JP7465295B2 - 収差補正装置および電子顕微鏡 - Google Patents

収差補正装置および電子顕微鏡 Download PDF

Info

Publication number
JP7465295B2
JP7465295B2 JP2022025844A JP2022025844A JP7465295B2 JP 7465295 B2 JP7465295 B2 JP 7465295B2 JP 2022025844 A JP2022025844 A JP 2022025844A JP 2022025844 A JP2022025844 A JP 2022025844A JP 7465295 B2 JP7465295 B2 JP 7465295B2
Authority
JP
Japan
Prior art keywords
multipole element
field
transfer
aberration
multipole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2022025844A
Other languages
English (en)
Other versions
JP2023122250A (ja
Inventor
茂幸 森下
英敬 沢田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jeol Ltd
Original Assignee
Jeol Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jeol Ltd filed Critical Jeol Ltd
Priority to JP2022025844A priority Critical patent/JP7465295B2/ja
Priority to EP23155548.3A priority patent/EP4231327B1/en
Priority to US18/169,270 priority patent/US20230268155A1/en
Publication of JP2023122250A publication Critical patent/JP2023122250A/ja
Application granted granted Critical
Publication of JP7465295B2 publication Critical patent/JP7465295B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement, ion-optical arrangement
    • H01J37/153Electron-optical or ion-optical arrangements for the correction of image defects, e.g. stigmators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/26Electron or ion microscopes; Electron or ion diffraction tubes
    • H01J37/28Electron or ion microscopes; Electron or ion diffraction tubes with scanning beams

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Particle Accelerators (AREA)
  • Electron Beam Exposure (AREA)

Description

本発明は、収差補正装置および電子顕微鏡に関する。
透過電子顕微鏡(Transmission Electron Microscope、TEM)や走査電子顕微鏡(Scanning Electron Microscope、SEM)等の電子顕微鏡において、収差補正は、高分解能像を取得するうえで重要な技術である。
特許文献1には、三段の3回対称場(3回対称の磁場または3回対称の電場)を用いて、球面収差を補正しつつ高次収差を除去することが可能な球面収差補正装置が開示されている。
特許文献2には、二段の電磁場重畳4極子場(電場四極子場と磁場四極子場とが重畳された四極子場)を用いて色収差の補正を行う光学系が開示されている。
特許文献3には、幾何収差補正装置の転送レンズ系に色収差補正用光学系を用いることによって、球面収差と色収差の両方を補正できる収差補正装置が開示されている。
特開2009-54565号公報 特開2014-116219号公報 特開2019-129073号公報
電子顕微鏡において、より高分解能な観察を行うために、高次の収差を補正可能な収差補正装置が望まれている。
本発明に係る収差補正装置の一態様は、
6極子場を発生させる第1多極子と、
前記第1多極子とは極性が逆の6極子場を発生させる第2多極子と、
前記第1多極子と前記第2多極子との間に配置され、8極子場を発生させる第3多極子と、
前記第1多極子と前記第3多極子の間に配置された第1転送レンズ系と、
前記第3多極子と前記第2多極子との間に配置された第2転送レンズ系と、
を含み、
前記第1転送レンズ系は、電磁場重畳4極子場と8極子場が重畳された場を発生させる複数の第4多極子を含み、
前記第2転送レンズ系は、電磁場重畳4極子場と8極子場が重畳された場を発生させる複数の第5多極子を含み、
前記複数の第4多極子の各々が発生させる4極子場および前記複数の第5多極子の各々が発生させる4極子場によって、スター収差を発生させ、
前記複数の第4多極子の各々が発生させる8極子場および前記複数の第5多極子の各々が発生させる8極子場によって、4回非点を発生させ、
スター収差と4回非点のコンビネーション収差として6回非点を発生させる
本発明に係る収差補正装置の一態様は、
6極子場を発生させる第1多極子と、
前記第1多極子とは極性が逆の6極子場を発生させる第2多極子と、
前記第1多極子と前記第2多極子との間に配置され、8極子場を発生させる第3多極子と、
