JP6687056B2 - Water treatment method and water treatment device - Google Patents

Water treatment method and water treatment device Download PDF

Info

Publication number
JP6687056B2
JP6687056B2 JP2018084264A JP2018084264A JP6687056B2 JP 6687056 B2 JP6687056 B2 JP 6687056B2 JP 2018084264 A JP2018084264 A JP 2018084264A JP 2018084264 A JP2018084264 A JP 2018084264A JP 6687056 B2 JP6687056 B2 JP 6687056B2
Authority
JP
Japan
Prior art keywords
water
cationic polymer
treated
membrane separation
treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018084264A
Other languages
Japanese (ja)
Other versions
JP2019188337A (en
Inventor
貴子 岩見
貴子 岩見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2018084264A priority Critical patent/JP6687056B2/en
Priority to PCT/JP2019/017115 priority patent/WO2019208532A1/en
Priority to TW108114327A priority patent/TW201945294A/en
Publication of JP2019188337A publication Critical patent/JP2019188337A/en
Application granted granted Critical
Publication of JP6687056B2 publication Critical patent/JP6687056B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D21/00Separation of suspended solid particles from liquids by sedimentation
    • B01D21/01Separation of suspended solid particles from liquids by sedimentation using flocculating agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/58Multistep processes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F1/54Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using organic material
    • C02F1/56Macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/10Metal compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Separation Of Suspended Particles By Flocculating Agents (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

本発明は、被処理水に無機凝集剤を添加して凝集処理した後、凝集処理水を膜分離装置で膜分離する水処理において、膜分離装置の汚染を防止すると共に、凝集剤使用量を低減する水処理方法及び水処理装置に関する。   The present invention, after adding an inorganic coagulant to the water to be treated and performing coagulation treatment, in the water treatment in which the coagulated water is subjected to membrane separation with a membrane separation device, while preventing contamination of the membrane separation device, TECHNICAL FIELD The present invention relates to a water treatment method and a water treatment device that are reduced.

工業用水、市水、井水、工業排水などの被処理水を処理する方法として、原水中の有機物並びに濁質(SS)を除去する目的で無機凝集剤で凝集処理した後に、凝集処理水を沈殿分離装置や浮上分離装置、或いは精密濾過膜(MF膜)モジュール又は限外濾過膜(UF膜)モジュールによる膜分離装置によって固液分離して清澄水を得る方法がある。しかし、この方法では、例えば被処理水が高pHないしは高アルカリ度である場合や、高濃度のリンや生物代謝物を含む場合、これらの物質が無機凝集剤を分散させるため、無機凝集剤のみの凝集処理では大量の無機凝集剤が必要となり、汚泥発生量の増加につながる。さらには、無機凝集剤濃度が増加することによって、固液分離に用いた膜分離装置の洗浄頻度の増加につながる。   As a method of treating water to be treated such as industrial water, city water, well water, and industrial wastewater, after coagulating with an inorganic coagulant for the purpose of removing organic matter and suspended matter (SS) in raw water, the coagulated water is treated. There is a method of obtaining clear water by solid-liquid separation by a precipitation separator, a flotation separator, or a membrane separator using a microfiltration membrane (MF membrane) module or an ultrafiltration membrane (UF membrane) module. However, in this method, for example, when the water to be treated has a high pH or a high alkalinity or contains a high concentration of phosphorus or a biometabolite, since these substances disperse the inorganic coagulant, only the inorganic coagulant is used. A large amount of inorganic coagulant is required in the coagulation treatment of No. 1, which leads to an increase in the amount of sludge generated. Furthermore, an increase in the concentration of the inorganic coagulant leads to an increase in the frequency of cleaning the membrane separation device used for solid-liquid separation.

無機凝集剤のみでは凝集処理が困難な被処理水に対して、無機凝集剤とともにカチオン性ポリマーを用いる方法がある。例えば、特許文献1には、無機凝集剤の添加に先立ちカチオン性ポリマーを添加することで、高pHあるいは高アルカリ度の被処理水を凝集処理する技術が記載されている。しかしながら、本方法では原水中の有機物やSSが最初にカチオン性ポリマーと反応するため、カチオン性ポリマーの必要添加量が多く、コスト増加につながる。   There is a method of using a cationic polymer together with an inorganic coagulant for water to be treated which is difficult to coagulate with an inorganic coagulant alone. For example, Patent Document 1 describes a technique of adding a cationic polymer prior to adding an inorganic coagulant to perform coagulation treatment on water to be treated having high pH or high alkalinity. However, in this method, the organic matter and SS in the raw water first react with the cationic polymer, so that the required amount of the cationic polymer is large, which leads to an increase in cost.

特許文献2には、無機凝集剤と高分子凝集剤とを添加して凝集処理した後、固液分離する前に再び無機凝集剤を添加する技術が示されているが、この方法では凝集剤の添加回数が多く、装置が複雑で操作が煩雑になる問題がある。   Patent Document 2 discloses a technique of adding an inorganic coagulant and a polymer coagulant to perform coagulation treatment, and then adding the inorganic coagulant again before solid-liquid separation. However, there is a problem that the device is complicated and the operation is complicated.

特許文献3には、実質的に水に溶解しないカチオン性ポリマーからなる粒子を用い、そのの添加に先立ち無機凝集剤を添加する方法が示されているが、この方法では、非水溶性の粒子を含む凝集フロックが粗大になるため、固液分離に用いる膜分離装置内に濁質汚染を引き起こす問題がある。また、水に溶解しないポリマーは静置状態で沈降するため、薬品タンク内を常に攪拌する必要があり、薬注設備が複雑になる上に設備維持コストも増大する問題がある。   Patent Document 3 discloses a method of using particles made of a cationic polymer which is substantially insoluble in water and adding an inorganic coagulant prior to the addition of the particles. However, in this method, water-insoluble particles are used. Since the floc of flocs containing is coarse, there is a problem of causing turbidity contamination in the membrane separation device used for solid-liquid separation. In addition, since a polymer that does not dissolve in water settles in a stationary state, it is necessary to constantly stir the inside of the chemical tank, which complicates the chemical injection equipment and increases the equipment maintenance cost.

特開2017−140577号公報JP, 2017-140577, A 特開平11−77062号公報JP, 11-77062, A 特開2009−240974号公報JP, 2009-240974, A

本発明は、上記従来技術に鑑みてなされたものであって、被処理水に無機凝集剤を添加して凝集処理した後、凝集処理水を膜分離装置で膜分離する水処理において、膜分離装置の汚染を防止すると共に、凝集剤使用量を低減する水処理方法及び水処理装置を提供することを目的とする。   The present invention has been made in view of the above-mentioned prior art, and after adding an inorganic coagulant to the water to be treated to perform coagulation treatment, in the water treatment in which the coagulated treatment water is subjected to membrane separation by a membrane separation device, membrane separation An object of the present invention is to provide a water treatment method and a water treatment apparatus which prevent the apparatus from being contaminated and reduce the amount of coagulant used.

本発明者は上記課題を解決すべく検討を重ねた結果、最初に原水中の有機物やSSと無機凝集剤とを反応させた後に、特定の分子量の水溶性のカチオン性ポリマーを添加することで、分散する無機凝集剤コロイドや微細フロックとカチオン性ポリマーとを効率的に反応させることができ、カチオン性ポリマー添加後直接膜分離装置で膜分離しても膜分離装置を汚染することなく、また、凝集剤使用量の低減も可能であることを見出した。
即ち、本発明は以下を要旨とする。
As a result of repeated studies to solve the above-mentioned problems, the present inventor first reacted an organic substance or SS in raw water with an inorganic coagulant, and then added a water-soluble cationic polymer having a specific molecular weight. In addition, it is possible to efficiently react the dispersed inorganic flocculant colloid or fine flocs with the cationic polymer, and even if the membrane is directly separated by the membrane separation device after the addition of the cationic polymer, the membrane separation device is not contaminated. It was also found that it is possible to reduce the amount of coagulant used.
That is, the gist of the present invention is as follows.

