸素供給側がバリアフィルムの基材層面となるようにセットし、23℃、90%RH雰囲気下の測定条件で、JIS K7126法に準拠して、酸素透過度(cc/m・day)を測定した。測定結果を表2に示した。
(引張試験後の酸素透過度の測定)
上記の実施例1-1~1-2および比較例1-1~1-2で製造したバリアフィルムについて、200(mm)×100(mm)にカットし、両面テープ(No.766 #40寺岡製作所製)を張り付けた金尺(TZ-1341 KOKUYO製)を未処理面側に金尺間距離が150mmとなるように張り付けた。
続いて、引張試験機(株式会社島津製作所製[機種名:AG-X])を用いて、チャック間距離が150mmとなるようチャックし、試験速度10m/minで元の寸法から2%延伸したサンプルを作成した。
得られたサンプルについて、上記と同様にして、酸素透過度(cc/m・day)を測定した。測定結果を表2に示した。
(水蒸気透過度の測定)
上記の実施例1-1~1-6および比較例1-1~1-2で製造したバリアフィルムについて、水蒸気透過度測定装置(モコン(MOCON)社製の測定機〔機種名、パーマトラン(PERMATRAN)3/33〕)を用いて、センサー側がバリアフィルムの基材層面となるようにセットし、40℃、100%RH雰囲気下の測定条件で、JIS K7129法に準拠して、水蒸気透過度(g/m・day)を測定した。測定結果を表2に示した。
<包装材料の性能評価>
上記の実施例1-1~1-6および比較例1-1~1-2で製造した包装材料を袋状(容量:500ml)に成型し、中に200mlの水を入れて密封した後、135℃で40分間の湿熱殺菌処理を行った。その後、当該袋の一部を切り出して、試験サンプルを得て、下記の測定を行った。
(酸素透過度の測定)
上記の試験サンプルについて、酸素透過度測定装置(モダンコントロール(MOCON)社製〔機種名:オクストラン(OX-TRAN)2/21〕)を用いて、酸素供給側が試験サンプルのシーラント層(CPPフィルム)面となるようにセットし、23℃、90%RH雰囲気下の測定条件で、JIS K7126法に準拠して、酸素透過度(cc/m・atm・day)を測定した。測定結果を表2に示した。
(水蒸気透過度の測定)
上記の試験サンプルについて、水蒸気透過度測定装置(モコン(MOCON)社製の測定機〔機種名、パーマトラン(PERMATRAN)3/33〕)を用いて、センサー側が試験サンプルのシーラント層(CPPフィルム)面となるようにセットし、40℃、100%RH雰囲気下の測定条件で、JIS K7129法に準拠して、水蒸気透過度(g/m・day)を測定した。測定結果を表2に示した。
Figure 0007489026000002
表2の結果から、XPSにより測定される珪素原子と炭素原子の比(Si/C)が、1.0以上2.5以下であるバリアコート層を備えるバリアフィルムは、湿熱殺菌処理(レトルト処理)後も、良好なバリア性を示している。
特に、実施例1-3~1-6では、湿熱殺菌処理(レトルト処理)後には、包装材料のバリア性も加味された状態が維持されて、バリアフィルム単体よりも良い水蒸気バリア性を示した。特に、実施例1-3~1-5は、湿熱殺菌処理(レトルト処理)後の包装材料の水蒸気バリア性が極めて良好であった。
また、実施例1-1~1-2では、バリアフィルは、引張試験後であっても、優れた酸素バリア性を示した。
<<実験II>>
[実施例2-1]
<酸化アルミニウム蒸着膜の形成>
まず、基材層である厚さ12μmの化石燃料由来のPETフィルムを巻き取ったロールを準備した。
次に、このPETフィルムの無機酸化物蒸着層を設ける面に、酸素プラズマ前処理装置を配置した前処理区画と成膜区画を隔離した連続蒸着膜成膜装置を用いて、前処理区画において下記条件下でプラズマ供給ノズルからプラズマを導入し、搬送速度400m/minで酸素プラズマ前処理を施し、連続搬送した成膜区画内で、酸素プラズマ処理面上に、下記条件において真空蒸着法の加熱手段として反応性抵抗加熱方式により、厚さ12nmの酸化アルミニウム蒸着膜(無機酸化物蒸着層)をPETフィルム上に形成した。
(酸素プラズマ前処理条件)
・プラズマ強度:200W・sec/m
