JP7479667B2 - Compound having a sulfonylaniline skeleton or a salt thereof, or organic fluorescent material having the same - Google Patents

Compound having a sulfonylaniline skeleton or a salt thereof, or organic fluorescent material having the same Download PDF

Info

Publication number
JP7479667B2
JP7479667B2 JP2020021477A JP2020021477A JP7479667B2 JP 7479667 B2 JP7479667 B2 JP 7479667B2 JP 2020021477 A JP2020021477 A JP 2020021477A JP 2020021477 A JP2020021477 A JP 2020021477A JP 7479667 B2 JP7479667 B2 JP 7479667B2
Authority
JP
Japan
Prior art keywords
group
sulfonylaniline
halogen atom
substituted
bmes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020021477A
Other languages
Japanese (ja)
Other versions
JP2021127305A (en
Inventor
洋史 片桐
亜紀 佐藤
太貴 望月
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamagata University NUC
Original Assignee
Yamagata University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamagata University NUC filed Critical Yamagata University NUC
Priority to JP2020021477A priority Critical patent/JP7479667B2/en
Publication of JP2021127305A publication Critical patent/JP2021127305A/en
Application granted granted Critical
Publication of JP7479667B2 publication Critical patent/JP7479667B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Pyrrole Compounds (AREA)

Description

本発明は、スルホニルアニリン骨格を有する有機蛍光材料に関する。 The present invention relates to an organic fluorescent material having a sulfonylaniline skeleton.

蛍光色素を用いて目的のタンパク質や分子を可視化し、生命現象の空間や時間を捉える蛍光イメージングは、生化学・生物学だけでなく医学の分野も含めたライフサイエンスにおける重要技術である。生体機能や疾病メカニズムの解明につながることから、予防・診断・治療といった医療技術への糸口となることが期待されている。特に近年、蛍光標識糖鎖・蛍光標識ペプチドは、蛍光プローブの開発や蛍光イメージングといったライフサイエンス研究を支える重要な基幹ツールとして顧客ニーズが多様化している。 Fluorescence imaging, which uses fluorescent dyes to visualize target proteins and molecules and capture the space and time of biological phenomena, is an important technology in life sciences, including not only biochemistry and biology but also medicine. As it leads to elucidation of biological functions and disease mechanisms, it is expected to provide clues for medical technologies such as prevention, diagnosis, and treatment. In particular, in recent years, customer needs have become more diverse for fluorescently labeled glycans and peptides, which serve as important core tools supporting life science research such as the development of fluorescent probes and fluorescent imaging.

しかしながら、GFP(緑色蛍光タンパク質)に代表される蛍光タンパク質はもちろんのこと、しばしばフルオレセインやローダミンといった低分子系の汎用性蛍光色素であっても、分子サイズが大きく、複雑なターゲットの機能を阻害し、ターゲットへの導入が困難な場合がある。また、励起光と発光との差(ストークスシフト)が小さく、多数の発光シグナルを同時に可視化するマルチカラーイメージングに向かないという大きな課題がある。 However, fluorescent proteins such as GFP (green fluorescent protein) and even general-purpose low-molecular-weight fluorescent dyes such as fluorescein and rhodamine often have large molecular sizes that can inhibit the function of complex targets and make them difficult to introduce into targets. In addition, there is a major issue in that the difference between excitation light and emission light (Stokes shift) is small, making them unsuitable for multi-color imaging that visualizes multiple emission signals simultaneously.

ストークスシフトの大きな標識剤は、ストークスシフトの小さな多くの従来型蛍光標識剤に比べて、励起光の検出波長領域への重なりを抑えることができ、高感度化や高精度化にとっても大きな利点がある。そのため、小さな分子構造と大きなストークスシフトを持つ蛍光色素が必要である。 Compared to many conventional fluorescent labeling agents with small Stokes shifts, labeling agents with large Stokes shifts can reduce overlap with the detection wavelength range of excitation light, and have the great advantage of enabling high sensitivity and high precision. For this reason, fluorescent dyes with small molecular structures and large Stokes shifts are required.

優れた蛍光特性の発現には拡張されたπ共役系が有利なことから、芳香族骨格を拡張した分子設計が広く用いられてきた。しかし、そのような分子設計による材料の多くは高い平面性と剛直な骨格とを持つことから、分子サイズが大きく、安定性が低く、水溶性が低く、ストークスシフトが小さく、さらには強い分子間相互作用が濃度消光を引き起こすという問題があった。 Because extended π-conjugated systems are advantageous for expressing excellent fluorescent properties, molecular designs with extended aromatic skeletons have been widely used. However, many of the materials produced by such molecular designs have high planarity and rigid skeletons, leading to problems such as large molecular size, low stability, low water solubility, small Stokes shift, and strong intermolecular interactions that cause concentration quenching.

本発明者らは、1つのベンゼン環に複数のアミノ基とスルホニル基とを有するスルホニルアニリン系色素が、(1)分子サイズが極めて小さい、(2)Push-Pull効果により吸収波長が長波長化する、(3)スルホニル基が持つ折れ曲がり構造により高い溶解性を示すため、分子が会合し、固体や凝集状態で発光する固体蛍光性を示す、(4)アミノ基‐スルホニル基間の水素結合がアミノ基の自由回転を抑制し、蛍光量子効率や安定性が向上する等、従来の有機蛍光材料よりも優れた特性を示すことを報告した(非特許文献1、特許文献1)。 The present inventors have reported that sulfonylaniline dyes, which have multiple amino groups and sulfonyl groups on one benzene ring, have superior properties to conventional organic fluorescent materials, such as (1) extremely small molecular size, (2) a longer absorption wavelength due to the push-pull effect, (3) high solubility due to the bent structure of the sulfonyl group, which allows the molecules to associate and emit light in a solid or aggregated state, and (4) hydrogen bonds between the amino group and sulfonyl group suppress the free rotation of the amino group, improving the fluorescence quantum efficiency and stability (Non-Patent Document 1, Patent Document 1).

Single Benzene Green Fluorophore:Solid-State Emissive, Water-Soluble, and Solvent- and pH-IndependentFluorescence with Large Stokes Shifts., Teruo Beppu, Kosuke Tomiguchi, AkitoMasuhara, Yong-Jin Pu, and Hiroshi Katagiri., Angewandte Chemie InternationalEdition, 54 (2015) 7332-7335.Single Benzene Green Fluorophore:Solid-State Emissive, Water-Soluble, and Solvent- and pH-Independent Fluorescence with Large Stokes Shifts., Teruo Beppu, Kosuke Tomiguchi, AkitoMasuhara, Yong-Jin Pu, and Hiroshi Katagiri., Angewandte Chemie International Edition, 54 (2015) 7332-7335.

特許第6249210号公報Japanese Patent No. 6249210

本発明では、前記スルホニルアニリン系色素をさらに改良するとともに、これらに生体分子結合基を導入することにより、蛍光標識薬に好適な材料を開発することを目的とする。 The present invention aims to further improve the sulfonylaniline dyes and introduce biomolecule binding groups into them to develop materials suitable for fluorescent labeling drugs.

本発明は以下の事項からなる。
本発明は、下記一般式(1)~(5)で表されるスルホニルアニリン骨格を有する化合物又はその塩にある。

Figure 0007479667000001
The present invention comprises the following:
The present invention relates to compounds having a sulfonylaniline skeleton represented by the following general formulas (1) to (5) or salts thereof.
Figure 0007479667000001

ここで、一般式(1)~(5)中、R1及びR2は、それぞれ独立に、アルキル基、フルオロアルキル基、フェニル基、ハロゲン原子で置換されたフェニル基、アミノ基で置換されたフェニル基、アルコキシ基で置換されたフェニル基、ナフチル基、チエニル基、ハロゲン原子で置換されたチエニル基、チアゾリル基、ハロゲン原子で置換されたチアゾリル基、ピリジル基、又は、ハロゲン原子で置換されたピリジル基であり、S1は下記一般式(10)で表される置換基である。 In the general formulas (1) to (5), R 1 and R 2 each independently represent an alkyl group, a fluoroalkyl group, a phenyl group, a phenyl group substituted with a halogen atom, a phenyl group substituted with an amino group, a phenyl group substituted with an alkoxy group, a naphthyl group, a thienyl group, a thienyl group substituted with a halogen atom, a thiazolyl group, a thiazolyl group substituted with a halogen atom, a pyridyl group, or a pyridyl group substituted with a halogen atom, and S1 is a substituent represented by the following general formula (10):

Figure 0007479667000002
Figure 0007479667000002

一般式(10)中、Rは鎖中に一以上の酸素原子を含んでもよい、炭素原子数1~18の直鎖状、分岐状又は環状のアルキレン基である。 In general formula (10), R is a linear, branched, or cyclic alkylene group having 1 to 18 carbon atoms, which may contain one or more oxygen atoms in the chain.

本発明は、下記一般式(6)~(9)で表されるスルホニルアニリン骨格を有する化合物又はその塩にある。

Figure 0007479667000003
The present invention relates to compounds having a sulfonylaniline skeleton represented by the following general formulas (6) to (9) or salts thereof.
Figure 0007479667000003

ここで、一般式(6)~(9)中、R1及びR2は、それぞれ独立に、アルキル基、フルオロアルキル基、フェニル基、ハロゲン原子で置換されたフェニル基、アミノ基で置換されたフェニル基、アルコキシ基で置換されたフェニル基、ナフチル基、チエニル基、ハロゲン原子で置換されたチエニル基、チアゾリル基、ハロゲン原子で置換されたチアゾリル基、ピリジル基、又は、ハロゲン原子で置換されたピリジル基であり、S2は下記一般式(11)で表される置換基である。 In the general formulas (6) to (9), R1 and R2 each independently represent an alkyl group, a fluoroalkyl group, a phenyl group, a phenyl group substituted with a halogen atom, a phenyl group substituted with an amino group, a phenyl group substituted with an alkoxy group, a naphthyl group, a thienyl group, a thienyl group substituted with a halogen atom, a thiazolyl group, a thiazolyl group substituted with a halogen atom, a pyridyl group, or a pyridyl group substituted with a halogen atom, and S2 is a substituent represented by the following general formula (11):

Figure 0007479667000004
一般式(11)中、Rは鎖中に一以上の酸素原子を含んでもよい、炭素原子数1~18の直鎖状、分岐状又は環状のアルキレン基である。
Figure 0007479667000004
In general formula (11), R is a linear, branched or cyclic alkylene group having 1 to 18 carbon atoms which may contain one or more oxygen atoms in the chain.

