JP7484690B2 - 操舵方法及び操舵装置 - Google Patents

操舵方法及び操舵装置 Download PDF

Info

Publication number
JP7484690B2
JP7484690B2 JP2020205898A JP2020205898A JP7484690B2 JP 7484690 B2 JP7484690 B2 JP 7484690B2 JP 2020205898 A JP2020205898 A JP 2020205898A JP 2020205898 A JP2020205898 A JP 2020205898A JP 7484690 B2 JP7484690 B2 JP 7484690B2
Authority
JP
Japan
Prior art keywords
steering
change
rate
command value
reaction force
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020205898A
Other languages
English (en)
Other versions
JP2022092909A (ja
Inventor
雄大 川下
拓 鈴木
友明 種田
雄貴 宮下
裕太 金子
範規 久保川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2020205898A priority Critical patent/JP7484690B2/ja
Publication of JP2022092909A publication Critical patent/JP2022092909A/ja
Application granted granted Critical
Publication of JP7484690B2 publication Critical patent/JP7484690B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Steering Control In Accordance With Driving Conditions (AREA)
  • Power Steering Mechanism (AREA)

Description

本発明は、操舵方法及び操舵装置に関する。
特許文献1には、ステアリングホイールの操舵角に基づいて操向輪の目標転舵角を算出し、操向輪の実転舵角が目標転舵角となるように電気モータを制御して操向輪を転舵するとともに、操舵角に応じた操舵反力をステアリングホイールに付与するステアバイワイヤ式の操舵装置が提案されている。
特開2016-137215号公報
このような操舵装置では、運転者が車両のヨーレイトの変化速度が速すぎると感じて違和感を覚えることがあった。
本発明は、ステアバイワイヤ式の操舵装置において、ヨーレイトの変化速度が速すぎることによる運転者の違和感を緩和することを目的とする。
本発明の一態様による操舵方法では、ステアリングホイールの操舵角を検出し、検出された操舵角に応じて操向輪の目標転舵角を算出し、操舵角又は目標転舵角である設定舵角に応じた操舵反力指令値を算出し、操舵反力指令値に応じた操舵反力をステアリングホイールに付与し、操向輪の実際の転舵角である実転舵角を検出し、実転舵角と目標転舵角との差に基づいて、実転舵角を目標転舵角に一致させるための転舵力指令値を算出し、転舵力指令値に応じて操向輪を転舵する転舵力を発生させ、操舵反力指令値の変化速度が小さい場合には大きい場合よりも、転舵力の変化速度を小さな値に制限する。
本発明によれば、ステアバイワイヤ式の操舵装置において、ヨーレイトの変化速度が速すぎることによる運転者の違和感を緩和できる。
実施形態の操舵装置の一例の概略構成図である。 (a)は操舵力の時間変化の一例の模式図であり、(b)は(a)の操舵力に応じた操舵角の時間変化の模式図であり、(c)は(b)の操舵角に基づく目標転舵角に一致させるように制御した場合の実転舵角の時間変化の模式図であり、(d)は(c)の転舵角変化を生じさせるための転舵力の時間変化の模式図であり、(e)は(c)の転舵角により生じるセルフアライニングトルク(SAT:Self-Aligning Torque)の時間変化の模式図であり、(f)は(c)の転舵角により生じるヨーレイトの時間変化の模式図である。 (a)は操舵力の時間変化の一例の模式図であり、(b)は(a)の操舵力に応じた操舵角の時間変化の模式図であり、(c)は操舵力の変化速度が小さいほど転舵力の時間変化を小さな値に制限した場合の転舵力の時間変化の模式図であり、(d)は(c)の転舵力により転舵される操向輪の実転舵角の時間変化の模式図であり、(e)は(d)の転舵角により生じるSATの時間変化の模式図であり、(f)は(d)の転舵角により生じるヨーレイトの時間変化の模式図である。 (a)は操舵反力の時間変化の一例の模式図であり、(b)は(a)の操舵反力の変化速度の時間変化の模式図であり、(c)は(b)の変化速度に基づいて設定された上限値により制限された転舵力の変化速度の時間変化の模式図であり、(d)は(c)の変化速度で変化する転舵力の時間変化の模式図である。 第1実施形態のコントローラの機能構成例のブロック図である。 実施形態の操舵方法の一例のフローチャートである。 第2実施形態のコントローラの機能構成例のブロック図である。 第3実施形態のコントローラの機能構成例のブロック図である。 第4実施形態のコントローラの機能構成例のブロック図である。 第5実施形態のコントローラの機能構成例のブロック図である。 第6実施形態のコントローラの機能構成例のブロック図である。 第7実施形態のコントローラの機能構成例のブロック図である。 (a)は車速に応じた車速ゲインの第1例の特性図であり、(b)は車速ゲインの第2例の特性図である。 第8実施形態のコントローラの機能構成例のブロック図である。
以下、本発明の実施形態について、図面を参照しつつ説明する。なお、各図面は模式的なものであって、現実のものとは異なる場合がある。また、以下に示す本発明の実施形態は、本発明の技術的思想を具体化するための装置や方法を例示するものであって、本発明の技術的思想は、構成部品の構造、配置等を下記のものに特定するものではない。本発明の技術的思想は、特許請求の範囲に記載された請求項が規定する技術的範囲内において、種々の変更を加えることができる。
(第1実施形態)
(構成)
図1は、車両に搭載される実施形態の操舵装置の一例の概略構成図である。
実施形態の操舵装置は、運転者の操舵入力を受け付ける操舵部31と、操向輪である左右前輪34FL、34FRを転舵する転舵部32と、バックアップクラッチ33と、コントローラ11を備える。
この操舵装置は、バックアップクラッチ33が解放状態になると、操舵部31と転舵部32とが機械的に分離されるステアバイワイヤ(SBW)システムを採用している。以下の説明において左右前輪34FL、34FRを「操向輪34」と表記することがある。
操舵部31は、ステアリングホイール31aと、コラムシャフト31bと、反力アクチュエータ31cと、操舵角センサ31eと、電流センサ31fとを備える。
一方で転舵部32は、ピニオンシャフト32aと、ステアリングギア32bと、ラックギア32cと、ステアリングラック32dと、転舵アクチュエータ32eと、転舵角センサ32gと、電流センサ32hを備える。
操舵部31のステアリングホイール31aは、反力アクチュエータ31cによって反力トルクが付与されると共に、運転者によって付与される操舵トルクの入力を受けて回転する。なお、本明細書においてアクチュエータによってステアリングホイールに付与される反力トルクを「操舵反力トルク」と表記することがある。
