JP2012087042A - Titanium diboride-based sintered compact, and method for producing the same - Google Patents

Titanium diboride-based sintered compact, and method for producing the same Download PDF

Info

Publication number
JP2012087042A
JP2012087042A JP2011205109A JP2011205109A JP2012087042A JP 2012087042 A JP2012087042 A JP 2012087042A JP 2011205109 A JP2011205109 A JP 2011205109A JP 2011205109 A JP2011205109 A JP 2011205109A JP 2012087042 A JP2012087042 A JP 2012087042A
Authority
JP
Japan
Prior art keywords
sintering
powder
tib
sintered body
sintering aid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011205109A
Other languages
Japanese (ja)
Inventor
Masashi Yoshida
政司 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of National Colleges of Technologies Japan
Original Assignee
Institute of National Colleges of Technologies Japan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of National Colleges of Technologies Japan filed Critical Institute of National Colleges of Technologies Japan
Priority to JP2011205109A priority Critical patent/JP2012087042A/en
Publication of JP2012087042A publication Critical patent/JP2012087042A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To reduce production cost by lowering a sintering temperature furthermore, when producing a high-density and high-hardness titanium diboride-based sintered compact which is necessary for application to a structural member or the like.SOLUTION: A sintering aid containing as a main component, ALTi, or (Al, M)Ti wherein M is one or two or more kinds of combinations of Ni, Cr, Fe, Mo and Cu is used at the weight ratio of the sintering aid of ≥10% and ≤50%, and a sintering material which is mixed powder with a metal boride base component containing TiBas a main component is sintered at 1,000°C, and thereby a high-denseness and high-hardness titanium diboride-based sintered compact having Vickers hardness of ≥500 and bending strength of ≥200 MPa can be produced. By using the sintering aid containing (Al, M)Ti as the main component at the weight ratio of ≥20% and ≤40%, a high-denseness, high-hardness and high-strength titanium diboride-based sintered compact having Vickers hardness of ≥800 and bending strength of ≥300 MPa can be produced at the sintering temperature of 1,000°C.

Description

本発明は、二硼化チタン系焼結体及びその製造方法に関し、特に高温耐熱部材、耐摩耗性部材、あるいはそれらの物性とともに導電性を要求される部材等の各種材料、構造部材として有用な二硼化チタン系焼結体及びその製造方法に関する。   The present invention relates to a titanium diboride-based sintered body and a method for producing the same, and particularly useful as various materials and structural members such as a high-temperature heat-resistant member, a wear-resistant member, or a member that requires electrical properties along with their physical properties. The present invention relates to a titanium diboride-based sintered body and a method for producing the same.

二硼化チタン(TiB2)は耐熱性、耐酸化性、高温強度にすぐれ、また導電性を有するセラミックスであり、資源的にも豊富な材料であることから、高温耐熱性部材、耐摩耗性部材、導電性を必要とする金型材料等多方面にわたる製造技術分野においての利用が期待されている。 Titanium diboride (TiB 2 ) is a ceramic that has excellent heat resistance, oxidation resistance, and high temperature strength, is conductive, and is abundant in resources. It is expected to be used in various fields of manufacturing technology such as members and mold materials that require electrical conductivity.

ただし、二硼化チタンは難焼結材料であり、緻密な焼結体を比較的低温で焼結することが困難である。そのため、高密度、高硬度、高耐摩耗性を備えた焼結体を得る方法として、現状では1500℃以上の高温下でのホットプレス、熱間静水圧加圧焼結法等の加圧焼結法が用いられている。このように、1500℃以上の高温下で二硼化チタンの焼結を行う場合、焼結体の製造コストが高くなる。このコスト高を抑え、製造を容易にするために、低温で焼結する方法を用い、そのための焼結助剤の探索がなされている。   However, titanium diboride is a hardly sintered material, and it is difficult to sinter a dense sintered body at a relatively low temperature. Therefore, as a method for obtaining a sintered body having high density, high hardness, and high wear resistance, at present, pressure sintering such as hot pressing at a high temperature of 1500 ° C. or higher, hot isostatic pressing sintering method, etc. The conclusion method is used. Thus, when sintering titanium diboride at a high temperature of 1500 ° C. or higher, the manufacturing cost of the sintered body increases. In order to suppress this high cost and facilitate manufacture, a method of sintering at a low temperature is used, and a search for a sintering aid therefor has been made.

二硼化チタンの焼結助剤としては、例えばCo, Ni, Fe等の鉄族金属の硼化物(特許文献1)、Ni, Fe等の鉄族金属とTi, Hf, W, Zr等の炭化物からなる混合物(特許文献2)あるいはNi-Zr合金粉末とWC粉末との混合物(特許文献3)や、NiO, MnO及びWCの混合物(特許文献4)、Ni, WC及びCr3C2の混合物(特許文献5)等の各種成分組成を有するものが用いられている。しかしながら、これらの焼結助剤を用いても、高硬度、高緻密性の焼結体を得るためには1500℃以上の高温下で焼結を行うことが必要である。 Examples of sintering aids for titanium diboride include borides of iron group metals such as Co, Ni, and Fe (Patent Document 1), iron group metals such as Ni and Fe, and Ti, Hf, W, and Zr. A mixture of carbide (Patent Document 2), a mixture of Ni-Zr alloy powder and WC powder (Patent Document 3), a mixture of NiO, MnO and WC (Patent Document 4), Ni, WC and Cr 3 C 2 What has various component compositions, such as a mixture (patent document 5), is used. However, even if these sintering aids are used, it is necessary to perform sintering at a high temperature of 1500 ° C. or higher in order to obtain a sintered body having high hardness and high density.

特公昭56−41690号公報Japanese Examined Patent Publication No. 56-41690 特公平7−822号公報Japanese Patent Publication No. 7-822 特開平9−3586号公報Japanese Patent Laid-Open No. 9-3586 特開2000−290744号公報JP 2000-290744 A 特開2001−146474号公報JP 2001-146474 A

難焼結材料である二硼化チタンを焼結して高密度、高硬度、高耐摩耗性を備えた焼結体とするために従来焼結助剤を添加し焼結することが行われている。この焼結助剤としては、鉄族金属の硼化物、鉄族金属の炭化物を含む混合物、種々の合金粉末等が用いられているが、いずれの場合にも焼結温度は1500℃以上とならざるを得ず、焼結温度が高温となるために、製造コストが高くなるものであった。   In order to sinter titanium diboride, which is a difficult-to-sinter material, into a sintered body with high density, high hardness, and high wear resistance, conventional sintering aids have been added and sintered. ing. As the sintering aid, borides of iron group metals, mixtures containing carbides of iron group metals, various alloy powders, etc. are used. In any case, the sintering temperature should be 1500 ° C. or higher. Inevitably, the manufacturing temperature is high because the sintering temperature is high.

このことから、二硼化チタン系焼結体を製造する上で、二硼化チタンの焼結反応性を高め、構造部材等の用途において必要な高密度、高硬度に加えて、高強度の二硼化チタン焼結体を、なるべく低い焼結温度で合成することによって、製造コストをより低くすることが求められていた。また、このように比較的低い焼結温度で作製された二硼化チタン焼結体が高硬度であるとともに曲げ強度においても高くなるようにすることが求められていた。   From this, in producing a titanium diboride-based sintered body, the titanium diboride sintering reactivity is increased, and in addition to the high density and high hardness required for applications such as structural members, high strength There has been a demand for lower production costs by synthesizing a titanium diboride sintered body at a sintering temperature as low as possible. Further, it has been demanded that the titanium diboride sintered body produced at such a relatively low sintering temperature has high hardness and high bending strength.

