JP7485565B2 - Pretreatment device and method for membrane filtered water, and membrane filtration system and membrane filtration method - Google Patents

Pretreatment device and method for membrane filtered water, and membrane filtration system and membrane filtration method Download PDF

Info

Publication number
JP7485565B2
JP7485565B2 JP2020135347A JP2020135347A JP7485565B2 JP 7485565 B2 JP7485565 B2 JP 7485565B2 JP 2020135347 A JP2020135347 A JP 2020135347A JP 2020135347 A JP2020135347 A JP 2020135347A JP 7485565 B2 JP7485565 B2 JP 7485565B2
Authority
JP
Japan
Prior art keywords
membrane
electromagnetic wave
filtration
pretreated water
pretreatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020135347A
Other languages
Japanese (ja)
Other versions
JP2022030987A (en
Inventor
直樹 村田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Metawater Co Ltd
Original Assignee
Metawater Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Metawater Co Ltd filed Critical Metawater Co Ltd
Priority to JP2020135347A priority Critical patent/JP7485565B2/en
Publication of JP2022030987A publication Critical patent/JP2022030987A/en
Application granted granted Critical
Publication of JP7485565B2 publication Critical patent/JP7485565B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Separation Of Suspended Particles By Flocculating Agents (AREA)
  • Physical Water Treatments (AREA)

Description

本発明は、浄水場などにおいて好適に使用し得る膜ろ過システムおよび膜ろ過方法、並びに、当該膜ろ過システムおよび膜ろ過方法において好適に使用し得る被膜ろ過水の前処理装置および前処理方法に関するものである。 The present invention relates to a membrane filtration system and a membrane filtration method that can be suitably used in water purification plants and the like, as well as a pretreatment device and a pretreatment method for membrane-filtered water that can be suitably used in the membrane filtration system and the membrane filtration method.

近年、浄水プロセス用の膜ろ過技術として、膜ろ過の前処理として凝集処理を行う、凝集・膜ろ過法の導入が進んでいる(例えば、特許文献1参照)。 In recent years, the coagulation/membrane filtration method, which involves coagulation treatment as a pretreatment step for membrane filtration, has been increasingly introduced as a membrane filtration technology for water purification processes (see, for example, Patent Document 1).

そして、凝集・膜ろ過法を用いた浄水プロセスでは、原水に凝集剤を注入し、原水と凝集剤とを混和してフロックを形成させた後、得られたフロック含有水(前処理水)を膜ろ過して処理水を得ている。 In the water purification process using the coagulation and membrane filtration method, a coagulant is injected into the raw water, and the raw water and the coagulant are mixed to form flocs, and the resulting floc-containing water (pretreated water) is then filtered through a membrane to obtain treated water.

特開2014-168729号公報JP 2014-168729 A

ここで、凝集・膜ろ過法では、運転時間の経過に伴い生ずる膜のファウリング、特には薬液洗浄によってのみ解消可能な膜ファウリングの抑制が、運転効率の向上および運転コストの削減の観点から重要である。 Here, in the coagulation/membrane filtration method, it is important to suppress membrane fouling that occurs over time, particularly membrane fouling that can only be eliminated by chemical cleaning, from the perspective of improving operational efficiency and reducing operational costs.

しかし、従来の技術では、凝集剤注入率を十分に高くしても原水中に含まれているメソ粒子(粒径が20nm~0.5μmの粒子)のゼータ電位を0mVに近づけることができず(即ち、メソ粒子の荷電を中和して凝集させることができず)、膜ファウリングを十分に抑制できなかった。 However, with conventional technology, even if the coagulant injection rate was sufficiently high, it was not possible to bring the zeta potential of mesoparticles (particles with diameters between 20 nm and 0.5 μm) contained in the raw water close to 0 mV (i.e., the charge of the mesoparticles could not be neutralized to cause them to coagulate), and membrane fouling could not be sufficiently suppressed.

そこで、本発明は、膜ろ過した際に膜ファウリングの発生を十分に抑制することが可能な前処理水が得られる前処理装置および前処理方法、並びに、膜ファウリングの発生を十分に抑制可能な膜ろ過システムおよび膜ろ過方法を提供することを目的とする。 The present invention aims to provide a pretreatment device and a pretreatment method that can obtain pretreated water that can sufficiently suppress the occurrence of membrane fouling when filtered through a membrane, as well as a membrane filtration system and a membrane filtration method that can sufficiently suppress the occurrence of membrane fouling.