コラムシャフト31bは、ステアリングホイール31aと一体に回転する。
以下、反力アクチュエータ31cが電動モータである場合の例について説明するが、反力アクチュエータ31cは電動モータに限定されない。反力アクチュエータ31cは、コントローラ11が出力する信号を物理的運動に変換する様々な形式のアクチュエータを採用できる。反力アクチュエータ31cは、コラムシャフト31bと同軸上に配置された出力軸を有する。
反力アクチュエータ31cは、コントローラ11から出力される反力電流Ismにより駆動され、ステアリングホイール31aに付与する回転トルクをコラムシャフト31bに出力する。回転トルクを付与することによって、ステアリングホイール31aに操舵反力トルクが付与される。
操舵角センサ31eは、コラムシャフト回転角、すなわち、ステアリングホイール31aの操舵角θs(ハンドル角度)を検出する。
電流センサ31fは、反力アクチュエータ31cの駆動電流である反力電流を検出し、検出反力電流Isdとしてコントローラ11に入力する。
一方で、転舵部32のステアリングギア32bは、ラックギア32cと歯合し、ピニオンシャフト32aの回転に応じて操向輪34を転舵する。ステアリングギア32bとして、例えば、ラック・アンド・ピニオン式のステアリングギア等を採用してよい。
バックアップクラッチ33は、コラムシャフト31bとピニオンシャフト32aとの間に設けられる。そして、バックアップクラッチ33は、解放状態になると操舵部31と転舵部32とを機械的に切り離し、締結状態になると操舵部31と転舵部32とを機械的に接続する。なお、バックアップクラッチ33は、車両の走行時あるいはイグニッションスイッチがオンとされている時などの通常時には解放状態であり、例えば転舵アクチュエータ14や反力アクチュエータ12の異常など、システムに何らかの異常が発生した場合や車両のイグニッションスイッチがオフとされている時(例えば駐車時)に締結状態となるものであり、通常は解放状態とされている。このため、以下ではバックアップクラッチ33は解放状態であり、ステアリングホイール31aと転舵部32とは機械的に切り離されているものとして記載する。
転舵アクチュエータ32eは、コントローラ11から出力される転舵電流Itmにより駆動され、操向輪34を転舵するための転舵トルクをステアリングラック32dに出力する。
以下、転舵アクチュエータ32eが電動モータである場合の例について説明するが、転舵アクチュエータ32eは電動モータに限定されない。転舵アクチュエータ32eは、コントローラ11が出力する信号を物理的運動に変換する様々な形式のアクチュエータを採用できる。
転舵アクチュエータ32eは、減速機を介してラックギア32cと接続される出力軸を有する。
転舵角センサ32gは、操向輪34の実際の転舵角である実転舵角θtを検出する。
電流センサ32hは、転舵アクチュエータ32eの駆動電流である転舵電流を検出し、検出転舵電流Itdとしてコントローラ11に入力する。
車速センサ16は、実施形態の操舵装置が搭載された車両の車輪速を検出し、車輪速に基づいて車両の車速Vvを算出する。
コントローラ11は、操向輪の転舵制御とステアリングホイールの反力制御を行う電子制御ユニット(ECU:Electronic Control Unit)である。本明細書において「反力制御」とは、反力アクチュエータ31c等のアクチュエータによりステアリングホイール31aに与える操舵反力トルクの制御をいう。
コントローラ11は、プロセッサ20と、記憶装置21と、駆動回路22等の周辺部品とを含む。プロセッサ20は、例えばCPU(Central Processing Unit)、やMPU(Micro-Processing Unit)であってよい。
記憶装置21は、半導体記憶装置、磁気記憶装置及び光学記憶装置を備えてよい。記憶装置21は、レジスタ、キャッシュメモリ、主記憶装置として使用されるROM(Read Only Memory)及びRAM(Random Access Memory)等のメモリを含んでよい。
コントローラ11により実行される以下に説明する情報処理は、例えば、コントローラ11の記憶装置21に格納されたコンピュータプログラムを、プロセッサ20が実行することによって実現されてよい。
また、コントローラ11により実行される以下に説明する情報処理を、汎用の半導体集積回路中に設定される機能的な論理回路で実行してもよい。例えば、コントローラ11はフィールド・プログラマブル・ゲート・アレイ(FPGA:Field-Programmable Gate Array)等のプログラマブル・ロジック・デバイス(PLD:Programmable Logic Device)等を有していてもよい。
さらにコントローラ11は、反力アクチュエータ31cを駆動する反力電流Ismと、転舵アクチュエータ32eを駆動する転舵電流Itmとを生成するための駆動回路22を備える。
駆動回路22は、例えば、反力電流Ism及び転舵電流Itmを制御するためのスイッチング素子を備えてもよい。
コントローラ11は、操舵角センサ31eが検出した操舵角θsに応じて、操向輪34の転舵角の目標値である目標転舵角θtrを算出する。コントローラ11は、目標転舵角θtrに応じた操舵反力指令値frrを算出する。操舵反力指令値frrは、ステアリングホイール31aへ付与する操舵反力トルクの指令値である。コントローラ11は、操舵反力指令値frrに応じた操舵反力トルクを発生させる反力電流Ismを反力アクチュエータ31cに出力し、操舵反力トルクをステアリングホイール31aに付与する。
また、コントローラ11は、転舵角センサ32gが検出した実転舵角θtと目標転舵角θtrとの差に基づいて、実転舵角θtと目標転舵角θtrとの差が大きくなるほど大きな転舵力指令値ftrを算出することにより、実転舵角θtを目標転舵角θtrに一致させるための転舵力指令値ftrを算出する。転舵力指令値ftrは、操向輪34を転舵させる転舵トルクの指令値である。
コントローラ11は、転舵力指令値ftrに応じた転舵トルクを発生させる転舵電流Itmを転舵アクチュエータ32eに出力し、操向輪34を転舵する。
このように、ステアリングホイール31aの操舵角θsに基づいて目標転舵角θtrを算出し、実転舵角θtを目標転舵角θtrに一致させるように操向輪34を転舵するとともに、操舵角θsに応じて応じた操舵反力をステアリングホイール31aに付与すると、運転者が感じる操舵反力の変化速度に対して車両のヨーレイトの変化速度が速すぎるために運転者が違和感を覚えることがあった。その理由を以下に説明する。
図2(a)は、運転者の操舵操作により加えられる操舵力の時間変化の一例の模式図であり、図2(b)は、図2(a)の操舵力により変化する操舵角θsの模式図である。
時刻t1から時刻t2までに運転者が操舵力を増加させると、それに応じて操舵角θsが増加する。
図2(c)は、図2(b)の操舵角に基づく目標転舵角に一致させるように制御した場合の実転舵角θtの時間変化の模式図である。
ステアバイワイヤシステムでは、操舵角θsから算出した目標転舵角θtrと実転舵角θtを一致させるようにサーボ制御する。このため、シャフトの連結により操舵トルクを操向輪に伝達していた従来の操舵装置に比べて、操舵角θsに対する実転舵角θtの遅れが小さくなる。
図2(d)の実線は、図2(c)の転舵角変化を生じさせるための転舵力の時間変化を模式的に示す。図2(d)には、比較のため図2(a)及び図2(b)と同様の時間変化が一点鎖線で示されている。
操舵開始の直後(すなわち転舵角θtの変化の開始直後)では、操向輪34の向きと操向輪34の進行方向との角度差であるスリップ角が大きくなり、これに伴ってタイヤで発生する横力が過渡的に増加する。その後、横力は転舵角θtに応じた大きさに収束する。これに伴って転舵力も、転舵角θtの変化の開始直後に過渡的に大きくなり、その後は転舵角θtに応じた大きさに収束する。