本発明は前述した課題を解決すべくなしたものであり、本発明による二硼化チタン系焼結体は、TiB2を主成分とした金属硼化物基本成分と焼結助剤としての焼結助剤とからなる二硼化チタン系焼結体であって、Al3Ti または(Al,M)3Ti(MはNi,Cr,Fe,Mo,Cuの群から1種類ないし2種類以上選択された元素を示す)を主成分とする焼結助剤が全重量の10%以上50%以下の含量であり、他の部分がTiB2を主成分とする六方晶系金属硼化物からなるものである。また、(Al,M)3Ti を主成分とする焼結助剤が全重量の20%以上40%以下の含量であるようにするのがより望ましい。 The present invention has been made to solve the above-mentioned problems, and the titanium diboride-based sintered body according to the present invention includes a metal boride basic component mainly composed of TiB 2 and sintering as a sintering aid. Titanium diboride-based sintered body composed of auxiliary materials, Al 3 Ti or (Al, M) 3 Ti (M is selected from the group of Ni, Cr, Fe, Mo, Cu) The sintering aid is composed of 10% to 50% of the total weight, and the other part is composed of a hexagonal metal boride composed mainly of TiB 2 It is. It is more preferable that the sintering aid containing (Al, M) 3 Ti as a main component has a content of 20% to 40% of the total weight.

また、本発明による二硼化チタン系焼結体を製造する方法は、TiB2を主成分とした金属硼化物基本成分と焼結助剤としての焼結助剤との混合物の焼結により二硼化チタン系焼結体を製造する方法であって、Al3Ti または、MをNi,Cr,Fe,Mo,Cuの1種類ないし2種類以上の組み合わせとして、(Al,M)3Ti を主成分とし全重量の10%以上50%以下の含量となる焼結助剤粉末体と、他の部分となるTiB2を主成分とする六方晶系金属硼化物粉末体とをそれぞれ作製することと、それぞれ作製された六方晶系金属硼化物粉末体と焼結助剤粉末とを混合した混合物を得ることと、六方晶系金属硼化物粉末体と焼結助剤粉末との混合物を焼結体作製装置中で800℃以上1300℃以下の温度に加熱し焼結体を作製することとからなるものである。また、前記焼結助剤が(Al,M)3Tiを主成分とし全重量の20%以上40%以下の含量となる焼結助剤粉末体であって、六方晶系金属硼化物粉末体と焼結助剤粉末との混合物を焼結体作製装置中で900℃以上1100℃以下の温度に加熱し焼結体を作製するのがより望ましい。 In addition, the method for producing a titanium diboride-based sintered body according to the present invention is obtained by sintering a mixture of a metal boride basic component mainly composed of TiB 2 and a sintering aid as a sintering aid. A method for producing a titanium boride-based sintered body, in which Al 3 Ti or M is combined with one or more of Ni, Cr, Fe, Mo, Cu, and (Al, M) 3 Ti is used. A sintering aid powder body having a content of 10% or more and 50% or less of the total weight as a main component and a hexagonal metal boride powder body having TiB 2 as a main component as a main component are prepared. And a mixture of the hexagonal metal boride powder body and the sintering aid powder produced respectively, and sintering the mixture of the hexagonal metal boride powder body and the sintering aid powder. It comprises heating to a temperature of 800 ° C. or higher and 1300 ° C. or lower in a body manufacturing apparatus to manufacture a sintered body. The sintering aid is a sintering aid powder body comprising (Al, M) 3 Ti as a main component and having a content of 20% to 40% of the total weight, the hexagonal metal boride powder body It is more desirable to produce a sintered body by heating the mixture of the sintering aid powder to a temperature of 900 ° C. or higher and 1100 ° C. or lower in a sintered body producing apparatus.

本発明においては、Al3Tiまたは(Al、M)3Tiを主成分とする焼結助剤を用い、その重量割合を10%以上50%以下とすることにより、従来よりも格段に低い焼結温度で焼結体を製造することができる。ただしMはNi,Cr,Fe,Mo,Cuの群から1種類ないし2種類以上を選択される元素を示し、MとAlのモル比は5/70から20/55の間であり、より望ましくは、5/70から15/60の間である。また、(Al,M)3Tiを主成分とした焼結助剤の重合割合を10%以上50%以下とすることにより、800℃以上1300℃以下の焼結温度で焼結体を製造することができる。このように従来の焼結体の製造に比し、格段に焼結温度を低くすることができるとともに、得られた焼結体は(Al、M)3Ti を主成分とした焼結助剤の重量割合が10%以上50%以下の場合に曲げ強度が300MPa以上、(Al、M)3Ti を主成分とした焼結助剤の重量割合が20%以上40%以下の場合に曲げ強度が500MPa以上であり、高緻密性、高強度の焼結体となる。それにより、大幅な製造コストの削減が可能であり、用途を拡大することができる。 In the present invention, a sintering aid containing Al 3 Ti or (Al, M) 3 Ti as a main component is used, and the weight ratio is 10% or more and 50% or less, so that the firing rate is much lower than that of the prior art. A sintered body can be produced at the sintering temperature. However, M represents an element selected from the group of Ni, Cr, Fe, Mo and Cu, and one or more elements are selected, and the molar ratio of M and Al is between 5/70 and 20/55, and is more desirable. Is between 5/70 and 15/60. Moreover, a sintered body is produced at a sintering temperature of 800 ° C. or higher and 1300 ° C. or lower by setting the polymerization ratio of the sintering aid mainly composed of (Al, M) 3 Ti to 10% or more and 50% or less. be able to. In this way, the sintering temperature can be significantly reduced compared to the production of a conventional sintered body, and the obtained sintered body is a sintering aid mainly composed of (Al, M) 3 Ti. Bending strength is 300 MPa or more when the weight ratio is 10% or more and 50% or less, and bending strength is 20% or more and 40% or less when the weight ratio of the sintering aid mainly composed of (Al, M) 3 Ti is used. Is 500 MPa or more, and a high-density, high-strength sintered body is obtained. Thereby, the manufacturing cost can be significantly reduced, and the application can be expanded.