本発明の有機蛍光材料は、前記スルホニルアニリン骨格を有する化合物又はその塩からなることを特徴とする。 The organic fluorescent material of the present invention is characterized by being composed of a compound having the above-mentioned sulfonylaniline skeleton or a salt thereof.

本発明のスルホニルアニリン骨格を有する化合物又はその塩は、最も小さな汎用性色素のBODIPY(登録商標)と同等の分子サイズを持ち、また、大きなストークスシフト、高い安定性、高い量子効率、及び水溶性を持つ。また、前記スルホニルアニリン骨格を有する化合物又はその塩からなる有機蛍光材料は、従来の蛍光試薬とは大きく異なり、濃度消光を示すことがなく、pHや極性といった周囲の環境に依存しない安定な発光特性を示す。 The compound having a sulfonylaniline skeleton or its salt of the present invention has a molecular size equivalent to that of BODIPY (registered trademark), the smallest versatile dye, and also has a large Stokes shift, high stability, high quantum efficiency, and water solubility. Furthermore, the organic fluorescent material made of the compound having a sulfonylaniline skeleton or its salt is significantly different from conventional fluorescent reagents in that it does not exhibit concentration quenching and exhibits stable luminescence characteristics that are not dependent on the surrounding environment, such as pH or polarity.

図1は、2,5-BMeS-p-A-NHS-ester、2,6-BMeS-p-A-NHS-ester、BDP FLNHS Ester、及びフルオレセイン-NHS-esterをそれぞれ(pH=7、リン酸緩衝液)に溶解させて1.0×10-6M溶液を調製した直後に蛍光スペクトルを測定し(t=0分)、前記溶液にキセノンランプで白色光を照射しながら経時的(t=1分、3分、5分、10分、15分、30分、45分)に蛍光スペクトルを測定した際の蛍光強度をプロットしたグラフを示す。FIG. 1 shows a graph plotting the fluorescence intensity obtained by measuring the fluorescence spectrum immediately after preparing 1.0×10 −6 M solutions of 2,5-BMeS-p-A-NHS-ester, 2,6-BMeS-p-A-NHS-ester, BDP FLNHS ester, and fluorescein-NHS-ester in phosphate buffer (pH=7) (t=0 min), and then irradiating the solutions with white light from a xenon lamp over time (t=1 min, 3 min, 5 min, 10 min, 15 min, 30 min, 45 min).

以下、本発明について、詳細に説明する。
[スルホニルアニリン骨格を有する化合物又はその塩]
本発明は、一般式(1)~(5)で表されるスルホニルアニリン骨格を有する化合物又はその塩にある。

Figure 0007479667000005
The present invention will be described in detail below.
[Compound having a sulfonylaniline skeleton or a salt thereof]
The present invention resides in compounds having a sulfonylaniline skeleton represented by general formulas (1) to (5) or salts thereof.
Figure 0007479667000005

一般式(1)~(5)中、R1及びR2は、それぞれ独立に、アルキル基、フルオロアルキル基、フェニル基、ハロゲン原子で置換されたフェニル基、アミノ基で置換されたフェニル基、アルコキシ基で置換されたフェニル基、ナフチル基、チエニル基、ハロゲン原子で置換されたチエニル基、チアゾリル基、ハロゲン原子で置換されたチアゾリル基、ピリジル基、又は、ハロゲン原子で置換されたピリジル基であり、S1は下記一般式(10)で表される置換基である。 In general formulas (1) to (5), R1 and R2 each independently represent an alkyl group, a fluoroalkyl group, a phenyl group, a phenyl group substituted with a halogen atom, a phenyl group substituted with an amino group, a phenyl group substituted with an alkoxy group, a naphthyl group, a thienyl group, a thienyl group substituted with a halogen atom, a thiazolyl group, a thiazolyl group substituted with a halogen atom, a pyridyl group, or a pyridyl group substituted with a halogen atom, and S1 is a substituent represented by the following general formula (10):

Figure 0007479667000006
一般式(10)中、Rは鎖中に一以上の酸素原子を含んでもよい、炭素原子数1~18の直鎖状、分岐状又は環状のアルキレン基である。なお、*は結合手の位置を表す。
Figure 0007479667000006
In general formula (10), R is a linear, branched or cyclic alkylene group having 1 to 18 carbon atoms which may contain one or more oxygen atoms in the chain. In addition, * indicates the position of a bond.

アルキル基及びフルオロアルキル基を構成するアルキル基は、具体的には、炭素原子数1~18、好ましくは炭素原子数1~12、より好ましくは炭素原子数1~6の直鎖又は分岐を有していてもよいアルキル基である。
ハロゲン原子で置換されたフェニル基とは、フェニル基の水素原子の一部又は全部がハロゲン原子(フッ素、塩素、臭素、ヨウ素)で置換された基をいう。
アミノ基で置換されたフェニル基とは、フェニル基の水素原子の一部又は全部が、1級アミノ基又は2級アミノ基で置換された基をいう。
アルコキシ基で置換されたフェニル基を構成するアルコキシ基は、具体的には、炭素原子数1~18、好ましくは炭素原子数1~12、より好ましくは炭素原子数1~6の直鎖又は分岐を有していてもよいアルコキシ基である。
ハロゲン原子で置換されたチエニル基とは、チエニル基の水素原子の一部又は全部がハロゲン(フッ素、塩素、臭素又はヨウ素)原子で置換された基をいう。
ハロゲン原子で置換されたチアゾリル基は、チアゾリル基の水素原子の一部又は全部がハロゲン原子(フッ素、塩素、臭素、ヨウ素)で置換された基をいう。
ハロゲン原子で置換されたピリジル基は、ピリジル基の水素原子の一部又は全部がハロゲン原子(フッ素、塩素、臭素、ヨウ素)で置換された基をいう。
The alkyl group and the alkyl group constituting the fluoroalkyl group are specifically alkyl groups having 1 to 18 carbon atoms, preferably 1 to 12 carbon atoms, and more preferably 1 to 6 carbon atoms, which may be linear or branched.
The term "phenyl group substituted with a halogen atom" refers to a phenyl group in which some or all of the hydrogen atoms have been substituted with a halogen atom (fluorine, chlorine, bromine, iodine).
The phenyl group substituted with an amino group refers to a phenyl group in which some or all of the hydrogen atoms have been substituted with a primary amino group or a secondary amino group.
The alkoxy group constituting the alkoxy-substituted phenyl group is specifically an alkoxy group having 1 to 18 carbon atoms, preferably 1 to 12 carbon atoms, and more preferably 1 to 6 carbon atoms, which may be linear or branched.
The term "halogen-substituted thienyl group" refers to a thienyl group in which some or all of the hydrogen atoms have been substituted with halogen (fluorine, chlorine, bromine or iodine) atoms.
The halogen-substituted thiazolyl group refers to a thiazolyl group in which some or all of the hydrogen atoms have been substituted with halogen atoms (fluorine, chlorine, bromine, iodine).
The pyridyl group substituted with a halogen atom refers to a pyridyl group in which some or all of the hydrogen atoms have been substituted with a halogen atom (fluorine, chlorine, bromine, iodine).

一般式(10)中、Rは鎖中に一以上の酸素原子を含んでもよい、炭素原子数1~18の直鎖状、分岐状又は環状のアルキレン基である。鎖中に一以上の酸素原子を含むアルキレン基の例としては、オキシエチレン基(-OCH2CH2-又は-CH2CH2O-)が挙げられる。
一般式(10)で表される置換基は、蛍光標識のための反応性基である。反応性基には、下記構造式に示すように、スクシミジルエステル体、マレイミド体、イソチオシアネート体、テトラフルオロフェニル(TFP)エステル体、及びヨードアセトアミド体のほか、アルキン部位を持つ基であって、生体分子に組み込まれたアジド基と、アルキンとを結合させ、炭素-ヘテロ原子結合を形成するクリック反応を利用した反応性基が挙げられる。
これらのうち、化合物の安定性と操作の簡便性の点から、スクシミジルエステル体及びマレイミド体が好ましい。
In general formula (10), R is a linear, branched or cyclic alkylene group having 1 to 18 carbon atoms which may contain one or more oxygen atoms in the chain. Examples of alkylene groups containing one or more oxygen atoms in the chain include oxyethylene groups ( -OCH2CH2- or -CH2CH2O- ).
The substituent represented by the general formula (10) is a reactive group for fluorescent labeling. Examples of the reactive group include succinidyl esters, maleimides, isothiocyanates, tetrafluorophenyl (TFP) esters, and iodoacetamides, as well as groups having an alkyne moiety, which utilize a click reaction to bond an azide group incorporated in a biomolecule with an alkyne to form a carbon-heteroatom bond, as shown in the following structural formula:
Among these, succinimide esters and maleimides are preferred from the viewpoints of compound stability and ease of handling.

Figure 0007479667000007
Figure 0007479667000007

また、一般式(6)~(9)で表されるスルホニルアニリン骨格を有する化合物又はその塩も、本発明の実施形態に含まれる。

Figure 0007479667000008
Figure 0007479667000009
Furthermore, compounds having a sulfonylaniline skeleton represented by general formulas (6) to (9) or salts thereof are also included in the embodiments of the present invention.
Figure 0007479667000008
Figure 0007479667000009

一般式(6)~(9)中、R1及びR2は、それぞれ独立に、アルキル基、フルオロアルキル基、フェニル基、ハロゲン原子で置換されたフェニル基、アミノ基で置換されたフェニル基、アルコキシ基で置換されたフェニル基、ナフチル基、チエニル基、ハロゲン原子で置換されたチエニル基、チアゾリル基、ハロゲン原子で置換されたチアゾリル基、ピリジル基、又は、ハロゲン原子で置換されたピリジル基であり、S2は下記一般式(11)で表される置換基である。

Figure 0007479667000010
1及びR2は、一般式(1)~(5)中のR1及びR2と同じである。
一般式(11)中、Rは鎖中に一以上の酸素原子を含んでもよい、炭素原子数1~18の直鎖状、分岐状又は環状のアルキレン基であり、好ましくは-CH2CH2-である。 In general formulas (6) to (9), R1 and R2 each independently represent an alkyl group, a fluoroalkyl group, a phenyl group, a phenyl group substituted with a halogen atom, a phenyl group substituted with an amino group, a phenyl group substituted with an alkoxy group, a naphthyl group, a thienyl group, a thienyl group substituted with a halogen atom, a thiazolyl group, a thiazolyl group substituted with a halogen atom, a pyridyl group, or a pyridyl group substituted with a halogen atom, and S2 is a substituent represented by the following general formula (11):
Figure 0007479667000010
R 1 and R 2 are the same as R 1 and R 2 in the general formulae (1) to (5).
In formula (11), R is a straight-chain, branched or cyclic alkylene group having 1 to 18 carbon atoms which may contain one or more oxygen atoms in the chain, and is preferably --CH 2 CH 2 --.