この結果、図2(c)に示すように実転舵角θtが少ない遅延で変化すると、図2(c)の転舵角変化を生じさせるのに要する転舵力も急激に変化することになる。
セルフアライニングトルク(SAT:Self-Aligning Torque)及びヨーレイトも、転舵力と同様に変化する。図2(e)の実線は、図2(c)の転舵角により生じるSATの時間変化を模式的に示し、図2(f)の実線は、図2(c)の転舵角により生じるヨーレイトの時間変化を模式的に示す。
運転者は、自身が加える操舵力の大きさに応じてどのような車両挙動が発生するかを予測する。このため、操舵力の変化速度が小さいにも関わらずヨーレイトの変化速度が大きいと、運転者は違和感を覚えることがある。
そこで実施形態のコントローラ11は、操舵力の変化速度が小さい場合には大きい場合よりも、転舵力の変化速度を小さな値に制限する。
図3(a)は、運転者の操舵操作により加えられる操舵力の時間変化の一例の模式図であり、図3(b)は、図3(a)の操舵力により変化する操舵角θsの模式図である。
図2(a)及び図2(b)と同様に、時刻t1から時刻t2までに運転者が操舵力を増加させると、それに応じて操舵角θsが増加する。
図3の(c)の実線は、操舵力の変化速度が小さいほど転舵力の時間変化を小さな値に制限した場合の時間変化を模式的に示す。図3の(c)には、比較のために図2(d)の転舵力(すなわち制限前の転舵力)の時間変化が一点鎖線で示されている。
制限前の転舵力(一点鎖線)と比べて、制限後の転舵力(実線)は、転舵角θtの変化開始直後において変化速度が小さくなるように制限されている。
図3(d)の実線は、図3(c)の実線で示した転舵力により転舵される操向輪34の実転舵角θtの時間変化を模式的に示す。図3(d)には、比較のため図2(c)の実転舵角θtの時間変化を一点鎖線で示している。
転舵力の変化速度を制限することにより、転舵角θtの変化開始直後において操舵角θsに対して転舵角θtが遅れている。
転舵力の変化速度の制限によって、タイヤで発生する横力の変化速度が制限されるため、SATとヨーレイトの変化速度も同様に制限される。図3(e)及び図3(f)の実線は、図3d(c)の転舵角により生じるSATとヨーレイトの時間変化を模式的に示す。図3(e)及び図3(f)には、比較のため図2(e)及び図2(f)のSATとヨーレイトの時間変化を一点鎖線で示している。
このように、操舵力の変化速度が小さい場合には大きい場合よりもヨーレイトの変化速度が制限される。このため、操舵力の変化速度が小さいにも関わらずヨーレイトの変化速度が大きいことにより運転者が違和感を覚えるのを緩和できる。
次に、転舵力の変化速度の制限方法を模式的に説明する。図4(a)は、操舵反力トルクの時間変化の一例の模式図であり、図4(b)は、図4(a)の操舵反力トルクの変化速度の時間変化の模式図である。
コントローラ11は、操舵力の反力である操舵反力を操舵力として取得する。コントローラ11は、操舵反力を微分することにより操舵反力の変化速度を算出する。
コントローラ11は、操舵反力の変化速度に応じて、転舵力の変化速度の上限値Ufを設定する。図4(c)は、図4(b)の変化速度に基づいて設定された上限値Ufにより制限された転舵力の変化速度の時間変化の模式図である。
コントローラ11は、転舵力の変化速度を上限値Uf以下に制限する。図4(d)の実線は、図4(c)の変化速度で変化する転舵力の時間変化を示す。図4(d)には、比較のために制限前の転舵力の時間変化が一点鎖線で示されている。変化速度が上限値Uf以下に制限されることにより、操舵開始の直後における転舵力の変化速度が制限される。
次に、コントローラ11の機能構成例について説明する。図5は、第1実施形態のコントローラ11の機能構成例のブロック図である。
コントローラ11は、目標転舵角算出部40と、反力指令値算出部41と、反力モータ駆動部42と、減算器43と、転舵角サーボ制御部44と、換算部45と、微分器46と、上限値設定部47と、変化率リミッタ48と、転舵モータ駆動部49を備える。
目標転舵角算出部40は、操舵角θsに応じて目標転舵角θtrを算出する。例えば目標転舵角算出部40は、角度比Raを操舵角θsに乗算して目標転舵角θtrを算出してよい。
目標転舵角算出部40は、角度比Raを動的に変化させてもよい。例えば、目標転舵角算出部40は、少なくとも車速Vvに応じて角度比Raを変更してもよい。
反力指令値算出部41は、少なくとも目標転舵角θtrに基づいて操舵反力指令値frrを算出する。
反力指令値算出部41は、目標転舵角θtrに代えて、操舵角θsに応じて操舵反力指令値frrを算出してもよい。目標転舵角θtr又は操舵角θsに加えて、車速Vv、車両に発生した横方向加速度、ヨーレイト、検出転舵電流Itdの少なくとも1つに応じて操舵反力指令値frrを算出してもよい。反力指令値算出部41は、例えば目標転舵角θtrあるいは操舵角θsが大きいほど大きな操舵反力指令値frrを算出する。なお、操舵反力指令値frrは目標転舵角θtrあるいは操舵角θsに対して所定のゲインを乗算して舵反力指令値frrを算出しても良いし、目標転舵角θtrあるいは操舵角θsに対する舵反力指令値frrのマップを記憶しておき、目標転舵角θtrあるいは操舵角θsとマップを参照して舵反力指令値frrを算出しても良い。
反力モータ駆動部42は、操舵反力指令値frrに基づいて反力アクチュエータ31cを駆動する。
反力モータ駆動部42は、電流センサ31fが検出した検出反力電流Isdから推定される実際の操舵反力トルクと、反力指令値算出部41が出力する操舵反力指令値frrとを一致させるトルクフィードバック制御により、反力アクチュエータ31cへ出力する反力電流Ismを生成し、反力電流Ismを反力アクチュエータ31cに出力する。検出反力電流Isdと、操舵反力指令値frrに相当する駆動電流とを一致させる電流フィードバック制御によって、反力アクチュエータ31cへ出力する反力電流Ismを生成してもよい。
減算器43は、目標転舵角算出部40が算出した目標転舵角θtrから転舵角センサ32gが検出した実転舵角θtを減算した差分である転舵角偏差Δθ=θtr-θtを演算する。
転舵角サーボ制御部44は、転舵角偏差Δθを減少させるサーボ制御によって転舵力指令値ftrを算出する。
換算部45は、電流センサ31fが検出した検出反力電流Isdを、反力アクチュエータ31cから出力される操舵反力トルクに換算する。換算部45は、換算した操舵反力トルクを検出操舵反力トルクfrdとして出力する。
微分器46は、検出操舵反力トルクfrdを微分して、検出操舵反力トルクfrdの変化速度(dfrd/dt)を算出する。
上限値設定部47は、変化速度(dfrd/dt)に基づいて、転舵力指令値ftrの変化速度の上限値Ufを設定する。上限値設定部47は、変化速度(dfrd/dt)が小さいほど、より小さな上限値Ufを設定する。
例えば上限値設定部47は、変化速度(dfrd/dt)に所定のゲインを乗算した乗算結果を上限値Ufとして算出してもよく、変化速度(dfrd/dt)と上限値Ufとの間の関係マップにもとづいて上限値Ufを設定してもよい。
変化率リミッタ48は、転舵角サーボ制御部44から出力された転舵力指令値ftrの変化速度を上限値Uf以下に制限し、制限後の転舵力指令値ftr1を出力する。
転舵モータ駆動部49は、制限後の転舵力指令値ftr1に基づいて転舵アクチュエータ32eを駆動する。
転舵モータ駆動部49は、電流センサ32hが検出した検出転舵電流Itdから推定される実際の転舵トルクと、変化率リミッタ48から出力された転舵力指令値ftr1とを一致させるトルクフィードバック制御により、転舵アクチュエータ32eへ出力する転舵電流Itmを生成し、転舵電流Itmを転舵アクチュエータ32eに出力する。