図1は、焼結材料の混合粉体を焼結するための放電プラズマ焼結体作製装置の構成を概略的に示す図である。FIG. 1 is a view schematically showing a configuration of a discharge plasma sintered body manufacturing apparatus for sintering a mixed powder of sintered materials. 図2は、Al3Tiの重量割合を変えたTiB2−Al3Ti混合粉体の焼結材料を放電プラズマ焼結法により温度1000℃で焼結し得られた試料についてのビッカース硬度を示すグラフである。FIG. 2 shows the Vickers hardness of a sample obtained by sintering a sintered material of TiB 2 -Al 3 Ti mixed powder with varying weight ratio of Al 3 Ti at a temperature of 1000 ° C. by a discharge plasma sintering method. It is a graph. 図3は、(Al,M)3Ti の重量割合を変えたTiB2−(Al,M)3Ti 混合粉体の焼結材料を放電プラズマ焼結法により温度1000℃で焼結して得られた試料についてのビッカース硬度を示すグラフであり、図3(a)はMがNi、図3(b)はMがCrの場合であり、(Al+M)のモル数を75モルにしたときのMのモル数が0,5,10,15,20の5種類の試料について測定したものである。FIG. 3 is obtained by sintering a sintered material of TiB 2- (Al, M) 3 Ti mixed powder in which the weight ratio of (Al, M) 3 Ti is changed at a temperature of 1000 ° C. by a discharge plasma sintering method. FIG. 3A is a graph showing the Vickers hardness of the obtained sample, FIG. 3A shows the case where M is Ni, FIG. 3B shows the case where M is Cr, and the number of moles of (Al + M) is 75 moles. It was measured for five types of samples with the number of moles of M being 0, 5, 10, 15, and 20. 図4は、TiB2−Al3Ti混合粉体の焼結材においてAl3Tiの重量割合を30%とし放電プラズマ焼結法により焼結した時の焼結温度と得られた試料のビッカース温度との関係を示すグラフである。FIG. 4 shows the sintering temperature and the Vickers temperature of the sample obtained when the sintered material of TiB 2 -Al 3 Ti mixed powder is sintered by the discharge plasma sintering method with the Al 3 Ti weight ratio being 30%. It is a graph which shows the relationship. 図5は、(Al,M)3Ti の重量割合を変えたTiB2−(Al,M)3Ti 混合粉体の焼結材料を放電プラズマ焼結法により温度1000℃で焼結し得られた試料についての曲げ強度を示すグラフであり、図5(a)はMがNi、図5(b)はMがCrの場合であり、(Al+M)のモル数を75モルにしたときのMのモル数が0,5,10,15,20の5種類の試料について測定したものである。Figure 5 is, (Al, M) 3 TiB 2 having different weight percentage of Ti - (Al, M) is obtained by sintering at a temperature 1000 ° C. The sintering material 3 Ti powder mixture Spark Plasma Sintering 5A is a graph showing the bending strength of a sample, FIG. 5A shows the case where M is Ni, FIG. 5B shows the case where M is Cr, and the number of moles of (Al + M) is 75 moles. Measured with respect to five types of samples in which the number of moles of M is 0, 5, 10, 15, and 20. 図6(a)は、焼結材料の混合粉体を放電プラズマ焼結法により1000℃で焼結して作製した試料の表面のSEM像であり、焼結材料が、Al3Tiを加えずにTiB2のみの場合である。FIG. 6A is an SEM image of the surface of a sample prepared by sintering a mixed powder of sintered materials at 1000 ° C. by a discharge plasma sintering method. The sintered material is not added with Al 3 Ti. In the case of TiB 2 only. 図6(b)は、焼結材料の混合粉体を放電プラズマ焼結法により1000℃で焼結して作製した試料の表面のSEM像であり、焼結材料が、TiB2にAl3Tiを重量割合で5%加えた場合である。FIG. 6B is an SEM image of the surface of a sample prepared by sintering a mixed powder of sintered material at 1000 ° C. by a discharge plasma sintering method. The sintered material is TiB 2 and Al 3 Ti. Is 5% by weight. 図6(c)は、焼結材料の混合粉体を放電プラズマ焼結法により1000℃で焼結して作製した試料の表面のSEM像であり、焼結材料が、TiB2にAl3Tiを重量割合で20%加えた場合である。FIG. 6C is an SEM image of the surface of a sample prepared by sintering a mixed powder of sintered materials at 1000 ° C. by a discharge plasma sintering method. The sintered material is TiB 2 and Al 3 Ti. Is 20% by weight. 図6(d)は、焼結材料の混合粉体を放電プラズマ焼結法により1000℃で焼結して作製した試料の表面のSEM像であり、焼結材料が、TiB2にAl3Tiを重量割合で30%加えた場合である。FIG. 6D is an SEM image of the surface of a sample prepared by sintering a mixed powder of sintered materials at 1000 ° C. by a discharge plasma sintering method. The sintered material is TiB 2 and Al 3 Ti. Is 30% by weight. 図6(e)は、焼結材料の混合粉体を放電プラズマ焼結法により1000℃で焼結して作製した試料の表面のSEM像であり、焼結材料が、TiB2に(Al,Ni)3Tiを30%加えた場合(AlとNiのモル比は65:10)である。FIG. 6 (e) is an SEM image of the surface of a sample prepared by sintering a mixed powder of sintered material at 1000 ° C. by a discharge plasma sintering method. The sintered material is TiB 2 (Al, Ni) 3 Ti is added 30% (Al: Ni molar ratio is 65:10). 図6(f)は、焼結材料の混合粉体を放電プラズマ焼結法により1000℃で焼結して作製した試料の表面のSEM像であり、焼結材料が、TiB2に(Al,Cr)3Tiを30%加えた場合(AlとCrのモル比は65:10)である。FIG. 6F is an SEM image of the surface of a sample prepared by sintering a mixed powder of sintered materials at 1000 ° C. by a discharge plasma sintering method. The sintered material is TiB 2 (Al, This is the case when 30% of Cr) 3 Ti is added (the molar ratio of Al to Cr is 65:10). 図7は、TiB2−Al3Ti混合粉体の焼結材においてAl3Tiの重量割合を5%から60%の範囲で変え、放電プラズマ焼結法により焼結温度1000℃で焼結して得られた試料の表面のX線回折スペクトルである。FIG. 7 shows that the sintered material of TiB 2 -Al 3 Ti mixed powder is sintered at a sintering temperature of 1000 ° C. by the discharge plasma sintering method, changing the weight ratio of Al 3 Ti in the range of 5% to 60%. It is the X-ray diffraction spectrum of the surface of the sample obtained by the above. 図8は、TiB2−Al3Ti混合粉体の焼結材においてAl3Tiの重量割合を5%から60%の範囲で変え、放電プラズマ焼結法により焼結温度1000℃で焼結して得られた試料の断面のX線回折スペクトルである。FIG. 8 shows a sintered material of TiB 2 -Al 3 Ti mixed powder in which the weight ratio of Al 3 Ti is changed in the range of 5% to 60%, and sintered at a sintering temperature of 1000 ° C. by the discharge plasma sintering method. 2 is an X-ray diffraction spectrum of a cross section of a sample obtained in this manner. 図9は、70%TiB2−30%(Al,M)3Ti混合粉体を放電プラズマ焼結法により焼結温度1000℃で焼結して得られた試料のX線回折スペクトルであり、(a)はMがNi,(b)はMがCrの場合である。FIG. 9 is an X-ray diffraction spectrum of a sample obtained by sintering 70% TiB 2 -30% (Al, M) 3 Ti mixed powder by a spark plasma sintering method at a sintering temperature of 1000 ° C. (A) is the case where M is Ni and (b) is the case where M is Cr.