・プラズマ形成ガス比:酸素/アルゴン=2/1
・前処理ドラム-プラズマ供給ノズル間印加電圧:340V
・前処理圧力:3.8Pa
(酸化アルミニウム成膜条件)
・真空度:8.1×10-2Pa
・搬送速度:400m/min
・酸素ガス供給量:20000sccm
<バリアコート層の形成>
水385g、イソプロピルアルコール67gおよび0.5N塩酸9.1gを混合し、pH2.2に調整した溶液に、金属アルコキシドとしてテトラエトキシシラン175gと、シランカップリング剤として3-グリシドキシプロピルトリメトキシシラン9.2gを10℃となるよう冷却しながら混合させて溶液Cを調製した。
水溶性高分子として、ケン価度99%以上の重合度2400のポリビニルアルコール14.7g、水324g、イソプロピルアルコール17gを混合した溶液Dを調製した。
C液とD液を重量比6.5:3.5となるよう混合して得られた溶液をバリアコート組成物とした。
上記のPETフィルムの酸化アルミニウム蒸着膜上に、上記で調製したバリアコート組成物をスピンコート法によりコーティングした。
その後、180℃で60秒間、オーブンにて加熱処理して、厚さ約400nmのバリアコート層を酸化アルミニウム蒸着膜上に形成して、バリアフィルムを得た。
[実施例2-2]
酸素プラズマ前処理において、プラズマ強度を100W・sec/mに変更したこと以外は、実施例2-1と同様にして、バリアフィルムを得た。
[実施例2-3]
基材層として厚さ12μmのバイオマス由来のPETフィルムを使用したこと、および酸素プラズマ前処理において、プラズマ強度を150W・sec/mに変更したこと以外は、実施例2-1と同様にして、バリアフィルムを得た。
なお、バイオマス由来のPETフィルムは以下の方法により得られたものである。
テレフタル酸83質量部とバイオマスエチレングリコール(インディアグライコール社製)62質量部とをスラリーとして反応槽に供給し、常法の直重方法で、エステル化反応を240℃で5時間行った。その後、トリメチルフォスフェート(アルドリッチ社製)を0.013質量部添加(酸成分に対して15mmol%)してから高温真空条件下の重合反応に移行させた。まず、40分間で、真空度を4000Pa、重合温度280℃にまで昇温し、ついでその重合温度280℃のまま、真空度を200Paまで下げて溶融重合反応を行った。反応時間は3時間であった。合成したポリマーは、ストランドの形で流水中に吐出し、ペレタイザによってペレット化した。そのペレットを160℃において5時間乾燥後、窒素雰囲気下50Paの真空下205℃で固相重合して固有粘度0.8dl/gのポリマーを得た。なお、固有粘度はフェノール/テトラクロロエタン(成分比:3/2)溶媒を用い、35℃で測定した溶融粘度から算出した。得られたポリマーの示差熱分析(装置:島津製作所DSC-60、測定条件:ヘリウムガス中、6℃/分で昇温)を行ったところ、ガラス転移温度は69℃を示し、化石燃料由来の原料から得られる既知のポリエチレンテレフタレートと同等であった。また、得られたバイオマス由来のポリエチレンテレフタレートの放射製炭素測定を行ったところ、放射性炭素(C14)測定によるバイオマス度は31.25%であった。
次いで得られたポリエチレンテレフタレートを60質量部と、リサイクルPET(フィルム製膜時の耳ロス等の製造工程内ロス部分をリペレットしたもの)30質量部と、滑剤として平均粒子径0.9μmの多孔性シリカを200ppm含む化石燃料由来のポリエチレンテレフタレートマスターバッチ10質量部とを乾燥した後押出機に供給し、285℃で溶融し、Tダイよりシート状に押し出し、冷却ロールにて冷却固化させて未延伸シートを得た。次いでこの未延伸シートを、低速側駆動ロールの速度を6.5m/min、高速側駆動ロールの速度を22m/minとして、縦方向に3.5倍の倍率で延伸し、さらに、テンターにて横方向に3.5倍の倍率で延伸して厚みが12μmである二軸延伸PETフィルム(バイオマス度:18.8%)を得た。
[実施例2-4]
基材層として厚さ12μmの化石燃料由来のポリブチレンテレフタレートフィルム(以下、PBTフィルム)を使用したこと、酸化アルミニウム蒸着膜の厚さを10nmに変更したこと、および酸素プラズマ前処理において、プラズマ強度を150W・sec/mに変更したこと以外は、実施例2-1と同様にして、バリアフィルムを得た。
