JP7473877B2 - Manufacturing method of the cover member - Google Patents

Manufacturing method of the cover member Download PDF

Info

Publication number
JP7473877B2
JP7473877B2 JP2020110321A JP2020110321A JP7473877B2 JP 7473877 B2 JP7473877 B2 JP 7473877B2 JP 2020110321 A JP2020110321 A JP 2020110321A JP 2020110321 A JP2020110321 A JP 2020110321A JP 7473877 B2 JP7473877 B2 JP 7473877B2
Authority
JP
Japan
Prior art keywords
metal
lid member
main body
metal layer
joint
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020110321A
Other languages
Japanese (ja)
Other versions
JP2022007385A (en
Inventor
亮太 間嶌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Electric Glass Co Ltd
Original Assignee
Nippon Electric Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Glass Co Ltd filed Critical Nippon Electric Glass Co Ltd
Priority to JP2020110321A priority Critical patent/JP7473877B2/en
Priority to PCT/JP2021/022926 priority patent/WO2021261356A1/en
Priority to KR1020227033333A priority patent/KR20230028210A/en
Priority to CN202180037875.7A priority patent/CN115668482A/en
Priority to TW110122927A priority patent/TW202201662A/en
Publication of JP2022007385A publication Critical patent/JP2022007385A/en
Application granted granted Critical
Publication of JP7473877B2 publication Critical patent/JP7473877B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/02Containers; Seals
    • H01L23/10Containers; Seals characterised by the material or arrangement of seals between parts, e.g. between cap and base of the container or between leads and walls of the container
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/48Manufacture or treatment of parts, e.g. containers, prior to assembly of the devices, using processes not provided for in a single one of the subgroups H01L21/06 - H01L21/326
    • H01L21/4803Insulating or insulated parts, e.g. mountings, containers, diamond heatsinks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/02Containers; Seals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/02Containers; Seals
    • H01L23/06Containers; Seals characterised by the material of the container or its electrical properties
    • H01L23/08Containers; Seals characterised by the material of the container or its electrical properties the material being an electrical insulator, e.g. glass

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)
  • Led Device Packages (AREA)

Description

本発明は、パッケージに用いられる蓋部材を製造する方法に関する。 The present invention relates to a method for manufacturing a lid member for use in a package.

電子部品を収容するパッケージとして、凹部を有する基体と、凹部に収容された電子部品を覆うように基体に重ねられる蓋部材とを備えるものがある。一例として、特許文献1には、基体と蓋部材(窓部材)とを金属系接合材によって接合してなるパッケージ及びその製造方法が開示されている。 Some packages for housing electronic components include a base body with a recess and a lid member that is placed on the base body so as to cover the electronic component housed in the recess. As an example, Patent Document 1 discloses a package in which a base body and a lid member (window member) are bonded with a metal bonding material, and a method for manufacturing the package.

パッケージを製造するには、まず、凹部に電子部品が収容された基体を用意し、この基体に蓋部材を重ね合わせる。この場合において、基体と蓋部材との間に、金属系接合材(プリフォーム)を配置する。次に、基体と蓋部材の間で荷重をかけながら金属系接合材を加熱して溶融状態とする。その後、基体と蓋部材の間で荷重をかけながら金属系接合材を冷却して固化させることで、基体と蓋部材とを接合する(同文献の段落0039参照)。 To manufacture a package, first, a base is prepared with an electronic component housed in a recess, and a lid member is laid over the base. In this case, a metal bonding material (preform) is placed between the base and the lid member. Next, the metal bonding material is heated to a molten state while a load is applied between the base and the lid member. After that, the metal bonding material is cooled and solidified while a load is applied between the base and the lid member, thereby bonding the base and the lid member (see paragraph 0039 of the same document).

上記の製造方法の他、金属系接合材を用いて基体に蓋部材を接合する場合、蓋部材に金属系接合材を予め接合しておくことで、基体と蓋部材とを接合する工程を簡略化してもよい。 In addition to the above manufacturing method, when a metal-based bonding material is used to bond the lid member to the base body, the process of bonding the base body and the lid member may be simplified by bonding the metal-based bonding material to the lid member in advance.

特開2018-37581号公報JP 2018-37581 A

上記のように、金属系接合材を蓋部材に予め接合する場合、例えばペースト状の金属系接合材を蓋部材に塗布し、その後、金属系接合材に熱処理を施すことになる。この場合において、金属系接合材を加熱して溶融させた後の冷却工程において、金属接合材と蓋部材の熱膨張係数の差に起因して、蓋部材に応力が発生する。この応力が過大であると、蓋部材に破損が発生するおそれがあった。 When the metal-based bonding material is bonded to the lid member in advance as described above, for example, a paste-like metal-based bonding material is applied to the lid member, and then the metal-based bonding material is subjected to a heat treatment. In this case, during the cooling process after the metal-based bonding material is heated and melted, stress is generated in the lid member due to the difference in the thermal expansion coefficient between the metal bonding material and the lid member. If this stress is excessive, there is a risk that the lid member will be damaged.

本発明は上記の事情に鑑みて為されたものであり、パッケージに使用される蓋部材の破損を低減することを技術的課題とする。 The present invention was made in consideration of the above circumstances, and its technical objective is to reduce damage to lid members used in packaging.