前記第1多極子と前記第3多極子の間に配置された第1転送レンズ系と、
前記第3多極子と前記第2多極子との間に配置された第2転送レンズ系と、
を含み、
前記第1転送レンズ系は、電磁場重畳4極子場と8極子場が重畳された場を発生させる複数の第4多極子を含み、
前記第2転送レンズ系は、電磁場重畳4極子場と8極子場が重畳された場を発生させる複数の第5多極子を含み、
前記複数の第4多極子の各々が発生させる4極子場および前記複数の第5多極子の各々が発生させる4極子場によって、スター収差を発生させ、
前記複数の第4多極子の各々が発生させる8極子場および前記複数の第5多極子の各々が発生させる8極子場によって、4回非点を発生させ、
スター収差と4回非点のコンビネーション収差として5次スター収差を発生させる
本発明に係る収差補正装置の一態様は、
6極子場を発生させる第1多極子と、
前記第1多極子とは極性が逆の6極子場を発生させる第2多極子と、
前記第1多極子と前記第2多極子との間に配置され、8極子場を発生させる第3多極子と、
前記第1多極子と前記第3多極子の間に配置された第1転送レンズ系と、
前記第3多極子と前記第2多極子との間に配置された第2転送レンズ系と、
を含み、
前記第1転送レンズ系は、電磁場重畳4極子場と8極子場が重畳された場を発生させる複数の第4多極子を含み、
前記第2転送レンズ系は、電磁場重畳4極子場と8極子場が重畳された場を発生させる
複数の第5多極子を含み、
前記複数の第4多極子のうちの6回非点補正用第4多極子が発生させる4極子場、および前記複数の第5多極子のうちの6回非点補正用第5多極子が発生させる4極子場によって、6回非点補正用のスター収差を発生させ、
前記6回非点補正用第4多極子が発生させる8極子場および前記6回非点補正用第5多極子が発生させる8極子場によって、6回非点補正用の4回非点を発生させ、
前記6回非点補正用のスター収差と前記6回非点補正用の4回非点のコンビネーション収差として6回非点を発生させ、
前記複数の第4多極子のうちの5次スター収差補正用第4多極子が発生させる4極子場、および前記複数の第5多極子のうちの5次スター収差補正用第5多極子が発生させる4極子場によって、5次スター収差補正用のスター収差を発生させ、
前記5次スター収差補正用第4多極子が発生させる8極子場および前記5次スター収差補正用第5多極子が発生させる8極子場によって、5次スター収差補正用の4回非点を発生させ、
前記5次スター収差補正用のスター収差と前記5次スター収差補正用の4回非点のコンビネーション収差として5次スター収差を発生させる。
このような収差補正装置では、第1転送レンズ系が電磁場重畳4極子場と8極子場が重畳された場を発生させる複数の第4多極子を含み、第2転送レンズ系が電磁場重畳4極子場と8極子場が重畳された場を発生させる複数の第5多極子を含むため、5次収差を補正できる。
本発明に係る電子顕微鏡の一態様は、
上記収差補正装置を含む。
第1実施形態に係る収差補正装置の構成を示す図。 第1転送多極子を模式的に示す平面図。 電場4極子場から電子線が受ける力を説明するための図。 磁場4極子場から電子線が受ける力を説明するための図。 第2実施形態に係る収差補正装置の構成を示す図。 第3実施形態に係る電子顕微鏡の構成を示す図。 第4実施形態に係る電子顕微鏡の構成を示す図。 第1転送レンズ系の変形例を示す図。 第1転送レンズ系の変形例を示す図。 第1転送レンズ系の変形例を示す図。 第1転送レンズ系の変形例を示す図。
以下、本発明の好適な実施形態について図面を用いて詳細に説明する。なお、以下に説明する実施形態は、特許請求の範囲に記載された本発明の内容を不当に限定するものではない。また、以下で説明される構成の全てが本発明の必須構成要件であるとは限らない。
1. 第1実施形態
1.1. 収差補正装置
まず、第1実施形態に係る収差補正装置について図面を参照しながら説明する。図1は、第1実施形態に係る収差補正装置100の構成を示す図である。図1では、収差補正装置100が電子顕微鏡の結像系に組み込まれている場合を図示している。なお、図1には、各多極子が発生させる場を示す記号を図示しており、「H」は6極子場を示し、「Q」は4極子場を示し、「QO」は4極子場と8極子場の重畳場を示している。
収差補正装置100は、図1に示すように、電子顕微鏡の結像系に組み込まれている。収差補正装置100は、結像系(対物レンズ2)の球面収差および色収差を補正する。図示の例では、対物レンズ2と収差補正装置100の間に、転送レンズ4および転送レンズ6が配置されている。また、収差補正装置100は、対物レンズ2と投影レンズ8の間に配置されている。
収差補正装置100は、図1に示すように、第1多極子110と、第2多極子120と、第3多極子130と、第1転送レンズ系140と、第2転送レンズ系150と、を含む。
第1多極子110および第2多極子120は、光軸OAに沿って配置されている。光軸OAは、第1多極子110の中心、および第2多極子120の中心を通る。第1多極子110と第2多極子120は、光軸OAに沿った方向に互いに離隔して配置されている。収差補正装置100では、電子線の進行方向に、第1多極子110、第2多極子120の順で配置されている。
第1多極子110は、6極子場(磁場6極子場または電場6極子場)を発生させる。6極子場は、3回対称である。第2多極子120は、第1多極子110が発生させる6極子場とは極性が逆の6極子場を発生させる。収差補正装置100では、第1多極子110および第2多極子120が二段の6極子場を発生させることによって、結像系の球面収差を
補正する。
第1多極子110および第2多極子120は、例えば、6極子または12極子である。なお、第1多極子110および第2多極子120は、6極子場を発生させることができればよく、極子の数は特に限定されない。
第3多極子130は、第1多極子110と第2多極子120との間に配置されている。第3多極子130は、8極子場(磁場8極子場または電場8極子場)を発生させる。8極子場は、4回対称である。
第3多極子130は、例えば、8極子である。なお、第3多極子130は、8極子場を発生させることができればよく、極子の数は限定されない。