[実施例2-5]
高湿度下で長期保管することで含水率の高まった、厚さ12μmの化石燃料由来のPETフィルムを用いたこと、および酸化アルミニウム蒸着膜の厚さを14nm変更したこと以外は、実施例2-1と同様にして、バリアフィルムを得た。
[実施例2-6]
酸化アルミニウム蒸着膜の厚さを10nm変更したこと以外は、実施例2-1と同様にして、バリアフィルムを得た。
[実施例2-7]
酸化アルミニウム蒸着膜の厚さを14nm変更したこと以外は、実施例2-1と同様にして、バリアフィルムを得た。
[実施例2-8]
酸化アルミニウム蒸着膜の厚さを10nm変更したこと以外は、実施例2-3と同様にして、バリアフィルムを得た。
[実施例2-9]
酸化アルミニウム蒸着膜の厚さを14nm変更したこと以外は、実施例2-3と同様にして、バリアフィルムを得た。
[実施例2-10]
酸素プラズマ前処理を行わなかった以外は、実施例2-1と同様にしてバリアフィルムを得た。
[比較例2-1]
酸素プラズマ前処理において、プラズマ形成ガス比を、酸素/アルゴン=4/1にしたこと以外は、実施例2-1と同様にして酸素プラズマ前処理を行った。プラズマ放電が安定せず、酸素プラズマ前処理ができなかった。
[比較例2-2]
酸素プラズマ前処理において、前処理圧力を50Paにしたこと以外は、実施例2-1と同様にして酸素プラズマ前処理を行った。プラズマ放電が安定せず、酸素プラズマ前処理ができなかった。
[参考例2-1]
酸素プラズマ前処理において、プラズマ強度を1200W・sec/mにしたこと以外は、実施例2-1と同様にして酸素プラズマ前処理を行った。PETフィルムが着色した。
実施例2-1~2-10、比較例2-1~2-2、および参考例2-1の各条件を表3に示す。
Figure 0007489026000003
<評価項目の測定方法>
上記の実施例2-1~2-10に示した条件下で製造したバリアフィルムを測定用のサンプルとし、バリアコート層表面の元素分析、蒸着膜の遷移領域の変成率、酸素透過度、水蒸気透過度、および密着性について、下記の方法を用いて測定した。評価結果を表4に示す。
また、上記の実施例2-1と、PETフィルムが着色した上記参考例2-1については、色味の測定を行った。評価結果を表5に示す。
なお、比較例2-1および2-2については、酸素プラズマ前処理ができなかったため、上記評価項目の測定は行わなかった。
(バリアコート層表面の元素分析)
バリアフィルムについて、X線光電子分光法(XPS)により、下記の測定条件のナロースキャン分析で、バリアコート層表面に存在するSi元素とC元素の比を測定した。
[測定条件]
使用機器:「ESCA-3400」(Kratos製)(株式会社島津製作所)
[1]スペクトル採取条件
入射X線:MgKα(単色化X線、hν=1486.6eV)
X線出力:150W(10kV・15mA)
測定面積:6mmφ
光電子取込角度:90度
[2]イオンスパッタ条件
イオン種:Ar
加速電圧:0.2(kV)
エミッション電流:20(mA)
etch範囲:10mmφ
イオンスパッタ時間(※): 30秒+30秒+60秒(トータル120s)で実施し、スペクトルを採取。
(遷移領域の変成率)
蒸着膜の遷移領域の変成率は、バリアフィルムのバリアコート層表面にCs(セシウム)イオン銃により一定の速度でソフトエッチングを繰り返しながら、飛行時間型二次イオン質量分析法(TOF-SIMS)を用いて、バリアコート層由来のイオンと、無機酸化物蒸着層由来のイオンと、基材層に由来するイオンを測定することにより図2のグラフ解析図が得られる。ここで、グラフの縦軸の単位(intensity)は、測定されたイオンの強度、横軸の単位(cycle)は、エッチングの回数である。
上記TOF-SIMSに用いられる飛行時間型二次イオン質量分析計としてはION TOF社製、TOF.SIMS5を用い、下記測定条件で測定を行なった。
(TOF-SIMS測定条件)
・一次イオン種類:Bi ++(0.2pA,100μs)
・測定面積:150×150μm