本発明は上記の課題を解決するためのものであり、パッケージの基体を覆う蓋部材を製造する方法であって、前記蓋部材は、本体部を備え、金属粒子を含む金属系接合材を前記本体部の表面に塗布する塗布工程と、前記金属系接合材に熱処理を施す熱処理工程と、を備え、前記金属粒子の粒子径D10が5μm以上、粒子径D90が50μm以下であることを特徴とする。なお、粒子径の値は、レーザー回折式粒度分測定装置によるものである。 The present invention is intended to solve the above problems, and is a method for manufacturing a lid member for covering a package base, the lid member having a main body, comprising a coating process for coating a metal-based bonding material containing metal particles on the surface of the main body, and a heat treatment process for subjecting the metal-based bonding material to a heat treatment, characterized in that the particle diameter D10 of the metal particles is 5 μm or more and the particle diameter D90 is 50 μm or less. The particle diameter values are measured using a laser diffraction particle size analyzer.

本発明者は、鋭意研究を重ねた結果、金属系接合材に含まれる金属粒子の粒子径を上記の数値範囲とすることで、熱処理工程において本体部に発生する応力を低減し、本体部の破損の発生を低減できることを見出した。 As a result of extensive research, the inventors have discovered that by setting the particle size of the metal particles contained in the metal-based bonding material to the above numerical range, it is possible to reduce the stress generated in the main body during the heat treatment process and reduce the occurrence of breakage in the main body.

本発明に係る蓋部材の製造方法において、前記金属粒子は、Au-Sn合金を含んでもよい。 In the method for manufacturing a lid member according to the present invention, the metal particles may include an Au-Sn alloy.

本発明に係る蓋部材の製造方法は、前記塗布工程の前に、前記本体部の前記表面に金属層を形成する金属層形成工程を備えることが好ましく、前記塗布工程では、前記金属層に重なるように前記金属系接合材を塗布してもよい。前記本体部の前記表面に金属層を形成することで、ペースト状の金属系接合材の濡れ性が改善され、蓋部材に良好な接合部を形成し易くなる。 The method for manufacturing a lid member according to the present invention preferably includes a metal layer forming step of forming a metal layer on the surface of the main body before the application step, and in the application step, the metal-based bonding material may be applied so as to overlap the metal layer. By forming a metal layer on the surface of the main body, the wettability of the paste-like metal-based bonding material is improved, making it easier to form a good bond on the lid member.

本発明に係る蓋部材の製造方法において、前記本体部は、石英又は石英ガラスにより構成されてもよい。 In the method for manufacturing a lid member according to the present invention, the main body may be made of quartz or quartz glass.

本発明によれば、パッケージに使用される蓋部材の破損を低減することができる。 The present invention can reduce damage to the lid members used in the packaging.

パッケージの断面図である。FIG. 基体の平面図である。FIG. 図2のIII-III矢視線に係る基体の断面図である。3 is a cross-sectional view of the base body taken along the line III-III of FIG. 2. 蓋部材の平面図である。FIG. 図4のV-V矢視線に係る蓋部材の断面図である。5 is a cross-sectional view of the cover member taken along the line VV of FIG. 4. 蓋部材の要部拡大断面図である。FIG. 4 is an enlarged cross-sectional view of a main portion of the cover member. 蓋部材の製造方法を示すフローチャートである。10 is a flowchart showing a method for manufacturing the cover member. 蓋部材の製造方法における一工程を示す平面図である。4 is a plan view showing a step in a manufacturing method of the lid member. FIG. 蓋部材の製造方法における一工程を示す平面図である。4 is a plan view showing a step in a manufacturing method of the lid member. FIG. パッケージの製造方法における一工程を示す断面図である。4 is a cross-sectional view showing a step in a method of manufacturing a package.

以下、本発明を実施するための形態について、図面を参照しながら説明する。 The following describes the embodiment of the present invention with reference to the drawings.

図1は、パッケージの一例を示す。パッケージ1は、基体2と、基体2に収容される電子部品3と、基体2及び電子部品3を覆う蓋部材4と、基体2と蓋部材4とを気密に接合する封止部5と、を備える。 Figure 1 shows an example of a package. The package 1 includes a base 2, an electronic component 3 housed in the base 2, a lid member 4 that covers the base 2 and the electronic component 3, and a sealing part 5 that hermetically joins the base 2 and the lid member 4.

図2及び図3は、蓋部材4が接合される前の基体2を示す。基体2は、電子部品3を収容する凹部2aと、封止部5によって蓋部材4と接合される端面2bと、端面2bに形成される金属層6とを有する。 2 and 3 show the base 2 before the lid member 4 is joined. The base 2 has a recess 2a that houses the electronic component 3, an end face 2b that is joined to the lid member 4 by a sealing portion 5, and a metal layer 6 formed on the end face 2b.

基体2の材質としては、例えば、窒化アルミニウム、酸化アルミニウム、炭化ケイ素、窒化ケイ素等のセラミックス、これらセラミックスとガラス粉末が混合焼結されて成るガラスセラミックス、Fe-Ni-Co合金、Cu-W合金、Kovar(登録商標)等の合金等が挙げられる。 Examples of materials for the substrate 2 include ceramics such as aluminum nitride, aluminum oxide, silicon carbide, and silicon nitride, glass ceramics made by mixing and sintering these ceramics with glass powder, and alloys such as Fe-Ni-Co alloys, Cu-W alloys, and Kovar (registered trademark).

図2に示すように、金属層6は、凹部2aの開口部を囲む枠形状を有する。金属層6は、四角形状とされているが、この形状に限定されるものではない。例えば凹部2aの開口部が円形である場合、金属層6は、凹部2aの形状に対応するように、円形状に構成されてもよい。 As shown in FIG. 2, the metal layer 6 has a frame shape that surrounds the opening of the recess 2a. The metal layer 6 is rectangular in shape, but is not limited to this shape. For example, if the opening of the recess 2a is circular, the metal layer 6 may be configured in a circular shape to correspond to the shape of the recess 2a.