第1転送レンズ系140は、第1多極子110と第3多極子130の間に配置されている。第2転送レンズ系150は、第3多極子130と第2多極子120との間に配置されている。第1転送レンズ系140および第2転送レンズ系150では、電子線の軌道がX方向とY方向に分かれるため、図1には、電子線のX方向の典型的な軌道であるX軌道と、電子線のY方向の典型的な軌道であるY軌道と、を図示している。X軸およびY軸は、光軸OAに垂直な軸であり、互いに直交する。
第1転送レンズ系140は、第1多極子110で得られた像と等価な像を第3多極子130に転送する。第3多極子130は、第1多極子110と共役な位置に配置される。また、第2転送レンズ系150は、第3多極子130で得られた像と等価な像を第2多極子120に転送する。第1転送レンズ系140および第2転送レンズ系150によって、第1多極子110と第2多極子120との間の光学的距離が零となる。そのため、第1多極子110と第2多極子120との間に物理的な距離を持たせることができる。
第1転送レンズ系140は、複数の多極子を含む。図示の例では、第1転送レンズ系140は、4つの多極子(第1転送多極子141、第2転送多極子142、第3転送多極子143、第4転送多極子144)を含む。
第1転送多極子141は、電磁場重畳4極子場を発生させる。電磁場重畳4極子場は、電場4極子場と磁場4極子場とが重畳された4極子場である。電磁場重畳4極子場は、2回対称である。
図2は、第1転送多極子141を模式的に示す平面図である。
第1転送多極子141は、光軸OAの周囲に規則的に配列された複数の電極および複数の磁極を有する。図示の例では、第1転送多極子141は、光軸OAの周囲に配列された、四極の電極1410a、1410b、1410c、1410dと、四極の磁極1412a、1412b、1412c、1412dと、を有している。
四極の電極1410a、1410b、1410c、1410dは、光軸OAに垂直な平面(XY平面)上で90°ごとに配置されている。四極の電極1410a、1410b、1410c、1410dの各々に印加される印加電圧の絶対値は互いに等しい。ただし、四極の電極1410a、1410b、1410c、1410dにおいて、隣り合う電極の極性は逆である。四極の電極1410a、1410b、1410c、1410dは、電場4極子場を発生させる。
四極の磁極1412a、1412b、1412c、1412dは、光軸OAに垂直な平
面上に90°ごとに配置されている。磁極1412aには、巻き数Nの励磁コイル(図示せず)が装着され、この励磁コイルに電流Iが流れるようになっている。したがって、磁極1412aの起磁力はNIとなる。磁極1412b,1412c,1412dについても、磁極1412aと同様に励磁コイルが装着されている。
四極の磁極1412a、1412b、1412c、1412dに装着された励磁コイルは、個別に電流源(図示せず)と接続されており、その起磁力は任意に設定できる。図示の例では、四極の磁極1412a、1412b、1412c、1412dの起磁力は互いに等しい。ただし、四極の磁極1412a、1412b、1412c、1412dにおいて、隣り合う磁極の極性は逆である。四極の磁極1412a、1412b、1412c、1412dは、磁場4極子場を発生させる。
図3は、四極の電極1410a、1410b、1410c、1410dが発生させる電場4極子場から電子線が受ける力を説明するための図である。
図3に示すように、四極の電極1410a、1410b、1410c、1410dが発生させる電場4極子場は、電子線に対して、X方向に収束作用を持ち、Y方向に発散作用を持つ。したがって、電子線は、電場4極子場から力Fを受けることによって、X方向に収束し、Y方向に発散する。
図4は、四極の磁極1412a、1412b、1412c、1412dが発生させる磁場4極子場から電子線が受ける力を説明するための図である。
図4に示すように、四極の磁極1412a、1412b、1412c、1412dが発生させる磁場4極子場は、電子線に対して、X方向に発散作用を持ち、Y方向に収束作用を持つ。したがって、電子線は、磁場4極子場から力Fを受けることによって、X方向に発散し、Y方向に収束する。
第1転送多極子141では、電場4極子場と磁場4極子場とを重畳して電磁場重畳4極子場を発生させる。第1転送多極子141では、2回対称の電場によって電子線が受ける力Fと2回対称の磁場によって電子線が受ける力Fとが、互いに相殺する方向に加えられる。
図1に示す例では、第1転送多極子141は、磁場4極子場に比べて電場4極子場が強く設定される。すなわち、第1転送多極子141では、磁場4極子場によって電子線が受ける力Fよりも、電場4極子場によって電子線が受ける力Fが大きく設定される(F<F)。これにより、電子線に2回非点成分を与え、軌道を変化させる。具体的には、第1転送多極子141は、図1に示すように、電子線のY軌道に2回非点の発散方向の成分を与え、電子線のX軌道に2回非点の収束方向の成分を与える。
また、第1転送多極子141は、電子線の進行方向に対して厚みを有している。より具体的には、第1転送多極子141は、多極子場のプライマリー項以外の高次項による場によってコンビネーション収差が発生する厚みを有している。第1転送多極子141は、コンビネーション収差により電子線に対して凹レンズ作用を生じさせる。
ここで、コンビネーション収差とは、ある場所で発生した収差(収差1)がある距離伝搬することにより入射点が変わり、別の収差(収差2)の影響を受けたとき、収差1と収差2の組み合わせにより生まれる組み合わせ収差のことである。
第2転送多極子142は、電磁場重畳4極子場を発生させる。第2転送多極子142は
、光軸OAの周囲に配列された、四極の電極と、四極の磁極と、を有している。第2転送多極子142の四極の電極および四極の磁極の配置は、図2に示す第1転送多極子141と同じである。
図1に示す例では、第2転送多極子142では、電場4極子場に比べて磁場4極子場が強く設定される。すなわち、第2転送多極子142では、電場4極子場によって電子線が受ける力Fよりも、磁場4極子場によって電子線が受ける力Fが大きく設定される(F<F)。これにより、第2転送多極子142は、第1転送多極子141で発生する2回非点成分とは逆符号の2回非点成分を発生させる。第2転送多極子142は、図1に示すように、電子線のY軌道に2回非点の収束方向の成分を与え、電子線のX軌道に2回非点の発散方向の成分を与える。