・エッチング銃種類:Cs(1keV、60nA)
・エッチング面積:600×600μm
・エッチングレート:3sec/Cycle
なお、測定対象となる酸化アルミニウム由来のイオンを測定するためにイオン銃としては、通常、複数ある酸化アルミニウム由来のイオンの中から他の成分由来のイオンとの切り分けが必要であり、且つ十分な強度を有するものを選択する必要があることおよび、特に元素結合AlHの濃度分布に近似換算できる深さ分布を得る目的から、Csイオンを選択することとした。
Csを用いて、バリアコート層の最表面からエッチングを行い、バリアコート層と酸化アルミウム蒸着膜とポリエステルフィルム等の基材層との界面の元素結合および蒸着膜の元素結合の分析を実施し、測定された元素および元素結合の各グラフを得た。グラフにおいて、バリアコート層の構成元素であるSiO(質量数59.96)の強度が、先ず、バリアコート層の半分になる位置をバリアコート層と酸化アルミニウム蒸着膜の界面として、次いで、基材層の構成材料であるC(質量数72.00)の層部分の半分になる位置を、基材層と酸化アルミニウム蒸着膜の界面として、最初の界面から2番目の界面までを酸化アルミニウム蒸着膜とした。
次に、測定された元素結合AlH(質量数118.93)を表すグラフにおけるピークを求め、そのピークから界面までを遷移領域とし、求めることができる。
ただし、バリアコート層の成分がAlH(質量数118.93)と同じ質量数の材料で構成させる場合、118.93の波形を分離する必要がある。
今回のケースでは、バリアコート層と酸化アルミニウム蒸着膜の界面に、バリアコート層との界面に生じる反応物AlSiOと、水酸化物AlHが生じるため、それらとフィルム界面に存在するAlHを分離する。これはバリアコート層の材料によって適宜対応する。
波形分離の方法例を以下に示す。TOF-SIMSで得られた、質量数118.93のプロファイルを、Gaussian関数を用いて非線形のカーブフィッティングを行い最小二乗法Levenberg Marquardt アルゴリズムを使用して重複ピークの分離を行う。
以上の操作を行い、酸化アルミニウム蒸着膜の遷移領域の変成率を(元素結合AlHのピークから界面までの遷移領域厚/酸化アルミニウム蒸着膜厚)×100(%)として求めた。
(酸素透過度の測定)
酸素透過度測定装置(モダンコントロール(MOCON)社製〔機種名:オクストラン(OX-TRAN)2/21〕)を用いて、測定のために作製したバリアフィルム/接着剤/ナイロンフィルム15μm/接着剤/CPP70μmの包装材料とし、酸素供給側がバリアフィルムの基材層面となるように上記試験用サンプルをセットし、23℃、90%RH雰囲気下の測定条件で、JIS K7126 B法に準拠して測定した。
測定サンプルとして、
1)レトルト処理前の複合積層フィルム
2)ハイレトルト処理条件:135℃、40分間の処理をした袋の状態にした包装材料の袋片面の包装材料
3)セミレトルト処理条件:121℃、40分間の処理をした袋の状態にした包装材料の袋片面の包装材料
を用いた。
(水蒸気透過度の測定)
水蒸気透過度測定装置(モコン(MOCON)社製の測定機〔機種名、パーマトラン(PERMATRAN)3/33〕)を用いて、センサー側がバリアフィルムの基材層面となるように上記試験用サンプルをセットし、40℃、100%RH雰囲気下の測定条件で、JIS K7126 B法に準拠し、測定した。
測定サンプルとして、
1)レトルト処理前の包装材料
2)ハイレトルト処理条件:135℃、40分間の処理をした袋の状態にした包装材料の袋片面の包装材料
3)セミレトルト処理条件:121℃、40分間の処理をした袋の状態にした包装材料の袋片面の包装材料
を用いた。
(基材層と酸化アルミニウム蒸着膜間の密着性の評価)
[剥離強度の測定(1);レトルト処理後の常態剥離強度]
バリアフィルムのバリアコート層側に2液硬化型ポリウレタン系接着剤を塗工し、乾燥処理したものと、厚さ70μmの無延伸ポリプロピレンフィルムに2液硬化型ポリウレタン系接着剤と厚さ15μmの延伸ナイロンフィルムと貼り合わせたフィルムとをドライラミネートし、包装材料を作製した。