[1] 被処理水に無機凝集剤を添加して凝集処理した後に膜分離装置で膜分離する水処理方法において、被処理水に無機凝集剤を添加した後、質量平均分子量10万〜800万の水溶性のカチオン性ポリマーを添加して凝集処理し、凝集処理水を直接膜分離装置で膜分離することを特徴とする水処理方法。 [1] In a water treatment method in which an inorganic coagulant is added to treated water to perform coagulation treatment and then a membrane separation is performed in a membrane separator, a mass average molecular weight of 100,000 to 8,000,000 is added after the inorganic coagulant is added to the treated water. 2. A water treatment method comprising adding the water-soluble cationic polymer described in 1 above to perform coagulation treatment, and subjecting the coagulated water to direct membrane separation with a membrane separator.

[2] 前記被処理水がリン、生物代謝物、キレート効果を有する有機酸、及び無機炭素のいずれかを含む、工業用水、市水、井水、工業排水、或いは排水の生物処理水である[1]に記載の水処理方法。 [2] The water to be treated is industrial water, city water, well water, industrial wastewater, or biologically treated water of wastewater containing any of phosphorus, biometabolites, organic acids having a chelating effect, and inorganic carbon. The water treatment method according to [1].

[3] 前記膜分離装置が、精密濾過膜分離装置又は限外濾過膜分離装置である[1]又は[2]に記載の水処理方法。 [3] The water treatment method according to [1] or [2], wherein the membrane separator is a microfiltration membrane separator or an ultrafiltration membrane separator.

[4] 前記膜分離装置で得られた処理水を、さらに逆浸透膜処理する[1]〜[3]のいずれかに記載の水処理方法。 [4] The water treatment method according to any one of [1] to [3], wherein the treated water obtained by the membrane separation device is further subjected to a reverse osmosis membrane treatment.

[5] 流動電位法により前記被処理水を前記カチオン性ポリマーで滴定することで、該被処理水の電荷を中和するのに必要な該カチオン性ポリマーの必要量をカチオン消費量Aとして求め、該カチオン消費量Aと前記無機凝集剤及び該カチオン性ポリマーの添加濃度とが下記関係式(I)を満たすように、該カチオン性ポリマーの添加量と該無機凝集剤の添加量を制御する[1]〜[4]のいずれかに記載の水処理方法。
カチオン消費量A×α=
カチオン性ポリマー添加濃度(mg/L)+無機凝集剤添加濃度(mg/L)×β
…(I)
α:水質変動を加味した安全係数
β:無機凝集剤のカチオン量をカチオン性ポリマーのカチオン量に換算する係数
[5] By titrating the water to be treated with the cationic polymer by a streaming potential method, a necessary amount of the cationic polymer required to neutralize the charge of the water to be treated is obtained as a cation consumption amount A. Controlling the addition amount of the cationic polymer and the addition amount of the inorganic coagulant so that the cation consumption amount A and the addition concentrations of the inorganic coagulant and the cationic polymer satisfy the following relational expression (I): The water treatment method according to any one of [1] to [4].
Cation consumption A x α =
Cationic polymer addition concentration (mg / L) + inorganic coagulant addition concentration (mg / L) x β
… (I)
α: Safety factor in consideration of water quality fluctuation β: Coefficient for converting cation amount of inorganic coagulant to cation amount of cationic polymer

[6] 被処理水に無機凝集剤を添加して凝集処理する第1の凝集処理手段と、該第1の凝集処理手段の凝集処理水に質量平均分子量10万〜800万の水溶性のカチオン性ポリマーを添加して凝集処理する第2の凝集処理手段と、該第2の凝集処理手段の凝集処理水を直接膜分離する膜分離装置とを有することを特徴とする水処理装置。 [6] First coagulation treatment means for coagulation treatment by adding an inorganic coagulant to the water to be treated, and water-soluble cation having a mass average molecular weight of 100,000 to 8,000,000 in the coagulation treatment water of the first coagulation treatment means. A water treatment apparatus comprising: a second aggregating treatment means for adding a water-soluble polymer to perform an aggregating treatment; and a membrane separation device for directly performing a membrane separation of the aggregating treatment water of the second aggregating treatment means.

[7] 前記被処理水がリン、生物代謝物、キレート作用を有する有機酸、及び無機炭素のいずれかを含む、工業用水、市水、井水、工業排水、或いは排水の生物処理水である[6]に記載の水処理装置。 [7] The treated water is industrial water, city water, well water, industrial wastewater, or biologically treated water of wastewater containing any of phosphorus, a biometabolite, an organic acid having a chelating action, and inorganic carbon. The water treatment device according to [6].

[8] 前記膜分離装置が、精密濾過膜分離装置又は限外濾過膜分離装置である[6]又は[7]に記載の水処理装置。 [8] The water treatment device according to [6] or [7], wherein the membrane separation device is a microfiltration membrane separation device or an ultrafiltration membrane separation device.

[9] 前記膜分離装置で得られた処理水を処理する逆浸透膜分離装置を更に有する[6]〜[8]のいずれかに記載の水処理装置。 [9] The water treatment device according to any of [6] to [8], further including a reverse osmosis membrane separation device that treats the treated water obtained by the membrane separation device.

[10] 流動電位法により前記被処理水を前記カチオン性ポリマーで滴定することで、該被処理水の電荷を中和するのに必要な該カチオン性ポリマーの必要量をカチオン消費量Aとして求め、前記無機凝集剤及び該カチオン性ポリマーの添加濃度とが、下記関係式(I)を満たすように、該カチオン性ポリマーの添加量と該無機凝集剤の添加量を制御する手段を更に有する[6]〜[9]のいずれかに記載の水処理装置。
カチオン消費量A×α=
カチオン性ポリマー添加濃度(mg/L)+無機凝集剤添加濃度(mg/L)×β
…(I)
α:水質変動を加味した安全係数
β:無機凝集剤のカチオン量をカチオン性ポリマーのカチオン量に換算する係数
[10] By titrating the water to be treated with the cationic polymer by a streaming potential method, a necessary amount of the cationic polymer required to neutralize the charge of the water to be treated is obtained as a cation consumption A. Further, it further comprises means for controlling the addition amount of the cationic polymer and the addition amount of the inorganic coagulant so that the addition concentration of the inorganic coagulant and the cationic polymer satisfies the following relational expression (I): 6] to the water treatment device according to any one of [9].
Cation consumption A x α =
Cationic polymer addition concentration (mg / L) + inorganic coagulant addition concentration (mg / L) x β
… (I)
α: Safety factor in consideration of water quality fluctuation β: Coefficient for converting cation amount of inorganic coagulant to cation amount of cationic polymer

本発明によれば、被処理水を凝集処理して膜分離装置で膜分離する水処理において、膜分離装置の汚染を防止した上で、凝集剤使用量を低減することができる。   According to the present invention, in the water treatment in which the water to be treated is coagulated and subjected to membrane separation in the membrane separator, it is possible to prevent the membrane separator from being contaminated and reduce the amount of the coagulant used.

実施例で用いた外圧式ミニモジュール試験装置を示す構成図である。It is a block diagram which shows the external pressure type mini-module testing device used in the Example. 実験例Iにおけるカチオン性ポリマーと無機凝集剤の添加順の凝集処理水質(MFF)に及ぼす影響を示すグラフである。It is a graph which shows the influence which it has in order of addition of a cationic polymer and an inorganic coagulant in aggregation example water quality (MFF) in Experimental example I.

以下に本発明の水処理方法及び水処理装置の実施の形態を詳細に説明する。   Hereinafter, embodiments of the water treatment method and the water treatment apparatus of the present invention will be described in detail.

本発明の水処理方法は、被処理水に無機凝集剤を添加して凝集処理した後に膜分離装置で膜分離する水処理方法において、被処理水に無機凝集剤を添加した後、質量平均分子量10万〜800万の水溶性のカチオン性ポリマーを添加して凝集処理し、凝集処理水を直接膜分離装置で膜分離することを特徴とする。   The water treatment method of the present invention is a water treatment method in which an inorganic coagulant is added to the water to be treated and then subjected to a coagulation treatment by a membrane separator, and after the inorganic coagulant is added to the water to be treated, the mass average molecular weight is The present invention is characterized in that 100,000 to 8,000,000 water-soluble cationic polymers are added to perform coagulation treatment, and the coagulated water is directly subjected to membrane separation by a membrane separation device.