この発明は、上記課題を有利に解決することを目的とするものであり、本発明の前処理装置は、被膜ろ過水の前処理装置であって、被膜ろ過水と凝集剤とを混和してフロックを形成する混和槽と、前記混和槽に供給される被膜ろ過水に電磁波を照射する電磁波照射手段と、前記混和槽から流出する前処理水に含まれているメソ粒子のゼータ電位を測定するメソ粒子電位測定手段と、前記メソ粒子電位測定手段で測定されたメソ粒子のゼータ電位に基づいて、前処理水に含まれるメソ粒子のゼータ電位が0mVに近づくように電磁波照射手段で照射される電磁波の性状を制御する電磁波性状制御手段とを備えることを特徴とする。このように、電磁波照射手段と、メソ粒子電位測定手段と、電磁波性状制御手段とを設ければ、混和槽においてメソ粒子の荷電を中和して凝集させ、膜ろ過した際に膜ファウリングの発生を十分に抑制することが可能な前処理水を得ることができる。 The present invention aims to advantageously solve the above problems, and the pretreatment device of the present invention is a pretreatment device for membrane-filtered water, characterized in that it comprises a mixing tank for mixing the membrane-filtered water with a coagulant to form flocs, an electromagnetic wave irradiation means for irradiating electromagnetic waves to the membrane-filtered water supplied to the mixing tank, a mesoparticle potential measurement means for measuring the zeta potential of mesoparticles contained in the pretreated water flowing out from the mixing tank, and an electromagnetic wave property control means for controlling the properties of the electromagnetic waves irradiated by the electromagnetic wave irradiation means so that the zeta potential of the mesoparticles contained in the pretreated water approaches 0 mV based on the zeta potential of the mesoparticles measured by the mesoparticle potential measurement means. In this way, by providing the electromagnetic wave irradiation means, the mesoparticle potential measurement means, and the electromagnetic wave property control means, it is possible to obtain pretreated water that can neutralize the charge of mesoparticles in the mixing tank to coagulate them and sufficiently suppress the occurrence of membrane fouling when filtered through a membrane.

ここで、本発明の前処理装置において、前記電磁波性状制御手段は、前処理水に含まれるメソ粒子のゼータ電位が-10mV以上+10mV以下となるように電磁波の性状を制御することが好ましい。メソ粒子のゼータ電位が-10mV以上+10mV以下となるようにすれば、メソ粒子の荷電を良好に中和し、膜ファウリングの発生を更に良好に防止し得る前処理水を得ることができる。 Here, in the pretreatment device of the present invention, it is preferable that the electromagnetic wave property control means controls the properties of the electromagnetic waves so that the zeta potential of the meso particles contained in the pretreated water is -10 mV or more and +10 mV or less. By making the zeta potential of the meso particles -10 mV or more and +10 mV or less, it is possible to obtain pretreated water in which the charge of the meso particles can be well neutralized and the occurrence of membrane fouling can be further well prevented.

また、この発明は、上記課題を有利に解決することを目的とするものであり、本発明の膜ろ過システムは、上述した前処理装置の何れかと、前記前処理水をろ過するろ過膜とを備えることを特徴とする。このように、上述した前処理装置で得られる前処理水を膜ろ過すれば、膜ファウリングの発生を十分に抑制できる。 The present invention also aims to advantageously solve the above problems, and the membrane filtration system of the present invention is characterized by comprising any one of the pretreatment devices described above and a filtration membrane for filtering the pretreated water. In this way, membrane filtration of the pretreated water obtained by the pretreatment device described above can sufficiently suppress the occurrence of membrane fouling.

ここで、本発明の膜ろ過システムは、前記ろ過膜がセラミック膜であることが好ましい。ろ過膜がセラミック膜であれば、特に良好に膜ファウリングの発生を防止できる。 Here, in the membrane filtration system of the present invention, it is preferable that the filtration membrane is a ceramic membrane. If the filtration membrane is a ceramic membrane, the occurrence of membrane fouling can be particularly effectively prevented.

更に、この発明は、上記課題を有利に解決することを目的とするものであり、本発明の前処理方法は、被膜ろ過水の前処理方法であって、混和槽で被膜ろ過水と凝集剤とを混和してフロックを形成する凝集工程と、前記混和槽に供給される被膜ろ過水に電磁波を照射する電磁波照射工程と、前記混和槽から流出する前処理水に含まれているメソ粒子のゼータ電位を測定するメソ粒子電位測定工程と、前記メソ粒子電位測定工程で測定されたメソ粒子のゼータ電位に基づいて、前処理水に含まれるメソ粒子のゼータ電位が0mVに近づくように電磁波照射工程で照射される電磁波の性状を制御する電磁波性状制御工程とを含むことを特徴とする。このように、電磁波照射工程と、メソ粒子電位測定工程と、電磁波性状制御工程とを実施すれば、混和槽においてメソ粒子の荷電を中和して凝集させ、膜ろ過した際に膜ファウリングの発生を十分に抑制することが可能な前処理水を得ることができる。 Furthermore, the present invention aims to advantageously solve the above problems, and the pretreatment method of the present invention is a method for pretreating membrane-filtered water, which includes a flocculation step in which the membrane-filtered water is mixed with a flocculant in a mixing tank to form flocs, an electromagnetic wave irradiation step in which electromagnetic waves are irradiated to the membrane-filtered water supplied to the mixing tank, a mesoparticle potential measurement step in which the zeta potential of mesoparticles contained in the pretreated water flowing out from the mixing tank is measured, and an electromagnetic wave property control step in which the properties of the electromagnetic waves irradiated in the electromagnetic wave irradiation step are controlled so that the zeta potential of the mesoparticles contained in the pretreated water approaches 0 mV based on the zeta potential of the mesoparticles measured in the mesoparticle potential measurement step. In this way, by carrying out the electromagnetic wave irradiation step, the mesoparticle potential measurement step, and the electromagnetic wave property control step, it is possible to obtain pretreated water that can neutralize the charge of mesoparticles in the mixing tank, flocculate them, and sufficiently suppress the occurrence of membrane fouling when filtered through a membrane.