本発明による二硼化チタン系焼結体は、TiB2粉末に焼結助剤としてのAl3Ti粉末または(Al,M)3Tiを混合して焼結材料を調製し、調製された混合粉末を焼結材料焼結体作製装置内で焼結することにより作製される。MはNi,Cr,Fe,MoまたはCuの群から1種類ないし2種類以上を選択される元素であり、より望ましくはNiまたはCr元素である。TiB2粉末は市販品として入手される粉末(平均粒径4〜12μm)を用い、Al3Ti粉末はAl粉末とTi粉末を混合し電気炉で加熱反応させて作製し、また、(Al,M)3Ti粉末はAl粉末とTi粉末とM粉末を混合し電気炉で加熱反応させて作製する。Ti粉末は粒径が10μm以下の粉末が入手困難であるため、粒径が100μm程度のTi粉末をいったん水素化し、その後にボールミル等で粉砕することによって10μm以下の粒径の水素化チタン粉末とし、これと市販の粒径10μm前後のAl粉末またはAl粉末及びM粉末とを混合し、加熱反応させてAl3Ti粉末または(Al,M)3Tiを得ることができる。 The titanium diboride-based sintered body according to the present invention is prepared by mixing a TiB 2 powder with an Al 3 Ti powder or (Al, M) 3 Ti as a sintering aid, and preparing a sintered material. It is produced by sintering powder in a sintered material sintered body producing apparatus. M is an element selected from the group consisting of Ni, Cr, Fe, Mo, and Cu, and more preferably Ni or Cr. TiB 2 powder is a commercially available powder (average particle size 4 to 12 μm), Al 3 Ti powder is prepared by mixing Al powder and Ti powder and heating and reacting in an electric furnace. M) 3 Ti powder is made by mixing Al powder, Ti powder and M powder and heating and reacting them in an electric furnace. Since it is difficult to obtain a Ti powder having a particle size of 10 μm or less, Ti powder having a particle size of 10 μm or less is obtained by hydrogenating the Ti powder having a particle size of about 100 μm and then grinding it with a ball mill or the like. This can be mixed with a commercially available Al powder having a particle diameter of around 10 μm or Al powder and M powder and reacted by heating to obtain Al 3 Ti powder or (Al, M) 3 Ti.

TiB2とAl3Tiまたは(Al,M)3Tiの混合粉末の焼結には、短時間で容易に焼結材料を1000℃程度まで加熱できる放電プラズマ焼結法あるいは室温で加圧成形し電気炉で加熱し焼結する方法を用いるのがよいが、他の焼結法を用いてもよい。 To sinter mixed powder of TiB 2 and Al 3 Ti or (Al, M) 3 Ti, the sintered material can be easily heated to about 1000 ° C in a short time or by pressure molding at room temperature. A method of heating and sintering in an electric furnace is preferably used, but other sintering methods may be used.

焼結助剤Al3Tiまたは(Al,M)3Tiの含量は10〜50%の範囲とすべきであり、Al3Tiまたは(Al,M)3Tiの含量が10%未満ではTiB2の焼結が十分に進まず、硬度の低い焼結体となるためである。また、Al3Ti、(Al,M)3Tiはもともとビッカース硬度が300〜600程度であってTiB2より硬度が低く、Al3Tiまたは(Al,M)3Tiの含量が多くなりすぎると焼結体の硬度が低下することから、Al3Tiまたは(Al,M)3Tiの含量は50%以下とすべきである。 The content of sintering aid Al 3 Ti or (Al, M) 3 Ti should be in the range of 10-50%, and if the content of Al 3 Ti or (Al, M) 3 Ti is less than 10%, TiB 2 This is because sintering does not proceed sufficiently and a sintered body with low hardness is obtained. Al 3 Ti and (Al, M) 3 Ti originally have a Vickers hardness of about 300 to 600, which is lower than TiB 2, and if the content of Al 3 Ti or (Al, M) 3 Ti is too high Since the hardness of the sintered body is lowered, the content of Al 3 Ti or (Al, M) 3 Ti should be 50% or less.

本発明による二硼化チタン系焼結体の作製において、主成分としてはTiB2が典型的なものであるが、TiB2を主としつつ他の六方晶系金属硼化物を含むものとしてもよい。また、焼結助剤としてはAl3Tiまたは(Al,M)3Tiが典型的なものであるが、Al3Tiまたは(Al,M)3Tiを主としつつ他の合金成分を含むものとしてもよい。それらを含む焼結助剤の含量は10〜50%になるようにする。さらに、 焼結法としては放電プラズマ焼結法、室温で加圧成形し電気炉で加熱し焼結する方法が典型的なものであるが、本発明においては、ホットプレス焼結法、反応焼結法等他の焼結法を用いても、焼結温度を低くすることができるものである。 In the production of the titanium diboride-based sintered body according to the present invention, TiB 2 is typical as the main component, but it may contain other hexagonal metal borides while mainly containing TiB 2. . Although as a sintering aid Al 3 Ti or (Al, M) 3 Ti is typical, Al 3 Ti or (Al, M) 3 while mainly Ti those containing other alloying ingredients It is good. The content of the sintering aid containing them is set to 10 to 50%. Further, as a sintering method, a discharge plasma sintering method, a method of pressure forming at room temperature, and heating and sintering in an electric furnace are typical, but in the present invention, a hot press sintering method, a reaction sintering method are used. Even if other sintering methods such as a sintering method are used, the sintering temperature can be lowered.

実施例について説明する。(Al,M)3Ti を用いた場合について説明するが、Al3Tiを用いた場合はMを含まないこと以外は同様になる。(Al,M)3Tiを合成するために、まず粒径100μm、純度99.9%のチタン粉末を水素化し、水素化後にボールミリングにより粉砕した。水素化はTi粉末をAr:20%水素混合ガス中で600℃に加熱して行った。水素化後に粉末10gを容量1リットルのアルミナ製容器に入れ、直径5mmのアルミナ製のボール500gを加えて、毎分20回転の回転速度で30時間ミリングを行って粉砕した。このプロセスによって、粒径が数μmの水素化チタン粉末が得られた。 Examples will be described. The case where (Al, M) 3 Ti is used will be described. However, when Al 3 Ti is used, the same applies except that M is not included. In order to synthesize (Al, M) 3 Ti, first, titanium powder having a particle size of 100 μm and a purity of 99.9% was hydrogenated, and then pulverized by ball milling after hydrogenation. Hydrogenation was performed by heating the Ti powder to 600 ° C. in an Ar: 20% hydrogen mixed gas. After hydrogenation, 10 g of the powder was put in an alumina container having a capacity of 1 liter, 500 g of an alumina ball having a diameter of 5 mm was added, and milling was performed by milling for 30 hours at a rotation speed of 20 revolutions per minute. By this process, titanium hydride powder having a particle size of several μm was obtained.

次に、水素化チタン粉末を純度99.9%、粒径5μmのAl粉末と、純度99.9%、粒径10μmのM金属(MはNiまたはCr)と混合し、Arガス中において600℃で1時間反応させることにより(Al,M)3Ti粉末を合成した。さらに、(Al,M)3Tiと粒径5μm、純度99.9%のTiB2粉末を所定の割合に混合し、ボールミリングを行った。このようにして作製した(Al,M)3Ti:TiB2混合粉末を放電プラズマ焼結法により焼結した。 Next, the titanium hydride powder is mixed with Al powder having a purity of 99.9% and a particle size of 5 μm and M metal (M is Ni or Cr) having a purity of 99.9% and a particle size of 10 μm. (Al, M) 3 Ti powder was synthesized by reacting at 1 ° C. for 1 hour. Further, (Al, M) 3 Ti and TiB 2 powder having a particle size of 5 μm and a purity of 99.9% were mixed in a predetermined ratio, and ball milling was performed. The (Al, M) 3 Ti: TiB 2 mixed powder thus produced was sintered by the discharge plasma sintering method.