金属層6は、端面2b側から順に下地層、中間層、及び表層の三層を含む。下地層に用いられる金属としては、例えば、Cr、Ta、W、Ti、Mo、Ni、Pt等が挙げられる。中間層に用いられる金属としては、例えば、Ni、Pt、Pd等が挙げられる。表層に用いられる金属としては、例えば、Au、Sn、Ag、Ni、Pt等が挙げられる。金属層6に用いられる金属は、単体であってもよいし、合金であってもよい。 The metal layer 6 includes three layers, which are an underlayer, an intermediate layer, and a surface layer, in that order from the end face 2b side. Examples of metals used in the underlayer include Cr, Ta, W, Ti, Mo, Ni, and Pt. Examples of metals used in the intermediate layer include Ni, Pt, and Pd. Examples of metals used in the surface layer include Au, Sn, Ag, Ni, and Pt. The metal used in the metal layer 6 may be a single metal or an alloy.

金属層6を基体2の端面2bに形成する方法としては、例えば、スパッタリング法、真空蒸着法、イオンアシスト又はイオンプレーティングを用いた真空蒸着法、及びCVD法等の成膜法が挙げられる。 Methods for forming the metal layer 6 on the end surface 2b of the substrate 2 include, for example, film formation methods such as sputtering, vacuum deposition, vacuum deposition using ion assist or ion plating, and CVD.

電子部品3は、基体2における凹部2aの底面に固定されている。電子部品3の例としては、レーザーモジュール、LED光源、光センサ、撮像素子、光スイッチ等の光学デバイスが挙げられる。電子部品3は、振動センサ、加速度センサ等であってもよい。本実施形態では、電子部品3が紫外線照射用LEDである場合を一例として説明する。 The electronic component 3 is fixed to the bottom surface of the recess 2a in the base 2. Examples of the electronic component 3 include optical devices such as a laser module, an LED light source, a light sensor, an imaging element, and an optical switch. The electronic component 3 may also be a vibration sensor, an acceleration sensor, etc. In this embodiment, a case where the electronic component 3 is an LED for ultraviolet irradiation will be described as an example.

図4乃至図6は、基体2に接合される前の蓋部材4を示す。蓋部材4は、本体部7と、本体部7の一部に形成される金属層8と、接合部9と、を備える。 Figures 4 to 6 show the lid member 4 before it is joined to the base body 2. The lid member 4 includes a main body portion 7, a metal layer 8 formed on a part of the main body portion 7, and a joining portion 9.

本体部7は、光透過性を有する基板により構成される。具体的には、本体部7は、石英基板、石英ガラス、ホウケイ酸ガラス、アルミノシリケートガラスその他の各種ガラスを含むガラス基板、サファイア基板、樹脂基板等により構成される。本実施形態では、高い紫外線透過性を有する石英基板又は石英ガラス基板が本体部7に用いられる場合について説明する。 The main body 7 is made of a substrate having optical transparency. Specifically, the main body 7 is made of a quartz substrate, a glass substrate including quartz glass, borosilicate glass, aluminosilicate glass, and other various types of glass, a sapphire substrate, a resin substrate, or the like. In this embodiment, a case will be described in which a quartz substrate or a quartz glass substrate having high ultraviolet transparency is used for the main body 7.

本体部7の厚さは、0.1mm以上1mm以下の範囲内であることが好ましく、より好ましくは0.2mm以上0.5mm以下の範囲内である。本体部7の熱膨張係数は、接合部9の熱膨張係数よりも小さい。本体部7の熱膨張係数は、基体2の熱膨張係数よりも小さい。 The thickness of the main body 7 is preferably in the range of 0.1 mm to 1 mm, and more preferably in the range of 0.2 mm to 0.5 mm. The thermal expansion coefficient of the main body 7 is smaller than that of the joint 9. The thermal expansion coefficient of the main body 7 is smaller than that of the base 2.

図1、図4及び図5に示すように、本体部7の表面は、第一主面7aと、第一主面7aの反対側に位置する第二主面7bと、を含む。第一主面7a及び第二主面7bは、基体2の凹部2aの開口面積よりも大きな面積を有する。 As shown in Figures 1, 4, and 5, the surface of the main body 7 includes a first main surface 7a and a second main surface 7b located opposite the first main surface 7a. The first main surface 7a and the second main surface 7b have an area larger than the opening area of the recess 2a of the base 2.

図4及び図5に示すように、金属層8は、本体部7の第一主面7aに形成されている。金属層8は、基体2の金属層6の形状に対応するように、四角形の枠形状を有する。金属層8の形状は本実施形態に限定されない。金属層8は、円形状その他の各種枠形状を有してもよい。 As shown in Figures 4 and 5, the metal layer 8 is formed on the first main surface 7a of the main body portion 7. The metal layer 8 has a rectangular frame shape to correspond to the shape of the metal layer 6 of the base body 2. The shape of the metal layer 8 is not limited to this embodiment. The metal layer 8 may have a circular shape or various other frame shapes.

図6に示すように、金属層8は、本体部7の第一主面7a側から順に、下地層10、中間層11、及び表層12の三層を含む。 As shown in FIG. 6, the metal layer 8 includes three layers, in order from the first main surface 7a side of the main body portion 7: a base layer 10, an intermediate layer 11, and a surface layer 12.

下地層10に用いられる金属としては、例えば、Cr、Ta、W、Ti、Mo、Ni、Pt等が挙げられる。中間層11に用いられる金属としては、例えば、Ni、Pt、Pd等が挙げられる。表層12に用いられる金属としては、例えば、Au、Sn、Ag、Ni、Pt等が挙げられる。金属層8に用いられる金属は、単体であってもよいし、合金であってもよい。 Metals used in the underlayer 10 include, for example, Cr, Ta, W, Ti, Mo, Ni, and Pt. Metals used in the intermediate layer 11 include, for example, Ni, Pt, and Pd. Metals used in the surface layer 12 include, for example, Au, Sn, Ag, Ni, and Pt. The metal used in the metal layer 8 may be a single metal or an alloy.