なお、一般式(6)~(9)で表されるスルホニルアニリン骨格を有する化合物は、前記一般式(1)及び(2)で表されるスルホニルアニリン骨格を有する化合物のうち、反応性基がスクシミジルエステル体であるものを合成する際の中間生成物である。 The compounds having a sulfonylaniline skeleton represented by the general formulas (6) to (9) are intermediate products in the synthesis of compounds having a sulfonylaniline skeleton represented by the general formulas (1) and (2) in which the reactive group is a succinyl ester.

一般式(1)~(9)で表されるスルホニルアニリン骨格を有する化合物は、そのイオン性親水性基(例えば、アミノ基)が塩酸塩又は硫酸塩などの塩を形成していてもよい。 In the compounds having a sulfonylaniline skeleton represented by the general formulas (1) to (9), the ionic hydrophilic group (e.g., amino group) may form a salt such as a hydrochloride or sulfate.

一般式(1)~(9)で表されるスルホニルアニリン骨格を有する化合物又はその塩は、下記構造式を有する化合物(2,5-BMeS-p-A-NHS-ester、2,6-BMeS-p-A-NHS-ester、2,5-BMeS-p-A-COOH、及び2,6-BMeS-p-A-COOH)であることが特に好ましい。

Figure 0007479667000011
The compounds having a sulfonylaniline skeleton represented by general formulas (1) to (9) or salts thereof are particularly preferably compounds having the following structural formulas (2,5-BMeS-p-A-NHS-ester, 2,6-BMeS-p-A-NHS-ester, 2,5-BMeS-p-A-COOH, and 2,6-BMeS-p-A-COOH).
Figure 0007479667000011

本発明のスルホニルアニリン骨格を有する化合物又はその塩は、以下に示すように、ラクトンの開環反応を用いて、カルボン酸を有する中間生成物を経由することにより合成することができる。これまで、ラクトンの少なくとも一部が、スルホニルアニリン骨格を有する化合物にある2箇所のアミノ基と反応するために、副生成物が生成し、目的物が高い収率で得られなかった。本発明では、反応温度及び濃度を最適化するとともに、縮合剤としてジシクロヘキシルカルボジイミド(DCC)を選択することで、4位のアミノ基に高選択的にラクトンが反応することを見出し、目的物の収率の改善に成功した。 The compound having a sulfonylaniline skeleton or a salt thereof of the present invention can be synthesized by using a ring-opening reaction of lactone via an intermediate product having a carboxylic acid, as shown below. Until now, at least a part of the lactone reacts with two amino groups in the compound having a sulfonylaniline skeleton, resulting in the generation of by-products and making it difficult to obtain the target product in high yield. In the present invention, by optimizing the reaction temperature and concentration and selecting dicyclohexylcarbodiimide (DCC) as a condensing agent, it has been found that the lactone reacts with the amino group at the 4th position with high selectivity, and the yield of the target product has been successfully improved.

一例として、2,5-BMeS-p-A-NHS-esterの合成方法を示す。

Figure 0007479667000012
As an example, a method for synthesizing 2,5-BMeS-pA-NHS-ester will be shown.
Figure 0007479667000012

2,5-MBeS-p-Aにβ-プロピオラクトンを添加し、アセトニトリル中で4日間、加熱還流して、中間生成物である2,5-BMeS-p-A-COOHを収率40%で得る。
次いで、2,5-BMeS-p-A-COOHに、N-ヒドロキシスクシンイミド(NHS)及びDCCを添加し、ジクロロメタン中で室温下に20時間、攪拌することにより、2,5-BMeS-p-A-NHS-esterを収率80%で得る。
ただし、本発明のスルホニルアニリン骨格を有する化合物又はその塩は、前記した方法に限られず、種々の公知の方法で製造することができる。
β-propiolactone is added to 2,5-MBeS-p-A and the mixture is heated to reflux in acetonitrile for 4 days to obtain the intermediate product 2,5-BMeS-p-A-COOH in a 40% yield.
Next, N-hydroxysuccinimide (NHS) and DCC are added to 2,5-BMeS-p-A-COOH, and the mixture is stirred in dichloromethane at room temperature for 20 hours to obtain 2,5-BMeS-p-A-NHS-ester in an 80% yield.
However, the compound having a sulfonylaniline skeleton or a salt thereof of the present invention can be produced by various known methods without being limited to the above-mentioned methods.

本発明の有機蛍光材料は、一般式(1)~(9)で表されるスルホニルアニリン骨格を有する化合物又はその塩からなる。
前記スルホニルアニリン骨格を有する化合物又はその塩のクロロホルム溶液の励起/蛍光スペクトルを測定結果から、大きなストークスシフトを示すことがわかる。発光のエネルギーは吸収のエネルギーよりも低く、発光スペクトルは吸収スペクトルより長波長になる。ストークスシフトはこの吸収及び波長スペクトルの極大波長の差をいう。前記スルホニルアニリン骨格を有する化合物又はその塩において、大きなストークスシフトは光励起による基底状態の構造と励起状態の構造が大きく異なることに起因して起こると考えられる。
本発明のスルホニルアニリン骨格を有する化合物又はその塩は、大きなストークスシフトを示すため、複数の観測対象分子を同時にモニタリングできる蛍光プローブ等への応用が期待できる。
The organic fluorescent material of the present invention comprises a compound having a sulfonylaniline skeleton represented by any one of the general formulas (1) to (9) or a salt thereof.
The measurement results of the excitation/fluorescence spectrum of a chloroform solution of the compound having a sulfonylaniline skeleton or a salt thereof show that it exhibits a large Stokes shift. The emission energy is lower than the absorption energy, and the emission spectrum has a longer wavelength than the absorption spectrum. The Stokes shift refers to the difference in the maximum wavelength of this absorption and wavelength spectrum. In the compound having a sulfonylaniline skeleton or a salt thereof, the large Stokes shift is considered to occur due to the large difference between the structure of the ground state and the structure of the excited state due to photoexcitation.
The compound having a sulfonylaniline skeleton or a salt thereof of the present invention exhibits a large Stokes shift and is therefore expected to be applicable to fluorescent probes and the like capable of simultaneously monitoring a plurality of target molecules.

前記スルホニルアニリン骨格を有する化合物又はその塩について、量子化学計算によって最適化構造を求めると、分子サイズは250~300Å3(例えば、2,5-BMeS-p-A-NHS-esterでは279Å3であり、2,6-BMeS-p-A-NHS-esterでは288Å3である。)、最も分子サイズが小さいBODIPY(登録商標、ボロンジピロメテン)と同等の分子サイズである。したがって、本発明のスルホニルアニリン骨格を有する化合物又はその塩は、複雑構造を持つ糖鎖やペプチド、あるいはタンパク質などの生体高分子を標識する際に立体障害が小さいこと、また、ターゲット分子の機能を阻害しないという利点がある。 When the optimized structure of the compound having a sulfonylaniline skeleton or a salt thereof is determined by quantum chemical calculation, the molecular size is 250 to 300 Å 3 (for example, 279 Å 3 for 2,5-BMeS-p-A-NHS-ester and 288 Å 3 for 2,6-BMeS-p-A-NHS-ester), which is equivalent to that of BODIPY (registered trademark, boron dipyrromethene), which has the smallest molecular size. Therefore, the compound having a sulfonylaniline skeleton or a salt thereof of the present invention has the advantages of small steric hindrance when labeling biopolymers such as sugar chains, peptides, or proteins having complex structures, and of not inhibiting the function of the target molecule.

前記スルホニルアニリン骨格を有する化合物は、NHSエステル結合を有するため、極性が高く、高い水溶性を持つ。また、イオン性官能基を持たないため、環境(pH、極性又は紫外線など)によって蛍光強度や波長が変化することがなく、安定な発光特性を示す。 The compound having the sulfonylaniline skeleton has high polarity and high water solubility due to the presence of an NHS ester bond. In addition, since it does not have an ionic functional group, the fluorescence intensity or wavelength does not change depending on the environment (pH, polarity, ultraviolet light, etc.), and it exhibits stable luminescence characteristics.

さらに、従来の汎用色素のほとんどは、その構造中に剛直な拡張π共役系を持つため、色素が集積してある濃度になると発光強度が低下する濃度消光の問題があった。一方、本発明のスルホニルアニリン骨格を有する化合物又はその塩は、スルホニル基の折れ曲がり構造に起因して、全く濃度消光を示さない。 Furthermore, most conventional general-purpose dyes have a rigid extended π-conjugated system in their structure, which causes a problem of concentration quenching, where the emission intensity decreases when the dye accumulates to a certain concentration. On the other hand, the compound having a sulfonylaniline skeleton or a salt thereof of the present invention does not exhibit concentration quenching at all due to the bent structure of the sulfonyl group.

前記スルホニルアニリン骨格を有する化合物又はその塩は、その構造中で、生体分子との結合基となるNHSエステルを形成している。NHSエステルは有機カルボン酸の活性エステルであり、生体分子のアミノ基と速やかにかつ選択的に反応して安定的なアミド結合を形成する。そのため、糖鎖やペプチド類の標識に広く用いられる。例えば、2,6-BMeS-p-A(青色)又は2,5-BMeS-p-A(緑色)にNHSを導入した2,6-BMeS-p-A-NHS-ester及び2,5-BMeS-p-A-NHS-esterは、青色及び緑色の蛍光標識試薬となる。 The compound or salt thereof having the sulfonylaniline skeleton forms an NHS ester in its structure, which serves as a binding group for biomolecules. NHS esters are active esters of organic carboxylic acids, and react quickly and selectively with amino groups in biomolecules to form stable amide bonds. For this reason, they are widely used to label glycans and peptides. For example, 2,6-BMeS-p-A-NHS-ester and 2,5-BMeS-p-A-NHS-ester, which are obtained by introducing NHS into 2,6-BMeS-p-A (blue) or 2,5-BMeS-p-A (green), respectively, become blue and green fluorescent labeling reagents.