ここで、本発明の前処理方法は、前記電磁波性状制御工程では、前処理水に含まれるメソ粒子のゼータ電位が-10mV以上+10mV以下となるように電磁波の性状を制御することが好ましい。メソ粒子のゼータ電位が-10mV以上+10mV以下となるようにすれば、メソ粒子の荷電を良好に中和し、膜ファウリングの発生を更に良好に防止し得る前処理水を得ることができる。 Here, in the pretreatment method of the present invention, in the electromagnetic wave property control step, it is preferable to control the properties of the electromagnetic waves so that the zeta potential of the meso particles contained in the pretreated water is -10 mV or more and +10 mV or less. By making the zeta potential of the meso particles -10 mV or more and +10 mV or less, it is possible to obtain pretreated water that can effectively neutralize the charge of the meso particles and further effectively prevent the occurrence of membrane fouling.

そして、この発明は、上記課題を有利に解決することを目的とするものであり、本発明の膜ろ過方法は、上述した前処理方法の何れかを用いて前処理水を得る前処理工程と、前記前処理水をろ過膜でろ過するろ過工程とを含むことを特徴とする。このように、上述した前処理方法を用いて得られる前処理水を膜ろ過すれば、膜ファウリングの発生を十分に抑制できる。 The present invention aims to advantageously solve the above problems, and the membrane filtration method of the present invention is characterized by including a pretreatment step of obtaining pretreated water using any of the pretreatment methods described above, and a filtration step of filtering the pretreated water through a filtration membrane. In this way, membrane filtration of the pretreated water obtained using the pretreatment method described above can sufficiently suppress the occurrence of membrane fouling.

ここで、本発明の膜ろ過方法は、前記ろ過膜がセラミック膜であることが好ましい。ろ過膜がセラミック膜であれば、特に良好に膜ファウリングの発生を防止できる。 Here, in the membrane filtration method of the present invention, it is preferable that the filtration membrane is a ceramic membrane. If the filtration membrane is a ceramic membrane, the occurrence of membrane fouling can be particularly effectively prevented.

本発明の前処理装置および前処理方法によれば、膜ろ過した際に膜ファウリングの発生を十分に抑制することが可能な前処理水が得られる。
また、本発明の膜ろ過システムおよび膜ろ過方法によれば、膜ファウリングの発生を十分に抑制することができる。
According to the pretreatment device and pretreatment method of the present invention, it is possible to obtain pretreated water that can sufficiently suppress the occurrence of membrane fouling when subjected to membrane filtration.
Furthermore, according to the membrane filtration system and membrane filtration method of the present invention, the occurrence of membrane fouling can be sufficiently suppressed.

本発明の膜ろ過システムの一例の概略構成を示す説明図である。FIG. 1 is an explanatory diagram showing a schematic configuration of an example of a membrane filtration system of the present invention. 実施例で用いた膜ろ過システムの構成を示す説明図である。FIG. 1 is an explanatory diagram showing the configuration of a membrane filtration system used in the examples. 実施例および比較例の膜ろ過システムにおける運転日数と膜差圧との関係を示すグラフである。1 is a graph showing the relationship between the number of operating days and transmembrane pressure in the membrane filtration systems of Examples and Comparative Examples.

以下、本発明の実施の形態を、図面に基づき詳細に説明する。
ここで、本発明の膜ろ過システムおよび膜ろ過方法は、特に限定されることなく、例えば浄水場などにおいて用いることができる。そして、本発明の膜ろ過システムは、本発明の前処理装置を備えることを特徴とするものである。また、本発明の膜ろ過方法は、本発明の前処理方法を用いることを特徴とするものである。
Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings.
Here, the membrane filtration system and the membrane filtration method of the present invention are not particularly limited and can be used, for example, in a water purification plant. The membrane filtration system of the present invention is characterized by including the pretreatment device of the present invention. The membrane filtration method of the present invention is characterized by using the pretreatment method of the present invention.

(膜ろ過システム)
本発明の膜ろ過システムは、その一例としての膜ろ過システム100の概略構成を図1に示すように、被膜ろ過水を前処理する前処理装置10と、前処理装置10で得られた前処理水をろ過するろ過膜21を備えるろ過装置20とを備えている。
(Membrane filtration system)
The membrane filtration system of the present invention, as an example of which, is shown in schematic configuration as a membrane filtration system 100 in FIG. 1, comprises a pretreatment device 10 that pretreats the membrane filtrate water, and a filtration device 20 that has a filtration membrane 21 that filters the pretreated water obtained in the pretreatment device 10.

<前処理装置>
本発明の前処理装置の一例としての前処理装置10は、電磁波照射手段11と、混和槽12と、メソ粒子電位測定手段13と、電磁波性状制御手段14とを備えている。また、前処理装置10では、電磁波照射手段11と混和槽12との間で被膜ろ過水に凝集剤が添加される。
なお、前処理装置10は、前処理水のpHを調整するpH調整手段(図示せず)を更に備えていてもよい。
<Pretreatment device>
A pretreatment device 10 as an example of the pretreatment device of the present invention includes an electromagnetic wave irradiation means 11, a mixing tank 12, a mesoparticle potential measurement means 13, and an electromagnetic wave property control means 14. In the pretreatment device 10, a flocculant is added to the membrane filtrate between the electromagnetic wave irradiation means 11 and the mixing tank 12.
The pretreatment device 10 may further include a pH adjusting means (not shown) for adjusting the pH of the pretreated water.