本発明の水処理装置は、被処理水に無機凝集剤を添加して凝集処理する第1の凝集処理手段と、該第1の凝集処理手段の凝集処理水に質量平均分子量10万〜800万の水溶性のカチオン性ポリマーを添加して凝集処理する第2の凝集処理手段と、該第2の凝集処理手段の凝集処理水を直接膜分離する膜分離装置とを有することを特徴とする。   The water treatment apparatus of the present invention comprises a first aggregating treatment means for performing an aggregating treatment by adding an inorganic aggregating agent to water to be treated, and a mass average molecular weight of 100,000 to 8,000,000 in the aggregating treated water of the first aggregating treatment means. It is characterized by comprising a second aggregating treatment means for adding the water-soluble cationic polymer to aggregating treatment and a membrane separation device for directly subjecting the aggregating water of the second aggregating treatment means to membrane separation.

[メカニズム]
本発明によれば、被処理水に最初に無機凝集剤を添加して被処理水中の有機物やSSと無機凝集剤とを反応させた後に、カチオン性ポリマーを添加するため、分散する無機凝集剤コロイドや微細フロックとカチオン性ポリマーとを効率的に反応させることができ、カチオン性ポリマー添加後直接膜分離装置で膜分離しても膜分離装置を汚染することなく、また、凝集剤使用量の低減も可能となる。
[mechanism]
According to the present invention, an inorganic flocculant is first added to the water to be treated to react an organic substance or SS in the water to be treated with the inorganic flocculant, and then a cationic polymer is added, so that the inorganic flocculant to be dispersed is added. Colloids and fine flocs can be efficiently reacted with cationic polymers, and even if the membrane is directly separated with a membrane separation device after the addition of the cationic polymer, the membrane separation device is not contaminated, and the amount of flocculant used can be reduced. It can also be reduced.

仮にカチオン性ポリマーを無機凝集剤の前に添加した場合、カチオン性ポリマーが原水中のSSや有機物などのアニオン成分と反応して消費される。そのため、無機凝集剤の後にカチオン性ポリマーを添加する場合と比べて、分散した無機凝集剤コロイドと反応するために必要なカチオン性ポリマーの量が増加する。一方、カチオン性ポリマー添加量/無機凝集剤添加量の割合が一定以上になった場合、凝集フロックが分離膜に吸着しやすく膜を汚染しやすくなる。よって、本発明においては、分離膜前の凝集にカチオン性ポリマーを用いる場合は、無機凝集剤の添加後にカチオン性ポリマーを用いる。   If the cationic polymer is added before the inorganic coagulant, the cationic polymer is consumed by reacting with anion components such as SS and organic matter in the raw water. Therefore, as compared with the case where the cationic polymer is added after the inorganic coagulant, the amount of the cationic polymer required to react with the dispersed inorganic coagulant colloid increases. On the other hand, when the ratio of the addition amount of the cationic polymer / the addition amount of the inorganic coagulant exceeds a certain level, the floc of flocs is easily adsorbed on the separation membrane and the membrane is easily contaminated. Therefore, in the present invention, when the cationic polymer is used for aggregation before the separation membrane, the cationic polymer is used after the addition of the inorganic aggregating agent.

本発明で用いるカチオン性ポリマーは、その質量平均分子量が10万以上と比較的大きいため、後述の実施例に示されるように、凝集フロックが膜閉塞を引き起こし難く、一方で、質量平均分子量800万以下でかつ水溶性であるため凝集フロックが膜モジュール内に堆積し難く、このため膜分離装置内の汚染を防止して、長期に亘り安定に処理を継続することができる。
また、無機凝集剤とカチオン性ポリマーとの併用で無機凝集剤の添加量を低減することができ、その際にカチオン性ポリマーを無機凝集剤よりも後に添加するため、カチオン性ポリマーの必要添加量を低減することができ、結果として全体の凝集剤使用量を低減することができる。
Since the cationic polymer used in the present invention has a relatively large mass average molecular weight of 100,000 or more, as shown in Examples described later, aggregated flocs are unlikely to cause membrane clogging, while the mass average molecular weight is 8,000,000. Since it is below and water-soluble, aggregate flocs are less likely to be deposited in the membrane module. Therefore, contamination in the membrane separation device can be prevented and stable treatment can be continued for a long time.
Further, the addition amount of the inorganic coagulant can be reduced by using the inorganic coagulant and the cationic polymer in combination, and in that case, the cationic polymer is added after the inorganic coagulant. Can be reduced, and as a result, the total amount of coagulant used can be reduced.

[被処理水]
本発明で処理する被処理水としては特に制限はないが、本発明は、無機凝集剤のみでは十分な凝集処理効果を得ることが困難な、リン、生物代謝物、キレート作用を有する有機酸、或いは無機炭素を含む、工業用水、市水、井水、工業排水、排水の生物処理水の処理に有効である。
キレート作用を有する有機酸としては、クエン酸、蟻酸、コハク酸、酢酸及び酪酸などが例示できる。これらの有機酸は例えば半導体製造工程中のメッキ工程などに用いられ、該排水を処理する際に無機凝集剤の錯イオン形成剤あるいは分散剤として作用する。このような有機酸を含む排水の凝集は、凝集pHが高いほど有機酸の錯イオン形成能が高まるため、凝集状態が悪化する。凝集pHが高くなる場合とは、例えば、CuやMn等の重金属処理を目的に凝集を行う場合、或いは、原水中のTOC除去における最適凝集pHが6以上である場合、無機凝集剤にポリ塩化アルミニウムを用いる場合を挙げることができる。
[Water to be treated]
There is no particular limitation on the water to be treated in the present invention, the present invention is difficult to obtain a sufficient coagulation treatment effect only with an inorganic coagulant, phosphorus, biological metabolites, organic acids having a chelating action, Alternatively, it is effective for treating industrial water, city water, well water, industrial wastewater, and biologically treated water of wastewater containing inorganic carbon.
Examples of the organic acid having a chelating action include citric acid, formic acid, succinic acid, acetic acid and butyric acid. These organic acids are used, for example, in a plating process in a semiconductor manufacturing process, and act as a complex ion forming agent or a dispersant for an inorganic coagulant when treating the wastewater. In the aggregation of wastewater containing such an organic acid, the higher the aggregation pH, the higher the complex ion forming ability of the organic acid, and thus the aggregating state deteriorates. When the coagulation pH is high, for example, when coagulation is performed for the purpose of treating heavy metals such as Cu and Mn, or when the optimum coagulation pH for removing TOC in raw water is 6 or more, polychlorination is applied to the inorganic coagulant. The case where aluminum is used can be mentioned.

[無機凝集剤による凝集処理]
被処理水に添加する無機凝集剤としては、幅広いpH範囲でフロックを形成することができる鉄系又はアルミニウム系の無機凝集剤を使用することが好ましい。鉄系無機凝集剤としては、塩化第二鉄、硫酸第二鉄、ポリ塩化第二鉄、ポリ硫酸第二鉄などが挙げられ、アルミニウム系無機凝集剤としては、ポリ塩化アルミニウムや硫酸アルミニウムが挙げられる。特に凝集効果とコストの面で鉄系無機凝集剤である塩化第二鉄が好ましい。これらの無機凝集剤は、1種を単独で用いてもよく、2種以上を混合して用いてもよい。
[Coagulation treatment with inorganic coagulant]
As the inorganic coagulant added to the water to be treated, it is preferable to use an iron-based or aluminum-based inorganic coagulant capable of forming flocs in a wide pH range. Examples of the iron-based inorganic coagulant include ferric chloride, ferric sulfate, polyferric chloride, and ferric polysulfate, and examples of the aluminum-based inorganic coagulant include polyaluminum chloride and aluminum sulfate. To be In particular, ferric chloride, which is an iron-based inorganic coagulant, is preferable in terms of coagulation effect and cost. These inorganic coagulants may be used alone or in combination of two or more.

被処理水への無機凝集剤の添加量は、被処理水の水質や、用いる無機凝集剤の種類、要求される処理水水質等によっても異なるが、有効成分量として2〜100mg/Lの範囲とすることが好ましい。   The amount of the inorganic coagulant added to the water to be treated varies depending on the water quality of the water to be treated, the type of the inorganic coagulant to be used, the required water quality of the treated water, and the like, but the range of the active ingredient amount is 2 to 100 mg / L. It is preferable that

なお、無機凝集剤はその種類に応じて、好適凝集処理pH範囲が存在し、塩化第二鉄等の鉄系無機凝集剤ではpH5〜6程度が好ましく、アルミニウム系無機凝集剤ではpH6〜7程度が好ましいことから、必要に応じて酸又はアルカリを添加して好適pH範囲にpH調整することが好ましい。   In addition, depending on the type of the inorganic coagulant, there is a suitable coagulation treatment pH range, and an iron-based inorganic coagulant such as ferric chloride preferably has a pH of about 5 to 6, and an aluminum-based inorganic coagulant has a pH of about 6 to 7. Therefore, it is preferable to add an acid or an alkali as necessary to adjust the pH to a suitable pH range.