下地層10の厚さは、0.01μm以上0.3μm以下であることが好ましい。中間層11の厚さは、0.3μm以上3μm以下であることが好ましい。表層12の厚さは、0.1μm以上1μm以下であることが好ましい。 The thickness of the base layer 10 is preferably 0.01 μm or more and 0.3 μm or less. The thickness of the intermediate layer 11 is preferably 0.3 μm or more and 3 μm or less. The thickness of the surface layer 12 is preferably 0.1 μm or more and 1 μm or less.

図4に示すように、接合部9は、金属層8の形状に対応するように、四角形の枠形状を有する。接合部9の形状は本実施形態に限定されず、円形その他の各種枠形状であってもよい。図6に示すように、接合部9は、金属層8の表層12に重なるように層状に構成される。 As shown in FIG. 4, the joint 9 has a rectangular frame shape to correspond to the shape of the metal layer 8. The shape of the joint 9 is not limited to this embodiment, and may be a circle or other frame shape. As shown in FIG. 6, the joint 9 is configured in a layered form so as to overlap the surface layer 12 of the metal layer 8.

接合部9は、金属系接合材により構成される。金属系接合材としては、半田材やろう材として市販されるものを用いることができる。金属系接合材としては、例えば、Au-Sn合金、Pb-Sn合金、Au-Ge合金等が挙げられる。本実施形態では、金属系接合材としてAu-Sn合金が使用される場合について説明する。Au-Sn合金の金属系接合材については、質量%で、Auを10%以上80%以下、Snを20%以上90%以下の範囲で含有することが好ましい。 The joint 9 is made of a metal-based joint material. As the metal-based joint material, a solder material or a brazing material that is commercially available can be used. Examples of the metal-based joint material include an Au-Sn alloy, a Pb-Sn alloy, and an Au-Ge alloy. In this embodiment, a case where an Au-Sn alloy is used as the metal-based joint material will be described. The Au-Sn alloy metal-based joint material preferably contains, by mass%, 10% to 80% Au and 20% to 90% Sn.

接合部9の厚さは、例えば、5μm以上50μm以下、好ましくは10μm以上40μm以下、より好ましくは15μm以上25μm以下である。 The thickness of the joint 9 is, for example, 5 μm or more and 50 μm or less, preferably 10 μm or more and 40 μm or less, and more preferably 15 μm or more and 25 μm or less.

封止部5は、基体2の金属層6と蓋部材4の金属層8とを接合部9で一体に接合することにより形成される。 The sealing portion 5 is formed by integrally joining the metal layer 6 of the base 2 and the metal layer 8 of the lid member 4 at the joint 9.

以下、蓋部材4の製造方法について説明する。図7に示すように、蓋部材4の製造方法は、準備工程S1と、金属層形成工程S2と、接合部形成工程S3と、切断工程S4とを備える。 The manufacturing method of the lid member 4 will be described below. As shown in FIG. 7, the manufacturing method of the lid member 4 includes a preparation process S1, a metal layer formation process S2, a joint formation process S3, and a cutting process S4.

図8に示すように、準備工程S1では、蓋部材4を複数形成することが可能な大型の基板13が用意される。本実施形態では、4枚の蓋部材4(本体部7)を形成することが可能な基板13を例示するが、基板13の大きさは本実施形態に限定されない。基板13は、蓋部材4の本体部7の母材であり、本体部7と同じ材料により構成される。このため、基板13は、複数の本体部7が一体に構成されたものと見做すことができる。 As shown in FIG. 8, in the preparation process S1, a large substrate 13 capable of forming multiple lid members 4 is prepared. In this embodiment, a substrate 13 capable of forming four lid members 4 (main body portions 7) is illustrated, but the size of the substrate 13 is not limited to this embodiment. The substrate 13 is the base material of the main body portions 7 of the lid members 4, and is made of the same material as the main body portions 7. Therefore, the substrate 13 can be regarded as multiple main body portions 7 integrally formed.

図8に示すように、金属層形成工程S2では、基板13の一方の面13a(本体部7の第一主面7aに相当)に複数の金属層8が形成される。各金属層8は所定の間隔をおいて形成される。金属層8を形成する方法としては、例えば、スパッタリング法、真空蒸着法、イオンアシスト又はイオンプレーティングを用いた真空蒸着法、及びCVD法の成膜法が挙げられる。 As shown in FIG. 8, in the metal layer formation process S2, multiple metal layers 8 are formed on one surface 13a of the substrate 13 (corresponding to the first main surface 7a of the main body 7). Each metal layer 8 is formed at a predetermined interval. Methods for forming the metal layers 8 include, for example, sputtering, vacuum deposition, vacuum deposition using ion assist or ion plating, and CVD film formation.

図9に示すように、接合部形成工程S3では、金属層8に重なるように、接合部9が形成される。接合部形成工程S3は、金属系接合材を金属層8に重なるように塗布する塗布工程と、塗布工程後に、金属系接合材に熱処理を施す熱処理工程とを備える。 As shown in FIG. 9, in the joint formation process S3, a joint 9 is formed so as to overlap the metal layer 8. The joint formation process S3 includes a coating process in which a metal-based bonding material is applied so as to overlap the metal layer 8, and a heat treatment process in which the metal-based bonding material is heat-treated after the coating process.