ここで、電磁波照射手段11は、混和槽12に供給される被膜ろ過水に電磁波を照射する。また、電磁波照射手段11が被膜ろ過水に照射する電磁波の性状は、電磁波性状制御手段14により制御されている。そして、電磁波照射手段11としては、特に限定されることなく、例えば、被膜ろ過水が流れる配管に導線を巻き付けてなるコイルと、コイルに交流電流を流す交流電流発生器とから構成される電磁波照射装置を用いることができる。そして、交流電流発生器としては、特に限定されることなく、例えば特開2011-255345号公報や特開2013-167160号公報に記載の装置や、株式会社サイライズ製の「ウォーター・ウォッチャー」などを用いることができる。中でも、交流電流発生器としては、周波数が時間的に変化する方形波またはサイン波などの交流電流を発生させる交流電流発生器、並びに、単一周波数の交流電流または互いに周波数の異なる2つ以上の単一周波数の交流電流を発生させる交流電流発生器を用いることが好ましく、単一周波数の交流電流または互いに周波数の異なる2つ以上の単一周波数の交流電流を発生させる交流電流発生器を用いることがより好ましい。なお、交流電流発生器が発生する交流電流の周波数は、特に限定されることなく、例えば10Hz以上1MHz以下とすることができる。また、発生させる電磁波の磁束密度は、10mG以上とすることが好ましい。ここで、磁束密度は、電磁波発振部上(例えば、コイルを形成するケーブル上)で測定することができる。 Here, the electromagnetic wave irradiation means 11 irradiates electromagnetic waves to the coated filtrate supplied to the mixing tank 12. The properties of the electromagnetic waves irradiated by the electromagnetic wave irradiation means 11 to the coated filtrate are controlled by the electromagnetic wave property control means 14. The electromagnetic wave irradiation means 11 is not particularly limited, and for example, an electromagnetic wave irradiation device consisting of a coil formed by winding a conductor around a pipe through which the coated filtrate flows and an alternating current generator that passes an alternating current through the coil can be used. The alternating current generator is not particularly limited, and for example, the devices described in JP 2011-255345 A and JP 2013-167160 A, the "Water Watcher" manufactured by Sylise Co., Ltd. can be used. Among them, as the AC generator, it is preferable to use an AC generator that generates an AC current such as a square wave or a sine wave whose frequency changes over time, as well as an AC generator that generates an AC current of a single frequency or an AC current of two or more single frequencies different from each other, and it is more preferable to use an AC generator that generates an AC current of a single frequency or an AC current of two or more single frequencies different from each other. The frequency of the AC current generated by the AC current generator is not particularly limited and can be, for example, 10 Hz or more and 1 MHz or less. In addition, it is preferable that the magnetic flux density of the generated electromagnetic wave is 10 mG or more. Here, the magnetic flux density can be measured on the electromagnetic wave oscillator (for example, on the cable forming the coil).

なお、電磁波照射手段11としては、被膜ろ過水が流れる流路または水槽内に設置された電磁波発振部(例えば、ケーブルを矩形状等の任意の形状に巻き回してなる巻回体など)と、電磁波発振部に交流電流を流す交流電流発生器とから構成される電磁波照射装置を用いてもよい。 The electromagnetic wave irradiation means 11 may be an electromagnetic wave irradiation device that is composed of an electromagnetic wave oscillator (e.g., a wound body formed by winding a cable into any shape, such as a rectangle) installed in the flow path or water tank through which the membrane-filtered water flows, and an alternating current generator that applies an alternating current to the electromagnetic wave oscillator.

電磁波が照射された被膜ろ過水に添加する凝集剤としては、特に限定されることなく、カチオン性凝集剤、ノニオン性凝集剤、アニオン性凝集剤などの任意の凝集剤を用いることができる。中でも、凝集剤としては、硫酸バンドやポリ塩化アルミニウム(PAC)などを用いることが好ましい。 The flocculant to be added to the membrane filtrate irradiated with electromagnetic waves is not particularly limited, and any flocculant such as a cationic flocculant, a nonionic flocculant, or an anionic flocculant can be used. Among them, it is preferable to use aluminum sulfate or polyaluminum chloride (PAC) as the flocculant.

混和槽12は、撹拌機を備えており、電磁波を照射された被膜ろ過水と、凝集剤とを混和してフロックを形成させる。具体的には、混和槽12では、被膜ろ過水に含まれていたメソ粒子等の懸濁物質が凝集し、粗大なフロックを形成する。そして、混和槽12からは、フロックを含有する前処理水が流出する。 The mixing tank 12 is equipped with an agitator, and mixes the coated filtrate irradiated with electromagnetic waves with a coagulant to form flocs. Specifically, in the mixing tank 12, suspended matter such as meso particles contained in the coated filtrate coagulate to form coarse flocs. Then, pretreated water containing the flocs flows out of the mixing tank 12.

メソ粒子電位測定手段13は、混和槽12から流出する前処理水に含まれているメソ粒子のゼータ電位を測定する。具体的には、図示例では、メソ粒子電位測定手段13は、混和槽12から流出した前処理水の一部をサンプリングし、前処理水に含まれているメソ粒子のゼータ電位を測定する。 The mesoparticle potential measuring means 13 measures the zeta potential of meso particles contained in the pretreated water flowing out from the mixing tank 12. Specifically, in the illustrated example, the mesoparticle potential measuring means 13 samples a portion of the pretreated water flowing out from the mixing tank 12 and measures the zeta potential of the meso particles contained in the pretreated water.