以下、本発明を実施例に基づいてさらに具体的に説明するが、本発明は下記実施例により制限されるものではない。
[スルホニルアニリン骨格を有する化合物の合成]
The present invention will now be described in more detail with reference to examples, but the present invention is not limited to the following examples.
[Synthesis of compounds having a sulfonylaniline skeleton]

[実施例1]
〔2,5-BMeS-p-A-NHS-esterの合成〕
(i)2,5-BMeS-p-A-COOHの合成

Figure 0007479667000013
[Example 1]
[Synthesis of 2,5-BMeS-p-A-NHS-ester]
(i) Synthesis of 2,5-BMeS-p-A-COOH
Figure 0007479667000013

100mL三口フラスコと滴下ロートを窒素置換し、滴下ロートに乾燥アセトニトリルを10mLとβ-プロピオラクトン1.3mL(19.7mmol)を添加、三口フラスコに乾燥アセトニトリルを90mLとBMeS-p-A510.3mg(1.93mmol)を加えて還流するまで攪拌した。還流後、撹拌速度を素早くし、β-プロピオラクトンをゆっくりと滴下した。
4日後、アセトニトリルを濃縮して黄色固体と茶色油状物を1.79g得た。そこに、2Mの水酸化ナトリウム水溶液を100mL加え、35℃で24時間撹拌した。それを一度吸引ろ過し、ろ液を酢酸エチルで分液した。水層を6M塩酸でpH4付近になるように調整し、酢酸エチル100mLで3回抽出した。得られた有機層を飽和食塩水80mLで洗浄、濃縮を行い、黄色固体を379.1mg得た。最後に、中性シリカゲルカラムクロマトグラフィー(ジクロロメタン:メタノール=10:1)で精製し、黄色固体を259.7mg(0.772mmol)得た(収率40%)。
1HNMR及び13CNMRの測定結果を示す。
1H NMR(DMSO-d6,500MHz):δ=12.32(br s,1H -O),7.42(s,1H,Ar-),7.06(s,1H,Ar-),5.64(s,2H,-N 2),5.49(t,J=5.6Hz,1H,-N),3.48(dt,J=6.1Hz,2H,-C 2),3.18(s,3H,-C 3),3.17(s,3H,-C 3),2.58(t,J=6.5Hz,2H,-C 2
13C NMR(DMSO-d6,125MHz):δ=173.11,137.58,136.12,129.64,126.90,118.68,112.12,41.22,41.20,39.06,33.23
The 100 mL three-neck flask and the dropping funnel were replaced with nitrogen, 10 mL of dry acetonitrile and 1.3 mL (19.7 mmol) of β-propiolactone were added to the dropping funnel, and 90 mL of dry acetonitrile and 510.3 mg (1.93 mmol) of BMeS-p-A were added to the three-neck flask and stirred until refluxed. After refluxing, the stirring speed was increased to high speed, and β-propiolactone was slowly added dropwise.
After 4 days, acetonitrile was concentrated to obtain 1.79 g of a yellow solid and a brown oil. 100 mL of 2 M aqueous sodium hydroxide was added thereto and stirred at 35 ° C. for 24 hours. It was filtered once by suction, and the filtrate was separated with ethyl acetate. The aqueous layer was adjusted to about pH 4 with 6 M hydrochloric acid, and extracted three times with 100 mL of ethyl acetate. The obtained organic layer was washed with 80 mL of saturated saline and concentrated to obtain 379.1 mg of a yellow solid. Finally, it was purified by neutral silica gel column chromatography (dichloromethane:methanol = 10:1) to obtain 259.7 mg (0.772 mmol) of a yellow solid (yield 40%).
The results of 1 H NMR and 13 C NMR measurements are shown below.
1H NMR (DMSO- d6 , 500MHz): δ = 12.32 (br s, 1H -OH ), 7.42 (s, 1H, Ar- H ), 7.06 (s, 1H, Ar - H ), 5.64 (s, 2H, -NH2 ), 5.49 (t, J = 5.6Hz, 1H, -NH ), 3.48 (dt, J = 6.1Hz, 2H, -CH2 ), 3.18 (s, 3H, -CH3 ), 3.17 (s, 3H , -CH3 ) , 2.58 (t, J = 6.5Hz, 2H, -CH2 ) .
13C NMR (DMSO- d6 , 125MHz): δ = 173.11, 137.58, 136.12, 129.64, 126.90, 118.68, 112.12, 41.22, 41.20, 39.06, 33.23

(ii)2,5-BMeS-p-A-NHS-esterの合成

Figure 0007479667000014
100mL三口フラスコと滴下ロートを窒素置換し、滴下ロートにジシクロヘキシルカルボジイミド(DCC) 68.9mg(327.2μmol)と乾燥ジクロロメタンを1mL添加、三口フラスコに2,5-BMeS-p-A-COOH104.3mg(310.0μmol)とN-ヒドロキシコハク酸イミド 40.1mg(341.4μmol)と乾燥CH2Cl2(100mL)を加え30分撹拌した。その後、溶解したDCCを滴下し、20時間撹拌した。
20時間後、0℃に冷却し吸引ろ過を行った。ろ液のジクロロメタンの一部を留去し吸引ろ過する作業を2回行い、ジクロロメタンを完全に留去することで黄色固体を133.2mg得た。得られた固体を中性シリカゲルカラムクロマトグラフィー(ジクロロメタン:メタノール=10:1)で精製し、濃縮、エタノール洗浄することで黄色固体107.5mg(0.248mmol)を得た(収率80%)。
1HNMR及び13CNMRの測定結果を示す。
1H NMR(DMSO-d6,500MHz):δ=7.44(s,1H,Ar-),7.08(s,1H,Ar-),5.69(s,2H,-N 2),5.36(t,J=5.9Hz,1H,-N),3.48(dt,J=6.2Hz,2H,-C 2),3.19(s,3H,-C 3),3.16(s,3H,-C 3),3.07(t,J=6.3Hz,2H,-C 2),2.81(s,4H,-C 2
13C NMR(DMSO-d6,125MHz):δ=170.00,167.80,138.03,135.55,130.13,126.66,118.77,112.30,41.27,41.25,38.71,30.37,25.36 (ii) Synthesis of 2,5-BMeS-p-A-NHS-ester
Figure 0007479667000014
The 100 mL three-neck flask and the dropping funnel were replaced with nitrogen, 68.9 mg (327.2 μmol) of dicyclohexylcarbodiimide (DCC) and 1 mL of dry dichloromethane were added to the dropping funnel, and 104.3 mg (310.0 μmol) of 2,5-BMeS-p-A-COOH, 40.1 mg (341.4 μmol) of N-hydroxysuccinimide and dry CH 2 Cl 2 (100 mL) were added to the three-neck flask and stirred for 30 minutes. Then, the dissolved DCC was added dropwise and stirred for 20 hours.
After 20 hours, the mixture was cooled to 0°C and suction filtered. The dichloromethane in the filtrate was partially removed by distillation and suction filtered twice, and 133.2 mg of a yellow solid was obtained by completely removing the dichloromethane. The obtained solid was purified by neutral silica gel column chromatography (dichloromethane:methanol=10:1), concentrated, and washed with ethanol to obtain 107.5 mg (0.248 mmol) of a yellow solid (yield 80%).
The results of 1 H NMR and 13 C NMR measurements are shown below.
1H NMR (DMSO- d6 , 500MHz): δ = 7.44 (s, 1H, Ar- H ), 7.08 (s, 1H, Ar- H ), 5.69 (s, 2H, -NH2 ), 5.36 (t, J = 5.9Hz, 1H, -NH ) , 3.48 (dt, J = 6.2Hz, 2H, -CH2 ), 3.19 (s, 3H , -CH3 ) , 3.16 (s, 3H, -CH3 ), 3.07 (t, J = 6.3Hz, 2H, -CH2 ) , 2.81 (s, 4H, -CH2 ) .
13C NMR (DMSO- d6 , 125MHz): δ = 170.00, 167.80, 138.03, 135.55, 130.13, 126.66, 118.77, 112.30, 41.27, 41.25, 38.71, 30.37, 25.36

〔標識試薬の作製〕
標識試薬としての機能を確認するため、以下の構造式で表される2,5-BMeS-p-A-Phe-OMeを作製した。

Figure 0007479667000015
[Preparation of labeling reagent]
In order to confirm its function as a labeling reagent, 2,5-BMeS-p-A-Phe-OMe, represented by the following structural formula, was prepared.
Figure 0007479667000015

炭酸水素ナトリウム840.1mg(0.1mol)を量り取り、純水100mLに溶解させ、pH8.3の0.1M炭酸水素ナトリウム緩衝液を調製した。
試験管1にPhe-OMe・HCl10.2mg(47.1μmol)を量り取り、1mLの0.1M炭酸水素ナトリウム緩衝液を加え溶解させた。
試験管2に2,5-BMeS-p-A-NHS-ester10.3mg(23.7μmol)を量り取り、1mLの乾燥DMSOを加え溶解させた。
試験管1中の炭酸水素ナトリウム水溶液を撹拌しながら、ガラスシリンジを用いて、試験管2のDMSO溶液を試験管1中に1滴ずつゆっくりと滴下した。
撹拌しながら、1時間反応させた。
ジクロロメタンを用いて抽出作業を行った。反応は定量的に進行し、黄色油状物を収率100%で得た。
1HNMRの測定結果を示す。
1H NMR(500MHz,DMSO-d6,25℃):δ=8.41-8.43(d,H,-N),7.41(s,1H,Ar),7.15-7.28(m,5H,Ar),7.02(s,1H,Ar),5.62(s,2H,N ),5.42(t,1H,N),4.45-4.51(m,1H,-C),3.58(s,3H,C 3),3.18(s,3H,C 3),3.09(s,3H,C 3),2.75-3.03(m,4H,C 2),1.49(t,2H,C 2
840.1 mg (0.1 mol) of sodium hydrogen carbonate was weighed out and dissolved in 100 mL of pure water to prepare a 0.1 M sodium hydrogen carbonate buffer solution with a pH of 8.3.
10.2 mg (47.1 μmol) of Phe-OMe·HCl was weighed out into test tube 1, and 1 mL of 0.1 M sodium bicarbonate buffer was added thereto to dissolve.
10.3 mg (23.7 μmol) of 2,5-BMeS-p-A-NHS-ester was weighed out into test tube 2, and 1 mL of dry DMSO was added to dissolve it.
While stirring the aqueous sodium hydrogen carbonate solution in test tube 1, the DMSO solution in test tube 2 was slowly added dropwise into test tube 1, drop by drop, using a glass syringe.
The reaction was carried out for 1 hour with stirring.
The reaction was quantitatively carried out and a yellow oil was obtained in 100% yield.
The results of 1 HNMR measurements are shown below.
1H NMR (500MHz, DMSO- d6 , 25°C): δ = 8.41-8.43 (d, H, -NH ), 7.41 (s, 1H, ArH ), 7.15-7.28 (m, 5H, ArH ), 7.02 (s, 1H, ArH ), 5.62 (s, 2H, NH2 ), 5.42 (t, 1H, NH ), 4.45-4.51 (m, 1H , -CH ) , 3.58 (s, 3H, CH3 ) , 3.18 (s, 3H, CH3 ) , 3.09 (s, 3H, CH3 ), 2.75-3.03 (m, 4H, CH2 ), 1.49 (t, 2H, CH H2 )