また、第2転送多極子142は、第1転送多極子141と同様に、電子線の進行方向に対して厚みを有している。第2転送多極子142は、コンビネーション収差により電子線に対して凸レンズ作用を生じさせる。
第3転送多極子143は、電磁場重畳4極子場を発生させる。第3転送多極子143は、光軸OAの周囲に配列された、四極の電極と、四極の磁極と、を有している。第3転送多極子143の四極の電極および四極の磁極の配置は、図2に示す第1転送多極子141と極性が逆である。すなわち、第3転送多極子143は、図2に示す第1転送多極子141を90°回転したものである。
第3転送多極子143では、電場4極子場に比べて磁場4極子場が強く設定される。すなわち、第3転送多極子143では、電場4極子場によって電子線が受ける力Fよりも、磁場4極子場によって電子線が受ける力Fが大きく設定される(F<F)。これにより、第3転送多極子143は、図1に示すように、電子線のY軌道に2回非点の発散方向の成分を与え、電子線のX軌道に2回非点の収束方向の成分を与える。
また、第3転送多極子143は、電子線の進行方向に対して厚みを有している。第3転送多極子143は、コンビネーション収差により電子線に対して凹レンズ作用を生じさせる。
第4転送多極子144は、電磁場重畳4極子場を発生させる。第4転送多極子144は、光軸OAの周囲に配列された、四極の電極と、四極の磁極と、を有している。第4転送多極子144の四極の電極および四極の磁極の配置は、第3転送多極子143と同じである。
第4転送多極子144では、磁場4極子場に比べて電場4極子場が強く設定される。すなわち、第4転送多極子144では、磁場4極子場によって電子線が受ける力Fよりも、電場4極子場によって電子線が受ける力Fが大きく設定される(F<F)。これにより、第4転送多極子144は、第3転送多極子143で発生する2回非点成分とは逆符号の2回非点成分を発生させる。具体的には、第4転送多極子144は、図1に示すように、電子線のY軌道に2回非点の収束方向の成分を与え、電子線のX軌道に2回非点の発散方向の成分を与える。
また、第4転送多極子144は、電子線の進行方向に対して厚みを有している。第4転送多極子144は、コンビネーション収差により電子線に対して凸レンズ作用を生じさせる。
第1転送レンズ系140では、第1転送多極子141が生じさせる凹レンズ作用、第2
転送多極子142が生じさせる凸レンズ作用、第3転送多極子143が生じさせる凹レンズ作用、第4転送多極子144が生じさせる凸レンズ作用を組み合わせることによって、負の色収差を発生させる。
第1転送多極子141および第2転送多極子142は、第1光学系140aを構成する。第1光学系140aは、第1の電磁場を発生させる。第1の電磁場は、第1転送多極子141が発生させる電磁場重畳4極子場および第2転送多極子142が発生させる電磁場重畳4極子場によって形成される。
第3転送多極子143および第4転送多極子144は、第2光学系140bを構成する。第2光学系140bは、第1の電磁場を光軸OAまわりに90°回転させた第2の電磁場を発生させる。第2多極子120における電子線の軌道は、第1多極子110における電子線の軌道を、光軸OAまわりに90°回転させた軌道である。第1転送レンズ系140では、第1光学系140aで発生した色2回非点成分を、第2光学系140bで発生した色2回非点成分で打ち消すことができる。
第2転送レンズ系150は、第1転送レンズ系140を90°回転させた光学系である。第2転送レンズ系150は、第1転送レンズ系140が発生させる電磁場を光軸OAまわりに90°回転させた電磁場を発生させる。図1に示すように、第2転送レンズ系150における電子線の軌道と、第1転送レンズ系140における電子線の軌道は、対称である。
第2転送レンズ系150は、第1転送レンズ系140と同様に、4つの転送多極子を有している。具体的には、第2転送レンズ系150は、第5転送多極子151と、第6転送多極子152と、第7転送多極子153と、第8転送多極子154と、を有している。第5転送多極子151と第6転送多極子152は、第1光学系150aを構成し、第7転送多極子153と第8転送多極子154は、第2光学系150bを構成している。
第5転送多極子151は、電磁場重畳4極子場を発生させる。第6転送多極子152は、第5転送多極子151と同じ極性の電磁場重畳4極子場を発生させる。第7転送多極子153は、第5転送多極子151とは逆の極性の電磁場重畳4極子場を発生させる。第8転送多極子154は、第7転送多極子153と同じ極性の電磁場重畳4極子場を発生させる。
ここで、第1転送レンズ系140の第2転送多極子142は、電磁場重畳4極子場に加えて8極子場を発生させる。すなわち、第2転送多極子142は、電磁場重畳4極子場と8極子場が重畳された場を発生させる。
同様に、第1転送レンズ系140の第3転送多極子143は、電磁場重畳4極子場に加えて8極子場を発生させる。すなわち、第3転送多極子143は、電磁場重畳4極子場と8極子場が重畳された場を発生させる。
同様に、第2転送レンズ系150の第6転送多極子152は、電磁場重畳4極子場に加えて8極子場を発生させる。すなわち、第6転送多極子152は、電磁場重畳4極子場と8極子場が重畳された場を発生させる。
同様に、第2転送レンズ系150の第7転送多極子153は、電磁場重畳4極子場に加えて8極子場を発生させる。すなわち、第7転送多極子153は、電磁場重畳4極子場と8極子場が重畳された場を発生させる。
第2転送多極子142が発生させる8極子場、第3転送多極子143が発生させる8極子場、第3多極子130が発生させる8極子場、第6転送多極子152が発生させる8極子場、および第7転送多極子153が発生させる8極子場は、すべて同じ極性(同じ向き)である。