ここで、メソ粒子電位測定手段13としては、具体的には、特に限定されることなく、サンプリングした前処理水を必要に応じて粗大なフロックを除去した後で濃縮する濃縮器と、濃縮された前処理水に含まれるメソ粒子のゼータ電位を測定する測定器とを備える装置を用いることができる。そして、測定器としては、特に限定されることなく、例えば、ゼータ電位測定装置(MICROTEC社製、ZEECOM)などを用いることができる。 The mesoparticle potential measuring means 13 is not particularly limited, and may be a device equipped with a concentrator that concentrates the sampled pretreated water after removing coarse flocs as necessary, and a measuring device that measures the zeta potential of the mesoparticles contained in the concentrated pretreated water. The measuring device is not particularly limited, and may be, for example, a zeta potential measuring device (ZEECOM, manufactured by MICROTEC).

なお、メソ粒子電位測定手段は、前処理水に含まれているメソ粒子のゼータ電位をインラインで測定する装置であってもよい。 The mesoparticle potential measuring means may be a device that measures the zeta potential of mesoparticles contained in the pretreated water in-line.

電磁波性状制御手段14は、前処理水に含まれているメソ粒子のゼータ電位をメソ粒子電位測定手段13から入手し、入手したメソ粒子のゼータ電位に基づいて、前処理水に含まれるメソ粒子のゼータ電位が0mVに近づくように電磁波照射手段11で照射される電磁波の性状を制御する。 The electromagnetic wave property control means 14 obtains the zeta potential of the meso particles contained in the pretreated water from the meso particle potential measurement means 13, and based on the obtained zeta potential of the meso particles, controls the properties of the electromagnetic waves irradiated by the electromagnetic wave irradiation means 11 so that the zeta potential of the meso particles contained in the pretreated water approaches 0 mV.

ここで、電磁波性状制御手段14で制御する電磁波の性状としては、特に限定されることなく、例えば、磁束密度、強度、周波数などが挙げられる。そして、電磁波の性状は、特に限定されることなく、電磁波照射手段11の交流電流発生器が発生させる交流電流の周波数、波形、電圧などを変更することにより変化させることができる。 Here, the properties of the electromagnetic waves controlled by the electromagnetic wave property control means 14 are not particularly limited and include, for example, magnetic flux density, intensity, and frequency. The properties of the electromagnetic waves are not particularly limited and can be changed by changing the frequency, waveform, voltage, etc. of the alternating current generated by the alternating current generator of the electromagnetic wave irradiation means 11.

前処理水のpHを調整するpH調整手段(図示せず)としては、特に限定されることなく、例えば、pHメータ、酸添加装置およびアルカリ添加装置などを備える既知のpH調整手段を用いることができる。
なお、水道水質基準値を充足しながらメソ粒子のゼータ電位をより一層0mVに近づけるという観点からは、前処理水のpHは、6.0以上7.0以下に調整することが好ましい。
The pH adjustment means (not shown) for adjusting the pH of the pretreated water is not particularly limited, and for example, known pH adjustment means equipped with a pH meter, an acid addition device, and an alkali addition device can be used.
From the viewpoint of bringing the zeta potential of the mesoparticles closer to 0 mV while still satisfying the tap water quality standard, it is preferable to adjust the pH of the pretreated water to 6.0 or more and 7.0 or less.

<ろ過装置>
ろ過装置20では、前処理装置10で被膜ろ過水を前処理して得られた前処理水をろ過膜21でろ過してろ過水を得る。
<Filtration device>
In the filtration device 20, the pretreated water obtained by pretreating the membrane filtrate in the pretreatment device 10 is filtered through a filtration membrane 21 to obtain filtrate.

ここで、ろ過膜21を備えるろ過装置20としては、特に限定されることなく、ろ過水に求められる性状に応じて、水処理の分野において用いられている任意のろ過装置を用いることができる。 Here, the filtration device 20 equipped with the filtration membrane 21 is not particularly limited, and any filtration device used in the field of water treatment can be used depending on the properties required for the filtered water.

(前処理方法)
そして、上述した膜ろ過システム100の前処理装置10では、混和槽12に供給される被膜ろ過水に電磁波照射手段11で電磁波を照射(電磁波照射工程)すると共に混和槽12で被膜ろ過水と凝集剤とを混和してフロックを形成(凝集工程)して前処理水を得るに当たり、前処理水に含まれているメソ粒子のゼータ電位をメソ粒子電位測定手段13で測定(メソ粒子電位測定工程)し、更に電磁波性状制御手段14で前処理水に含まれるメソ粒子のゼータ電位が0mVに近づくように電磁波の性状をフィードバック制御(電磁波性状制御工程)しているので、膜ろ過した際に膜ファウリングの発生を十分に抑制することが可能な前処理水が得られる。
(Pretreatment method)
In the pretreatment device 10 of the above-mentioned membrane filtration system 100, the membrane filtrate supplied to the mixing tank 12 is irradiated with electromagnetic waves by the electromagnetic wave irradiation means 11 (electromagnetic wave irradiation process), and the membrane filtrate is mixed with a coagulant in the mixing tank 12 to form flocs (coagulation process) to obtain pretreated water. The zeta potential of the mesoparticles contained in the pretreated water is measured by the mesoparticle potential measurement means 13 (mesoparticle potential measurement process), and the electromagnetic wave property control means 14 feedback controls the properties of the electromagnetic waves so that the zeta potential of the mesoparticles contained in the pretreated water approaches 0 mV (electromagnetic wave property control process). As a result, pretreated water that can sufficiently suppress the occurrence of membrane fouling when filtered through membrane is obtained.