上記包装材料を用いてB5サイズに作製した四方パウチに水100mLを注入し、135℃、40分間で熱水式レトルト処理(ハイレトルト処理)を行った。該レトルト処理後、中身の水を抜いた四方パウチから15mm幅の短冊状にカットしたサンプルを作成した。このサンプルについて、引張試験機(株式会社オリエンテック社製[機種名:テンシロン万能材料試験機])を用いてJIS K6854-2に準拠し、バリアフィルムの基材層と酸化アルミウム蒸着膜との剥離強度を測定した。なお、実施例2-4については、121℃、40分間で熱水式レトルト処理(セミレトルト処理)を行った。
測定は、まず、基材層側と無延伸ポリプロピレンフィルム側とを長辺方向において15mm剥離させた状態の矩形状の試験片を準備した。その後、基材層側および無延伸ポリプロピレンフィルム側のうち既に剥離されている部分をそれぞれ、測定器のつかみ具およびつかみ具で把持した。また、つかみ具をそれぞれ、基材層側と無延伸ポリプロピレンフィルム側とがまだ積層されている部分の面方向に対して直交する方向において互いに逆向きに(180°剥離:T字剥離法)、50mm/分の速度で引っ張り、安定領域における引張応力の平均値を測定した。引っ張りを開始する際の、つかみ具間の間隔は30mmとし、引っ張りを終了する際の、つかみ具間の間隔は60mmとした。間隔に対する引張応力の変化は、第1領域を経て、第1領域よりも変化率の小さい第2領域(安定領域)に入る。安定領域における引張応力の平均値を測定し、その値をバリアフィルムの基材層と酸化アルミウム蒸着膜との剥離強度とした。
[剥離強度の測定(2);レトルト処理後の水付け剥離強度]
水付け剥離強度は、以下に記載する点を除き、常態剥離強度を測定する方法と同様の方法によって測定した。水付け剥離強度の測定においては、試験片の基材層側と無延伸ポリプロピレンフィルム側とを15mm引き剥がした上で、基材層側と無延伸ポリプロピレンフィルム側との接着界面の剥離強度を測定した。また、水付け剥離強度の測定においては、剥離強度の測定を行う際に、試験片の長手方向にそってみた場合における、基材層側と無延伸ポリプロピレンフィルム側とが接合を維持している部分と、基材層側と無延伸ポリプロピレンフィルム側とが引き剥がされている部分との境界部分にスポイトで水を滴下した状態で、測定を行った。
(色味の測定)
分光側色計(コニカミノルタ株式会社製[機種名:CM-700d)を用いて、測定用のサンプル1枚(基材層/酸化アルミニウム蒸着膜/バリアコート層)のL表色系におけるL値、a値およびb値を測定した。
Figure 0007489026000004
Figure 0007489026000005
上記表4において、実施例2-1~2-9に示されているように、酸化アルミニウム蒸着膜の遷移領域の変成率が5%以上60%以下のバリアフィルムは、レトルト処理後も良好な酸素透過度と水蒸気透過度を示し、良好な常態密着性および耐水密着性を示した。
上記表4において、実施例2-10では、元素結合AlHピークが、ピークが小さすぎて基材層界面側に隠れ、分離できなかった為に、該遷移領域の変成率が計算できない結果(0%以下の数値)となった。実施例2-10は、実施例2-1~2-9よりもレトルト後の常態密着性および耐水密着性は劣るものの、レトルト処理の前後において、バリア性の劣化は見られなかった。
また、上記表5において、実施例2-1は、b値が参考例2-1よりも低い数値であることより、実施例2-1の方が参考例2-1よりも透明性に優れていることが分かる。
11 バリアフィルム
12 基材層
13 無機酸化物蒸着層
14 バリアコート層
S 基材フィルム
P プラズマ
20 ローラー式連続蒸着膜成膜装置
22 減圧チャンバ
22A 基材搬送室
22B プラズマ前処理室
22C 成膜室
24a~d ガイドロール
28 原料ガス揮発供給装置
30 前処理ローラー
31 マグネット
32a~d プラズマ供給ノズル
33 成膜ローラー
34 蒸着膜成膜手段
41 電力供給配線
42 電源
45a~45c 隔壁
50 包装材料
51 バリア層(バリアフィルム)
52 基材層
53 無機酸化物蒸着層
54 バリアコート層
55 中間層
56 ヒートシール層
60 試験片
61,62 つかみ具