金属系接合材を構成する金属粒子の粒子径D10は、5μm以上、好ましくは8μm以上、より好ましくは10μm以上、更に好ましくは12μm以上、特に好ましくは16μm以上である。粒子径D90は、50μm以下、好ましくは45μm以下、より好ましくは40μm以下、更に好ましくは35μm以下、特に好ましくは32μm以下である。ここで、粒子径D10とは、これ以下の粒子の比率が10%である粒子径を指し、粒子径D90とは、これ以下の粒子の比率が90%である粒子径を指す。 The particle diameter D10 of the metal particles constituting the metal-based bonding material is 5 μm or more, preferably 8 μm or more, more preferably 10 μm or more, even more preferably 12 μm or more, and particularly preferably 16 μm or more. The particle diameter D90 is 50 μm or less, preferably 45 μm or less, more preferably 40 μm or less, even more preferably 35 μm or less, and particularly preferably 32 μm or less. Here, the particle diameter D10 refers to the particle diameter where the ratio of particles smaller than this size is 10%, and the particle diameter D90 refers to the particle diameter where the ratio of particles smaller than this size is 90%.

金属粒子の粒子径D10を上記のように規制すれば、塗布工程の段階で、蓋部材の単位面積当たりに接触する金属粒子の数を少なくできる。その結果、熱処理工程において、金属粒子の溶融により形成される接合部と、蓋部材との接触する面積(接合部が、金属層を介して蓋接合部と接する場合は、接合部と金属層の接触面積)が低減する。その結果、接合部と蓋部材の熱膨張係数の違いの影響を低減でき、蓋部材に破損が発生する虞を低減できる。また、金属粒子の粒子径D90を上記のように規制すれば、熱処理工程で金属粒子が十分に溶融し、金属粒子の溶け残りを回避することが容易になり、形成後の接合部自身の強度が向上する。 If the particle diameter D10 of the metal particles is regulated as described above, the number of metal particles that come into contact with the lid member per unit area during the coating process can be reduced. As a result, in the heat treatment process, the contact area between the joint formed by melting the metal particles and the lid member (if the joint contacts the lid joint via a metal layer, the contact area between the joint and the metal layer) is reduced. As a result, the effect of the difference in thermal expansion coefficient between the joint and the lid member can be reduced, and the risk of damage to the lid member can be reduced. In addition, if the particle diameter D90 of the metal particles is regulated as described above, the metal particles are sufficiently melted during the heat treatment process, making it easier to avoid unmelted metal particles, and improving the strength of the joint itself after formation.

塗布工程では、例えばペースト状の金属系接合材を金属層8に重なるように、四角形の枠状に塗布する。ペースト状の金属系接合材は、An-Sn合金からなる金属粒子を含むことが好ましい。 In the application process, for example, a paste-like metal-based bonding material is applied in a rectangular frame shape so as to overlap the metal layer 8. The paste-like metal-based bonding material preferably contains metal particles made of an An-Sn alloy.

塗布工程の具体例としては、マスクを用いた印刷法(スクリーン印刷法)、ディスペンサを用いた塗布法等が挙げられる。 Specific examples of coating processes include printing methods using a mask (screen printing methods) and coating methods using a dispenser.

熱処理工程は、加熱工程と、冷却工程とを備える。加熱工程では、本体部7をリフロー炉等の加熱装置を用いて加熱することで、金属系接合材を溶融させることができる。加熱工程は、例えば炉内に窒素を充填した状態で実施してもよい。加熱工程において、本体部7の金属製接合材は、300℃以上の温度に加熱されることで溶融した状態となる。 The heat treatment process includes a heating process and a cooling process. In the heating process, the main body 7 is heated using a heating device such as a reflow furnace, thereby melting the metallic bonding material. The heating process may be performed, for example, with the furnace filled with nitrogen. In the heating process, the metallic bonding material of the main body 7 is heated to a temperature of 300°C or higher, and is thereby brought into a molten state.

本体部7の第一主面7a上で溶融した金属系接合材は、冷却工程において冷却されることで固化する。冷却工程は、150℃以上300℃以下の温度範囲、2分間以上30分間以下の時間の条件で温度を維持する徐冷を含むことが好ましい。 The metal-based bonding material melted on the first main surface 7a of the main body 7 is solidified by being cooled in the cooling process. The cooling process preferably includes slow cooling in which the temperature is maintained within a range of 150°C to 300°C for a period of 2 minutes to 30 minutes.

冷却工程において、本体部7と接合部9との熱膨張係数の差により、本体部7に応力が発生することとなるが、前述の通り、接合部9に係る金属系接合材に含まれる金属粒子(例えばAu-Sn合金の粒子)の粒子径D10を5μm以上とすることで、この応力を緩和することができる。また、粒子径D90を50μm以下とすることで、熱処理工程において、金属粒子が十分に溶融し、金属粒子の溶け残りを回避することが容易になり、形成後の接合部自身の強度が向上する。 During the cooling process, stress is generated in the main body 7 due to the difference in thermal expansion coefficient between the main body 7 and the joint 9. However, as described above, this stress can be alleviated by setting the particle diameter D10 of the metal particles (e.g., Au-Sn alloy particles) contained in the metal-based joint material for the joint 9 to 5 μm or more. Furthermore, by setting the particle diameter D90 to 50 μm or less, the metal particles are sufficiently melted during the heat treatment process, making it easier to avoid unmelted metal particles, and improving the strength of the joint itself after formation.

以上により、複数の金属層8及び複数の接合部9が積層されてなるパッケージ用基板13が完成する。切断工程S4において、この基板13は、切断刃や、レーザー等を用いた公知の切断法により、図9に示す切断予定線CLに沿って切断される。これにより、複数の蓋部材4が製造される。 As a result, a package substrate 13 is completed, which is made up of multiple metal layers 8 and multiple joints 9 stacked together. In the cutting process S4, the substrate 13 is cut along the planned cutting lines CL shown in FIG. 9 by a known cutting method using a cutting blade, a laser, or the like. In this way, multiple cover members 4 are manufactured.