具体的には、前処理水中に含まれるメソ粒子は膜ファウリングの原因になり得る物質であるところ、混和槽12に流入する前の被膜ろ過水、特には凝集剤を添加する前の被膜ろ過水に照射する電磁波の性状を制御し、メソ粒子のゼータ電位が0mVに近づくようにすれば、混和槽12においてメソ粒子の荷電を中和して凝集させることができるので、前処理水を膜ろ過した際の膜ファウリングの発生を十分に抑制することができる。 Specifically, meso particles contained in the pretreated water are substances that can cause membrane fouling. If the properties of the electromagnetic waves irradiated to the membrane filtered water before it flows into the mixing tank 12, particularly the membrane filtered water before the addition of a coagulant, are controlled so that the zeta potential of the meso particles approaches 0 mV, the charge of the meso particles can be neutralized in the mixing tank 12 to cause them to coagulate, thereby sufficiently suppressing the occurrence of membrane fouling when the pretreated water is subjected to membrane filtration.

なお、膜ファウリングの発生を更に効果的に抑制する観点からは、電磁波性状制御手段14は、メソ粒子のゼータ電位が-10mV以上+10mV以下となるように電磁波の性状を制御することが好ましい。 In order to more effectively suppress the occurrence of membrane fouling, it is preferable that the electromagnetic wave property control means 14 controls the properties of the electromagnetic wave so that the zeta potential of the mesoparticles is between -10 mV and +10 mV.

(膜ろ過方法)
また、上述した膜ろ過システム100では、前処理装置10において上述した前処理方法を用いて前処理水を得た後(前処理工程)、得られた前処理水をろ過装置20のろ過膜21でろ過(ろ過工程)しているので、上述したように膜ファウリングの発生を十分に抑制することができる。
(Membrane filtration method)
Furthermore, in the above-mentioned membrane filtration system 100, after pretreated water is obtained using the above-mentioned pretreatment method in the pretreatment device 10 (pretreatment process), the obtained pretreated water is filtered by the filtration membrane 21 of the filtration device 20 (filtration process), so that the occurrence of membrane fouling can be sufficiently suppressed as described above.

なお、膜ファウリングの発生を良好に防止する観点からは、ろ過膜21としてはセラミック製のろ過膜(セラミック膜)を用いることが好ましい。 In order to effectively prevent membrane fouling, it is preferable to use a ceramic filtration membrane (ceramic membrane) as the filtration membrane 21.

以下、本発明について実施例に基づき具体的に説明するが、本発明はこれらの実施例に限定されるものではない。 The present invention will be described in detail below with reference to examples, but the present invention is not limited to these examples.

(実施例1)
図2に示す膜ろ過システムを表1に示す条件で運転し、被膜ろ過水の膜ろ過およびろ過膜の物理洗浄を繰り返し行った。そして、膜差圧の大きさの経時変化を測定した。結果を図3に示す。
なお、電磁波照射手段としては、株式会社サイライズ製の「ウォーター・ウォッチャー(ソプレス(100V))」を使用し、前処理水に含まれるメソ粒子のゼータ電位が-15mVとなるように電磁波を照射した。また、メソ粒子のゼータ電位は、遠心分離(3000rpm、10分間)によりメソ粒子を濃縮した後、ゼータ電位測定装置(MICROTEC社製、ZEECOM)を使用して測定した。
Example 1
The membrane filtration system shown in Figure 2 was operated under the conditions shown in Table 1, and the membrane filtration of the membrane-filtered water and the physical cleaning of the filtration membrane were repeatedly performed. Then, the change in the transmembrane pressure over time was measured. The results are shown in Figure 3.
As the electromagnetic wave irradiation means, a "Water Watcher (Sopress (100V)" manufactured by Sylise Co., Ltd. was used, and electromagnetic waves were irradiated so that the zeta potential of the meso-particles contained in the pretreated water was -15 mV. The zeta potential of the meso-particles was measured using a zeta potential measuring device (ZEECOM, manufactured by MICROTEC Co., Ltd.) after concentrating the meso-particles by centrifugation (3000 rpm, 10 minutes).

(比較例1)
電磁波照射手段を使用しなかった以外は実施例1と同様にして図2に示す膜ろ過システムを表1に示す条件で運転し、被膜ろ過水の膜ろ過およびろ過膜の物理洗浄を繰り返し行った。そして、膜差圧の大きさの経時変化を測定した。結果を図3に示す。
(Comparative Example 1)
The membrane filtration system shown in Fig. 2 was operated under the conditions shown in Table 1 in the same manner as in Example 1, except that no electromagnetic wave irradiation means was used, and membrane filtration of the membrane-filtered water and physical cleaning of the filtration membrane were repeatedly performed. Then, the change over time in the magnitude of the transmembrane pressure difference was measured. The results are shown in Fig. 3.