[実施例2]
[2,6-BMeS-p-A-NHS-esterの合成]
(i)化合物13の合成

Figure 0007479667000016
[Example 2]
[Synthesis of 2,6-BMeS-p-A-NHS-ester]
(i) Synthesis of Compound 13
Figure 0007479667000016

窒素置換した10mLナシフラスコに2,6-BMeS-p-A 361.5mg(1.37mmol)及び3-ブロモプロピオン酸メチル(スキーム中、12と表示)290μL(2.66mmol)、N,N-ジメチルホルムアミド7.5mLを加え、室温で6日間攪拌した。その後、反応溶液を分液ロートに移し,酢酸エチル50mLと精製水50mLを加えて有機層と水層を分離した。この水層を酢酸エチル50mLにより6回抽出し,先の有機層と合一した。この有機層を精製水により洗浄、無水硫酸ナトリウム乾燥,濃縮及び真空乾燥を行い、褐色油状物を649.5mg得た。続いて、中性シリカゲルカラムクロマトグラフィー(ジクロロメタン:メタノール=10:1)を行い、化合物13を黄色固体として204.3mg得た(収率43%)。
1HNMRの測定結果を示す。
1H NMR(500MHz,CDCl3,25℃):δ=7.37(s,2H,phenyl),5.92(s,2H,-N 2),3.72(s,3H,-C 3),3.42(t,J=6.5,2H,-C 2),3.10(s,6H,-C 3),2.63(t,J=6.5,2H,-C 2).
361.5 mg (1.37 mmol) of 2,6-BMeS-p-A, 290 μL (2.66 mmol) of methyl 3-bromopropionate (in the scheme, designated as 12), and 7.5 mL of N,N-dimethylformamide were added to a nitrogen-substituted 10 mL pear flask, and the mixture was stirred at room temperature for 6 days. The reaction solution was then transferred to a separatory funnel, and 50 mL of ethyl acetate and 50 mL of purified water were added to separate the organic layer and the aqueous layer. This aqueous layer was extracted six times with 50 mL of ethyl acetate and combined with the previous organic layer. This organic layer was washed with purified water, dried with anhydrous sodium sulfate, concentrated, and dried in vacuum to obtain 649.5 mg of a brown oily product. Subsequently, neutral silica gel column chromatography (dichloromethane:methanol=10:1) was performed to obtain 204.3 mg of compound 13 as a yellow solid (yield 43%).
The results of 1 HNMR measurements are shown below.
1H NMR (500MHz, CDCl3 , 25°C): δ = 7.37 (s, 2H, phenyl), 5.92 (s, 2H, -NH2 ) , 3.72 (s, 3H, -CH3), 3.42 (t, J = 6.5, 2H, -CH2 ) , 3.10 ( s, 6H, -CH3 ), 2.63 (t, J = 6.5, 2H , -CH2 ).

(ii)2,6-BMeS-p-A-COOHの合成

Figure 0007479667000017
(ii) Synthesis of 2,6-BMeS-p-A-COOH
Figure 0007479667000017

窒素置換した50mL三口フラスコに化合物13を96.4mg(0.28mmol)、メタノール28mL及び40%水酸化ナトリウム水溶液7mLを入れ、室温で3時間撹拌した。その後メタノールを除去し、そこに飽和硫酸水素カリウム水溶液をpH=3になるように加えた。この溶液を分液ロートに移し、酢酸エチル50mLと精製水50mLを加えて有機層と水層を分離した。この水層を酢酸エチル50mLにより6回抽出し、先の有機層と合一した。得られた有機層を無水硫酸ナトリウム乾燥及び濃縮、真空乾燥し、茶色固体を95.7mg得た。最後に、中性シリカゲルカラムクロマトグラフィー(THF:酢酸エチル=1:20+酢酸1vol%)を行い、2,6-BMeS-p-A-COOHを黄色固体として60.9mg得た(収率66%)。
1HNMRの測定結果を示す。
1H NMR(500MHz,CDCl3,25℃):δ=7.37(s,2H,phenyl),5.93(s,2H,-N 2),3.45(t,J=6.0,2H,-C 2 ),3.11(s,6H,-C 3),2.68(t,J=6.0,2H,-C 2).
In a 50 mL three-neck flask substituted with nitrogen, 96.4 mg (0.28 mmol) of compound 13, 28 mL of methanol, and 7 mL of 40% aqueous sodium hydroxide solution were placed and stirred at room temperature for 3 hours. Then, methanol was removed, and saturated aqueous potassium hydrogen sulfate solution was added thereto so that the pH was 3. This solution was transferred to a separatory funnel, and 50 mL of ethyl acetate and 50 mL of purified water were added thereto to separate the organic layer and the aqueous layer. This aqueous layer was extracted six times with 50 mL of ethyl acetate and combined with the previous organic layer. The obtained organic layer was dried with anhydrous sodium sulfate, concentrated, and vacuum dried to obtain 95.7 mg of a brown solid. Finally, neutral silica gel column chromatography (THF:ethyl acetate=1:20 + acetic acid 1 vol%) was performed to obtain 60.9 mg of 2,6-BMeS-p-A-COOH as a yellow solid (yield 66%).
The results of 1 HNMR measurements are shown below.
1H NMR (500MHz, CDCl3, 25 °C): δ = 7.37 (s, 2H, phenyl), 5.93 (s, 2H, -NH2 ) , 3.45 (t, J = 6.0, 2H , -CH2 ), 3.11 (s, 6H, -CH3 ) , 2.68 (t, J = 6.0, 2H , -CH2 ).

(iii)2,6-BMeS-p-A-NHS-esterの合成

Figure 0007479667000018
200mL三口フラスコと滴下ロートを窒素置換し、滴下ロートにN,N-ジシクロヘキシルカルボジイミド(DCC)136.0mg(0.64mmol)と乾燥ジクロロメタンを10mL添加、三口フラスコに2,6-BMeS-p-A-COOH209.1mg(0.60mmol)とN-ヒドロキシコハク酸イミド 79.8mg(0.68mmol)と乾燥ジクロロメタン(130mL)を加え30分撹拌した。その後、溶解したDCCを滴下し、20時間撹拌した。20時間後、反応溶液を濃縮及び真空乾燥し、黄色固体を429.2mg得た。続いて、中性シリカゲルカラムクロマトグラフィー(THF:酢酸エチル=1:20)を行い、濃縮、エタノール洗浄することで黄色固体を208.06mg(0.48mmol)得た(収率80%)。
1HNMRの測定結果を示す。
1H NMR(500MHz,CDCl3,25℃):δ=7.29(s,2H,phenyl),6.01(t,J=6.0,H,-N),5.01(s,2H,-N 2),3.23(s,6H,-C 3),2.95(t,J=6.5,2H,-C 2),2.82(s,4H,C 2). (iii) Synthesis of 2,6-BMeS-p-A-NHS-ester
Figure 0007479667000018
The 200 mL three-neck flask and the dropping funnel were replaced with nitrogen, and 136.0 mg (0.64 mmol) of N,N-dicyclohexylcarbodiimide (DCC) and 10 mL of dry dichloromethane were added to the dropping funnel, and 209.1 mg (0.60 mmol) of 2,6-BMeS-p-A-COOH and 79.8 mg (0.68 mmol) of N-hydroxysuccinimide and dry dichloromethane (130 mL) were added to the three-neck flask and stirred for 30 minutes. Then, the dissolved DCC was dropped and stirred for 20 hours. After 20 hours, the reaction solution was concentrated and vacuum dried to obtain 429.2 mg of a yellow solid. Subsequently, neutral silica gel column chromatography (THF: ethyl acetate = 1:20) was performed, and 208.06 mg (0.48 mmol) of a yellow solid was obtained by concentrating and washing with ethanol (yield 80%).
The results of 1 HNMR measurements are shown below.
1H NMR (500MHz, CDCl3, 25 °C): δ = 7.29 (s, 2H, phenyl), 6.01 (t, J = 6.0, H , -NH ), 5.01 (s, 2H, -NH2 ), 3.23 (s, 6H, -CH3 ), 2.95 (t, J = 6.5, 2H , -CH2 ), 2.82 (s, 4H, CH2 ) .