図1はAl3Ti:TiB2混合粉末、または、(Al,M)3Ti:TiB2混合粉末の焼結を行うための放電プラズマ式焼結体作製装置(SPS1050:住友石炭鉱業株式会社製)の構成を示す図であり、断面で示している。1は水冷真空チャンバ、2は水冷真空チャンバ1に連結され内部の真空度を与えるためのロータリーポンプ及びメカニカルブースターポンプによるポンプ装置である。3は上部パンチ電極であり先端側(チャンバ内)に上部パンチ4を備えている。5は下部電極パンチであり先端側(チャンバ内)に下部パンチ6を備えている。 FIG. 1 shows a spark plasma type sintered body preparation apparatus (SPS1050: manufactured by Sumitomo Coal Mining Co., Ltd.) for sintering Al 3 Ti: TiB 2 mixed powder or (Al, M) 3 Ti: TiB 2 mixed powder. ) Is a diagram showing the configuration of the cross section. Reference numeral 1 is a water-cooled vacuum chamber, and 2 is a pump device that is connected to the water-cooled vacuum chamber 1 and that uses a rotary pump and a mechanical booster pump to give an internal vacuum. An upper punch electrode 3 has an upper punch 4 on the tip side (inside the chamber). Reference numeral 5 denotes a lower electrode punch having a lower punch 6 on the tip side (inside the chamber).

上部パンチ4と下部パンチ6とは間隔をおいて対向する位置関係にあり、このパンチ間の空間を包囲して覆う形で筒状の焼結ダイ7が配設され、上部パンチ4、下部パンチ6、焼結ダイ7で囲まれた空間は焼結材料の混合粉末10が充填されることになる。用いた装置の焼結ダイ7の内径は20mm、高さ40mmである。焼結ダイ7に焼結材料の混合粉末を充填し、上部パンチ4と下部パンチ6とで焼結材料を挟んでチャンバ内に設置した後にチャンバが閉鎖され、ポンプ2によりチャンバ内の排気を行い、上部パンチ電極3下部とパンチ電極5により応力負荷を与えるとともに上部パンチ4、下部パンチ6を通じて焼結材料の混合粉末10にパルス電圧・電流を印加する。   The upper punch 4 and the lower punch 6 are positioned so as to face each other with a space therebetween, and a cylindrical sintered die 7 is disposed so as to surround and cover the space between the punches. 6. The space surrounded by the sintering die 7 is filled with the mixed powder 10 of the sintering material. The inner diameter of the sintering die 7 of the used apparatus is 20 mm and the height is 40 mm. The sintered die 7 is filled with the mixed powder of the sintered material, and the sintered material is sandwiched between the upper punch 4 and the lower punch 6, and then the chamber is closed. The pump 2 exhausts the chamber. A stress load is applied by the lower part of the upper punch electrode 3 and the punch electrode 5 and a pulse voltage / current is applied to the mixed powder 10 of the sintered material through the upper punch 4 and the lower punch 6.

放電プラズマ式の焼結体作製装置では、応力負荷状態で大電流の印加により焼結温度まで急速に昇温がなされ、混合粉末の焼結を行うことができる。昇温速度は100℃/分であり、10分間所定の焼結温度に保持し焼結を行った後、炉冷により冷却する。焼結時の真空度はロータリーポンプとメカニカルブースターポンプにより50Paまで排気し、焼結時の負荷応力は20Paである。実施した例では、焼結ダイ7に5gの焼結材料の混合粉末を充填している。   In the discharge plasma type sintered compact manufacturing apparatus, the mixed powder can be sintered by rapidly raising the temperature to the sintering temperature by applying a large current in a stress load state. The rate of temperature increase is 100 ° C./min. After maintaining at a predetermined sintering temperature for 10 minutes and performing sintering, cooling is performed by furnace cooling. The degree of vacuum during sintering is evacuated to 50 Pa by a rotary pump and a mechanical booster pump, and the load stress during sintering is 20 Pa. In the implemented example, the sintered die 7 is filled with 5 g of a mixed powder of sintered material.

図2に、Al3Tiの割合(重量比)を0%から70%まで変化させて、放電プラズマ焼結法により、1000℃の焼結温度に10分間保持し焼結して得られた試料について室温でビッカース硬度を測定した結果を示す。Al3Tiを全く加えない時の試料のビッカース硬度は100であり、非常に低い。これは、TiB2が難焼結性材料であり、1000℃ではほとんど焼結しないことを示している。Al3Tiを5%加えると、ビッカース硬度は1000以上の高い値を示し、飛躍的に硬度が改善することがわかる。 FIG. 2 shows a sample obtained by changing the Al 3 Ti ratio (weight ratio) from 0% to 70%, and maintaining the sintering temperature at 1000 ° C. for 10 minutes by the spark plasma sintering method. The result of having measured Vickers hardness at room temperature about is shown. When no Al 3 Ti is added, the sample has a Vickers hardness of 100, which is very low. This indicates that TiB 2 is a hardly sinterable material and hardly sinters at 1000 ° C. It can be seen that when 5% Al 3 Ti is added, the Vickers hardness is as high as 1000 or more, and the hardness is dramatically improved.

さらに、Al3Tiの割合が20%と40%の間ではビッカース硬度2000以上の高い値が得られ、Al3Tiが50%以上になるとビッカース硬度は減少し、Al3Tiの割合がさらに増加するとビッカース硬度は漸減する。これはビッカース硬度が600であるAl3Tiの割合が増大することによって硬度が下がるためである。そこで、図2に示すビッカース硬度についての結果から、本発明としては、1000以上のビッカース硬度が得られるAl3Tiの重量割合として5%以上50以下が実際上適切な範囲であり、さらに、ビッカース硬度が2000程度になる20%以上40%以下の範囲がより望ましい範囲と言える。 Furthermore, when the proportion of Al 3 Ti is between 20% and 40%, a high value of Vickers hardness of 2000 or more is obtained, and when the proportion of Al 3 Ti exceeds 50%, the Vickers hardness decreases and the proportion of Al 3 Ti further increases. Then, the Vickers hardness gradually decreases. This is because the hardness decreases as the proportion of Al 3 Ti having a Vickers hardness of 600 increases. Therefore, from the result of the Vickers hardness shown in FIG. 2, the present invention has a practically appropriate range of 5% to 50% as the weight ratio of Al 3 Ti that can obtain a Vickers hardness of 1000 or more. It can be said that a range of 20% to 40% in which the hardness is about 2000 is a more desirable range.

図3に、(Al,M)3Tiの割合(重量比)を0%から50%まで変化させて、放電プラズマ焼結法により、1000℃の焼結温度に10分間保持し焼結して得られた試料について室温でビッカース硬度を測定した結果を示す。(a)はMがNi、(b)はMがCrの場合である。(Al,M)3Tiを全く加えない時の試料のビッカース硬度は100であり、非常に低い。これは、TiB2が難焼結性材料であり、1000℃ではほとんど焼結しないことを示している。(Al,M)3Tiを10%以上加えると、ビッカース硬度は500以上の高い値を示し、飛躍的に硬度が改善することがわかる。 In FIG. 3, the ratio (weight ratio) of (Al, M) 3 Ti is changed from 0% to 50%, and is held by sintering at a sintering temperature of 1000 ° C. for 10 minutes by the spark plasma sintering method. The result of having measured the Vickers hardness at room temperature about the obtained sample is shown. (A) is the case where M is Ni and (b) is the case where M is Cr. When no (Al, M) 3 Ti is added, the sample has a Vickers hardness of 100, which is very low. This indicates that TiB 2 is a hardly sinterable material and hardly sinters at 1000 ° C. It can be seen that when 10% or more of (Al, M) 3 Ti is added, the Vickers hardness shows a high value of 500 or more, and the hardness is drastically improved.