Figure 0007485565000001
Figure 0007485565000001

図3より、前処理水に含まれるメソ粒子のゼータ電位が0mVに近づくように電磁波照射手段で照射される電磁波の性状を制御した実施例では、電磁波を照射しなかった比較例よりも膜差圧の上昇が緩やかになり、膜ファウリングの発生が抑制されていることが分かる。 Figure 3 shows that in the embodiment in which the properties of the electromagnetic waves irradiated by the electromagnetic wave irradiation means were controlled so that the zeta potential of the meso particles contained in the pretreated water approached 0 mV, the increase in transmembrane pressure was more gradual than in the comparative example in which electromagnetic waves were not irradiated, and the occurrence of membrane fouling was suppressed.

本発明の前処理装置および前処理方法によれば、膜ろ過した際に膜ファウリングの発生を十分に抑制することが可能な前処理水が得られる。
また、本発明の膜ろ過システムおよび膜ろ過方法によれば、膜ファウリングの発生を十分に抑制することができる。
According to the pretreatment device and pretreatment method of the present invention, it is possible to obtain pretreated water that can sufficiently suppress the occurrence of membrane fouling when subjected to membrane filtration.
Furthermore, according to the membrane filtration system and membrane filtration method of the present invention, the occurrence of membrane fouling can be sufficiently suppressed.

10 前処理装置
11 電磁波照射手段
12 混和槽
13 メソ粒子電位測定手段
14 電磁波性状制御手段
20 ろ過装置
21 ろ過膜
100 膜ろ過システム
10 Pretreatment device 11 Electromagnetic wave irradiation means 12 Mixing tank 13 Mesoparticle potential measurement means 14 Electromagnetic wave property control means 20 Filtration device 21 Filtration membrane 100 Membrane filtration system

Claims (6)

被膜ろ過水の前処理装置であって、
被膜ろ過水と凝集剤とを混和してフロックを形成する混和槽と、
前記混和槽に供給される被膜ろ過水に電磁波を照射する電磁波照射手段と、
前記混和槽から流出する前処理水に含まれるメソ粒子を濃縮する濃縮器、及び、この濃縮器により濃縮されたメソ粒子のゼータ電位を測定する測定器を含むメソ粒子電位測定手段と、
前記メソ粒子電位測定手段で測定されたメソ粒子のゼータ電位に基づいて、前処理水に含まれるメソ粒子のゼータ電位が-10mV以上+10mV以下となるように電磁波照射手段で照射される電磁波の性状を制御する電磁波性状制御手段と、
を備える、前処理装置。
A pretreatment device for membrane filtrate, comprising:
a mixing tank for mixing the membrane filtrate with a coagulant to form flocs;
An electromagnetic wave irradiation means for irradiating the membrane filtrate supplied to the mixing tank with electromagnetic waves;
a concentrator for concentrating meso particles contained in the pretreated water flowing out of the mixing tank, and a meso particle potential measuring means including a measuring device for measuring the zeta potential of the meso particles concentrated by the concentrator ;
an electromagnetic wave property control means for controlling the property of the electromagnetic wave irradiated by the electromagnetic wave irradiating means based on the zeta potential of the mesoparticles measured by the mesoparticle potential measuring means so that the zeta potential of the mesoparticles contained in the pretreated water is −10 mV or more and +10 mV or less ;
A pretreatment device comprising:
請求項に記載の前処理装置と、
前記前処理水をろ過するろ過膜と、
を備える膜ろ過システム。
A pretreatment device according to claim 1 ;
A filtration membrane for filtering the pretreated water;
A membrane filtration system comprising:
前記ろ過膜がセラミック膜である、請求項に記載の膜ろ過システム。 The membrane filtration system of claim 2 , wherein the filtration membrane is a ceramic membrane. 被膜ろ過水の前処理方法であって、
混和槽で被膜ろ過水と凝集剤とを混和してフロックを形成する凝集工程と、
前記混和槽に供給される被膜ろ過水に電磁波を照射する電磁波照射工程と、
前記混和槽から流出する前処理水に含まれるメソ粒子を濃縮した後、濃縮されたメソ粒子のゼータ電位を測定するメソ粒子電位測定工程と、
前記メソ粒子電位測定工程で測定されたメソ粒子のゼータ電位に基づいて、前処理水に含まれるメソ粒子のゼータ電位が-10mV以上+10mV以下となるように電磁波照射工程で照射される電磁波の性状を制御する電磁波性状制御工程と、
を含む、前処理方法。
A method for pretreatment of membrane filtrate, comprising the steps of:
a flocculation step in which the membrane filtrate is mixed with a flocculant in a mixing tank to form flocs;
an electromagnetic wave irradiation step of irradiating the membrane filtrate supplied to the mixing tank with electromagnetic waves;
a mesoparticle potential measuring step of concentrating the mesoparticles contained in the pretreated water flowing out of the mixing tank and then measuring the zeta potential of the concentrated mesoparticles;
an electromagnetic wave property control step of controlling the properties of the electromagnetic waves irradiated in the electromagnetic wave irradiation step based on the zeta potential of the mesoparticles measured in the mesoparticle potential measurement step so that the zeta potential of the mesoparticles contained in the pretreated water is −10 mV or more and +10 mV or less ;
A pretreatment method comprising:
請求項に記載の前処理方法を用いて前処理水を得る前処理工程と、
前記前処理水をろ過膜でろ過するろ過工程と、
を含む、膜ろ過方法。
A pretreatment step of obtaining pretreated water using the pretreatment method according to claim 4 ;
A filtration step of filtering the pretreated water through a filtration membrane;
The membrane filtration method comprising:
前記ろ過膜がセラミック膜である、請求項に記載の膜ろ過方法。 The membrane filtration method according to claim 5 , wherein the filtration membrane is a ceramic membrane.
JP2020135347A 2020-08-07 2020-08-07 Pretreatment device and method for membrane filtered water, and membrane filtration system and membrane filtration method Active JP7485565B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020135347A JP7485565B2 (en) 2020-08-07 2020-08-07 Pretreatment device and method for membrane filtered water, and membrane filtration system and membrane filtration method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020135347A JP7485565B2 (en) 2020-08-07 2020-08-07 Pretreatment device and method for membrane filtered water, and membrane filtration system and membrane filtration method