次に、パッケージ1の製造方法について説明する。本方法は、上記のように製造された蓋部材4を基体2の端面2bに接合する接合工程を備える。 Next, a method for manufacturing the package 1 will be described. This method includes a joining step for joining the lid member 4 manufactured as described above to the end surface 2b of the base body 2.

図10に示すように、接合工程では、蓋部材4が基体2に重ねられる。具体的には、蓋部材4の本体部7の第一主面7aを基体2に対向させ、接合部9を基体2の端面2bの金属層6に接触させる。その後、金属層6と接合部9とを圧接させた状態で加熱する(加熱工程)。これにより、接合部9の金属系接合材が溶融した状態となる。その後、溶融した金属系接合材を冷却することにより固化させる(冷却工程)。 As shown in FIG. 10, in the joining process, the lid member 4 is placed on the base 2. Specifically, the first main surface 7a of the main body 7 of the lid member 4 is placed opposite the base 2, and the joint 9 is brought into contact with the metal layer 6 on the end surface 2b of the base 2. The metal layer 6 and the joint 9 are then heated while being pressed against each other (heating process). This causes the metal-based joint material of the joint 9 to become molten. The molten metal-based joint material is then cooled and solidified (cooling process).

冷却工程が終了すると、接合部9が基体2の金属層6と本体部7の金属層8とを一体に接合してなる封止部5が形成される。以上により、基体2の凹部2aの気密性が保たれたパッケージ1が完成する。 When the cooling process is completed, the sealing portion 5 is formed by integrally joining the metal layer 6 of the base 2 and the metal layer 8 of the main body portion 7 at the joint 9. This completes the package 1, which maintains the airtightness of the recess 2a of the base 2.

以上説明した本実施形態に係る蓋部材4の製造方法によれば、ペースト状の金属系接合材における金属粒子の粒子径D10を5μm以上、粒子径D90を50μm以下とすることで、接合部形成工程S3における冷却工程時に蓋部材4に発生する応力を緩和することができる。これにより、本体部7の破損を低減することができる。 According to the manufacturing method of the lid member 4 according to the present embodiment described above, by setting the particle diameter D10 of the metal particles in the paste-like metal-based bonding material to 5 μm or more and the particle diameter D90 to 50 μm or less, it is possible to alleviate the stress generated in the lid member 4 during the cooling process in the bond forming process S3. This makes it possible to reduce damage to the main body portion 7.

蓋部材4の本体部7に石英基板又は石英ガラス基板を用いた場合には、接合部9と本体部7との熱膨張係数の差が顕著に大きくなる。この場合であっても、本体部7に発生する応力を可及的に低減することで、本体部7の破損を低減することが可能である。 When a quartz substrate or a quartz glass substrate is used for the body portion 7 of the lid member 4, the difference in thermal expansion coefficient between the joint portion 9 and the body portion 7 becomes significantly large. Even in this case, it is possible to reduce damage to the body portion 7 by reducing the stress generated in the body portion 7 as much as possible.

なお、本発明は、上記実施形態の構成に限定されるものではなく、上記した作用効果に限定されるものでもない。本発明は、本発明の要旨を逸脱しない範囲で種々の変更が可能である。 The present invention is not limited to the configuration of the above embodiment, nor is it limited to the above-mentioned effects. Various modifications of the present invention are possible without departing from the gist of the present invention.

上記の実施形態では、複数の蓋部材4を製造することが可能な基板13に複数の金属層8及び接合部9を形成する工程を示したが、本発明はこの構成に限定されない。本発明は、基板13を切断することによって複数の本体部7を形成した後に、各本体部7に金属層8及び接合部9を形成してもよい。 In the above embodiment, a process for forming multiple metal layers 8 and joints 9 on a substrate 13 from which multiple lid members 4 can be manufactured is shown, but the present invention is not limited to this configuration. The present invention may also involve forming multiple body parts 7 by cutting the substrate 13, and then forming the metal layers 8 and joints 9 on each body part 7.

上記の実施形態では、基板13を切断予定線CLに沿って切断する切断工程S4を例示したが、本発明はこの構成に限定されない。例えば複数の金属層8及び接合部9が形成された基板13を切断することなく蓋部材4として使用してもよい。この場合、基板13自体がこの蓋部材4の本体部7となる。この蓋部材4を複数の凹部2aを有する基体2に接合することで、複数の電子部品3を備えるパッケージを製造することができる。このパッケージは、接合工程後に、複数の電子部品を個別に分割するように切断されてもよい。 In the above embodiment, the cutting step S4 is exemplified, in which the substrate 13 is cut along the planned cutting line CL, but the present invention is not limited to this configuration. For example, the substrate 13 on which multiple metal layers 8 and bonding portions 9 are formed may be used as the lid member 4 without cutting it. In this case, the substrate 13 itself becomes the main body portion 7 of the lid member 4. By bonding the lid member 4 to a base body 2 having multiple recesses 2a, a package including multiple electronic components 3 can be manufactured. After the bonding step, the package may be cut to separate the multiple electronic components individually.

以下、本発明に係る実施例について説明するが、本発明はこの実施例に限定されるものではない。 The following describes an embodiment of the present invention, but the present invention is not limited to this embodiment.

本発明者は、本発明の効果を確認するための試験を行った。試験では、実施例に係る蓋部材と、比較例に係る蓋部材とを作製し、その本体部に割れ等の破損が発生するか否かを確認した。 The inventor conducted a test to confirm the effect of the present invention. In the test, a lid member according to the embodiment and a lid member according to the comparative example were produced, and it was confirmed whether or not damage such as cracks occurred in the main body.