検出転舵電流Itdと、転舵力指令値ftr1に相当する駆動電流とを一致させる電流フィードバック制御によって、転舵アクチュエータ32eへ出力する転舵電流Itmを生成してもよい。
(動作)
図6は、実施形態の操舵方法の一例のフローチャートである。
ステップS1において操舵角センサ31eは、ステアリングホイール31aの操舵角θs(ハンドル角度)を検出する。
ステップS2において目標転舵角算出部40は、操舵角θsに応じて目標転舵角θtrを算出する。
ステップS3において反力指令値算出部41は、少なくとも目標転舵角θtrに基づいて操舵反力指令値frrを算出する。目標転舵角θtrに代えて、操舵角θsに応じて操舵反力指令値frrを算出してもよい。
ステップS4において反力モータ駆動部42は、操舵反力指令値frrに基づいて反力アクチュエータ31cを駆動する。これにより操舵反力トルクがステアリングホイール31aに付与される。
ステップS5において転舵角センサ32gは、操向輪34の実転舵角θtを検出する。
ステップS6において転舵角サーボ制御部44は、目標転舵角θtrと実転舵角θtとの間の差(θtr-θt)である転舵角偏差Δθに基づいて、転舵力指令値ftrを算出する。
ステップS7において上限値設定部47は、転舵アクチュエータ32eで発生させる転舵トルクの変化速度の上限値を設定する。上限値設定部47は、操舵反力トルクの変化速度が小さいほど、より小さな上限値を設定する。
変化率リミッタ48及び転舵モータ駆動部49は、転舵力指令値ftrに基づいて転舵アクチュエータ32eを駆動する。その際に、上限値設定部47で設定した上限値で、転舵アクチュエータ32eで発生させる転舵トルクの変化速度を制限する。
なお、本実施例においては操舵反力トルクの変化速度が小さいほど、より小さな上限値を設定して転舵トルクの変化速度をより小さな値に制限する例を示したが、これに限定されない。例えば、操舵反力トルクの変化速度が所定の変化速度よりも小さい場合には、大きい場合よりも小さな上限値を設定して、転舵トルクの変化速度を制限しても良い。
(第2実施形態)
電流センサ31fが検出した検出反力電流Isdから換算して求めた検出操舵反力トルクfrdの代わりに、操舵反力指令値frrに基づいて、転舵力指令値ftrの変化速度の上限値Ufを設定してもよい。
第2実施形態のコントローラ11は、第1実施形態の検出操舵反力トルクfrdに代えて、操舵反力指令値frrに基づいて上限値Ufを設定する。
図7は、第2実施形態のコントローラ11の機能構成例のブロック図である。
微分器46は、操舵反力指令値frrを微分して、操舵反力指令値frrの変化速度(dfrr/dt)を、操舵反力トルクの変化速度として算出する。
上限値設定部47は、変化速度(dfrr/dt)に基づいて上限値Ufを設定する。上限値設定部47は、変化速度(dfrr/dt)が小さいほど、より小さな上限値Ufを設定する。
例えば上限値設定部47は、変化速度(dfrr/dt)に所定のゲインを乗算した乗算結果を上限値Ufとして算出してもよく、変化速度(dfrr/dt)と上限値Ufとの間の関係マップにもとづいて上限値Ufを設定してもよい。
(第3実施形態)
上述の通り、操舵反力指令値frrは目標転舵角θtrに基づいて設定される。したがって、第2実施形態の操舵反力指令値frrの代わりに目標転舵角θtrに基づいて転舵力指令値ftrの変化速度の上限値Ufを設定してもよい。
図8は、第3実施形態のコントローラ11の機能構成例のブロック図である。
微分器46は、目標転舵角θtrを微分して、目標転舵角θtrの変化速度(dθtr/dt)を、操舵反力トルクの変化速度として算出する。
上限値設定部47は、変化速度(dθtr/dt)に基づいて上限値Ufを設定する。上限値設定部47は、変化速度(dθtr/dt)が小さいほど、より小さな上限値Ufを設定する。
例えば上限値設定部47は、変化速度(dθtr/dt)に所定のゲインを乗算した乗算結果を上限値Ufとして算出してもよく、変化速度(dθtr/dt)と上限値Ufとの間の関係マップにもとづいて上限値Ufを設定してもよい。
また、目標転舵角θtrは操舵角θsに基づいて設定されるので、目標転舵角θtrの代わりに操舵角θsに基づいて、転舵力指令値ftrの変化速度の上限値Ufを設定してもよい。
微分器46は、操舵角θsを微分して、操舵角θsの変化速度(dθs/dt)を、操舵反力トルクの変化速度として算出する。
上限値設定部47は、変化速度(dθs/dt)に基づいて上限値Ufを設定する。上限値設定部47は、変化速度(dθs/dt)が小さいほど、より小さな上限値Ufを設定する。
例えば上限値設定部47は、変化速度(dθs/dt)に所定のゲインを乗算した乗算結果を上限値Ufとして算出してもよく、変化速度(dθs/dt)と上限値Ufとの間の関係マップにもとづいて上限値Ufを設定してもよい。
(第4実施形態)
第1実施形態から第3実施形態のコントローラ11は、転舵力指令値ftrの変化速度を上限値Uf以下に制限することによって、転舵アクチュエータ32eに発生させる転舵トルクの変化速度を制限した。
これに代えて又はこれに加えて、転舵アクチュエータ32eの駆動電流である転舵電流Itmの速度変化を制限することによって、転舵トルクの変化速度を制限してもよい。
第4実施形態のコントローラ11は、転舵電流Itmの速度変化を制限することによって転舵トルクの変化速度を制限する。
図9は、第4実施形態のコントローラ11の機能構成例のブロック図である。
転舵モータ駆動部49は、換算部50と、減算器51と、変化率リミッタ52と、電流サーボ制御部53と、PWM制御部54と、インバータ55を備える。図面においてインバータを「INV」と表記する。
換算部50は、転舵角サーボ制御部44から出力される転舵力指令値ftrを電流指令値Itrに換算する。電流指令値Itrは、転舵アクチュエータ32eを駆動する転舵電流Itmの指令値である。
減算器51は、電流センサ32hが検出した検出転舵電流Itdを電流指令値Itrから減算した差分である電流偏差ΔI=Itr-Itdを演算する。
変化率リミッタ52は、減算器51から出力された電流偏差ΔIの変化速度を上限値Ui以下に制限し、制限後の電流偏差ΔI1を出力する。
上限値設定部47は、検出操舵反力トルクfrdの変化速度(dfrd/dt)に基づいて、電流偏差ΔIの変化速度の上限値Uiを設定する。上限値設定部47は、変化速度(dfrd/dt)が小さいほど、より小さな上限値Uiを設定する。
例えば上限値設定部47は、変化速度(dfrd/dt)に所定のゲインを乗算した乗算結果を上限値Uiとして算出してもよく、変化速度(dfrd/dt)と上限値Uiとの間の関係マップにもとづいて上限値Uiを設定してもよい。
電流サーボ制御部53は、制限後の電流偏差ΔI1を減少させるサーボ制御によって、転舵アクチュエータ32eの印加電圧の指令値である電圧指令値を算出する。
PWM制御部54は、電流サーボ制御部53が出力する電圧指令値に基づいてインバータ55を駆動するPWM信号を生成する。
インバータ55は、PWM制御部54が生成したPWM信号によって駆動されて、転舵電流Itmを出力する。
電流偏差ΔIの変化速度を制限することにより、電流偏差ΔIに基づいて生成される転舵電流Itmの速度変化を制限することができる。
これにより、転舵アクチュエータ32eに発生させる転舵トルクの変化速度を制限することができる。
(第5実施形態)
電流センサ31fが検出した検出反力電流Isdから換算して求めた検出操舵反力トルクfrdの代わりに、操舵反力指令値frrに基づいて電流偏差ΔI1の変化速度の上限値Uiを設定してもよい。
図10は、第5実施形態のコントローラ11の機能構成例のブロック図である。