被処理水に無機凝集剤を添加した後は被処理水中の有機物やSSと無機凝集剤とを十分に反応させるために2〜10分程度急速攪拌することが好ましい。
なお、本発明において、急速攪拌とは回転数として100〜200rpm程度をさし、緩速攪拌とは回転数として20〜100rpm程度をさす。
After adding the inorganic coagulant to the water to be treated, it is preferable to perform rapid stirring for about 2 to 10 minutes in order to sufficiently react the organic matter or SS in the water to be treated with the inorganic coagulant.
In the present invention, the rapid stirring refers to a rotation speed of about 100 to 200 rpm, and the slow stirring refers to a rotation speed of about 20 to 100 rpm.

[カチオン性ポリマーによる凝集処理]
本発明で用いるカチオン性ポリマーは、質量平均分子量10万〜800万の水溶性のものである。
ここで、「水溶性」とは、水に対する溶解度が1g以上/水100g(20℃)であることをさす。
また、「カチオン性ポリマー」とは、コロイド当量が正の値を示すものであり、例えばコロイド当量は、1.0〜6.0meq/gであることが好ましい。ここで、コロイド当量は1/400NのPVSK(ポリビニル硫酸カリウム)で滴定を行い、流動電位法により測定される。
[Aggregating treatment with cationic polymer]
The cationic polymer used in the present invention is a water-soluble polymer having a mass average molecular weight of 100,000 to 8,000,000.
Here, “water-soluble” means that the solubility in water is 1 g or more / 100 g of water (20 ° C.).
Further, the "cationic polymer" is one in which the colloid equivalent has a positive value, and for example, the colloid equivalent is preferably 1.0 to 6.0 meq / g. Here, the colloid equivalent is measured by the streaming potential method by titrating with 1 / 400N PVSK (potassium polyvinyl sulfate).

また、カチオン性ポリマーの質量平均分子量とは、クロマトグラフィー法(GPC法)により測定された質量平均分子量の値である。   Moreover, the mass average molecular weight of the cationic polymer is a value of the mass average molecular weight measured by a chromatography method (GPC method).

カチオン性ポリマーの質量平均分子量が10万未満では、形成される凝集フロックが微細になるため膜閉塞を引き起こし易く、一方で質量平均分子量が800万を超えると凝集フロックが粗大になりすぎ、膜モジュール内に堆積しやすくなる。このため、本発明で用いるカチオン性ポリマーの質量平均分子量は10万〜800万、好ましくは20万〜100万の範囲とする。   If the weight average molecular weight of the cationic polymer is less than 100,000, the flocculation flocs to be formed become fine, and thus membrane clogging is likely to occur. On the other hand, if the weight average molecular weight exceeds 8,000,000, the flocculation flocs become too coarse and the membrane module It becomes easy to accumulate inside. Therefore, the cationic polymer used in the present invention has a mass average molecular weight of 100,000 to 8,000,000, preferably 200,000 to 1,000,000.

カチオン性ポリマーとしては、上記の質量平均分子量を有する水溶性のものであればよく、特に制限はないが、カチオン性モノマーとアクリルアミド等のノニオン性モノマーとの共重合物を好適に用いることができる。カチオン性モノマーの具体例としては、ジメチルアミノエチルアクリレートやジメチルアミノエチルメタクリレートの酸塩もしくはその4級アンモニウム塩、ジメチルアミノプロピルアクリアミドやジメチルアミノプロピルメタクリアミドの酸塩もしくはその4級アンモニウム塩を好適に用いることができるが、これらに限定されるものではない。なお、4級アンモニウム塩としては、メチルクロライドやエチルクロライドなどの4級アンモニウム塩を用いることができる。
これらのカチオン性ポリマーは1種を単独で用いてもよく、2種以上を混合して用いてもよい。
The cationic polymer may be any water-soluble one having the above-mentioned mass average molecular weight and is not particularly limited, but a copolymer of a cationic monomer and a nonionic monomer such as acrylamide can be preferably used. . As specific examples of the cationic monomer, acid salts of dimethylaminoethyl acrylate and dimethylaminoethyl methacrylate or quaternary ammonium salts thereof, acid salts of dimethylaminopropylacryamide and dimethylaminopropylmethacrylamide or quaternary ammonium salts thereof are preferable. However, the present invention is not limited to these. As the quaternary ammonium salt, a quaternary ammonium salt such as methyl chloride or ethyl chloride can be used.
These cationic polymers may be used alone or in combination of two or more.

無機凝集剤による凝集処理水(以下、「無機凝集処理水」と称す場合がある。)へのカチオン性ポリマーの添加量は、被処理水或いは無機凝集処理水の水質や用いるカチオン性ポリマーの種類によっても異なるが、有効成分量として0.1〜5mg/Lの範囲をすることが好ましい。   The amount of the cationic polymer added to the coagulated water using an inorganic coagulant (hereinafter, also referred to as “inorganic coagulated water”) depends on the water quality of the water to be treated or the inorganic coagulated water and the type of the cationic polymer to be used. The amount of the active ingredient is preferably in the range of 0.1 to 5 mg / L, though it varies depending on the situation.

無機凝集処理水にカチオン性ポリマーを添加した後は、カチオン性ポリマーとの反応時間を確保するために2〜10分程度の急速攪拌と、その後2〜10分程度の緩速攪拌を行うことが好ましい。   After adding the cationic polymer to the inorganic coagulated water, rapid stirring for about 2 to 10 minutes and then slow stirring for about 2 to 10 minutes may be performed in order to secure a reaction time with the cationic polymer. preferable.

[膜分離装置による膜分離]
無機凝集処理水にカチオン性ポリマーを添加して凝集処理して得られた凝集処理水(以下、「カチオン凝集処理水」と称す場合がある。)は、直接膜分離装置で膜分離する。
ここで、「直接膜分離する」とは、カチオン凝集処理水に更なる凝集剤の添加や、沈殿槽等による固液分離等を行わずに、そのまま膜分離装置に給水することをさす。
[Membrane separation by membrane separator]
Aggregation-treated water obtained by adding a cationic polymer to inorganic aggregation-treated water and aggregating it (hereinafter sometimes referred to as "cationic aggregation-treated water") is directly subjected to membrane separation by a membrane separator.
Here, "direct membrane separation" refers to supplying water to the membrane separation apparatus as it is, without further adding a coagulant to the cation coagulation treated water or performing solid-liquid separation in a precipitation tank or the like.

本発明で用いる膜分離装置については、その膜素材、膜形式や構造には特に制限はないが、膜分離装置はMF膜分離装置又はUF膜分離装置を用いることが好ましい。
UF膜、MF膜の孔径については、0.2μm以下、例えば0.1〜0.01μm程度のものを用いることが好ましい。
The membrane separation device used in the present invention is not particularly limited in its membrane material, membrane form and structure, but it is preferable to use an MF membrane separation device or a UF membrane separation device as the membrane separation device.
The pore diameter of the UF membrane and the MF membrane is preferably 0.2 μm or less, for example, about 0.1 to 0.01 μm.

また、膜分離装置による膜分離方式にも特に制限はなく、後述の実施例ではデッドエンド通水方式で行っているが、クロスフロー通水方式であってもよい。   Further, the membrane separation method by the membrane separation device is not particularly limited, and the dead end water passage method is used in the embodiments described later, but a cross flow water passage method may be used.

[高度処理]
本発明において、上記の膜分離装置による膜分離で得られる処理水は有機物、SS等が十分に除去された高水質のものであり、これをそのまま工業用水として使用したり放流することができるが、必要に応じて逆浸透(RO)膜分離装置でRO膜処理してもよく、この場合において、RO膜処理に供する水が十分に高水質であるため、RO膜分離装置の差圧上昇等の問題を引き起こすことなく、安定かつ効率的な処理を行って、高水質の純水を得ることができる。
[Advanced processing]
In the present invention, the treated water obtained by the membrane separation by the above-mentioned membrane separation device is of high water quality with sufficient removal of organic matter, SS and the like, and it can be used as it is as industrial water or discharged. If necessary, RO membrane treatment may be carried out by a reverse osmosis (RO) membrane separator, and in this case, the water used for the RO membrane treatment has a sufficiently high water quality, so that the differential pressure of the RO membrane separator increases. It is possible to obtain high-quality pure water by performing stable and efficient treatment without causing the above problem.