Claims (15)

  1. バリアコート層と、無機酸化物蒸着層と、基材層とをこの順に備えてなる、バリアフィルムの製造方法であって、
    前記バリアコート層が、アルコキシシランの加水分解生成物および水溶性高分子を含むバリアコート組成物の硬化膜であり、
    前記水溶性高分子が、ポリビニルアルコール系樹脂および/またはエチレン・ビニルアルコール共重合体であり、
    前記バリアコート層の表面は、X線光電子分光法(XPS)により測定される珪素原子と炭素原子の比(Si/C)が、1.0以上2.5以下であり、
    前記無機酸化物蒸着層が、酸化アルミニウム蒸着膜であり、
    前記基材層が、ポリエチレンテレフタレートフィルムであり、
    前記製造方法が、前記基材層の前記無機酸化物蒸着層を形成する面に酸素ガスと不活性ガスとの混合ガスを用いてプラズマ前処理を施す工程を含み、
    前記プラズマ前処理のプラズマ強度が、100W・sec/m 以上500W・sec/m 以下であり、
    前記酸素ガスと前記不活性ガスとの混合比率(酸素ガス/不活性ガス)が、2.5以上/1以下であり、
    前記プラズマ前処理の前処理圧力が、1Pa以上20Pa以下である、バリアフィルムの製造方法。
  2. 前記バリアコート層の表面は、X線光電子分光法(XPS)により測定される珪素原子と炭素原子の比(Si/C)が、1.6以上2.3以下である、請求項1に記載のバリアフィルムの製造方法。
  3. 前記バリアコート層の表面は、X線光電子分光法(XPS)により測定される珪素原子と炭素原子の比(Si/C)が、1.0以上1.6未満である、請求項1に記載のバリアフィルムの製造方法。
  4. 前記バリアコート組成物が、シランカップリング剤をさらに含む、請求項1~3のいずれか一項に記載のバリアフィルムの製造方法。
  5. 前記基材層が、バイオマス由来のポリエチレンテレフタレートフィルムである、請求項1~4のいずれか一項に記載のバリアフィルムの製造方法。
  6. 前記酸化アルミニウム蒸着膜中には、前記基材層の表面と前記酸化アルミニウム蒸着膜との剥離強度を規定する遷移領域が形成されており、
    前記遷移領域が、飛行時間型二次イオン質量分析法(TOF-SIMS)を用いてエッチングを行うことで検出される、水酸化アルミニウムに変成する元素結合AlHを含み、
    前記バリアコート層と前記酸化アルミニウム蒸着膜とをTOF-SIMSを用いてエッチングを行うことで規定される前記酸化アルミニウム蒸着膜に対する、TOF-SIMSを用いて規定される前記変成される前記遷移領域の割合により定義される遷移領域の変成率が、5%以上60%以下である、請求項1~5のいずれか一項に記載のバリアフィルムの製造方法。
  7. 温度23℃および湿度90%RHの環境下でJIS K7126法に準拠して測定した前記バリアフィルムの酸素透過度が、0.10cc/m・atm・day以下である、請求項1~6のいずれか一項に記載のバリアフィルムの製造方法。
  8. 温度40℃および湿度100%RHの環境下でJIS K7129法に準拠して測定した前記バリアフィルムの水蒸気透過度が、1.00g/m・day以下である、請求項1~7のいずれか一項に記載のバリアフィルムの製造方法。
  9. 請求項1~8のいずれか一項に記載のバリアフィルムの製造方法を用いて包装材料を製造する、包装材料の製造方法。
  10. 前記包装材料が、ヒートシール層と、中間層と、前記バリアフィルムからなるバリア層とをこの順に備えてなる、請求項9に記載の包装材料の製造方法。
  11. 135℃で40分間の湿熱殺菌処理後に、温度23℃および湿度90%RHの環境下でJIS K7126法に準拠して測定した前記包装材料の酸素透過度が、0.50cc/m・atm・day以下である、請求項9または10に記載の包装材料の製造方法。
  12. 135℃で40分間の湿熱殺菌処理後に、温度40℃および湿度100%RHの環境下でJIS K7129法に準拠して測定した前記包装材料の水蒸気透過度が、1.20g/m・day以下である、請求項9または10に記載の包装材料の製造方法。
  13. 請求項1~8のいずれか一項に記載のバリアフィルムの製造方法を用いて包装材料を製造する、包装材料の製造方法であって、
    135℃で40分間の前記包装材料の湿熱殺菌処理後に、JIS K6854-2に準拠して測定された前記基材層と前記酸化アルミニウム蒸着膜との常態剥離強度が1.0N以上である、包装材料の製造方法。
  14. 請求項1~8のいずれか一項に記載のバリアフィルムの製造方法を用いて包装材料を製造する、包装材料の製造方法であって、
    135℃で40分間の前記包装材料の湿熱殺菌処理後に、JIS K6854-2に準拠して測定された前記基材層と前記酸化アルミニウム蒸着膜との水付け剥離強度が1.0N以上である、包装材料の製造方法。
  15. 前記包装材料がレトルト包装製品用である、請求項9~14のいずれか一項に記載の包装材料の製造方法。
JP2019149155A 2018-08-20 2019-08-15 バリアフィルムおよび包装材料 Active JP7489026B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018154182 2018-08-20
JP2018154182 2018-08-20