さらに、(Al,M)3Tiの割合が20%と40%の間ではビッカース硬度800以上の高い値が得られ、(Al,M)3Tiが40%以上になるとビッカース硬度は減少し、(Al,M)3Tiの割合がさらに増加するとビッカース硬度は漸減する。これはビッカース硬度が200〜300である(Al,M)3Tiの割合が増大することによって硬度が下がるためである。そこで、図2に示すビッカース硬度についての結果から、本発明としては、500以上のビッカース硬度が得られる(Al,M)3Tiの重量割合として10%以上50%以下が実際上適切な範囲であり、さらに、ビッカース硬度が800程度になる20%以上40%以下の範囲がより望ましい範囲と言える。 Furthermore, when the ratio of (Al, M) 3 Ti is between 20% and 40%, a high value of Vickers hardness of 800 or more is obtained, and when (Al, M) 3 Ti is 40% or more, the Vickers hardness decreases, As the proportion of (Al, M) 3 Ti further increases, the Vickers hardness gradually decreases. This is because the hardness decreases as the proportion of (Al, M) 3 Ti having a Vickers hardness of 200 to 300 increases. Therefore, from the results of the Vickers hardness shown in FIG. 2, in the present invention, a Vickers hardness of 500 or more is obtained, and the weight ratio of (Al, M) 3 Ti is 10% or more and 50% or less in a practically appropriate range. Furthermore, it can be said that a range of 20% to 40% in which the Vickers hardness is about 800 is a more desirable range.

図4に、TiB2に重量割合で30%となるようにAl3Tiを添加した混合粉体を放電プラズマ焼結法により焼結した時の焼結温度と得られた焼結体のビッカース硬度との関係を示す。焼結温度が800℃でビッカース硬度が1000であり、焼結温度が900℃ではビッカース硬度が2000となる高硬度材料が得られている。焼結温度を1000℃より高くしてもビッカース硬度の点からは改善が見られない。このことから、本発明としては、実際上の焼結温度としてはビッカース硬度1000の焼結体が得られかつ従来の焼結温度より低い800℃以上1300℃以下が適切な範囲であり、さらに2000程度のビッカース硬度のものが得られる900℃以上1100℃以下の範囲がより望ましい範囲と言える。 Fig. 4 shows the sintering temperature and the Vickers hardness of the resulting sintered body when a powder mixture containing Al 3 Ti added to TiB 2 at 30% by weight is sintered by the spark plasma sintering method. Shows the relationship. A high hardness material having a Vickers hardness of 1000 at a sintering temperature of 800 ° C. and a Vickers hardness of 2000 at a sintering temperature of 900 ° C. is obtained. Even if the sintering temperature is higher than 1000 ° C., no improvement is observed in terms of Vickers hardness. Therefore, in the present invention, as an actual sintering temperature, a sintered body having a Vickers hardness of 1000 is obtained, and an appropriate range is 800 ° C. or higher and 1300 ° C. or lower, which is lower than the conventional sintering temperature. It can be said that a range of 900 ° C. or higher and 1100 ° C. or lower at which a Vickers hardness of a certain degree is obtained is a more desirable range.

図5に、(Al,M)3Ti の割合(重量比)を0%から50%まで変化させて、放電プラズマ焼結法により、1000℃の焼結温度に10分間保持し焼結して得られた試料について室温で曲げ強度を測定した結果を示す。(a)はMがNi、(b)はMがCrの場合である。Mを含まないAl3Tiを添加した試料の曲げ強度が200MPaであるのに対し、Alの一部をMで置換した試料では曲げ強度は改善していることが分かる。 In FIG. 5, the ratio (weight ratio) of (Al, M) 3 Ti is changed from 0% to 50%, and is held at a sintering temperature of 1000 ° C. for 10 minutes by the spark plasma sintering method. The result of having measured bending strength at room temperature about the obtained sample is shown. (A) is the case where M is Ni and (b) is the case where M is Cr. It can be seen that the bending strength of the sample in which Al 3 Ti not containing M is added is 200 MPa, whereas the bending strength is improved in the sample in which a part of Al is replaced with M.

そこで、図5に示す曲げ強度についての結果から、Mの添加割合として、MとAlのモル比が5/70から20/55となるように加えることで加えることで、曲げ強度の改善が見られ、特にMとAlのモル比が10/65以上15/60以下の範囲がより望ましい範囲と言える。   Therefore, from the results of bending strength shown in FIG. 5, the addition of M so that the molar ratio of M and Al is from 5/70 to 20/55 improves the bending strength. In particular, the range where the molar ratio of M to Al is from 10/65 to 15/60 is a more desirable range.

図6に、焼結材料の混合粉体を放電プラズマ焼結法により1000℃で焼結して作製した試料の表面のSEM像を示す。(a)はAl3Tiを加えずにTiB2のみを焼結した試料材料の場合であり、(b)はTiB2にAl3Tiを重量割合で5%加えた焼結材料の場合、(c)はTiB2にAl3Tiを重量割合で20%加えた焼結材料の場合、(d)TiB2にAl3Tiを重量割合で30%加えた焼結材料の場合に作製された試料のSEM像であり、(e)はTiB2に(Al,Ni)3Tiを30%加えて1000℃で放電プラズマ焼結法によって焼結した試料のSEM像で、AlとNiのモル比は65:10であり、(f)はTiB2に(Al,Cr)3Tiを30%加えて1000℃で放電プラズマ焼結法によって焼結した試料のSEM像で、AlとCrのモル比は65:10である。 FIG. 6 shows an SEM image of the surface of a sample prepared by sintering the mixed powder of the sintered material at 1000 ° C. by the discharge plasma sintering method. (A) is a case of a sample material obtained by sintering only TiB 2 without adding Al 3 Ti, and (b) is a case of a sintered material obtained by adding 5% by weight of Al 3 Ti to TiB 2 ( c) in the case of a sintered material obtained by adding 20% Al 3 Ti in a weight ratio to the TiB 2, (d) TiB 30 2 in the Al 3 Ti in a weight ratio% added sample made in the case of the sintered material (E) is a SEM image of a sample sintered at 1000 ° C. by adding 30% (Al, Ni) 3 Ti to TiB 2 and sintered at 1000 ° C. The molar ratio of Al to Ni is 65:10, (f) is an SEM image of a sample sintered at 1000 ° C. by adding 30% of (Al, Cr) 3 Ti to TiB 2 , and the molar ratio of Al to Cr is 65:10.

(a)のAl3Tiを加えずにTiB2のみを焼結した試料では、焼結前の粒径5μmのTiB2の粒子がそのままの形状で観測される。これに対して、(b)5%、(c)20%、(d)30%のようにAl3Tiを加えた試料では、TiB2の粒子の周りにTiB2が融合した領域が見られ、焼結が進んでいることがわかる。また、(e)、(f)の(Al,M)3Ti を加えた試料でも、TiB2の粒子の周りにTiB2が融合した領域が見られ、焼結が進んでいることがわかる。 In the sample in which only TiB 2 is sintered without adding Al 3 Ti in (a), TiB 2 particles having a particle diameter of 5 μm before sintering are observed as they are. In contrast, observed region TiB 2 is fused around (b) 5%, (c ) 20%, with (d) 30% sample plus Al 3 Ti as is the TiB 2 particles It can be seen that the sintering is progressing. Further, (e), of (f) (Al, M) in 3 Ti added sample, observed region TiB 2 is fused around the particle TiB 2, it can be seen that advanced sintering.