[凝集剤添加量の制御]
無機凝集処理水に対してカチオン性ポリマーを過剰添加した場合、カチオン凝集処理水中の荷電がプラス雰囲気になるため、カチオン性ポリマーの吸着対象物質(原水中SS、有機物、無機凝集剤コロイド)の除去率を低下させる結果となる。そのため、被処理水の電荷を中和するために必要なカチオン消費量Aを測定し、添加する凝集剤の総カチオン量を被処理水のカチオン消費量A以下に調整することが好ましい。被処理水のカチオン消費量Aは流動電位法により、被処理水を用いるカチオン性ポリマーで滴定することにより求めることができる。
[Control of amount of coagulant added]
When the cationic polymer is added excessively to the inorganic coagulated water, the charge in the cationic coagulated water becomes a positive atmosphere, so the substances to be adsorbed by the cationic polymer (SS in raw water, organic matter, colloid of inorganic coagulant) are removed. This will result in lower rates. Therefore, it is preferable to measure the cation consumption amount A necessary for neutralizing the charge of the water to be treated and adjust the total cation amount of the coagulant to be added to be equal to or less than the cation consumption amount A of the water to be treated. The cation consumption A of the water to be treated can be determined by the streaming potential method by titrating with a cationic polymer using the water to be treated.

本発明では、このようにして被処理水のカチオン消費量Aを求め、無機凝集剤とカチオン性ポリマーの添加濃度とが下記関係式(I)を満たすように、無機凝集剤とカチオン性ポリマーの添加量を制御することが好ましい。
カチオン消費量A×α=
カチオン性ポリマー添加濃度(mg/L)+無機凝集剤添加濃度(mg/L)×β
…(I)
ここで、αは水質変動を加味した安全係数であり、通常、0.6〜0.9程度である。
また、βは、用いる無機凝集剤のカチオン量をカチオン性ポリマーのカチオン量に換算する係数であり、流動電流計を用いた滴定により求められる。
In the present invention, the cation consumption amount A of the water to be treated is determined in this way, and the inorganic coagulant and the cationic polymer are so mixed that the added concentration of the inorganic coagulant and the cationic polymer satisfies the following relational expression (I). It is preferable to control the addition amount.
Cation consumption A x α =
Cationic polymer addition concentration (mg / L) + inorganic coagulant addition concentration (mg / L) x β
… (I)
Here, α is a safety factor in consideration of water quality fluctuation, and is usually about 0.6 to 0.9.
Further, β is a coefficient for converting the cation amount of the inorganic coagulant used to the cation amount of the cationic polymer, and is determined by titration using a streaming ammeter.

上記のカチオン性ポリマーと無機凝集剤の添加量の制御は、予め求めた被処理水のカチオン消費量Aと用いる無機凝集剤の換算係数βと、予め設定された安全係数αが入力される制御手段により自動制御で行うことができる。   The control of the addition amounts of the cationic polymer and the inorganic coagulant is performed by inputting a cation consumption amount A of the water to be treated, a conversion factor β of the inorganic coagulant to be used, and a preset safety factor α. It can be controlled automatically by means.

以下に実施例を挙げて本発明をより具体的に説明する。   Hereinafter, the present invention will be described more specifically with reference to examples.

なお、以下の実施例及び比較例で用いた無機凝集剤及びカチオン性ポリマーは以下の通りである。
無機凝集剤:塩化第二鉄
カチオン性ポリマー:質量平均分子量5万、10万、20万、70万、100万、800万又は1000万のジメチルアミノエチルアクリレート・メチルクロライド四級塩/アクリルアミド共重合体(コロイド当量2.5〜3.0meq/g)
The inorganic coagulant and cationic polymer used in the following examples and comparative examples are as follows.
Inorganic flocculant: ferric chloride Cationic polymer: dimethylaminoethyl acrylate / methyl chloride quaternary salt / acrylamide copolymer with a weight average molecular weight of 50,000, 100,000, 200,000, 700,000, 1,000,000, 8,000,000 or 10,000,000 Coalescence (colloid equivalent 2.5-3.0 meq / g)

また、試験装置としては、図1(a),(b)に示す外圧式ミニモジュール試験装置(外圧式中空糸UF膜、孔径:0.02μm、膜長さ:7.5cm、膜面積:10.6cm、膜素材ポリフッ化ビニリデン)を用いた。
図1(a)中、1は中空糸膜、2はポッティング剤、3は原水導入口、4は排水口、5はモジュールハウジングであり、内部に中空糸膜1が装填されている。原水は導入口3からハウジング5内に導入され、中空糸膜1を透過した透過水が中空糸膜1の膜内からハウジング5外へ取り出される。
As the test device, an external pressure type mini-module test device (external pressure type hollow fiber UF membrane, pore diameter: 0.02 μm, membrane length: 7.5 cm, membrane area: 10) shown in FIGS. A film material of polyvinylidene fluoride (0.6 cm 2 ) was used.
In FIG. 1A, 1 is a hollow fiber membrane, 2 is a potting agent, 3 is a raw water inlet, 4 is a drain port, 5 is a module housing, and the hollow fiber membrane 1 is loaded inside. Raw water is introduced into the housing 5 through the inlet 3, and the permeated water that has permeated the hollow fiber membrane 1 is taken out from the inside of the hollow fiber membrane 1 to the outside of the housing 5.

この外圧式中空糸ミニモジュール10に図1(b)の通り配管を接続して外圧式ミニモジュール試験装置とした。この試験装置では、原水の処理時は、バルブV,V,Vを閉として、ポンプPを作動させて、給水タンク6から配管11を経て原水を外圧式ミニモジュール10に導入し、透過水を配管13を経て処理水タンク7に送給するデッドエンド通水方式で膜分離を行う。膜の逆洗浄を行う際は、ポンプPを停止し、バルブVを閉、V,Vを開として、配管13Aより空気を配管13に送気し、配管13内の水を中空糸膜1の内側(2次側)から外側(1次側)へ透過させる。排水時は、ポンプPを停止した状態で、バルブV,Vを開、バルブVを閉として、配管11Aから空気を配管11に送気し、配管12よりモジュール10内の水を排出させる。配管11A,13Aからの空気は0.15MPaで送気した。水張り時は、バルブVを開、バルブV,Vを閉として、ポンプPを作動させて給水タンク6内の水をモジュール10内に導入する。PIは圧力計である。 A pipe was connected to the external pressure type hollow fiber mini-module 10 as shown in FIG. 1 (b) to obtain an external pressure type mini-module testing device. In this test apparatus, when treating the raw water, the valves V 1 , V 2 and V 3 are closed and the pump P is operated to introduce the raw water into the external pressure type mini module 10 from the water supply tank 6 through the pipe 11. Membrane separation is performed by a dead end water flow system in which the permeated water is supplied to the treated water tank 7 through the pipe 13. When performing backwashing of the membrane, the pump P is stopped, the valve V 1 is closed, V 2 and V 3 are opened, air is sent from the pipe 13A to the pipe 13, and the water in the pipe 13 is hollow fiber. Permeate from the inner side (secondary side) of the membrane 1 to the outer side (primary side). At the time of drainage, with the pump P stopped, the valves V 1 and V 2 are opened and the valve V 3 is closed, air is sent from the pipe 11A to the pipe 11, and the water in the module 10 is discharged from the pipe 12. Let The air from the pipes 11A and 13A was fed at 0.15 MPa. At the time of water filling, the valve V 2 is opened, the valves V 1 and V 3 are closed, and the pump P is operated to introduce the water in the water supply tank 6 into the module 10. PI is a pressure gauge.