[標識試薬の作製]
標識試薬としての機能を確認するため、以下の構造式で表される2,6-BMeS-p-A-Phe-OMeを作製した。

Figure 0007479667000019
[Preparation of labeling reagent]
In order to confirm its function as a labeling reagent, 2,6-BMeS-p-A-Phe-OMe, represented by the following structural formula, was prepared.
Figure 0007479667000019

炭酸水素ナトリウム840.1mg(10.0mmol)を量り取り、純水に溶解させ、pH8.3の0.1M炭酸水素ナトリウム緩衝液を調製した。次に、試験管1にPhe-OMe・HCl 21.5mg(99.7μmol)を量り取り、1mLの0.1M炭酸水素ナトリウム緩衝液を加え溶解させた。
試験管2に2,6-BMeS-p-A-NHS-ester21.1mg(48.7μmol)を量り取り、1mLの乾燥DMSOを加え溶解させた。
試験管1の炭酸水素ナトリウム水溶液を撹拌しながら、ガラスシリンジを用いて、試験管2のDMSO溶液を試験管1中に1滴ずつゆっくりと滴下した。
撹拌しながら、1時間反応させた後、ジクロロメタンを用いて抽出作業を行い、黄色油状物を得た。中性シリカゲルカラムクロマトグラフィー(酢酸エチル)を行い、黄色油状物を収率100%で得た。反応は定量的に進行した。
1HNMRの結果を示す。
1H NMR(500MHz,DMSO-d6,25℃):δ=8.41-8.43(d,H,-N),7.19-7.28(m,7H,phenyl),5.76-5.79(m,3H,-N,-N 2),4.46-4.51(m,H,-C),3.59(s,3H,C 3),3.21(s,6H,C 3),3.09-3.13(q,2H,-C 2),2.86-2.91,3.00-3.03(q,2H,C 2),2.34-2.37(t,2H,C 2).
840.1 mg (10.0 mmol) of sodium bicarbonate was weighed out and dissolved in pure water to prepare a 0.1 M sodium bicarbonate buffer solution with a pH of 8.3. Next, 21.5 mg (99.7 μmol) of Phe-OMe.HCl was weighed out into test tube 1, and 1 mL of 0.1 M sodium bicarbonate buffer was added and dissolved.
21.1 mg (48.7 μmol) of 2,6-BMeS-p-A-NHS-ester was weighed out into test tube 2, and 1 mL of dry DMSO was added to dissolve it.
While stirring the aqueous sodium hydrogen carbonate solution in test tube 1, the DMSO solution in test tube 2 was slowly added dropwise into test tube 1, drop by drop, using a glass syringe.
After reacting for 1 hour with stirring, extraction was performed using dichloromethane to obtain a yellow oily product. Neutral silica gel column chromatography (ethyl acetate) was performed to obtain a yellow oily product in 100% yield. The reaction proceeded quantitatively.
The results of 1 HNMR are shown below.
1H NMR (500MHz, DMSO- d6 , 25°C): δ = 8.41-8.43 (d, H, -NH ), 7.19-7.28 (m, 7H, phenyl), 5.76-5.79 (m, 3H, -NH , -NH2 ), 4.46-4.51 (m, H, -CH ), 3.59 ( s , 3H, CH3 ) , 3.21 (s, 6H, CH3 ), 3.09-3.13 (q, 2H, -CH2 ), 2.86-2.91 , 3.00-3.03 (q, 2H , CH2 ), 2.34-2.37 (t, 2H , CH2 ) .

[実施例3]
実施例1の2,5-BMeS-p-A-NHS-esterを合成する際の中間生成物である2,5-BMeS-p-A-COOHを使用した。

Figure 0007479667000020
[Example 3]
2,5-BMeS-p-A-COOH, which is an intermediate product in the synthesis of 2,5-BMeS-p-A-NHS-ester in Example 1, was used.
Figure 0007479667000020

[実施例4]
[2,6-BMeS-p-A-COOHの合成]

Figure 0007479667000021
100mL三口フラスコと滴下ロートを窒素置換し、滴下ロートに乾燥アセトニトリルを10mLとβ-プロピオラクトン0.43mL(6.57mmol)を添加、三口フラスコに乾燥アセトニトリルを90mLと2,6-BMeS-p-A 500.5mg(1.89mmol)を加えて還流するまで撹拌した。還流後、撹拌速度を素早くしβ-プロピオラクトンをゆっくりと滴下した。
2日後、アセトニトリルを濃縮して黄色固体と茶色油状物を1.23g得た。そこに、2Mの水酸化ナトリウム水溶液を100mL加え35℃で24時間撹拌した。それを一度吸引ろ過し、ろ液を酢酸エチルで分液した。水層を6M塩酸でpH4付近になるように調整し、酢酸エチル100mLで3回抽出した。得られた有機層を飽和食塩水80mLで洗浄、濃縮を行い、黄色固体を330.6mg得た。最後に、中性シリカゲルカラムクロマトグラフィー(THF:酢酸エチル=1:20+酢酸1vol%)で精製し、黄色固体を127.8 mg(0.38 mmol)得た(収率20%)。
1HNMRの結果を示す。
1H NMR(500MHz,CDCl3,25℃):δ=7.37(s,2H,phenyl),5.93(s,2H,-N 2),3.45(t,J=6.0,2H,-C 2),3.11(s,6H,-C 3),2.68(t,J=6.0,2H,-C 2). [Example 4]
[Synthesis of 2,6-BMeS-p-A-COOH]
Figure 0007479667000021
A 100 mL three-neck flask and a dropping funnel were replaced with nitrogen, 10 mL of dry acetonitrile and 0.43 mL (6.57 mmol) of β-propiolactone were added to the dropping funnel, and 90 mL of dry acetonitrile and 500.5 mg (1.89 mmol) of 2,6-BMeS-p-A were added to the three-neck flask and stirred until refluxed. After refluxing, the stirring speed was increased and β-propiolactone was slowly added dropwise.
After 2 days, acetonitrile was concentrated to obtain 1.23 g of a yellow solid and a brown oil. 100 mL of 2M aqueous sodium hydroxide was added thereto and stirred at 35° C. for 24 hours. It was filtered once by suction, and the filtrate was separated with ethyl acetate. The aqueous layer was adjusted to about pH 4 with 6M hydrochloric acid, and extracted three times with 100 mL of ethyl acetate. The obtained organic layer was washed with 80 mL of saturated saline and concentrated to obtain 330.6 mg of a yellow solid. Finally, it was purified by neutral silica gel column chromatography (THF:ethyl acetate=1:20 + acetic acid 1 vol%), and 127.8 mg (0.38 mmol) of a yellow solid was obtained (yield 20%).
The results of 1 HNMR are shown below.
1H NMR (500MHz, CDCl3, 25 °C): δ = 7.37 (s, 2H, phenyl), 5.93 (s, 2H, -NH2 ) , 3.45 (t, J = 6.0, 2H , -CH2 ), 3.11 (s, 6H, -CH3 ) , 2.68 (t, J = 6.0, 2H , -CH2 ).

なお、2,6-BMeS-p-A-COOHは、実施例2の「(ii)2,6-BMeS-p-A-COOHの合成」に記載された方法によって合成してもよい。 2,6-BMeS-p-A-COOH may be synthesized by the method described in "(ii) Synthesis of 2,6-BMeS-p-A-COOH" in Example 2.

[比較例1]フルオレセイン-NHS-ester
東京化成工業(株)からの市販品を用いた。

Figure 0007479667000022
[Comparative Example 1] Fluorescein-NHS-ester
A commercial product from Tokyo Chemical Industry Co., Ltd. was used.
Figure 0007479667000022

[比較例2]BODIPY-NHS-ester
東京化成工業(株)からの市販品を用いた。

Figure 0007479667000023
[Comparative Example 2] BODIPY-NHS-ester
A commercial product from Tokyo Chemical Industry Co., Ltd. was used.
Figure 0007479667000023

[有機蛍光材料としての評価]
以下の項目について、実施例1、2で得られたスルホニルアニリン系色素と、比較例1、2の汎用色素との比較を行った。
〔光学特性〕
実施例1、2のスルホニルアニリン系色素の光学特性を調査するために、細胞イメージングを考慮して水を用いた吸収スペクトル((株)日立ハイテクサイエンス製ダブルビーム分光光度計 U-2810)及び励起/蛍光スペクトル((株)島津製作所製 分光蛍光光度計 RF-6000)を測定した。
励起/発光波長は蛍光分光光度計を用いて測定した。
量子効率(水溶液)は、蛍光分光光度計を用いて、2,5-BMeS-p-AのDMSO溶液(1.0×10-5M;φ=0.78)を標準試料としたときの相対量子効率である。一方、量子効率(固体)は、積分球内に試料を置いて測定した絶対発光量子効率である。
ストークスシフトは、励起/蛍光スペクトルのピークの位置の差から求めた。
[Evaluation as an organic fluorescent material]
The sulfonylaniline dyes obtained in Examples 1 and 2 were compared with the general-purpose dyes of Comparative Examples 1 and 2 with respect to the following items.
〔optical properties〕
In order to investigate the optical properties of the sulfonylaniline dyes of Examples 1 and 2, the absorption spectrum (double beam spectrophotometer U-2810, manufactured by Hitachi High-Tech Science Corp.) and the excitation/fluorescence spectrum (spectrofluorophotometer RF-6000, manufactured by Shimadzu Corp.) were measured using water in consideration of cell imaging.
The excitation/emission wavelengths were measured using a fluorescence spectrophotometer.
The quantum efficiency (aqueous solution) is the relative quantum efficiency when a DMSO solution of 2,5-BMeS-p-A (1.0×10 −5 M; φ=0.78) is used as a standard sample using a fluorescence spectrophotometer, while the quantum efficiency (solid state) is the absolute luminescence quantum efficiency measured by placing a sample in an integrating sphere.
The Stokes shift was determined from the difference in the positions of the peaks in the excitation/fluorescence spectra.

〔光安定性〕
各試料とも空気中で調製した。2,5-BMeS-p-A-NHS-ester、2,6-BMeS-p-A-NHS-ester、BDPFL NHS Ester(BODIPY FL色素)、及びフルオレセイン-NHS-esterをそれぞれ(pH=7、リン酸緩衝溶液)に溶解させた1.0×10-6M溶液を調製した。図1に各化合物の構造式を示す。
各試料とも調製直後に蛍光スペクトルを測定し(t=0分)、この溶液の入った石英セルに対して10cmの距離から150Wのキセノンランプからの白色光を照射した。なお、熱の発生を抑制するために、ランプと石英セルの間に水を置いた。この状態で45分間照射し、一定時間ごとに蛍光スペクトルを測定した(t=1分、3分、5分、10分、15分、30分、45分)。
耐光性試験の結果を図1に示す。表1中、30分経過しても、蛍光強度が50%以上である場合を◎、20~50%となる場合を〇、10分程度経過すると大きく減衰し始める場合を△とした。また、蛍光強度の時間による減衰を測定することで濃度消光の有無を判定した。表1中、50%減衰以上の場合を「有」、50%減衰未満の場合を「無」とした。
[Photostability]
Each sample was prepared in air. 2,5-BMeS-p-A-NHS-ester, 2,6-BMeS-p-A-NHS-ester, BDPFL NHS ester (BODIPY FL dye), and fluorescein-NHS-ester were dissolved in phosphate buffer solution (pH = 7) to prepare 1.0 x 10-6 M solutions. The structural formulas of each compound are shown in Figure 1.
The fluorescence spectrum of each sample was measured immediately after preparation (t = 0 min), and the solution was irradiated with white light from a 150 W xenon lamp from a distance of 10 cm into a quartz cell. Water was placed between the lamp and the quartz cell to suppress heat generation. Irradiation was continued in this state for 45 minutes, and the fluorescence spectrum was measured at regular intervals (t = 1 min, 3 min, 5 min, 10 min, 15 min, 30 min, 45 min).
The results of the light resistance test are shown in Figure 1. In Table 1, the cases where the fluorescence intensity was 50% or more even after 30 minutes were marked with ◎, the cases where it was 20-50% were marked with ◯, and the cases where it started to decay significantly after about 10 minutes were marked with △. The presence or absence of concentration quenching was also determined by measuring the decay of the fluorescence intensity over time. In Table 1, the cases where the decay was 50% or more were marked with "Yes", and the cases where the decay was less than 50% were marked with "No".