第1転送多極子141、第4転送多極子144、第5転送多極子151、および第8転送多極子154は、電磁場重畳4極子場を発生させることができれば、その極子の数は限定されない。第2転送多極子142、第3転送多極子143、第6転送多極子152、および第7転送多極子153は、電磁場重畳4極子場と8極子場が重畳された場を発生させることができれば、その極子の数は限定されない。
1.2. 動作
次に、収差補正装置100の動作について説明する。
<球面収差>
収差補正装置100では、電子線の進行方向に沿った厚み、すなわち、光軸OAに沿った厚みを持った6極子場が負の球面収差を発生させることを利用して、結像系(対物レンズ2)の球面収差を補正する。具体的には、収差補正装置100では、第1多極子110および第2多極子120によって2段の6極子場を発生させることによって負の球面収差を発生させ、結像系の正の球面収差を打ち消す。これにより、結像系の球面収差を補正できる。
<3回非点>
第1多極子110が発生させる6極子場と第2多極子120が発生させる6極子場の極性は逆である。そのため、第1多極子110が発生させる6極子場によって生じる3回非点は、第2多極子120が発生させる6極子場によって打ち消される。したがって、収差補正装置100では、3回非点を補正できる。
<色収差>
収差補正装置100では、第1転送レンズ系140および第2転送レンズ系150においてコンビネーション収差により負の色収差を発生させる。収差補正装置100では、第1転送レンズ系140および第2転送レンズ系150で発生させた負の色収差で、結像系の正の色収差を打ち消す。これにより、結像系の色収差を補正できる。
<4次コマ収差、5回非点>
収差補正装置100では、第1多極子110と第2多極子120との間に、第1転送レンズ系140と第2転送レンズ系150が配置されている。そのため、収差補正装置100では、第1多極子110と第2多極子120との間において、転送回数が2回となるため、1回対称の4次コマ収差および5回対称の5回非点を補正できる。
<6回非点>
収差補正装置100では、上述したように、球面収差を補正するために第1多極子110および第2多極子120が6極子場を発生させる。収差補正装置100では、この第1多極子110および第2多極子120が発生させる6極子場に由来して6回非点が生じてしまう。
ここで、6回非点は、スター収差と4回非点のコンビネーション収差として発生させることができる。
スター収差は、3次の幾何収差であり2回対称である。スター収差は、4極子場から発
生させることができる。したがって、第2転送多極子142が発生させる4極子場、第3転送多極子143が発生させる4極子場、第6転送多極子152が発生させる4極子場、および第7転送多極子153が発生させる4極子場によって、スター収差を発生させることができる。
なお、第2転送多極子142、第3転送多極子143、第6転送多極子152、および第7転送多極子153は、上述したように色収差補正および球面収差補正のために、4極子場を発生させることができる。したがって、スター収差を発生させるために、第2転送多極子142、第3転送多極子143、第6転送多極子152、および第7転送多極子153に4極子場を発生させるための新たな極子を設ける必要はない。
4回非点は、8極子場から発生させることができる。したがって、第2転送多極子142が発生させる8極子場、第3転送多極子143が発生させる8極子場、第6転送多極子152が発生させる8極子場、および第7転送多極子153が発生させる8極子場によって、4回非点を発生させることができる。
このようにして第2転送多極子142、第3転送多極子143、第6転送多極子152、および第7転送多極子153において、スター収差と4回非点を発生させることで、スター収差と4回非点のコンビネーション収差として6回非点を発生させることができる。
収差補正装置100では、第2転送多極子142、第3転送多極子143、第6転送多極子152、および第7転送多極子153が発生させた6回非点で、第1多極子110および第2多極子120が発生させる6極子場由来の6回非点を打ち消す。これにより、収差補正装置100では、6回非点を補正できる。
なお、このようにして6回非点を補正することによって、第2転送多極子142、第3転送多極子143、第6転送多極子152、および第7転送多極子153には、余分な4回非点が生じてしまう。この余分な4回非点は、第3多極子130が発生させる8極子場で補正できる。
1.3. 効果
収差補正装置100では、第1多極子110が発生させる6極子場、および第2多極子120が発生させる6極子場によって、負の球面収差を発生させる。そのため、収差補正装置100では、第1多極子110および第2多極子120が発生させた負の球面収差で結像系の正の球面収差を打ち消すことができる。したがって、収差補正装置100では、球面収差を補正できる。
収差補正装置100では、第1転送レンズ系140を構成する複数の多極子が発生させる電磁場重畳4極子場、第2転送レンズ系150を構成する複数の多極子が発生させる電磁場重畳4極子場によって、負の色収差を発生させる。そのため、収差補正装置100では、第1転送レンズ系140および第2転送レンズ系150が発生させた負の色収差で結像系の正の色収差を打ち消すことができる。したがって、収差補正装置100では、色収差を補正できる。
収差補正装置100では、転送レンズ系に用いた光学系によって色収差を補正することができる。したがって、収差補正装置100では、例えば、球面収差補正装置と色収差補正装置をタンデムに接続して球面収差補正および色収差補正を行う場合と比べて、装置の小型化を図ることができる。
収差補正装置100は、第1多極子110と第3多極子130の間に配置された第1転
送レンズ系140と、第3多極子130と第2多極子120との間に配置された第2転送レンズ系150と、を含む。第1転送レンズ系140は、電磁場重畳4極子場と8極子場が重畳された場を発生させる複数の第4多極子(第2転送多極子142および第3転送多極子143)を含み、第2転送レンズ系150は、電磁場重畳4極子場と8極子場が重畳された場を発生させる複数の第5多極子(第6転送多極子152および第7転送多極子153)を含む。そのため、収差補正装置100では、上述したように、6回非点を補正できる。