[実施例1〜5、比較例1〜2]
液晶工場排水の生物処理水(SS濃度:40mg/L、TOC:2〜2.5mg/L)を150rpmで急速攪拌しながら無機凝集剤(塩化第二鉄)を38%水溶液として100mg/Lを添加し、次いでpH調整剤(水酸化ナトリウム)を用いてpH5.5に調整した。更に5分間急速攪拌した後、引き続き150rpmで急速攪拌しながら、表1に示す通り、質量平均分子量の異なるカチオン性ポリマー0.6mg/Lをそれぞれ添加して5分間反応させた後に、50rpmでさらに5分間緩速攪拌して凝集処理を行った。
[Examples 1-5, Comparative Examples 1-2]
Biologically treated water (SS concentration: 40 mg / L, TOC: 2 to 2.5 mg / L) of liquid crystal factory wastewater is rapidly stirred at 150 rpm while inorganic coagulant (ferric chloride) is added as a 38% aqueous solution to give 100 mg / L. It was added and then adjusted to pH 5.5 with a pH adjuster (sodium hydroxide). After further rapidly stirring for 5 minutes, while rapidly stirring at 150 rpm, as shown in Table 1, 0.6 mg / L of cationic polymers having different mass average molecular weights were added and reacted for 5 minutes, and then at 50 rpm. Aggregation treatment was performed by gently stirring for 5 minutes.

得られた凝集処理水を、図1(a),(b)に示す外圧式ミニモジュール試験装置に48時間通水した。通水中、フラックス4m/m/dの濾過28分おきに逆洗浄(30秒)、次いで排水(30秒)、その後水張り(30秒)を行い、配管11に設けた圧力計Plで測定される膜間差圧の上昇速度を調べた。
また、給水(膜分離処理に供した凝集処理水)のSS濃度と、48時間の通水で得られた排水中のSS量を測定し、モジュール内のSS残留率を以下の式で算出した。
The obtained coagulated water was passed through the external pressure type mini module test device shown in FIGS. 1 (a) and 1 (b) for 48 hours. Filtration of flux 4m 3 / m 2 / d in water, backwashing every 28 minutes (30 seconds), then draining (30 seconds), then water filling (30 seconds), and measuring with pressure gauge Pl installed in pipe 11. The rate of rise of transmembrane pressure difference was investigated.
Further, the SS concentration of the feed water (coagulated water used for the membrane separation treatment) and the SS amount in the waste water obtained by passing water for 48 hours were measured, and the SS residual rate in the module was calculated by the following formula. .

Figure 0006687056
Figure 0006687056

給水SS濃度および排水中SS量は、これらの水を、直径47mm、孔径1μmのガラス濾紙で濾過した際に得られる濾取物の乾燥重量として測定した。結果を表1に示す。   The SS concentration in the water supply and the SS amount in the waste water were measured as the dry weight of the filtered material obtained when these waters were filtered through a glass filter paper having a diameter of 47 mm and a pore size of 1 μm. The results are shown in Table 1.

Figure 0006687056
Figure 0006687056

表1より次のことが分かる。
低分子量の質量平均分子量を用いると、フロックが微細になるため膜閉塞を生じやすく、差圧上昇速度が大きくなる傾向を示した(比較例1)。カチオン性ポリマーの分子量が大きくなると、フロックが粗大になるためモジュール内に堆積しやすく、SS残留率が増加した(比較例2)。これらの結果から、膜汚染性の観点から、カチオン性ポリマーの適正質量平均分子量は10万〜800万であり、望ましくは20万〜100万であることが分かる。
The following can be seen from Table 1.
When the mass average molecular weight of low molecular weight was used, the flocs became fine and the membrane was apt to be clogged, and the differential pressure increasing rate tended to increase (Comparative Example 1). When the molecular weight of the cationic polymer was large, the flocs became coarse, so that they were easily deposited in the module, and the SS residual rate increased (Comparative Example 2). From these results, it is found that the proper weight average molecular weight of the cationic polymer is 100,000 to 8,000,000, and preferably 200,000 to 1,000,000 from the viewpoint of the film fouling property.

[実験例I]
以下の無機凝集剤とカチオン性ポリマーを用いて、無機凝集剤とカチオン性ポリマーの添加順序による効果を調べる実験を行った。
無機凝集剤:塩化第二鉄
カチオン性ポリマー:質量平均分子量20万のポリジアリルジメチルアンモニウムクロライド(コロイド当量5.9meq/g、固有粘度0.75dg/L)
試験水:国内工業用水にリン酸(リン酸は無機凝集剤を分散させる目的で添加した。)を6mg/L asPになるように添加したモデル水を用いた。
[Experimental Example I]
Using the following inorganic flocculants and cationic polymers, experiments were conducted to examine the effect of the order of addition of inorganic flocculants and cationic polymers.
Inorganic flocculant: ferric chloride Cationic polymer: polydiallyldimethylammonium chloride having a mass average molecular weight of 200,000 (colloid equivalent 5.9 meq / g, intrinsic viscosity 0.75 dg / L)
Test water: Model water was used in which phosphoric acid (phosphoric acid was added for the purpose of dispersing the inorganic coagulant) was added to domestic industrial water so as to be 6 mg / L asP.

試験方法は以下の通りである。
試験水に無機凝集剤(塩化第二鉄)を38%水溶液として75mg/Lおよびカチオン性ポリマー0.6mg/L(純分として)を添加し、pH調整剤(水酸化ナトリウム)を用いてpH5.5に調整して凝集処理し、得られた凝集処理水を、No.5Aろ紙でろ過した後、ろ液をφ25mm、孔径0.45μmの酢酸セルロースメンブレンフィルターを用いて−500mmHgで減圧濾過した。このとき、初めの150mLをろ過するのに要した時間をT1(秒)、次の150mLをろ過するのに要した時間をT2(秒)とし、MFF=T2/T1で処理水の評価を行った。
MFFは小さい値であるほど、良好な水質であることを意味する。
The test method is as follows.
To the test water, an inorganic coagulant (ferric chloride) was added as a 38% aqueous solution at 75 mg / L and a cationic polymer at 0.6 mg / L (as pure content), and the pH was adjusted to 5 with a pH adjuster (sodium hydroxide). The aggregated water was adjusted to No. 5. After filtering with 5A filter paper, the filtrate was vacuum filtered at -500 mmHg using a cellulose acetate membrane filter with a diameter of 25 mm and a pore size of 0.45 μm. At this time, the time required to filter the first 150 mL was T1 (seconds), the time required to filter the next 150 mL was T2 (seconds), and the treated water was evaluated by MFF = T2 / T1. It was
A smaller value of MFF means better water quality.

無機凝集剤及びカチオン性ポリマーによる凝集処理手順は、各例毎に以下の通りとした。
実験例I−1(無機凝集剤添加後カチオン性ポリマー添加):試験水を150rpmで急速撹拌しながら無機凝集剤を添加し、次いでpH調整剤を用いてpH5.5に調整し、更に5分間急速撹拌し、急速撹拌しながらカチオン性ポリマーを添加して5分間反応させ、その後、50rpmで更に5分間緩速撹拌して凝集処理した。
実験例I−2(カチオン性ポリマー添加後無機凝集剤添加):試験水を150rpmで急速撹拌しながらカチオン性ポリマーを添加し、次いで無機凝集剤を添加した後にpH調整剤を用いてpH5.5に調整し、更に5分間急速撹拌した。その後、50rpmで更に5分間緩速撹拌して凝集処理した。
実験例I−3(カチオン性ポリマー及び無機凝集剤同時添加):試験水を150rpmで急速撹拌しながら無機凝集剤とカチオン性ポリマーを同時に添加し、次いでpH調整剤を用いてpH5.5に調整し、50rpmで更に5分間緩速撹拌して凝集処理した。
The procedure of aggregating treatment with the inorganic aggregating agent and the cationic polymer was as follows for each example.
Experimental Example I-1 (addition of cationic polymer after addition of inorganic coagulant): An inorganic coagulant was added while rapidly stirring test water at 150 rpm, and then the pH was adjusted to 5.5 using a pH adjuster, and further for 5 minutes. The mixture was rapidly stirred, the cationic polymer was added to the mixture with rapid stirring to react for 5 minutes, and then the mixture was agitated at 50 rpm for 5 minutes to perform aggregation treatment.
Experimental Example I-2 (addition of inorganic coagulant after addition of cationic polymer): A cationic polymer was added while rapidly stirring test water at 150 rpm, and then an inorganic coagulant was added, followed by pH adjustment using a pH adjuster of 5.5. The mixture was adjusted to, and rapidly stirred for another 5 minutes. Then, the mixture was slowly stirred at 50 rpm for 5 minutes for aggregation treatment.
Experimental Example I-3 (simultaneous addition of cationic polymer and inorganic coagulant): The inorganic coagulant and cationic polymer were simultaneously added while rapidly stirring test water at 150 rpm, and then the pH was adjusted to 5.5 using a pH adjuster. Then, the mixture was slowly stirred at 50 rpm for 5 minutes to perform aggregating treatment.