上限値設定部47は、操舵反力指令値frrの変化速度(dfrr/dt)に基づいて上限値Uiを設定する。上限値設定部47は、変化速度(dfrr/dt)が小さいほど、より小さな上限値Uiを設定する。
例えば上限値設定部47は、変化速度(dfrr/dt)に所定のゲインを乗算した乗算結果を上限値Uiとして算出してもよく、変化速度(dfrr/dt)と上限値Uiとの間の関係マップにもとづいて上限値Uiを設定してもよい。
(第6実施形態)
操舵反力指令値frrの代わりに目標転舵角θtrに基づいて電流偏差ΔI1の変化速度の上限値Uiを設定してもよい。
図11は、第6実施形態のコントローラ11の機能構成例のブロック図である。
上限値設定部47は、目標転舵角θtrの変化速度(dθtr/dt)に基づいて上限値Uiを設定する。上限値設定部47は、変化速度(dθtr/dt)が小さいほど、より小さな上限値Uiを設定する。
例えば上限値設定部47は、変化速度(dθtr/dt)に所定のゲインを乗算した乗算結果を上限値Uiとして算出してもよく、変化速度(dθtr/dt)と上限値Uiとの間の関係マップにもとづいて上限値Uiを設定してもよい。
目標転舵角θtrの代わりに操舵角θsに基づいて上限値Uiを設定してもよい。
上限値設定部47は、操舵角θsの変化速度(dθs/dt)に基づいて上限値Uiを設定する。上限値設定部47は、変化速度(dθs/dt)が小さいほど、より小さな上限値Uiを設定する。
例えば上限値設定部47は、変化速度(dθs/dt)に所定のゲインを乗算した乗算結果を上限値Uiとして算出してもよく、変化速度(dθs/dt)と上限値Uiとの間の関係マップにもとづいて上限値Uiを設定してもよい。
(第7実施形態)
次に、第7実施形態について説明する。操向輪34のタイヤゴムの特性により、操舵開始の直後(すなわち転舵角θtの変化の開始直後)におけるヨーレイトの変化速度は、車速Vvが低いほど大きくなる。
そこで、第7実施形態のコントローラ11は、車速Vvが比較的低い場合には、操舵反力トルクの変化速度が小さい場合の転舵力の変化速度を、操舵反力トルクの変化速度が大きい場合の転舵力の変化速度よりも小さな値に制限する。
一方で、車速Vvが比較的高い場合には、操舵反力トルクの変化速度が小さい場合の転舵力の変化速度を、操舵反力トルクの変化速度が大きい場合の転舵力の変化速度よりも小さな値に制限しない。
これにより、車速Vvが比較的高い場合において、転舵力の変化速度の制限によって転舵速度が低下して車両挙動が緩慢になるのを回避できる。
図12は、第7実施形態のコントローラ11の機能構成例のブロック図である。第7実施形態のコントローラ11は、第1実施形態と同様に、電流センサ31fが検出した検出反力電流Isdから換算して求めた検出操舵反力トルクfrdに基づいて転舵力指令値ftrの変化速度の上限値Ufを設定する。
コントローラ11は、ゲイン設定部60と、乗算器61及び63と、減算器62と、加算器64を備える。
ゲイン設定部60は、車速Vvに応じた車速ゲインKを設定する。乗算器61は、制限後の転舵力指令値ftr1と車速ゲインKとの積K×ftr1を算出する。
減算器62は、車速ゲイン(1-K)を算出する。乗算器63は、制限前の転舵力指令値ftrと車速ゲイン(1-K)との積(1-K)×ftr1を算出する。加算器64は、制限後の転舵力指令値ftr1と制限前の転舵力指令値ftrの重み付け和(K×ftr1+(1-K)×ftr)を算出する。
転舵モータ駆動部49は、重み付け和(K×ftr1+(1-K)×ftr)に基づいて転舵アクチュエータ32eを駆動する。
図13(a)は、車速ゲインKの第1例の特性図である。車速Vvが閾値V1以下である場合に車速ゲインKは「1」であり、車速Vvが閾値V2以上である場合に車速ゲインKは「0」である。閾値V2は閾値V1より大きい。車速Vvが閾値V1~V2の範囲では、車速Vvが大きくなるのに従って、車速ゲインKは「1」から「0」へ減少する。
このため、車速Vvが閾値V1以下である場合に転舵モータ駆動部49は、制限後の転舵力指令値ftr1に基づいて転舵アクチュエータ32eを駆動する。車速Vvが閾値V2以上である場合には、制限前の転舵力指令値ftrに基づいて転舵アクチュエータ32eを駆動する。車速Vvが閾値V1~V2の範囲では、制限後の転舵力指令値ftrと制限前の転舵力指令値ftrの中間の転舵力指令値に基づいて転舵アクチュエータ32eを駆動する。
これにより、車速Vvが比較的低い場合には、操舵反力トルクの変化速度が小さい場合の転舵力の変化速度を、操舵反力トルクの変化速度が大きい場合の転舵力の変化速度よりも小さな値に制限する。
一方で、車速Vvが比較的高い場合には、操舵反力トルクの変化速度が小さい場合の転舵力の変化速度を、操舵反力トルクの変化速度が大きい場合の転舵力の変化速度よりも小さな値に制限しない。
図13(b)は、車速ゲインKの第2例の特性図である。車速Vvが「0」又は極低速である場合には、転舵しても横力が発生しないためヨーレイトが発生しない。このためヨーレイトの変化速度を制限する必要がない。
このため、第2例の車速ゲインKは、車速Vvが「0」又は極低速の場合には、操舵反力トルクの変化速度が小さい場合の転舵力の変化速度を、操舵反力トルクの変化速度が大きい場合の転舵力の変化速度よりも小さな値に制限しないように設定する。これにより、車速Vvが「0」又は極低速の場合に、転舵速度が低下するのを回避できる。
具体的には、第2例の車速ゲインKは車速Vvが「0」の場合に車速ゲインKは「0」であり、車速Vvが「0」~閾値V3の範囲では、車速Vvが大きくなるのに従って車速ゲインKは「0」から「1」へ増加する。車速Vvが閾値V3以上の範囲では、第1例の車速ゲインKと同じ特性を有する。
このため、車速Vvが「0」である場合に転舵モータ駆動部49は、制限前の転舵力指令値ftrに基づいて転舵アクチュエータ32eを駆動する。
車速Vvが閾値V3~V1の範囲では、制限後の転舵力指令値ftrに基づいて転舵アクチュエータ32eを駆動する。車速Vvが閾値V2以上である場合には、制限前の転舵力指令値ftrに基づいて転舵アクチュエータ32eを駆動する。
車速Vvが「0」~閾値V3の範囲と閾値V1~V2の範囲では、制限後の転舵力指令値ftr1と制限前の転舵力指令値ftrの中間の転舵力指令値に基づいて転舵アクチュエータ32eを駆動する。
このため、車速Vvが「0」又は極低速の場合には、操舵反力トルクの変化速度が小さい場合の転舵力の変化速度を、操舵反力トルクの変化速度が大きい場合の転舵力の変化速度よりも小さな値に制限しない。
車速Vvが比較的低く、かつ「0」又は極低速でない場合には、操舵反力トルクの変化速度が小さい場合の転舵力の変化速度を、操舵反力トルクの変化速度が大きい場合の転舵力の変化速度よりも小さな値に制限する。
また、車速Vvが比較的高い場合には、操舵反力トルクの変化速度が小さい場合の転舵力の変化速度を、操舵反力トルクの変化速度が大きい場合の転舵力の変化速度よりも小さな値に制限しない。
なお、第2実施形態と同様に、検出操舵反力トルクfrdの代わりに、操舵反力指令値frrに基づいて転舵力指令値ftrの変化速度の上限値Ufを設定してもよい。
また、第3実施形態と同様に、操舵反力指令値frrの代わりに、目標転舵角θtrや操舵角θsに基づいて転舵力指令値ftrの変化速度の上限値Ufを設定してもよい。
(第8実施形態)
第8実施形態のコントローラ11は、第7実施形態における転舵力指令値ftrに代えて、転舵電流Itmの指令値である電流指令値Itrと検出転舵電流Itdとの電流偏差ΔI=Itr-Itdの変化速度を制限する。
すなわち、変化速度が制限された電流偏差ΔI1と制限前の電流偏差ΔIとを、車速に応じた車速ゲインKにより重み付け、重み付け和(K×ΔI1+(1-K)ΔI)に基づいて転舵電流Itmを生成する。