Publications (2)

Publication Number Publication Date
JP2020029095A JP2020029095A (ja) 2020-02-27
JP7489026B2 true JP7489026B2 (ja) 2024-05-23

Family

ID=69623567

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019149155A Active JP7489026B2 (ja) 2018-08-20 2019-08-15 バリアフィルムおよび包装材料

Country Status (1)

Country Link
JP (1) JP7489026B2 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021045127A1 (ja) * 2019-09-06 2021-03-11 大日本印刷株式会社 バリアフィルム、該バリアフィルムを用いた積層体、該積層体を用いた包装製品
EP4129844A4 (en) * 2020-03-31 2024-01-24 Sekisui Medical Co Ltd SAMPLE COLLECTION CONTAINER
EP4219144A4 (en) * 2020-09-24 2024-03-20 Toppan Inc GAS BARRIER FILM AND WAVELENGTH CONVERSION FILM
WO2022097700A1 (ja) * 2020-11-05 2022-05-12 大日本印刷株式会社 バリアフィルム、積層体、包装製品及びバリアフィルムの製造方法
JP7089709B2 (ja) * 2020-11-05 2022-06-23 大日本印刷株式会社 バリアフィルム、積層体、包装製品及びバリアフィルムの製造方法
JP2023050299A (ja) * 2021-09-30 2023-04-11 凸版印刷株式会社 ガスバリア性積層体、包装フィルム、包装容器及び包装製品
WO2023243625A1 (ja) * 2022-06-15 2023-12-21 Toppanホールディングス株式会社 ガスバリア性積層体、包装フィルム、包装容器及び包装製品