結果を図2に示す。
図2より次のことが明らかである。
実験例I−2,3は、いずれも無機凝集剤添加後カチオン性ポリマーを添加した実験例I−1よりもMFFが大きく、凝集不良であった。これは、原水中のアニオン成分とカチオン性ポリマーが反応し、分散する無機凝集剤コロイドと反応しきれなかったためである。本結果より、分散する無機凝集剤を捕捉する目的でカチオン性ポリマーを用いる場合、無機凝集剤の後にカチオン性ポリマーを添加する方が、カチオン性ポリマーを効率よく使用できるため、少量の添加量で充分な凝集効果が得られることが分かる。
The results are shown in Figure 2.
The following is clear from FIG.
In Experimental Examples I-2 and 3, the MFF was larger than that of Experimental Example I-1 in which the cationic polymer was added after the addition of the inorganic coagulant, and the aggregation was poor. This is because the anion component in the raw water and the cationic polymer did not react with the dispersed inorganic flocculant colloid. From these results, when using a cationic polymer for the purpose of capturing the inorganic coagulant to be dispersed, it is more efficient to use the cationic polymer after adding the inorganic coagulant, so that a small amount of addition is required. It can be seen that a sufficient aggregation effect can be obtained.

[実験例II]
実験例Iで用いた無機凝集剤とカチオン性ポリマーと同一の無機凝集剤とカチオン性ポリマーを用い、キレート効果を有する有機酸を含む排水に対するカチオン性ポリマーの効果を調べる実験を行った。
試験水としては、国内半導体工場のメッキ工程排水(有機酸を含む溶存有機物濃度10〜20mg/L,銅濃度6mg/L)を用いた。
試験方法は、以下の通りである。
[Experimental Example II]
Using the same inorganic flocculant and cationic polymer used in Experimental Example I, an experiment was conducted to examine the effect of the cationic polymer on wastewater containing an organic acid having a chelating effect, using the same inorganic flocculant and cationic polymer.
As the test water, the plating process wastewater of a domestic semiconductor factory (concentration of dissolved organic matter containing organic acid: 10 to 20 mg / L, copper concentration: 6 mg / L) was used.
The test method is as follows.

試験水中の銅を除去する目的で凝集処理を実施した。試験水を150rpmで急速攪拌しながら無機凝集剤(塩化第二鉄)を38%水溶液として500mg/Lを添加し、次いでpH調整剤(水酸化ナトリウム)を用いてpH9に調整した。更に5分間急速攪拌した後、急速撹拌しながらカチオン性ポリマー0〜5mg/L(純分として表2に示す添加量)を添加して5分間反応させた。その後、50rpmでさらに5分間緩速攪拌してフロックを成長させた。得られた凝集処理水を、No.5Aろ紙でろ過した後、ろ液中の銅イオン濃度を測定した。
銅イオン濃度が低いほど、凝集処理が効果的に実施され、凝集状態が良好であることを意味する。
結果を表2に示す。
A coagulation treatment was carried out for the purpose of removing copper in the test water. While rapidly stirring the test water at 150 rpm, 500 mg / L of an inorganic flocculant (ferric chloride) was added as a 38% aqueous solution, and then the pH was adjusted to 9 using a pH adjuster (sodium hydroxide). After further rapid stirring for 5 minutes, cationic polymer 0 to 5 mg / L (addition amount shown in Table 2 as pure content) was added and reacted for 5 minutes with rapid stirring. After that, the flocs were grown by gently stirring at 50 rpm for 5 minutes. The obtained coagulated water was treated with No. After filtering with 5A filter paper, the copper ion concentration in the filtrate was measured.
The lower the copper ion concentration, the more effectively the aggregation treatment is performed, and the better the aggregation state.
The results are shown in Table 2.

Figure 0006687056
Figure 0006687056

表2より、カチオン性ポリマーの添加量の増加に伴い、ろ液の銅イオン濃度が低下しており、凝集状態が改善されたことが分かる。   From Table 2, it can be seen that the copper ion concentration of the filtrate was decreased with the increase of the addition amount of the cationic polymer, and the aggregation state was improved.

1 中空糸膜
2 ポッティング剤
3 原水導入口
4 排水口
5 モジュールハウジング
6 給水タンク
7 処理水タンク
10 外圧式中空糸ミニモジュール
1 Hollow Fiber Membrane 2 Potting Agent 3 Raw Water Inlet 4 Drainage 5 Module Housing 6 Water Supply Tank 7 Treated Water Tank 10 External Pressure Hollow Fiber Mini Module

Claims (10)