〔濃度消光〕
実施例1、2のスルホニルアニリン系色素と比較例1、2の汎用色素のそれぞれの固体蛍光を測定して、蛍光量子効率が0.2以上のものを濃度消光(無)とした。
〔分子サイズ〕
量子化学計算Gaussian09(B3LYP/6-31g(d))によって最適化した分子体積(Å3)を求めた。
〔環境依存性〕
吸収/蛍光スペクトルの波長や蛍光強度がpHや溶媒の極性などの因子によって変化するかどうかを観察した。pKaの変動幅が10nm以上の場合を「有」、10nm未満の場合を「無」とした。
結果を表1に示す。
[Concentration quenching]
The solid-state fluorescence of each of the sulfonylaniline dyes of Examples 1 and 2 and the general-purpose dyes of Comparative Examples 1 and 2 was measured, and those having a fluorescence quantum efficiency of 0.2 or more were determined to have concentration quenching (none).
[Molecular size]
The optimized molecular volume (Å 3 ) was determined by quantum chemical calculations using Gaussian09 (B3LYP/6-31g(d)).
[Environmental Dependence]
We observed whether the wavelength and fluorescence intensity of the absorption/fluorescence spectrum changed depending on factors such as pH and solvent polarity. A pKa fluctuation range of 10 nm or more was judged as "present," and a pKa fluctuation range of less than 10 nm was judged as "absent."
The results are shown in Table 1.

Figure 0007479667000024
Figure 0007479667000024

(1)励起/発光波長
実施例1、2のスルホニルアニリン系色素は、環状構造がベンゼン環1つであるにもかかわらず、緑色蛍光を示した。これは分子内水素結合及びPush-Pull構造に起因するものと考えられる。また、従来の色素と異なり、置換基の配置で発光波長が異なるために分子サイズが変化しないことも要因といえる。
(1) Excitation/Emission Wavelength The sulfonylaniline dyes of Examples 1 and 2 exhibited green fluorescence, even though the cyclic structure consisted of one benzene ring. This is believed to be due to intramolecular hydrogen bonds and a push-pull structure. Another factor is that, unlike conventional dyes, the molecular size does not change because the emission wavelength differs depending on the arrangement of the substituents.

(2)分子サイズ
実施例1、2のスルホニルアニリン系色素は、従来の小分子蛍光色素と比較して小さな分子サイズを持ち、その体積は、最も小さい分子サイズを持つ比較例2のBODIPYの体積に匹敵する。したがって、本発明のスルホニルアニリン系色素は、複雑構造を持つ糖鎖やペプチド、あるいはタンパク質などの生体高分子を標識する際に立体障害が小さいという優位性を持つといえる。また、分子サイズが小さいため、ターゲット分子の機能を阻害しないという点においても優れている。
(2) Molecular Size The sulfonylaniline dyes of Examples 1 and 2 have a smaller molecular size than conventional small molecule fluorescent dyes, and their volume is comparable to that of BODIPY of Comparative Example 2, which has the smallest molecular size. Therefore, it can be said that the sulfonylaniline dyes of the present invention have the advantage of having less steric hindrance when labeling biopolymers such as sugar chains, peptides, or proteins that have complex structures. In addition, because of their small molecular size, they are also excellent in that they do not inhibit the function of target molecules.

(3)ストークスシフト
実施例1、2のスルホニルアニリン系色素では130nmを超える極めて大きなストークスシフトが確認され、有機系低分子でありながら、量子ドットに匹敵する大きなストークスシフトを示した。これは、前記スルホニルアニリン系色素は、比較例1、2の汎用性色素のような従来の色素と比較して、剛直でないために、励起状態と基底状態では構造が異なることに起因する。比較例1のフルオレセイン-NHS-ester(27nm)や比較例2のBODIPY-NHS-ester(6nm)と比較すると、明らかな優位性が認められた。
(3) Stokes shift The sulfonylaniline dyes of Examples 1 and 2 were confirmed to have an extremely large Stokes shift exceeding 130 nm, and showed a large Stokes shift comparable to that of quantum dots, despite being organic low-molecular-weight compounds. This is because the sulfonylaniline dyes are not as rigid as conventional dyes such as the general-purpose dyes of Comparative Examples 1 and 2, and therefore have different structures in the excited state and ground state. Compared with the fluorescein-NHS-ester (27 nm) of Comparative Example 1 and the BODIPY-NHS-ester (6 nm) of Comparative Example 2, a clear superiority was observed.

(4)量子効率
相対法で求めた量子効率(水溶液)は、実施例1では0.69、実施例2では0.46と高い数値を示した。この数値は、比較例1、2の汎用性色素と比較すると、0.1~0.2程度低いが、汎用性色素は、環境によって量子効率が変化するため、測定条件に依存する。これに対し、本発明のスルホニルアニリン系色素は安定した量子効率を示しており、十分に実用的な量子効率であるといえる。
また、固体状態でも蛍光を示したことから、濃度消光の影響が極めて小さいといえる。
(4) Quantum efficiency The quantum efficiency (aqueous solution) determined by the relative method was 0.69 in Example 1 and 0.46 in Example 2, which were high values. This value is about 0.1 to 0.2 lower than the general-purpose dyes of Comparative Examples 1 and 2, but the quantum efficiency of the general-purpose dyes varies depending on the environment, and therefore depends on the measurement conditions. In contrast, the sulfonylaniline dye of the present invention exhibits stable quantum efficiency, and can be said to have a sufficiently practical quantum efficiency.
In addition, since the compound exhibited fluorescence even in the solid state, it can be said that the effect of concentration quenching was extremely small.

(5)モル吸光係数
実施例1、2のスルホニルアニリン系色素とも、比較例1、2の汎用性色素と比べて、モル吸光係数は小さかった。
モル吸光係数が小さければ、蛍光の輝度も小さくなる。しかしながら、本発明の場合、大きなストークスシフトが可能にする大きな吸収領域での励起がこの欠点を十分に克服している。
(5) Molar Absorption Coefficient The sulfonylaniline dyes of Examples 1 and 2 had smaller molar absorption coefficients than the general-purpose dyes of Comparative Examples 1 and 2.
A small molar extinction coefficient leads to a small fluorescence intensity. However, in the present invention, excitation in a large absorption region made possible by a large Stokes shift sufficiently overcomes this drawback.

(6)耐光性
実施例1、2のスルホニルアニリン系色素とも、比較例1のフルオレセイン-NHS-esterの50倍、比較例2のBODIPY-NHS-esterの10倍の高い耐光性が認められた。
実施例1、2のスルホニルアニリン系色素の構造において、ベンゼン環をより安定な骨格であるナフタレン環に替えた場合、さらに耐光性が向上すると予測される。
(6) Lightfastness The sulfonylaniline dyes of Examples 1 and 2 were found to have lightfastness 50 times higher than that of the fluorescein-NHS-ester of Comparative Example 1 and 10 times higher than that of the BODIPY-NHS-ester of Comparative Example 2.
In the structures of the sulfonylaniline dyes of Examples 1 and 2, if the benzene ring is replaced with a naphthalene ring, which is a more stable skeleton, it is expected that the light resistance will be further improved.

(7)濃度消光
比較例1、2の汎用色素を含めて、ほとんどの汎用性色素は、剛直な共役系を持つため、濃度消光を示す。一方、実施例1、2のスルホニルアニリン系色素は、従来の拡張π共役系とは全く異なる独創的な分子構造を持つため、濃度消光を全く示さないどころか、固体蛍光性を示す。本性質はスルホニル基の折れ曲がり構造に起因する。
(7) Concentration quenching Most of the general-purpose dyes, including those of Comparative Examples 1 and 2, have a rigid conjugated system and therefore exhibit concentration quenching. On the other hand, the sulfonylaniline dyes of Examples 1 and 2 have an original molecular structure that is completely different from the conventional extended π-conjugated system, so they do not show concentration quenching at all, and in fact, they exhibit solid-state fluorescence. This property is due to the bent structure of the sulfonyl group.

(8)環境依存性
比較例1のフルオレセイン-NHS-esterのpKaは6.4であった。pH5~9ではその蛍光強度にpH依存性がある。比較例2のBODIPY-NHS-esterも若干のスペクトル変化を伴っていた。一方、実施例1、2のスルホニルアニリン系色素はpHや極性によって蛍光強度と波長が変化しなかった。これは、イオン性官能基を持たないこと、励起状態と基底状態の双極子モーメントの差がゼロであることに起因する。このような色素は極めて珍しく、スルホニルアニリン系色素の優位な点である。
(8) Environmental Dependence The pKa of the fluorescein-NHS-ester of Comparative Example 1 was 6.4. At pH 5 to 9, its fluorescence intensity was pH dependent. The BODIPY-NHS-ester of Comparative Example 2 also exhibited slight spectral changes. On the other hand, the fluorescence intensity and wavelength of the sulfonylaniline dyes of Examples 1 and 2 did not change depending on pH or polarity. This is due to the fact that they do not have an ionic functional group and that the difference in dipole moment between the excited state and the ground state is zero. Such dyes are extremely rare, which is an advantage of the sulfonylaniline dyes.