収差補正装置100では、第2転送多極子142が発生させる4極子場、第3転送多極子143が発生させる4極子場、第6転送多極子152が発生させる4極子場、および第7転送多極子153が発生させる4極子場によって、スター収差を発生させる。また、第2転送多極子142が発生させる8極子場、第3転送多極子143が発生させる8極子場、第6転送多極子152が発生させる8極子場、および第7転送多極子153が発生させる8極子場によって、4回非点を発生させる。このスター収差と4回非点のコンビネーション収差として6回非点を発生させる。
したがって、収差補正装置100では、第2転送多極子142、第3転送多極子143、第6転送多極子152、および第7転送多極子153が発生させた6回非点で、第1多極子110および第2多極子120が発生させる6極子場由来の6回非点を打ち消すことができる。したがって、収差補正装置100では、6回非点を補正できる。
収差補正装置100では、第2転送多極子142、第3転送多極子143、第6転送多極子152、および第7転送多極子153で6回非点を発生させることによって生じた4回非点を、第3多極子130が発生させる8極子場で補正する。このように収差補正装置100では、4回非点を補正できる。
2. 第2実施形態
2.1. 収差補正装置
次に、第2実施形態に係る収差補正装置について、図面を参照しながら説明する。図5は、第2実施形態に係る収差補正装置200の構成を示す図である。以下、第2実施形態に係る収差補正装置200において、第1実施形態に係る収差補正装置100の構成部材と同様の機能を有する部材については同一の符号を付し、その詳細な説明を省略する。
上述した図1に示す収差補正装置100では、第2転送多極子142、第3転送多極子143、第6転送多極子152、および第7転送多極子153を用いて6回非点を補正した。
これに対して、収差補正装置200では、第2転送多極子142、第3転送多極子143、第6転送多極子152、および第7転送多極子153を用いて6回非点を補正し、かつ、第1転送多極子141、第4転送多極子144、第5転送多極子151、および第8転送多極子154を用いて5次スター収差を補正する。
すなわち、収差補正装置200では、第2転送多極子142、第3転送多極子143、第6転送多極子152、および第7転送多極子153は、6回非点を補正するための6回非点補正用多極子として機能し、第1転送多極子141、第4転送多極子144、第5転送多極子151、および第8転送多極子154は、5次スター収差を補正するための5次スター収差補正用多極子として機能する。
収差補正装置200では、第1転送多極子141は、電磁場重畳4極子場に加えて8極子場を発生させる。同様に、第4転送多極子144は、電磁場重畳4極子場に加えて8極
子場を発生させる。同様に、第5転送多極子151は、電磁場重畳4極子場に加えて8極子場を発生させる。同様に、第8転送多極子154は、電磁場重畳4極子場に加えて8極子場を発生させる。
第1転送多極子141が発生させる8極子場、第2転送多極子142が発生させる8極子場、第3転送多極子143が発生させる8極子場、第4転送多極子144が発生させる8極子場、第5転送多極子151が発生させる8極子場、第6転送多極子152が発生させる8極子場、第7転送多極子153が発生させる8極子場、第8転送多極子154が発生させる8極子場、および第3多極子130が発生させる8極子場は、すべて同じ極性(同じ向き)である。
2.2. 動作
収差補正装置200では、収差補正装置100と同様に、球面収差、色収差、3回非点、4次コマ収差、5回非点、6回非点、および4回非点を補正できる。さらに、収差補正装置200では、5次スター収差を補正できる。
第1多極子110および第2多極子120が発生させる6極子場に由来して6回非点が生じる。また、第1転送レンズ系140および第2転送レンズ系150が発生させる電磁場重畳転送4極子場に由来して5次スター収差が生じる。上述した収差補正装置100では、第2転送多極子142、第3転送多極子143、第6転送多極子152、および第7転送多極子153を用いて6回非点を補正できるが、5次スター収差を補正できない。
ここで、5次スター収差は、上述した6回非点と同様に、スター収差と4回非点のコンビネーション収差として発生させることができる。
スター収差は、4極子場から発生させることができる。したがって、第1転送多極子141が発生させる4極子場、第4転送多極子144が発生させる4極子場、第5転送多極子151が発生させる4極子場、および第8転送多極子154が発生させる4極子場によって、スター収差を発生させることができる。
なお、第1転送多極子141、第4転送多極子144、第5転送多極子151、および第8転送多極子154は、上述したように色収差補正および球面収差補正のために、4極子場を発生させることができる。したがって、スター収差を発生させるために、第1転送多極子141、第4転送多極子144、第5転送多極子151、および第8転送多極子154に4極子場を発生させるための新たな極子を設ける必要はない。
4回非点は、8極子場から発生させることができる。したがって、第1転送多極子141が発生させる8極子場、第4転送多極子144が発生させる8極子場、第5転送多極子151が発生させる8極子場、および第8転送多極子154が発生させる8極子場によって、4回非点を発生させることができる。
このようにして第1転送多極子141、第4転送多極子144、第5転送多極子151、および第8転送多極子154において、スター収差と4回非点を発生させることで、スター収差と4回非点のコンビネーション収差として5次スター収差を発生させることができる。
収差補正装置200では、第1転送多極子141、第4転送多極子144、第5転送多極子151、および第8転送多極子154が発生させた5次スター収差で、第1転送レンズ系140および第2転送レンズ系150が発生させる電磁場重畳転送4極子場由来の5次スター収差を打ち消す。これにより、収差補正装置200では、5次スター収差を補正
できる。