Publications (2)

Publication Number Publication Date
JP2022030987A JP2022030987A (en) 2022-02-18
JP7485565B2 true JP7485565B2 (en) 2024-05-16

Family

ID=80324482

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020135347A Active JP7485565B2 (en) 2020-08-07 2020-08-07 Pretreatment device and method for membrane filtered water, and membrane filtration system and membrane filtration method

Country Status (1)

Country Link
JP (1) JP7485565B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7359504B1 (en) * 2023-06-07 2023-10-11 ティーケイケイホールディングス株式会社 Evaluation method and device for water modification effect, and method and device for determining water modification effect presence/absence

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011070851A (en) 2009-09-24 2011-04-07 Ska Ltd Electromagnetic cooker, and cooking method using cooking oil by electromagnetic cooker
JP2014168729A (en) 2013-03-01 2014-09-18 Swing Corp Water treatment method and water treatment apparatus
JP2019000763A (en) 2017-06-12 2019-01-10 メタウォーター株式会社 Sludge treatment method and sludge treatment device
JP2020040050A (en) 2018-09-13 2020-03-19 オルガノ株式会社 Membrane filtration method and membrane filtration apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011070851A (en) 2009-09-24 2011-04-07 Ska Ltd Electromagnetic cooker, and cooking method using cooking oil by electromagnetic cooker
JP2014168729A (en) 2013-03-01 2014-09-18 Swing Corp Water treatment method and water treatment apparatus
JP2019000763A (en) 2017-06-12 2019-01-10 メタウォーター株式会社 Sludge treatment method and sludge treatment device
JP2020040050A (en) 2018-09-13 2020-03-19 オルガノ株式会社 Membrane filtration method and membrane filtration apparatus

Also Published As

Publication number Publication date
JP2022030987A (en) 2022-02-18

Similar Documents

Publication Publication Date Title
US5443719A (en) System and reactor for mixing coagulating agents into a contaminated water flow, and for removing contaminants therefrom
US10710917B2 (en) System and methods for water treatment
CA2726737C (en) Wastewater treatment method and wastewater treatment apparatus
JP5951423B2 (en) Flocculant injection control method and flocculant injection control system
JP7485565B2 (en) Pretreatment device and method for membrane filtered water, and membrane filtration system and membrane filtration method
Ben-Sasson et al. Electrocoagulation-membrane filtration hybrid system for colloidal fouling mitigation of secondary-effluent
KR101648296B1 (en) Water treatment apparatus and water treatment method using the same
Lin et al. Enhanced coagulation of low turbid water for drinking water treatment: dosing approach on floc formation and residuals minimization
Daud et al. Treatment of biodiesel wastewater by coagulation-flocculation process using polyaluminium chloride (PAC) and polyelectrolyte anionic
Simonič et al. Coagulation and UF treatment of pulp and paper mill wastewater in comparison
AU2014235024A1 (en) Process for water treatment prior to reverse osmosis
CN104193051A (en) Deep purification treatment method for printing ink wastewater
JP2002159805A (en) Flocculant injection control method of water purification plant
JP2011083666A (en) Water treatment system
Bu et al. Impacts of epichlorohydrin–dimethylamine on coagulation performance and membrane fouling in coagulation/ultrafiltration combined process with different Al-based coagulants
Frick et al. Evaluation of pretreatments for a blowdown stream to feed a filtration system with discarded reverse osmosis membranes
Yu et al. Effect of pre-coagulation using different aluminium species on crystallization of cake layer and membrane fouling
CN106995247B (en) Device and method for preparing low-sodium healthy water
JP6687056B2 (en) Water treatment method and water treatment device
JP2016187790A (en) Method and device for treating inorganic carbon-containing water
JPS6039440B2 (en) Pretreatment method for thickening and dewatering sludge
KR20140115604A (en) Apparatus and method to control the coagulant concentration by using the surface area of particles, and water-treatment equipment and method having the same
JPH11319844A (en) Water purification system
Jang et al. The effects of coagulation with MF/UF membrane filtration in drinking water treatment
US11760676B2 (en) Method of extracting water from sludge using magnetic treatment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230418

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20231226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240109

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240416

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240502

R150 Certificate of patent or registration of utility model

Ref document number: 7485565

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150