[標識試薬としての機能評価]
アミノ酸であるフェニルアラニンのカルボン酸を保護したフェニルアラニンメチルエステル塩酸塩(Phe-OMe・HCl)を用いて、実施例1、2のスルホニルアニリン系色素のアミンとの反応性を調査した。
たんぱく質とのコンジュゲートに推奨される溶媒及び手順を参考にして、下記スキームに示すように、反応緩衝液にはpH8.3の0.1M炭酸水素ナトリウム緩衝液、溶媒にはDMSOを用いて、室温下で作用させた。

Figure 0007479667000025
[Evaluation of function as a labeling reagent]
The reactivity of the sulfonylaniline dyes of Examples 1 and 2 with amines was investigated using phenylalanine methyl ester hydrochloride (Phe-OMe.HCl) in which the carboxylic acid of the amino acid phenylalanine is protected.
Referring to the solvent and procedure recommended for conjugation with proteins, as shown in the scheme below, 0.1 M sodium bicarbonate buffer at pH 8.3 was used as the reaction buffer, DMSO was used as the solvent, and the reaction was carried out at room temperature.
Figure 0007479667000025

その結果、2,5-BMeS-p-A-Phe-OMe及び2,6-BMeS-p-A-Phe-OMeを得ることに成功した。これにより、2,5-BMeS-p-A-Phe-OMeと2,6-BMeS-p-A-Phe-OMeは脂肪族アミノ基と選択的に反応を起こし、結合を形成することが明らかとなった。また、コンジュゲート後も、消光することなく蛍光特性を有していた。以上の結果から、BMeS-p-A-NHS-esterの蛍光標識試薬としての機能が確認された。 As a result, they succeeded in obtaining 2,5-BMeS-p-A-Phe-OMe and 2,6-BMeS-p-A-Phe-OMe. This revealed that 2,5-BMeS-p-A-Phe-OMe and 2,6-BMeS-p-A-Phe-OMe selectively react with aliphatic amino groups to form bonds. Furthermore, even after conjugation, they retained fluorescent properties without quenching. These results confirmed the function of BMeS-p-A-NHS-ester as a fluorescent labeling reagent.

本発明の有機蛍光材料は、糖鎖やペプチド鎖などの複雑構造を標識するのに好適な蛍光プローブとなりうる。それゆえ、マルチカラーイメージングや高精度イメージングを可能にすることから、新薬開発、臨床検査又はライフサイエンス研究など広範囲な領域への貢献が期待できる。 The organic fluorescent material of the present invention can be a suitable fluorescent probe for labeling complex structures such as glycans and peptide chains. As a result, it enables multicolor imaging and high-precision imaging, and is expected to contribute to a wide range of fields, such as new drug development, clinical testing, and life science research.

Claims (3)

下記一般式(1)若しくは(2)で表されるスルホニルアニリン骨格を有する化合物又はその塩。
Figure 0007479667000026
(一般式(1)及び(2)中、R1及びR2は、それぞれ独立に、アルキル基、フルオロアルキル基、フェニル基、ハロゲン原子で置換されたフェニル基、アミノ基で置換されたフェニル基、アルコキシ基で置換されたフェニル基、ナフチル基、チエニル基、ハロゲン原子で置換されたチエニル基、チアゾリル基、ハロゲン原子で置換されたチアゾリル基、ピリジル基、又は、ハロゲン原子で置換されたピリジル基であり、S1は下記一般式(10)で表される置換基(一般式(10)中、Rは鎖中に一以上の酸素原子を含んでもよい、炭素原子数1~18の直鎖状、分岐状又は環状のアルキレン基である。)である。)
Figure 0007479667000027
A compound having a sulfonylaniline skeleton represented by the following general formula (1) or (2), or a salt thereof:
Figure 0007479667000026
(In the general formulas (1) and (2), R 1 and R 2 are each independently an alkyl group, a fluoroalkyl group, a phenyl group, a phenyl group substituted with a halogen atom, a phenyl group substituted with an amino group, a phenyl group substituted with an alkoxy group, a naphthyl group, a thienyl group, a thienyl group substituted with a halogen atom, a thiazolyl group, a thiazolyl group substituted with a halogen atom, a pyridyl group, or a pyridyl group substituted with a halogen atom, and S1 is a substituent represented by the following general formula (10) (in the general formula (10), R is a linear, branched, or cyclic alkylene group having 1 to 18 carbon atoms which may contain one or more oxygen atoms in the chain).)
Figure 0007479667000027
下記一般式(6)若しくは(7)で表されるスルホニルアニリン骨格を有する化合物又はその塩。
Figure 0007479667000028
(一般式(6)及び(7)中、R1及びR2は、それぞれ独立に、アルキル基、フルオロアルキル基、フェニル基、ハロゲン原子で置換されたフェニル基、アミノ基で置換されたフェニル基、アルコキシ基で置換されたフェニル基、ナフチル基、チエニル基、ハロゲン原子で置換されたチエニル基、チアゾリル基、ハロゲン原子で置換されたチアゾリル基、ピリジル基、又は、ハロゲン原子で置換されたピリジル基であり、S2は下記一般式(11)で表される置換基(一般式(11)中、Rは鎖中に一以上の酸素原子を含んでもよい、炭素原子数1~18の直鎖状、分岐状又は環状のアルキレン基である。)である。)
Figure 0007479667000029
A compound having a sulfonylaniline skeleton represented by the following general formula (6) or (7), or a salt thereof:
Figure 0007479667000028
(In the general formulas (6) and (7), R 1 and R 2 are each independently an alkyl group, a fluoroalkyl group, a phenyl group, a phenyl group substituted with a halogen atom, a phenyl group substituted with an amino group, a phenyl group substituted with an alkoxy group, a naphthyl group, a thienyl group, a thienyl group substituted with a halogen atom, a thiazolyl group, a thiazolyl group substituted with a halogen atom, a pyridyl group, or a pyridyl group substituted with a halogen atom, and S2 is a substituent represented by the following general formula (11) (in the general formula (11), R is a linear, branched, or cyclic alkylene group having 1 to 18 carbon atoms which may contain one or more oxygen atoms in the chain).)
Figure 0007479667000029
請求項1又は2に記載のスルホニルアニリン骨格を有する化合物又はその塩からなる有機蛍光材料。 3. An organic fluorescent material comprising the compound having a sulfonylaniline skeleton according to claim 1 or a salt thereof.
JP2020021477A 2020-02-12 2020-02-12 Compound having a sulfonylaniline skeleton or a salt thereof, or organic fluorescent material having the same Active JP7479667B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020021477A JP7479667B2 (en) 2020-02-12 2020-02-12 Compound having a sulfonylaniline skeleton or a salt thereof, or organic fluorescent material having the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020021477A JP7479667B2 (en) 2020-02-12 2020-02-12 Compound having a sulfonylaniline skeleton or a salt thereof, or organic fluorescent material having the same

Publications (2)

Publication Number Publication Date
JP2021127305A JP2021127305A (en) 2021-09-02
JP7479667B2 true JP7479667B2 (en) 2024-05-09

Family

ID=77487849

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020021477A Active JP7479667B2 (en) 2020-02-12 2020-02-12 Compound having a sulfonylaniline skeleton or a salt thereof, or organic fluorescent material having the same

Country Status (1)

Country Link
JP (1) JP7479667B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011506673A (en) 2007-12-14 2011-03-03 バイオティウム, インコーポレイテッド Fluorescent compound
WO2010093726A8 (en) 2009-02-11 2011-05-12 Life Technologies Corporation Large stokes shift dyes
JP2015054937A (en) 2013-09-13 2015-03-23 国立大学法人山形大学 Organic fluorescent material

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011506673A (en) 2007-12-14 2011-03-03 バイオティウム, インコーポレイテッド Fluorescent compound
WO2010093726A8 (en) 2009-02-11 2011-05-12 Life Technologies Corporation Large stokes shift dyes
JP2015054937A (en) 2013-09-13 2015-03-23 国立大学法人山形大学 Organic fluorescent material

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Angewandte Chemie International Edition,2015年,Vol. 54,pp. 7332-7335
Zhang, Lei 他,Talanta,2019年,Vol. 198,pp. 472-479

Also Published As

Publication number Publication date
JP2021127305A (en) 2021-09-02

Similar Documents

Publication Publication Date Title
CN108440475B (en) Ratio type fluorescent probe for distinguishing lipid droplets with different polarities and preparation method and application thereof
JP5090731B2 (en) Fluorescent probe
JP3383736B2 (en) Novel pentacyclic compounds and their use as absorbing or fluorescent dyes
CN108864056B (en) Near infrared fluorescent compound and its preparation method and application with AIE performance
JP6275689B2 (en) Fluorescent probe
US6403625B1 (en) Fluorescent labeling reagents
CN105017288A (en) Blue fluorescent compound and preparation method thereof
CN107253965A (en) FRET molecule and its synthetic method of one class based on fluorine boron pyrroles and cumarin
US7897787B2 (en) Maleimide derivative
EP3638659B1 (en) New water soluble mono-branched and di-branched complexing agents, and corresponding lanthanide complexes
JP7479667B2 (en) Compound having a sulfonylaniline skeleton or a salt thereof, or organic fluorescent material having the same
JP5319130B2 (en) Keiko solvatochromic dye and method of use thereof
CN116375692A (en) Near infrared fluorescent molecular probe for detecting cysteine, preparation method and kit thereof
WO2018181529A1 (en) Phospha-rhodol compound, salt of same, and fluorescent dye using same
CN113416196B (en) benzothiadiazole-TB compound and synthesis method and application thereof
CN112174988B (en) Tertiary rare earth terbium trimer and its preparation method
CN107286926B (en) Heterozygosis fluorescent dye and its preparation method and application based on cumarin and fluorescein
WO2018043579A1 (en) Phospha-rhodamine compound or salt thereof, and fluorescent dye using same
CN112300164A (en) Rare earth samarium cryptand ether fluorescent complex and preparation method thereof
JP5437615B2 (en) Kaiko solvatochromic dye
JP2023092930A (en) Diaminobenzene compounds comprising sulfinyl or sulfonyl groups or salts thereof, and organic fluorescent materials having them
CN111533761B (en) Ratio type pH probe with organelle or protein targeting function and application thereof
CN113387865B (en) Fluorescent probe for detecting methylglyoxal and preparation method and application thereof
WO2017098180A1 (en) Water-soluble triazapyridinophane-based complexing agents and corresponding fluorescent lanthanide complexes
WO2021087897A1 (en) Bodipy-based high-efficiency real-time biological thiol fluorescent detection probe

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230203

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20231214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240327

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240417

R150 Certificate of patent or registration of utility model

Ref document number: 7479667

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150