収差補正装置200では、6回非点補正用として用いた第2転送多極子142、第3転送多極子143、第6転送多極子152、および第7転送多極子153とは異なる多極子(第1転送多極子141、第4転送多極子144、第5転送多極子151、および第8転送多極子154)を用いて、5次スター収差を補正する。したがって、収差補正装置200では、6回非点を補正した状態を維持しつつ、5次スター収差を補正できる。
2.3. 効果
収差補正装置200では、収差補正装置100と同様に、球面収差、色収差、3回非点、4次コマ収差、5回非点、6回非点、および4回非点を補正できる。さらに、収差補正装置200では、5次スター収差を補正できる。
収差補正装置200では、6回非点補正用多極子として、第2転送多極子142、第3転送多極子143、第6転送多極子152、および第7転送多極子153を用い、5次スター収差補正用多極子として、第1転送多極子141、第4転送多極子144、第5転送多極子151、および第8転送多極子154を用いる。したがって、収差補正装置200では、6回非点を補正した状態を維持しつつ、5次スター収差を補正できる。
3. 第3実施形態
次に、第3実施形態に係る電子顕微鏡について図面を参照しながら説明する。図6は、第3実施形態に係る電子顕微鏡500の構成を示す図である。
電子顕微鏡500は、収差補正装置100を含む。電子顕微鏡500は、結像系540に収差補正装置100が組み込まれた透過電子顕微鏡(TEM)である。電子顕微鏡500は、図6に示すように、電子源510と、照射系520と、試料ステージ530と、結像系540と、検出器550と、を含む。
電子源510は、電子線を放出する。電子源510は、例えば、陰極から放出された電子を陽極で加速し電子線を放出する電子銃である。
照射系520は、電子源510から放出された電子線を試料Sに照射する。例えば、照射系520は、観察領域に対して平行ビームを照射する。照射系520は、複数のコンデンサーレンズ522を含む。コンデンサーレンズ522は、電子源510から放出された電子線を集束する。図示はしないが、照射系520は、コンデンサーレンズ522以外のレンズや絞りなどを含んでいてもよい。
試料ステージ530は、試料ホルダー532に保持された試料Sを支持する。試料ステージ530によって、試料Sを位置決めすることができる。
結像系540は、試料Sを透過した電子線で結像するための光学系である。結像系540は、対物レンズ2と、投影レンズ8と、を含む。対物レンズ2は、試料Sを透過した電子線でTEM像を結像するための初段のレンズである。投影レンズ8は、対物レンズ2によって結像された像をさらに拡大し、検出器550上に結像する。図1に示すように、対物レンズ2と収差補正装置100との間には、転送レンズ4および転送レンズ6が配置されている。
収差補正装置100は、結像系540に組み込まれている。収差補正装置100は、結像系540(対物レンズ2)の収差を補正する。
検出器550は、試料Sを透過した電子を検出する。検出器550は、結像系540によって結像された像を撮影する。検出器550は、例えば、CCD(Charge Coupled Device)カメラ等のデジタルカメラである。
電子顕微鏡500では、電子源510から放出された電子線は、照射系520で集束されて試料Sに照射される。試料Sの観察領域には、例えば、平行ビームが照射される。試料Sを透過した電子線は、結像系540によって透過電子顕微鏡像(TEM像)を結像する。TEM像は、検出器550で撮影される。電子顕微鏡500では、収差補正装置100によって結像系540の収差を補正できるため、高分解能のTEM像を得ることができる。
4. 第4実施形態
次に、第4実施形態に係る電子顕微鏡について図面を参照しながら説明する。図7は、第4実施形態に係る電子顕微鏡600の構成を示す図である。以下、第4実施形態に係る電子顕微鏡600において、第3実施形態に係る電子顕微鏡500の構成部材と同様の機能を有する部材については同一の符号を付し、その詳細な説明を省略する。
上述した図6に示す電子顕微鏡500は、収差補正装置100が結像系540に組み込まれた透過電子顕微鏡(TEM)であったが、電子顕微鏡600は、図7に示すように、収差補正装置100が照射系520に組み込まれた走査透過電子顕微鏡(STEM)である。
照射系520は、電子源510から放出された電子線を集束して電子プローブを形成し、当該電子プローブで試料Sを走査する。照射系520は、複数のコンデンサーレンズ522と、偏向器524と、を含む。
複数のコンデンサーレンズ522は、電子源510から放出された電子線を集束して電子プローブを形成する。なお、対物レンズ2が試料Sの前方につくる磁界は、コンデンサーレンズ522とともに電子プローブを形成するためのレンズとして機能する。
偏向器524は、集束された電子線を二次元的に偏向する。偏向器524で電子線を偏向することによって、電子プローブで試料Sを走査できる。
収差補正装置100は、照射系520に組み込まれている。収差補正装置100は、照射系520(コンデンサーレンズ522)の収差を補正する。
結像系540は、試料Sを透過した電子線を検出器550に導く。検出器550は、例えば、試料Sで高角度に非弾性散乱された電子を円環状の検出器で検出する暗視野STEM検出器であってもよいし、試料Sを透過して入射電子線と同じ方向に出射する透過波を検出する明視野STEM検出器であってもよい。
電子顕微鏡600では、電子源510から放出された電子線は、照射系520によって集束され電子プローブを形成する。電子プローブは、偏向器524によって二次元的に偏向される。これにより、電子プローブで試料Sを走査できる。試料Sを透過した電子線は、結像系540によって検出器550に導かれ、検出器550で検出される。例えば、電子プローブによる走査と同期して、試料S上を透過した電子を検出器550で検出することで、走査透過電子顕微鏡像(STEM像)を取得することができる。電子顕微鏡600は、収差補正装置100を含むため、高分解能のSTEM像を得ることができる。
5. 変形例
なお、本発明は上述した実施形態に限定されず、本発明の要旨の範囲内で種々の変形実施が可能である。
図8~図11は、第1転送レンズ系140の変形例を示す図である。