これにより、車速Vvが比較的低い場合には、操舵反力トルクの変化速度が小さい場合の転舵力の変化速度を、操舵反力トルクの変化速度が大きい場合の転舵力の変化速度よりも小さな値に制限する。
一方で、車速Vvが比較的高い場合には、操舵反力トルクの変化速度が小さい場合の転舵力の変化速度を、操舵反力トルクの変化速度が大きい場合の転舵力の変化速度よりも小さな値に制限しない。
図14は、第8実施形態のコントローラ11の機能構成例のブロック図である。第8実施形態のコントローラ11は、第4実施形態と同様に、電流センサ31fが検出した検出反力電流Isdから換算して求めた検出操舵反力トルクfrdに基づいて電流偏差ΔI1の変化速度の上限値Uiを設定する。
第8実施形態の転舵モータ駆動部49は、乗算器70及び72と、減算器71と、加算器73を備える。
乗算器70は、制限後の電流偏差ΔI1と車速ゲインKとの積K×ΔI1を算出する。減算器71は、車速ゲイン(1-K)を算出する。
乗算器72は、制限前の電流偏差ΔIと車速ゲイン(1-K)との積(1-K)×ΔIを算出する。加算器64は、制限後の電流偏差ΔI1と制限前の電流偏差ΔIの重み付け和(K×ΔI1+(1-K)×ΔI)を算出する。
電流サーボ制御部53は、電流偏差の重み付け和(K×ΔI1+(1-K)×ΔI)を減少させるサーボ制御によって、転舵アクチュエータ32eの印加電圧の指令値である電圧指令値を算出する。
これにより、ゲイン設定部60が図13(a)の特性の車速ゲインKを設定すると、車速Vvが比較的低い場合には、操舵反力トルクの変化速度が小さい場合の転舵力の変化速度を、操舵反力トルクの変化速度が大きい場合の転舵力の変化速度よりも小さな値に制限する。
一方で、車速Vvが比較的高い場合には、操舵反力トルクの変化速度が小さい場合の転舵力の変化速度を、操舵反力トルクの変化速度が大きい場合の転舵力の変化速度よりも小さな値に制限しない。
また、ゲイン設定部60が図13(b)の特性の車速ゲインKを設定すると、車速Vvが「0」又は極低速の場合には、操舵反力トルクの変化速度が小さい場合の転舵力の変化速度を、操舵反力トルクの変化速度が大きい場合の転舵力の変化速度よりも小さな値に制限しない。
車速Vvが比較的低く、かつ「0」又は極低速でない場合には、操舵反力トルクの変化速度が小さい場合の転舵力の変化速度を、操舵反力トルクの変化速度が大きい場合の転舵力の変化速度よりも小さな値に制限する。
また、車速Vvが比較的高い場合には、操舵反力トルクの変化速度が小さい場合の転舵力の変化速度を、操舵反力トルクの変化速度が大きい場合の転舵力の変化速度よりも小さな値に制限しない。
なお、第5実施形態と同様に、検出操舵反力トルクfrdの代わりに、操舵反力指令値frrに基づいて電流偏差ΔI1の変化速度の上限値Uiを設定してもよい。
また、第6実施形態と同様に、操舵反力指令値frrの代わりに、目標転舵角θtrや操舵角θsに基づいて電流偏差ΔI1の変化速度の上限値Uiを設定してもよい。
(実施形態の効果)
(1)操舵角センサ31eは、ステアリングホイール31aの操舵角θsを検出する。目標転舵角算出部40は、操舵角θsに応じて操向輪34の目標転舵角θtrを算出する。反力指令値算出部41は、操舵角θs又は目標転舵角θtrである設定舵角に応じた操舵反力指令値frrを算出する。反力モータ駆動部42及び反力アクチュエータ31cは、操舵反力指令値frrに応じた操舵反力をステアリングホイール31aに付与する。転舵角センサ32gは、操向輪34の実転舵角θtを検出する。転舵角サーボ制御部44は、実転舵角θtと目標転舵角θtrとの差に基づいて、実転舵角θtを目標転舵角θtrに一致させるための転舵力指令値ftrを算出する。
転舵モータ駆動部49及び転舵アクチュエータ32eは、転舵力指令値ftrに応じて操向輪を転舵する転舵力を発生させる。変化率リミッタ48又は52は、操舵反力指令値frrの変化速度が小さい場合には大きい場合よりも、転舵力の変化速度を小さな値に制限する。
これにより、操舵力の変化速度が小さい場合には大きい場合よりもヨーレイトの変化速度が制限される。このため、ステアバイワイヤ式の操舵装置において、操舵力の変化速度が小さいにも関わらずヨーレイトの変化速度が大きいことにより運転者が違和感を覚えるのを緩和できる。
(2)変化率リミッタ48又は52は、設定舵角の変化速度が小さい場合には大きい場合よりも、転舵力の変化速度を小さな値に制限してもよい。
これにより、操舵反力指令値frrの変化速度が小さい場合には大きい場合よりも、転舵力の変化速度を小さな値に制限できる。
(3)反力アクチュエータ31cは、操舵反力指令値frrに応じて駆動されてステアリングホイール31aに操舵反力を付与する。反力アクチュエータ31cの駆動電流を検出反力電流Isdとして検出する電流センサ31fを設けてもよい。変化率リミッタ48又は52は、検出された駆動電流値の変化速度が小さい場合には大きい場合よりも、転舵力の変化速度を小さな値に制限してもよい。
これにより、操舵反力指令値の変化速度が小さい場合には大きい場合よりも、転舵力の変化速度を小さな値に制限できる。
(4)変化率リミッタ48は、転舵力指令値ftrの変化速度を制限してもよい。これにより転舵力の変化速度を制限できる。
(5)転舵アクチュエータ32eは、転舵力指令値に応じて駆動され操向輪34を転舵する転舵力を発生する。変化率リミッタ52は、転舵アクチュエータ32eの駆動電流の速度変化を制限してもよい。これにより転舵力の変化速度を制限できる。
(6)車速Vvが第1閾値未満である場合には、操舵反力指令値frrの変化速度が小さい場合の転舵力の変化速度を、操舵反力指令値frrの変化速度が大きい場合の転舵力の変化速度よりも小さな値に制限し、車速Vvが第1閾値以上である場合には制限しなくてもよい。
車速Vvが比較的高い場合には、車速Vvが比較的低い場合に比べて操舵開始の直後におけるヨーレイトの変化速度が大きくならない。したがって、車速Vvが第1閾値以上である場合には転舵力の変化速度を制限しないことにより、高速域で転舵速度が低下し車両挙動が緩慢になるのを回避できる。
(7)車速Vvが第1閾値未満であり、且つ車速Vvが第1閾値より小さな第2閾値より大きい場合には、操舵反力指令値frrの変化速度が小さい場合の転舵力の変化速度を、操舵反力指令値frrの変化速度が大きい場合の転舵力の変化速度よりも小さな値に制限し、車速Vvが第1閾値以上であるか第2閾値以下の場合には制限しなくてもよい。
車速Vvが「0」又は極低速である場合には、転舵しても横力が発生しないためヨーレイトが発生しない。このためヨーレイトの変化速度を制限する必要がない。車速Vvが第2閾値以下である場合には転舵力の変化速度を制限しないことにより、車速Vvが「0」又は極低速である場合に転舵速度が低下するのを回避できる。
11…コントローラ、16…車速センサ、20…プロセッサ、21…記憶装置、22…駆動回路、31…操舵部、31a…ステアリングホイール、31b…コラムシャフト、31c…反力アクチュエータ、31e…操舵角センサ、31f…電流センサ、32…転舵部、32a…ピニオンシャフト、32b…ステアリングギア、32c…ラックギア、32d…ステアリングラック、32e…転舵アクチュエータ、32g…転舵角センサ、32h…電流センサ、33…バックアップクラッチ、34…操向輪、34FL、34FR…左右前輪、40…目標転舵角算出部、41…反力指令値算出部、42…反力モータ駆動部、43、62、71…減算器、44…転舵角サーボ制御部、45…換算部、46…微分器、47…上限値設定部、48…変化率リミッタ、49…転舵モータ駆動部、50…換算部、51…減算器、52…変化率リミッタ、53…電流サーボ制御部、54…PWM制御部、55…インバータ、60…ゲイン設定部、61、63、70、72…乗算器、64、73…加算器