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002059519A (ja) 2000-08-17 2002-02-26 Nippon Shokubai Co Ltd ガスバリア性表面被覆成形体
JP2006192858A (ja) 2005-01-17 2006-07-27 Dainippon Printing Co Ltd バリア性フィルム
JP2008105283A (ja) 2006-10-26 2008-05-08 Dainippon Printing Co Ltd 直線引き裂き性ガスバリア性積層フィルム
WO2013100073A1 (ja) 2011-12-28 2013-07-04 大日本印刷株式会社 プラズマを使った前処理装置を有した蒸着装置
JP2015193193A (ja) 2014-03-31 2015-11-05 大日本印刷株式会社 ガスバリア性フィルムとその製造方法
JP2017081175A (ja) 2017-02-07 2017-05-18 大日本印刷株式会社 バリア性フィルムおよびそれを用いた積層体
JP2019142522A (ja) 2018-02-16 2019-08-29 大日本印刷株式会社 包装材料および包装袋
JP2019209645A (ja) 2018-06-07 2019-12-12 大日本印刷株式会社 バリアフィルムおよび包装材料

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002059519A (ja) 2000-08-17 2002-02-26 Nippon Shokubai Co Ltd ガスバリア性表面被覆成形体
JP2006192858A (ja) 2005-01-17 2006-07-27 Dainippon Printing Co Ltd バリア性フィルム
JP2008105283A (ja) 2006-10-26 2008-05-08 Dainippon Printing Co Ltd 直線引き裂き性ガスバリア性積層フィルム
WO2013100073A1 (ja) 2011-12-28 2013-07-04 大日本印刷株式会社 プラズマを使った前処理装置を有した蒸着装置
JP2015193193A (ja) 2014-03-31 2015-11-05 大日本印刷株式会社 ガスバリア性フィルムとその製造方法
JP2017081175A (ja) 2017-02-07 2017-05-18 大日本印刷株式会社 バリア性フィルムおよびそれを用いた積層体
JP2019142522A (ja) 2018-02-16 2019-08-29 大日本印刷株式会社 包装材料および包装袋
JP2019209645A (ja) 2018-06-07 2019-12-12 大日本印刷株式会社 バリアフィルムおよび包装材料

Also Published As

Publication number Publication date
JP2020029095A (ja) 2020-02-27

Similar Documents

Publication Publication Date Title
JP7489026B2 (ja) バリアフィルムおよび包装材料
JP7487456B2 (ja) バリアフィルム
JP7192781B2 (ja) 積層フィルム、バリア性積層フィルム及び該バリア性積層フィルムを用いたガスバリア性包装材料、ガスバリア性包装体
JP6582411B2 (ja) 透明蒸着フィルム
JP7248011B2 (ja) バリア性積層フィルム及び該バリア性積層フィルムを用いた包装材料
JP7434767B2 (ja) ガスバリア性蒸着フィルム、および該ガスバリア性蒸着フィルムを用いた積層体、包装材料、包装体
JP7434766B2 (ja) ガスバリア性蒸着フィルム、ガスバリア性積層体、ガスバリア性包装材料及びガスバリア性包装体。
JP6075080B2 (ja) 紙容器用バリアフィルム、並びにそれよりなる紙容器用積層材及び液体用紙容器
JP7248012B2 (ja) バリア樹脂フィルム、バリア積層体及び該バリア積層体を用いた包装材料
US20210253322A1 (en) Barrier film and packaging material
US20230002131A1 (en) Barrier film and packaging material
JP2010000447A (ja) ガスバリア性積層フィルム及びその製造方法
JP6442839B2 (ja) 耐湿熱性ガスバリアフィルムおよびその製造方法
JP5741637B2 (ja) 透明ガスバリア性積層フィルム及びその製造方法、並びにそれを使用した包装材料
JP2020157717A (ja) バリアフィルムおよび紙容器用積層材
JP7318783B2 (ja) 包装袋
JP7379963B2 (ja) 粘接着バリアフィルム及びバリアフィルム付被着体
JP5478845B2 (ja) 透明ガスバリア性積層フィルム及びその製造方法、並びにそれを使用した包装材料
JP2019181808A (ja) バリアフィルムおよび紙容器用積層材
JP2000332275A (ja) 太陽電池モジュ−ル用保護シ−トおよびそれを使用した太陽電池モジュ−ル
JP2010000677A (ja) ガスバリア性積層フィルム及びその製造方法、並びにそれを使用した包装材料

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220628

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230307

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230310

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230728

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230921

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20231219

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240307

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20240314

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240412

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240425

R150 Certificate of patent or registration of utility model

Ref document number: 7489026

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150