蓋部材は、本体部を厚さ0.5mmの石英ガラス基板とした。石英ガラス基板の一方の表面に金属層及び接合部を積層した。石英ガラス基板には、3層の金属層及び接合部を形成した。 The cover member had a main body made of a quartz glass substrate with a thickness of 0.5 mm. A metal layer and a joint were laminated on one surface of the quartz glass substrate. Three metal layers and joints were formed on the quartz glass substrate.

金属層については、下地層をCrとし、中間層をNiとし、表層をAuとした。金属層及び接合部は、いずれも四角形の枠形状に構成した。金属層の一辺の長さは400μmであった。接合部の一辺の長さは320μmであった。金属層の厚みは、1.25μm(下地層:0.1μm、中間層:0.85μm、表層:0.3μm)であった。接合部の厚みは、30μmであった。 For the metal layer, the base layer was Cr, the intermediate layer was Ni, and the surface layer was Au. The metal layer and the joint were both configured in a rectangular frame shape. The length of one side of the metal layer was 400 μm. The length of one side of the joint was 320 μm. The thickness of the metal layer was 1.25 μm (base layer: 0.1 μm, intermediate layer: 0.85 μm, surface layer: 0.3 μm). The thickness of the joint was 30 μm.

実施例及び比較例に係る接合部は、以下の方法により形成した。まず、Au-Sn合金の金属粒子を含むペースト状の接合材を金属層に重なるように塗布した。実施例1の接合材は、金属粒子の粒子径D10を11μm、粒子径D90を42μmとした。実施例2の接合材は、金属粒子の粒子径D10を17μm、粒子径D90を30μmとした。比較例1の接合材は、金属粒子の粒子径D10を3μm、粒子径D90を48μmとした。比較例2の接合材は、金属粒子の粒子径D10を2μm、粒子径D90を83μmとした。 The joints in the examples and comparative examples were formed by the following method. First, a paste-like joint material containing metal particles of an Au-Sn alloy was applied so as to overlap the metal layer. In the joint material of Example 1, the metal particles had a particle diameter D10 of 11 μm and a particle diameter D90 of 42 μm. In the joint material of Example 2, the metal particles had a particle diameter D10 of 17 μm and a particle diameter D90 of 30 μm. In the joint material of Comparative Example 1, the metal particles had a particle diameter D10 of 3 μm and a particle diameter D90 of 48 μm. In the joint material of Comparative Example 2, the metal particles had a particle diameter D10 of 2 μm and a particle diameter D90 of 83 μm.

次に実施例1、2と比較例1、2の金属粒子を含むペーストが塗布された各石英ガラス基板を各100個作製し、リフロー炉で300℃まで加熱した。加熱後、石英ガラス基板を室温まで冷却した。冷却後、石英ガラス基板において、接合部が形成された部位に割れ等の破損が発生しているか否かを、石英ガラス基板側から、光学顕微鏡(100倍)で確認した。 Next, 100 quartz glass substrates each coated with paste containing metal particles from Examples 1 and 2 and Comparative Examples 1 and 2 were produced and heated to 300°C in a reflow furnace. After heating, the quartz glass substrates were cooled to room temperature. After cooling, the quartz glass substrates were examined with an optical microscope (100x) from the quartz glass substrate side to see if there was any damage such as cracks at the site where the joint was formed.

この試験の結果、実施例1の蓋部材における破損の発生率は、1%であった。また、実施例2の蓋部材における破損の発生率は、0%であった。一方、比較例1の蓋部材における破損の発生率は、7%であった。また、比較例2の蓋部材における破損の発生率は、9%であり、金属接合材には、金属粒子の溶け残りが確認できた。 As a result of this test, the incidence of breakage in the lid member of Example 1 was 1%. The incidence of breakage in the lid member of Example 2 was 0%. Meanwhile, the incidence of breakage in the lid member of Comparative Example 1 was 7%. The incidence of breakage in the lid member of Comparative Example 2 was 9%, and unmelted metal particles were found in the metal bonding material.

実施例1、2に係る金属系接合材は、比較例1、2よりも大きな粒径の金属粒子を含む。このため、金属系接合材を金属層に塗布した場合に、金属層(表層)に対する金属粒子の接触面積を低減することが可能となる。この場合において、金属接合材は、加熱工程によって金属粒子が溶融した後であっても低接触面積を維持する。このように、金属系接合材の金属粒子と金属層との接触面積を低減することで、冷却工程において本体部(石英ガラス基板)に発生する応力を緩和することが可能になると推察される。 The metal-based bonding material according to Examples 1 and 2 contains metal particles with a larger particle size than those of Comparative Examples 1 and 2. Therefore, when the metal-based bonding material is applied to a metal layer, it is possible to reduce the contact area of the metal particles with the metal layer (surface layer). In this case, the metal bonding material maintains a low contact area even after the metal particles are melted by the heating process. In this way, it is presumed that by reducing the contact area between the metal particles of the metal-based bonding material and the metal layer, it is possible to alleviate the stress generated in the main body (quartz glass substrate) during the cooling process.