Claims (8)

  1. ステアリングホイールの操舵角を検出し、
    検出された前記操舵角に応じて操向輪の目標転舵角を算出し、
    前記操舵角又は前記目標転舵角である設定舵角に応じた操舵反力指令値を算出し、
    前記操舵反力指令値に応じた操舵反力を前記ステアリングホイールに付与し、
    前記操向輪の実際の転舵角である実転舵角を検出し、
    前記実転舵角と前記目標転舵角との差に基づいて、前記実転舵角を前記目標転舵角に一致させるための転舵力指令値を算出し、
    前記転舵力指令値に応じて前記操向輪を転舵する転舵力を発生させ、
    前記操舵反力指令値の変化速度が小さい場合には大きい場合よりも、前記転舵力の変化速度を小さな値に制限する、
    ことを特徴とする操舵方法。
  2. 前記設定舵角の変化速度が小さい場合には大きい場合よりも、前記転舵力の変化速度を小さな値に制限することにより、前記操舵反力指令値の変化速度が小さい場合には大きい場合よりも、前記転舵力の変化速度を小さな値に制限することを特徴とする請求項1に記載の操舵方法。
  3. 前記操舵反力指令値に応じて駆動される反力アクチュエータによって、前記ステアリングホイールに前記操舵反力を付与し、
    前記反力アクチュエータに流れる駆動電流値を検出し、
    検出された前記駆動電流値の変化速度が小さい場合には大きい場合よりも、前記転舵力の変化速度を小さな値に制限することにより、前記操舵反力指令値の変化速度が小さい場合には大きい場合よりも、前記転舵力の変化速度を小さな値に制限することを特徴とする請求項1に記載の操舵方法。
  4. 前記転舵力指令値の変化速度を制限することにより前記転舵力の変化速度を制限することを特徴とする請求項1~3のいずれか一項に記載の操舵方法。
  5. 前記転舵力指令値に応じて駆動される転舵アクチュエータによって、前記操向輪を転舵する転舵力を発生させ、
    前記転舵アクチュエータに流れる駆動電流の速度変化を制限することにより前記転舵力の変化速度を制限することを特徴とする請求項1~3のいずれか一項に記載の操舵方法。
  6. 車両の車速が第1閾値未満である場合には、前記操舵反力指令値の変化速度が小さい場合の前記転舵力の変化速度を、前記操舵反力指令値の変化速度が大きい場合の前記転舵力の変化速度よりも小さな値に制限することを特徴とする請求項1~5のいずれか一項に記載の操舵方法。
  7. 車両の車速が第1閾値未満であり、且つ前記車速が前記第1閾値より小さな第2閾値より大きい場合には、前記操舵反力指令値の変化速度が小さい場合の前記転舵力の変化速度を、前記操舵反力指令値の変化速度が大きい場合の前記転舵力の変化速度よりも小さな値に制限することを特徴とする請求項1~5のいずれか一項に記載の操舵方法。
  8. ステアリングホイールの操舵角を検出する操舵角センサと、
    操向輪の実際の転舵角である実転舵角を検出する転舵角センサと、
    前記ステアリングホイールに操舵反力を付与する反力アクチュエータと、
    前記操向輪を転舵する転舵力を発生させる転舵アクチュエータと、
    前記操舵角センサが検出した前記操舵角に応じて前記操向輪の目標転舵角を算出し、前記操舵角又は前記目標転舵角である設定舵角に応じた操舵反力指令値を算出し、前記操舵反力指令値に応じて前記反力アクチュエータを駆動し、前記実転舵角と前記目標転舵角との差に基づいて、前記実転舵角を前記目標転舵角に一致させるための転舵力指令値を算出し、前記転舵力指令値に応じて前記転舵アクチュエータを駆動し、前記操舵反力指令値の変化速度が小さい場合には大きい場合よりも、前記転舵アクチュエータが発生する前記転舵力の変化速度を小さな値に制限するコントローラと、
    を備えることを特徴とする操舵装置。
JP2020205898A 2020-12-11 2020-12-11 操舵方法及び操舵装置 Active JP7484690B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020205898A JP7484690B2 (ja) 2020-12-11 2020-12-11 操舵方法及び操舵装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020205898A JP7484690B2 (ja) 2020-12-11 2020-12-11 操舵方法及び操舵装置