図7に、Al3Tiの割合(重量比)を5%から60%まで変化させ放電プラズマ焼結法により1000℃で10分間保持し焼結して得られた試料について測定した表面のX線回折スペクトルを示す。図で上側に下向きの矢印(↓)を付したピークがTiB2の回折線である。Al3Tiを60%加えた試料でも表面はほとんどTiB2であることがわかる。なお、試料は焼結後表面のグラファイト層を除去するためにSiC研磨紙で研磨している。 FIG. 7 shows the surface X-rays measured for a sample obtained by changing the Al 3 Ti ratio (weight ratio) from 5% to 60% and holding and sintering at 1000 ° C. for 10 minutes by the discharge plasma sintering method. A diffraction spectrum is shown. In the figure, the peak with a downward arrow (↓) on the upper side is the TiB 2 diffraction line. It can be seen that the surface is almost TiB 2 even in a sample to which 60% Al 3 Ti is added. The sample was polished with SiC abrasive paper to remove the graphite layer on the surface after sintering.

図8に、Al3Tiの割合(重量比)を5%から60%まで変化させ放電プラズマ焼結法により1000℃で10分間保持し焼結して得られた試料を切断機で切断し、断面のX線回折スペクトルを測定した結果を示す。図でAl3Tiを40%以上加えた試料では試料内部に多量のAl3Ti(▲を付したピーク)が含まれることがわかる。 In FIG. 8, the sample obtained by changing the Al 3 Ti ratio (weight ratio) from 5% to 60% and holding at 1000 ° C. for 10 minutes by the discharge plasma sintering method is cut with a cutting machine. The result of having measured the X-ray diffraction spectrum of the cross section is shown. In the figure, it can be seen that a sample to which 40% or more of Al 3 Ti is added contains a large amount of Al 3 Ti (peak marked with ▲) inside the sample.

図9に、TiB2に(Al、M)3Tiの割合(重量比)を30%として添加し、MのAlに対するモル比を10/65とし、放電プラズマ焼結法により1000℃で10分間保持し焼結して得られた試料について測定したX線回折スペクトルを示す。(a)ではMがNi、(b)ではMがCrである。上側に下向きの矢印(↓)を付したピークがTiB2の回折線ある。矢印に(Al,M)3Tiと示されたピークが立方晶L12型(Al,M)3Ti構造の回折線である。図7、図8、図9で横軸は回折線測定の際の試料の回転角度(度)、縦軸は回折の強度を表している。 In FIG. 9, the ratio (weight ratio) of (Al, M) 3 Ti is added to TiB 2 at 30%, the molar ratio of M to Al is 10/65, and the discharge plasma sintering method is performed at 1000 ° C. for 10 minutes. The X-ray diffraction spectrum measured about the sample obtained by hold | maintaining and sintering is shown. In (a), M is Ni, and in (b), M is Cr. The peak with a downward arrow (↓) on the upper side is the TiB 2 diffraction line. Arrow (Al, M) 3 peaks indicated as Ti cubic L1 2 type (Al, M) is a diffraction line 3 Ti structure. 7, 8, and 9, the horizontal axis represents the rotation angle (degree) of the sample during diffraction line measurement, and the vertical axis represents the diffraction intensity.

本発明によれば、二硼化チタンにAl3Tiまたは、MをNi、Cr、Fe、Mo、Cuの1種類ないし2種類以上の組み合わせとして、(Al,M)3Tiを焼結助剤として添加することで、従来の焼結温度に比べて圧倒的に低い1000℃で焼結しても高硬度、硬緻密性の焼結体が得られる。さらに、焼結助剤が(Al,M)3Tiの場合には、Al3Tiの場合よりも高い曲げ強度とすることができる。 According to the present invention, titanium diboride and Al 3 Ti or M as one or a combination of two or more of Ni, Cr, Fe, Mo and Cu, and (Al, M) 3 Ti as a sintering aid As a result, it is possible to obtain a sintered body having high hardness and high density even when sintered at 1000 ° C., which is overwhelmingly lower than the conventional sintering temperature. Further, when the sintering aid is (Al, M) 3 Ti, the bending strength can be higher than that of Al 3 Ti.

Al3Tiは硬度が大きいが、一方で脆い欠点をもつものである。金属材料学では、結晶構造の対称性が高く、単位格子の大きさが小さいほど、塑性変形し易いとされる。Al3Tiは正方晶結晶構造をもつが、Alの一部をNi、Cr、Fe、Mo、Cuなどの遷移金属で置換すると立方晶に結晶構造が変わり、結晶構造の大きさがほぼ1/2になることが知られている。Al3Ti添加TiB2焼結体の曲げ強度が(AL,M)3Ti添加の場合より低くなるのは、Al3Tiが脆いことが原因であると考えられる。MをNi、Cr、 Fe、Mo、Cuの1種類ないし2種類以上の組み合わせとして、(Al,M)3Ti添加TiB2の焼結体はAl3Ti添加の場合と同様に1000℃の低温焼結がなされる上に、高密度、硬硬度の焼結体が得られ、曲げ強度の点で改善される。 Al 3 Ti has a high hardness, but has a brittle defect. In metal material science, the higher the symmetry of the crystal structure and the smaller the unit cell size, the easier the plastic deformation. Al 3 Ti has a tetragonal crystal structure, but if a part of Al is replaced with a transition metal such as Ni, Cr, Fe, Mo, or Cu, the crystal structure changes to cubic, and the size of the crystal structure is almost 1 / 2 is known to be. The reason why the bending strength of the Al 3 Ti-added TiB 2 sintered body is lower than that in the case of (AL, M) 3 Ti addition is considered to be due to the brittleness of Al 3 Ti. Assuming that M is one or more combinations of Ni, Cr, Fe, Mo, and Cu, the sintered body of (Al, M) 3 Ti-added TiB 2 has a low temperature of 1000 ° C. as in the case of Al 3 Ti addition. In addition to being sintered, a sintered body with high density and hardness is obtained, which is improved in terms of bending strength.

1 水冷真空チャンバ
2 ポンプ装置
3 上部パンチ電極
4 上部パンチ
5 下部パンチ電極
6 下部パンチ
7 焼結ダイ
10 混合粉末
DESCRIPTION OF SYMBOLS 1 Water-cooled vacuum chamber 2 Pump apparatus 3 Upper punch electrode 4 Upper punch 5 Lower punch electrode 6 Lower punch 7 Sintering die 10 Mixed powder

Claims (4)