4 蓋部材
7 本体部
7a 第一主面
8 金属層
9 接合部
S2 金属層形成工程
S3 接合部形成工程
4 Lid member 7 Body portion 7a First main surface 8 Metal layer 9 Bonding portion S2 Metal layer forming step S3 Bonding portion forming step

Claims (3)

パッケージの基体を覆う蓋部材を製造する方法であって、
前記蓋部材は、ガラス基板により構成される本体部と、前記本体部の表面に形成される金属層と、前記金属層に重なるように形成されるとともに前記本体部を前記基体に接合するための接合部と、を備え、
前記本体部の前記表面に前記金属層を形成する金属層形成工程と、金属粒子を含むペースト状の金属系接合材を前記金属層に重なるように塗布する塗布工程と、前記金属系接合材に熱処理を施す熱処理工程と、を備え、
前記金属粒子の粒子径D10が11μm以上、粒子径D90が42μm以下であり、
前記熱処理工程では、前記金属系接合材の前記金属粒子を溶融させることによって前記接合部を形成することを特徴とする蓋部材の製造方法。
1. A method for manufacturing a lid member for covering a base of a package, comprising the steps of:
the lid member includes a main body portion formed of a glass substrate , a metal layer formed on a surface of the main body portion, and a joining portion formed to overlap the metal layer and for joining the main body portion to the base,
The method includes a metal layer forming step of forming the metal layer on the surface of the main body, a coating step of coating a paste- like metal-based bonding material containing metal particles so as to overlap the metal layer , and a heat treatment step of heat-treating the metal-based bonding material,
The particle diameter D10 of the metal particles is 11 μm or more and the particle diameter D90 is 42 μm or less ,
The method for manufacturing a cover member , wherein the heat treatment step forms the joint by melting the metal particles of the metal-based joint material .
前記金属粒子は、Au-Sn合金を含む請求項1に記載の蓋部材の製造方法。 The method for manufacturing a lid member according to claim 1, wherein the metal particles include an Au-Sn alloy. 前記本体部は、石英ガラスにより構成される請求項1又は2に記載の蓋部材の製造方法。
The method for manufacturing a cover member according to claim 1 or 2 , wherein the main body portion is made of quartz glass.
JP2020110321A 2020-06-26 2020-06-26 Manufacturing method of the cover member Active JP7473877B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2020110321A JP7473877B2 (en) 2020-06-26 2020-06-26 Manufacturing method of the cover member
PCT/JP2021/022926 WO2021261356A1 (en) 2020-06-26 2021-06-16 Method for producing cover member
KR1020227033333A KR20230028210A (en) 2020-06-26 2021-06-16 Manufacturing method of cover member
CN202180037875.7A CN115668482A (en) 2020-06-26 2021-06-16 Method for manufacturing cover member
TW110122927A TW202201662A (en) 2020-06-26 2021-06-23 Method for manufacturing cover member including a coating step and a heat treatment step

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020110321A JP7473877B2 (en) 2020-06-26 2020-06-26 Manufacturing method of the cover member

Publications (2)

Publication Number Publication Date
JP2022007385A JP2022007385A (en) 2022-01-13
JP7473877B2 true JP7473877B2 (en) 2024-04-24

Family

ID=79281317

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020110321A Active JP7473877B2 (en) 2020-06-26 2020-06-26 Manufacturing method of the cover member

Country Status (5)

Country Link
JP (1) JP7473877B2 (en)
KR (1) KR20230028210A (en)
CN (1) CN115668482A (en)
TW (1) TW202201662A (en)
WO (1) WO2021261356A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017154329A1 (en) 2016-03-07 2017-09-14 株式会社村田製作所 Joined body production method and joining material
WO2018025903A1 (en) 2016-08-02 2018-02-08 株式会社弘輝 Solder paste flux and solder paste
JP2018037581A (en) 2016-09-01 2018-03-08 日機装株式会社 Optical semiconductor device and method of manufacturing the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017154329A1 (en) 2016-03-07 2017-09-14 株式会社村田製作所 Joined body production method and joining material
WO2018025903A1 (en) 2016-08-02 2018-02-08 株式会社弘輝 Solder paste flux and solder paste
JP2018037581A (en) 2016-09-01 2018-03-08 日機装株式会社 Optical semiconductor device and method of manufacturing the same

Also Published As

Publication number Publication date
WO2021261356A1 (en) 2021-12-30
KR20230028210A (en) 2023-02-28
CN115668482A (en) 2023-01-31
TW202201662A (en) 2022-01-01
JP2022007385A (en) 2022-01-13

Similar Documents

Publication Publication Date Title
KR100442830B1 (en) Low temperature hermetic sealing method having a passivation layer
US20100059244A1 (en) Microstructure Apparatus and Method for Manufacturing Microstructure Apparatus
KR102563840B1 (en) window material, optical package
JP2024052748A (en) Windows, optical packages
JP2011243752A (en) Semiconductor device manufacturing method, internal semiconductor connection member, and internal semiconductor connection member group
JP7473877B2 (en) Manufacturing method of the cover member
JP7283476B2 (en) Package, package manufacturing method, lid with bonding material, and method of manufacturing lid with bonding material
JP5774855B2 (en) Package and manufacturing method thereof
WO2020022278A1 (en) Optical package
JP7298609B2 (en) Method for manufacturing lid member, method for manufacturing lid member, and electronic component package
CN105026099A (en) Joining methods for bulk metallic glasses
WO2020080221A1 (en) Lid material for packages, and package
JP6784317B2 (en) Package lid material and package manufacturing method
WO2022004390A1 (en) Lid member, method for manufacturing lid member, package, and method for manufacturing package
TWI725584B (en) Method of manufacturing a lid member for a package, and method of manufacturing a package
TWI713990B (en) Sealing lid made of a translucent material
WO2021014904A1 (en) Lid material for light-emitting device, method for manufacturing lid material, and light-emitting device
JP2007096250A (en) Lid body, electronic part accommodating package and electronic device used therefor
JP2023084853A (en) Airtight package, electronic device and lid material for airtight package
JP2011228353A (en) Lid, base and package for electronic component
GB2152074A (en) Low temperature Au-Ge-Si brazing alloy

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230904

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230922

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240313

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240326

R150 Certificate of patent or registration of utility model

Ref document number: 7473877

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150