Publications (2)

Publication Number Publication Date
JP2022092909A JP2022092909A (ja) 2022-06-23
JP7484690B2 true JP7484690B2 (ja) 2024-05-16

Family

ID=82068857

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020205898A Active JP7484690B2 (ja) 2020-12-11 2020-12-11 操舵方法及び操舵装置

Country Status (1)

Country Link
JP (1) JP7484690B2 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005239031A (ja) 2004-02-27 2005-09-08 Toyota Motor Corp 車両の操舵装置
JP2009298370A (ja) 2008-06-17 2009-12-24 Jtekt Corp 車両用操舵装置
JP2011225144A (ja) 2010-04-21 2011-11-10 Nissan Motor Co Ltd 車両用操舵装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005239031A (ja) 2004-02-27 2005-09-08 Toyota Motor Corp 車両の操舵装置
JP2009298370A (ja) 2008-06-17 2009-12-24 Jtekt Corp 車両用操舵装置
JP2011225144A (ja) 2010-04-21 2011-11-10 Nissan Motor Co Ltd 車両用操舵装置

Also Published As

Publication number Publication date
JP2022092909A (ja) 2022-06-23

Similar Documents

Publication Publication Date Title
US10315693B2 (en) Vehicle steering control device
JP3517863B2 (ja) 操舵制御装置
EP1935757B1 (en) Vehicle steering apparatus
WO2014167630A1 (ja) 操舵制御装置および操舵制御方法
JP6828857B2 (ja) 車両の操舵に用いられるアクチュエータ制御装置
JP2018114845A (ja) ステアバイワイヤ式操舵装置
US11919581B2 (en) Steering control device
JP4517810B2 (ja) 車両用操舵制御装置
JP3433713B2 (ja) 車両の電動パワーステアリング装置
JP7484690B2 (ja) 操舵方法及び操舵装置
JP2007283891A (ja) 車両用操舵装置
CN115723837A (zh) 转向***
JP5221600B2 (ja) 車両用操舵装置
JP7147553B2 (ja) 電動パワーステアリング装置
JP7484681B2 (ja) 操舵方法及び操舵装置
JP2022086819A (ja) 転舵方法及び転舵装置
JP7512831B2 (ja) 転舵方法及び転舵装置
JP4333441B2 (ja) パワーステアリング装置
JP4333399B2 (ja) 車両操舵装置
WO2022074826A1 (ja) 転舵方法及び転舵装置
JP2000085603A (ja) 操舵制御装置
JP5217310B2 (ja) 電動パワーステアリング装置
JP7404004B2 (ja) 操舵制御装置
JP2019127216A (ja) 転舵制御装置
US20220355857A1 (en) Steering Control Method and Steering Control Device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20231012

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240322

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240402

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240415

R150 Certificate of patent or registration of utility model

Ref document number: 7484690

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150