TiB2を主成分とした金属硼化物基本成分と焼結助剤としての焼結助剤とからなる二硼化チタン系焼結体であって、Al3Tiまたは、MをNi,Cr,Fe,Mo,Cuの1種類ないし2種類以上の組み合わせとして、(Al,M)3Tiを主成分とする焼結助剤が全重量の10%以上50%以下の含量であり、他の部分がTiB2を主成分とする六方晶系金属硼化物からなる二硼化チタン系焼結体。 A titanium diboride-based sintered body comprising a basic component of a metal boride mainly composed of TiB 2 and a sintering aid as a sintering aid, wherein Al 3 Ti or M is Ni, Cr, Fe As a combination of one, two or more of Mo, Cu, the sintering aid mainly composed of (Al, M) 3 Ti has a content of 10% to 50% of the total weight, and the other parts are A titanium diboride sintered body made of hexagonal metal boride containing TiB 2 as a main component. (Al,M)3Ti を主成分とする焼結助剤が全重量の20%以上40%以下の含量であることを特徴とする請求項1に記載の二硼化チタン系焼結体。 2. The titanium diboride-based sintered body according to claim 1, wherein the sintering aid mainly composed of (Al, M) 3 Ti has a content of 20% to 40% of the total weight. TiB2を主成分とした金属硼化物基本成分と焼結助剤としての焼結助剤との混合物の焼結により二硼化チタン系焼結体を製造する方法であって、Al3Tiまたは、MをNi,Cr,Fe,Mo,Cuの1種類ないし2種類以上の組み合わせとして、(Al,M)3Ti を主成分とし全重量の10%以上50%以下の含量となる焼結助剤粉末体と、他の部分となるTiB2を主成分とする六方晶系金属硼化物粉末体とをそれぞれ作製することと、それぞれ作製された六方晶系金属硼化物粉末体と焼結助剤粉末とを混合した混合物を得ることと、六方晶系金属硼化物粉末体と焼結助剤粉末との混合物を焼結体作製装置中で800℃以上1300℃以下の温度に加熱し焼結体を作製することとからなる二硼化チタン系焼結体を製造する方法。 A method for producing a titanium diboride-based sintered body by sintering a mixture of a metal boride basic component mainly composed of TiB 2 and a sintering aid as a sintering aid, comprising Al 3 Ti or , M as a combination of one or more of Ni, Cr, Fe, Mo, Cu, and sintering aids with a content of 10% to 50% of the total weight with (Al, M) 3 Ti as the main component Respectively, and a hexagonal metal boride powder body mainly composed of TiB 2 as a main component, and a hexagonal metal boride powder body and a sintering aid respectively produced. Obtaining a mixture obtained by mixing the powder, and heating the mixture of the hexagonal metal boride powder and the sintering aid powder to a temperature of 800 ° C. or higher and 1300 ° C. or lower in a sintered body manufacturing apparatus. A method for producing a titanium diboride-based sintered body comprising: 前記焼結助剤が(Al,M)3Tiを主成分とし全重量の20%以上40%以下の含量となる焼結助剤粉末体であって、六方晶系金属硼化物粉末体と焼結助剤粉末との混合物を焼結体作製装置中で900℃以上1100℃以下の温度に加熱し焼結体を作製することを特徴とする請求項3に記載の二硼化チタン系焼結体を製造する方法。 The sintering aid is a sintering aid powder body containing (Al, M) 3 Ti as a main component and having a content of 20% to 40% of the total weight, comprising a hexagonal metal boride powder body and a sintered body. 4. The titanium diboride-based sintering according to claim 3, wherein the mixture with the binder powder is heated to a temperature of 900 ° C. or higher and 1100 ° C. or lower in a sintered body manufacturing apparatus to prepare a sintered body. A method of manufacturing a body.
JP2011205109A 2010-09-21 2011-09-20 Titanium diboride-based sintered compact, and method for producing the same Withdrawn JP2012087042A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011205109A JP2012087042A (en) 2010-09-21 2011-09-20 Titanium diboride-based sintered compact, and method for producing the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010211107 2010-09-21
JP2010211107 2010-09-21
JP2011205109A JP2012087042A (en) 2010-09-21 2011-09-20 Titanium diboride-based sintered compact, and method for producing the same

Publications (1)

Publication Number Publication Date
JP2012087042A true JP2012087042A (en) 2012-05-10

Family

ID=46259083

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011205109A Withdrawn JP2012087042A (en) 2010-09-21 2011-09-20 Titanium diboride-based sintered compact, and method for producing the same

Country Status (1)

Country Link
JP (1) JP2012087042A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016132612A (en) * 2015-01-22 2016-07-25 株式会社シンターランド Die for sintering, and manufacturing method thereof
CN107419126A (en) * 2017-07-04 2017-12-01 北京理工大学 A kind of TiB TiB2The fast preparation method of Al composite ceramicses
CN114105649A (en) * 2021-12-28 2022-03-01 北京理工大学重庆创新中心 Titanium diboride-based metal composite ceramic material and hot-pressing preparation method thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016132612A (en) * 2015-01-22 2016-07-25 株式会社シンターランド Die for sintering, and manufacturing method thereof
CN107419126A (en) * 2017-07-04 2017-12-01 北京理工大学 A kind of TiB TiB2The fast preparation method of Al composite ceramicses
CN107419126B (en) * 2017-07-04 2019-04-02 北京理工大学 A kind of TiB-TiB2The fast preparation method of-Al composite ceramics
CN114105649A (en) * 2021-12-28 2022-03-01 北京理工大学重庆创新中心 Titanium diboride-based metal composite ceramic material and hot-pressing preparation method thereof

Similar Documents

Publication Publication Date Title
Teber et al. Effect of SPS process sintering on the microstructure and mechanical properties of nanocrystalline TiC for tools application
JP5427380B2 (en) Carbide composite material and manufacturing method thereof
Demirskyi et al. High-temperature reactive spark plasma consolidation of TiB2–NbC ceramic composites
Li et al. Microstructure and properties of Ti (C, N)–TiB2–FeCoCrNiAl high-entropy alloys composite cermets
CN109879669A (en) A kind of high entropy ceramic composite and its preparation method and application with high intensity
CN109072360A (en) The adhesive composition of four tungsten borides and that grinding method
Fazili et al. Effect of Al2O3 ceramic binder on mechanical and microstructure properties of spark plasma sintered WC-Co cermets
CN109182874A (en) A kind of preparation method of Ti (C, the N) based ceramic metal for adding graphene
Ding et al. In situ synthesis of TiC cermet by spark plasma reaction sintering
Wang et al. Ti (C, N)-based cermets sintered under high pressure
JP6259978B2 (en) Ni-based intermetallic compound sintered body and method for producing the same
JP2012087042A (en) Titanium diboride-based sintered compact, and method for producing the same
JP4809096B2 (en) TiB2-based Ti-Si-C composite ceramics and method for producing sintered body thereof
JP6615108B2 (en) High temperature oxidation resistant rare metal-free hard sintered body and method for producing the same
CN104195364A (en) Titanium-based metal carbide and preparation method thereof
XU et al. Microstructure and mechanical properties of Ti–43Al–9V alloy fabricated by spark plasma sintering
JP6654169B2 (en) How to make a mold for sintering
JP2004142993A (en) Hexagonal composite carbide, and production method therefor
Jiang et al. Parameters investigation during simultaneous synthesis and densification WC–Ni composites by field-activated combustion
JP4809092B2 (en) TiC-based Ti-Si-C composite ceramics and method for producing the same
CN110343932B (en) WVTaZrSc refractory high-entropy alloy with high strength and preparation method thereof
KR20120046488A (en) Process for composite materials of nanostructured metal carbides-intermetallic compounds
Liu et al. Preparation, microstructure and mechanical properties of bulk (W0. 5Al0. 5) C0. 65 without binder phase by reactive hot-pressing
Lee et al. Properties of TiC-Mo 2 C-WC-Ni Cermets by a High-Energy Ball Milling/Spark Plasma Sintering
Jiang et al. Combustion synthesis of tungsten carbides under electric fieldII. Field-activated pressure-assisted combustion synthesis

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20141202