被処理水に無機凝集剤を添加して凝集処理した後に膜分離装置で膜分離する水処理方法において、被処理水に無機凝集剤を添加した後、質量平均分子量10万〜100万の水溶性のカチオン性ポリマーを添加して凝集処理し、凝集処理水を直接膜分離装置で膜分離する水処理方法であって、
該カチオンポリマーが、ジメチルアミノエチルアクリレート、ジメチルアミノエチルメタクリレート、ジメチルアミノプロピルアクリアミド、ジメチルアミノプロピルメタクリアミドの酸塩もしくはその4級アンモニウム塩から選ばれるカチオン性モノマーとノニオン性モノマーとの共重合物の1種又は2種以上であることを特徴とする水処理方法。
In a water treatment method in which an inorganic coagulant is added to the water to be treated and then subjected to a membrane separation by a membrane separator, a water-soluble substance having a mass average molecular weight of 100,000 to 1,000,000 is added after the inorganic coagulant is added to the water to be treated. A method of water treatment in which a cationic polymer is added to perform coagulation treatment, and the coagulated water is directly subjected to membrane separation by a membrane separation device ,
The cationic polymer is a copolymer of a cationic monomer and a nonionic monomer selected from dimethylaminoethyl acrylate, dimethylaminoethyl methacrylate, dimethylaminopropyl acrylamide, dimethylaminopropyl methacrylamide acid salt or a quaternary ammonium salt thereof. 1 or 2 or more types of water treatment methods.
前記被処理水がリン、生物代謝物、キレート作用を有する有機酸、及び無機炭素のいずれかを含む、工業用水、市水、井水、工業排水、或いは排水の生物処理水である請求項1に記載の水処理方法。   The treated water is industrial water, city water, well water, industrial wastewater, or wastewater biologically treated water containing any of phosphorus, biometabolites, organic acids having a chelating action, and inorganic carbon. The water treatment method described in. 前記膜分離装置が、精密濾過膜分離装置又は限外濾過膜分離装置である請求項1又は2に記載の水処理方法。   The water treatment method according to claim 1, wherein the membrane separation device is a microfiltration membrane separation device or an ultrafiltration membrane separation device. 前記膜分離装置で得られた処理水を、さらに逆浸透膜処理する請求項1〜3のいずれかに記載の水処理方法。   The water treatment method according to claim 1, wherein the treated water obtained by the membrane separation device is further subjected to a reverse osmosis membrane treatment. 流動電位法により前記被処理水を前記カチオン性ポリマーで滴定することで、該被処理水の電荷を中和するのに必要な該カチオン性ポリマーの必要量をカチオン消費量Aとして求め、該カチオン消費量Aと前記無機凝集剤及び該カチオン性ポリマーの添加濃度とが下記関係式(I)を満たすように、該カチオン性ポリマーの添加量と該無機凝集剤の添加量を制御する請求項1〜4のいずれかに記載の水処理方法。
カチオン消費量A×α=
カチオン性ポリマー添加濃度(mg/L)+無機凝集剤添加濃度(mg/L)×β
…(I)
α:水質変動を加味した安全係数
β:無機凝集剤のカチオン量をカチオン性ポリマーのカチオン量に換算する係数
By titrating the water to be treated with the cationic polymer by a streaming potential method, the necessary amount of the cationic polymer necessary to neutralize the charge of the water to be treated is determined as the cation consumption amount A, and the cation The addition amount of the cationic polymer and the addition amount of the inorganic coagulant are controlled so that the consumption amount A and the addition concentrations of the inorganic coagulant and the cationic polymer satisfy the following relational expression (I). The water treatment method according to any one of to 4.
Cation consumption A x α =
Cationic polymer addition concentration (mg / L) + inorganic coagulant addition concentration (mg / L) x β
… (I)
α: Safety factor in consideration of water quality fluctuation β: Coefficient for converting cation amount of inorganic coagulant to cation amount of cationic polymer
被処理水に無機凝集剤を添加して凝集処理する第1の凝集処理手段と、該第1の凝集処理手段の凝集処理水に質量平均分子量10万〜100万の水溶性のカチオン性ポリマーを添加して凝集処理する第2の凝集処理手段と、該第2の凝集処理手段の凝集処理水を直接膜分離する膜分離装置とを有する水処理装置であって、
該カチオンポリマーが、ジメチルアミノエチルアクリレート、ジメチルアミノエチルメタクリレート、ジメチルアミノプロピルアクリアミド、ジメチルアミノプロピルメタクリアミドの酸塩もしくはその4級アンモニウム塩から選ばれるカチオン性モノマーとノニオン性モノマーとの共重合物の1種又は2種以上であることを特徴とする水処理装置。
A first coagulation treatment means for adding an inorganic coagulant to the water to be treated and a coagulation treatment water of the first coagulation treatment means with a water-soluble cationic polymer having a mass average molecular weight of 100,000 to 1,000,000. A water treatment apparatus comprising: a second coagulation treatment means for adding and coagulating treatment; and a membrane separation device for directly performing membrane separation of the coagulation treated water of the second coagulation treatment means ,
The cationic polymer is a copolymer of a cationic monomer and a nonionic monomer selected from dimethylaminoethyl acrylate, dimethylaminoethyl methacrylate, dimethylaminopropyl acrylamide, dimethylaminopropyl methacrylamide acid salt or a quaternary ammonium salt thereof. 1 or 2 or more types of water treatment apparatuses.
前記被処理水がリン、生物代謝物、キレート作用を有する有機酸、及び無機炭素のいずれかを含む、工業用水、市水、井水、工業排水、或いは排水の生物及び無機炭素のいずれかを含む、工業用水、市水、井水、工業排水、或いは排水の生物処理水である請求項6に記載の水処理装置。   The water to be treated contains phosphorus, biological metabolites, organic acids having a chelating action, and any of inorganic carbon, industrial water, city water, well water, industrial wastewater, or wastewater biological and inorganic carbon 7. The water treatment apparatus according to claim 6, which is industrial water, city water, well water, industrial wastewater, or biologically treated water of wastewater. 前記膜分離装置が、精密濾過膜分離装置又は限外濾過膜分離装置である請求項6又は7に記載の水処理装置。   The water treatment device according to claim 6 or 7, wherein the membrane separation device is a microfiltration membrane separation device or an ultrafiltration membrane separation device. 前記膜分離装置で得られた処理水を処理する逆浸透膜分離装置を更に有する請求項6〜8のいずれかに記載の水処理装置。   The water treatment apparatus according to claim 6, further comprising a reverse osmosis membrane separation apparatus that treats the treated water obtained by the membrane separation apparatus. 流動電位法により前記被処理水を前記カチオン性ポリマーで滴定することで、該被処理水の電荷を中和するのに必要な該カチオン性ポリマーの必要量をカチオン消費量Aとして求め、前記無機凝集剤及び該カチオン性ポリマーの添加濃度とが、下記関係式(I)を満たすように、該カチオン性ポリマーの添加量と該無機凝集剤の添加量を制御する手段を更に有する請求項6〜9のいずれかに記載の水処理装置。
カチオン消費量A×α=
カチオン性ポリマー添加濃度(mg/L)+無機凝集剤添加濃度(mg/L)×β
…(I)
α:水質変動を加味した安全係数
β:無機凝集剤のカチオン量をカチオン性ポリマーのカチオン量に換算する係数
By titrating the water to be treated with the cationic polymer by the streaming potential method, the necessary amount of the cationic polymer necessary to neutralize the charge of the water to be treated is determined as the cation consumption amount A, 7. The method further comprising means for controlling the added amount of the cationic polymer and the added amount of the inorganic coagulant so that the added concentration of the coagulant and the cationic polymer satisfies the following relational expression (I). 9. The water treatment device according to any one of 9.
Cation consumption A x α =
Cationic polymer addition concentration (mg / L) + inorganic coagulant addition concentration (mg / L) x β
… (I)
α: Safety factor in consideration of water quality fluctuation β: Coefficient for converting cation amount of inorganic coagulant to cation amount of cationic polymer
JP2018084264A 2018-04-25 2018-04-25 Water treatment method and water treatment device Active JP6687056B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2018084264A JP6687056B2 (en) 2018-04-25 2018-04-25 Water treatment method and water treatment device
PCT/JP2019/017115 WO2019208532A1 (en) 2018-04-25 2019-04-23 Water treatment method and water treatment apparatus
TW108114327A TW201945294A (en) 2018-04-25 2019-04-24 Water treatment method and water treatment apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018084264A JP6687056B2 (en) 2018-04-25 2018-04-25 Water treatment method and water treatment device

Publications (2)

Publication Number Publication Date
JP2019188337A JP2019188337A (en) 2019-10-31
JP6687056B2 true JP6687056B2 (en) 2020-04-22

Family

ID=68295106

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018084264A Active JP6687056B2 (en) 2018-04-25 2018-04-25 Water treatment method and water treatment device

Country Status (3)

Country Link
JP (1) JP6687056B2 (en)
TW (1) TW201945294A (en)
WO (1) WO2019208532A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7403387B2 (en) * 2020-05-29 2023-12-22 水ing株式会社 Coagulation membrane filtration system and coagulation membrane filtration method
JP7074156B2 (en) * 2020-06-01 2022-05-24 栗田工業株式会社 Water treatment method and water treatment equipment

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10180008A (en) * 1996-12-26 1998-07-07 Kurita Water Ind Ltd Membrane separation device
US6416668B1 (en) * 1999-09-01 2002-07-09 Riad A. Al-Samadi Water treatment process for membranes
KR20100054126A (en) * 2007-08-07 2010-05-24 쿠리타 고교 가부시키가이샤 Membrane separation method and membrane separation device
US20150344339A1 (en) * 2012-12-25 2015-12-03 Toray Industries, Inc. Water treatment method
WO2015045093A1 (en) * 2013-09-27 2015-04-02 栗田工業株式会社 Water treatment method
JP6202115B2 (en) * 2016-01-29 2017-09-27 栗田工業株式会社 Industrial water clarification method and clarification device

Also Published As

Publication number Publication date
TW201945294A (en) 2019-12-01
WO2019208532A1 (en) 2019-10-31
JP2019188337A (en) 2019-10-31

Similar Documents

Publication Publication Date Title
TWI459997B (en) Membrane separation method and membrane separation apparatus
JP5218731B2 (en) Water treatment method and water treatment apparatus
JP5843071B2 (en) Water treatment equipment
JP7311951B2 (en) Water treatment method and water treatment equipment
AU2014235024B2 (en) Process for water treatment prior to reverse osmosis
JP6687056B2 (en) Water treatment method and water treatment device
JP6738492B2 (en) Water treatment method and water treatment device
WO2010050325A1 (en) Membrane separation process
JP3340029B2 (en) Method of treating wastewater containing SiO2
JP6735830B2 (en) Membrane filtration method and membrane filtration system
JP6565268B2 (en) Method and apparatus for treating inorganic carbon-containing water
JP7083274B2 (en) Water treatment method and water treatment equipment
JP2014168729A (en) Water treatment method and water treatment apparatus
JP2012187467A (en) Membrane separation method and membrane separator
JP2000263063A (en) Method and apparatus for treating fluorine-containing waste liquid
JP2012213675A (en) Method of determining addition amount of coagulant and water treatment apparatus
JPH11104696A (en) Production of purified water
JPH10180008A (en) Membrane separation device
JP2003334566A (en) Method and device for treating drain containing fluorine
JP2019188338A (en) Water treatment method and water treatment apparatus
JPH1177062A (en) Flocculation-separation
JP2005007246A (en) Treatment method for organic waste water
JP2014046235A (en) Fresh water generating method
JP5993605B2 (en) Flocculant evaluation method and flocculant processing apparatus
JP7441108B2 (en) Water treatment method and water treatment equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190423

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190730

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20190910

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191030

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191224

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200303

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200316

R150 Certificate of patent or registration of utility model

Ref document number: 6687056

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250