上述した第1実施形態に係る収差補正装置100では、図1に示すように、第1転送レンズ系140は、4つの多極子(第1転送多極子141、第2転送多極子142、第3転送多極子143、第4転送多極子144)で構成されていたが、第1転送レンズ系140を構成する多極子の数は特に限定されない。
図8~図11に示すように、第1転送レンズ系140は、6つの多極子(第1転送多極子401、第2転送多極子402、第3転送多極子403、第4転送多極子404、第5転送多極子405、第6転送多極子406)で構成されていてもよい。
図8~図11に示す6つの多極子は、図1に示す4つの多極子と同様に、それぞれが電磁場重畳4極子場を発生させる。これにより、負の色収差を発生させることができる。
また、図8~図11に示す6つの多極子のうちの2つの多極子が6回非点補正用の多極子として機能し、6つの多極子のうちの2つの多極子が5次スター収差補正用の多極子として機能してもよい。
また、第1転送レンズ系140で転送するときの電子線の軌道は、図8~図11に示すように種々の軌道を採用できる。
図示はしないが、上述したように、第2転送レンズ系150は、第1転送レンズ系140を90°回転させた光学系である。
上述した第2実施形態に係る収差補正装置200についても同様であり、第1転送レンズ系140を構成する多極子の数は特に限定されず、第1転送レンズ系140で転送するときの電子線の軌道として種々の軌道を採用できる。
本発明は、上述した実施形態に限定されるものではなく、さらに種々の変形が可能である。例えば、本発明は、実施形態で説明した構成と実質的に同一の構成を含む。実質的に同一の構成とは、例えば、機能、方法、及び結果が同一の構成、あるいは目的及び効果が同一の構成である。また、本発明は、実施形態で説明した構成の本質的でない部分を置き換えた構成を含む。また、本発明は、実施形態で説明した構成と同一の作用効果を奏する構成又は同一の目的を達成することができる構成を含む。また、本発明は、実施形態で説明した構成に公知技術を付加した構成を含む。
2…対物レンズ、4…転送レンズ、6…転送レンズ、8…投影レンズ、100…収差補正装置、110…第1多極子、120…第2多極子、130…第3多極子、140…第1転送レンズ系、140a…第1光学系、140b…第2光学系、141…第1転送多極子、142…第2転送多極子、143…第3転送多極子、144…第4転送多極子、150…第2転送レンズ系、150a…第1光学系、150b…第2光学系、151…第5転送多極子、152…第6転送多極子、153…第7転送多極子、154…第8転送多極子、200…収差補正装置、401…第1転送多極子、402…第2転送多極子、403…第3転送多極子、404…第4転送多極子、500…電子顕微鏡、510…電子源、520…照射系、522…コンデンサーレンズ、524…偏向器、530…試料ステージ、532…試料ホルダー、540…結像系、550…検出器、600…電子顕微鏡、1410a…
電極、1410b…電極、1410c…電極、1410d…電極、1412a…磁極、1412b…磁極、1412c…磁極、1412d…磁極

Claims (7)

  1. 6極子場を発生させる第1多極子と、
    前記第1多極子とは極性が逆の6極子場を発生させる第2多極子と、
    前記第1多極子と前記第2多極子との間に配置され、8極子場を発生させる第3多極子と、
    前記第1多極子と前記第3多極子の間に配置された第1転送レンズ系と、
    前記第3多極子と前記第2多極子との間に配置された第2転送レンズ系と、
    を含み、
    前記第1転送レンズ系は、電磁場重畳4極子場と8極子場が重畳された場を発生させる複数の第4多極子を含み、
    前記第2転送レンズ系は、電磁場重畳4極子場と8極子場が重畳された場を発生させる複数の第5多極子を含み、
    前記複数の第4多極子の各々が発生させる4極子場および前記複数の第5多極子の各々が発生させる4極子場によって、スター収差を発生させ、
    前記複数の第4多極子の各々が発生させる8極子場および前記複数の第5多極子の各々が発生させる8極子場によって、4回非点を発生させ、
    スター収差と4回非点のコンビネーション収差として6回非点を発生させる、収差補正装置。
  2. 請求項において、
    前記第1転送レンズ系および前記第2転送レンズ系で6回非点を発生させることによって生じた4回非点を、前記第3多極子が発生させる8極子場で補正する、収差補正装置。
  3. 6極子場を発生させる第1多極子と、
    前記第1多極子とは極性が逆の6極子場を発生させる第2多極子と、
    前記第1多極子と前記第2多極子との間に配置され、8極子場を発生させる第3多極子と、
    前記第1多極子と前記第3多極子の間に配置された第1転送レンズ系と、
    前記第3多極子と前記第2多極子との間に配置された第2転送レンズ系と、
    を含み、
    前記第1転送レンズ系は、電磁場重畳4極子場と8極子場が重畳された場を発生させる複数の第4多極子を含み、
    前記第2転送レンズ系は、電磁場重畳4極子場と8極子場が重畳された場を発生させる複数の第5多極子を含み、
    前記複数の第4多極子の各々が発生させる4極子場および前記複数の第5多極子の各々が発生させる4極子場によって、スター収差を発生させ、
    前記複数の第4多極子の各々が発生させる8極子場および前記複数の第5多極子の各々が発生させる8極子場によって、4回非点を発生させ、
    スター収差と4回非点のコンビネーション収差として5次スター収差を発生させる、収差補正装置。
  4. 6極子場を発生させる第1多極子と、
    前記第1多極子とは極性が逆の6極子場を発生させる第2多極子と、
    前記第1多極子と前記第2多極子との間に配置され、8極子場を発生させる第3多極子と、
    前記第1多極子と前記第3多極子の間に配置された第1転送レンズ系と、
    前記第3多極子と前記第2多極子との間に配置された第2転送レンズ系と、
    を含み、
    前記第1転送レンズ系は、電磁場重畳4極子場と8極子場が重畳された場を発生させる複数の第4多極子を含み、
    前記第2転送レンズ系は、電磁場重畳4極子場と8極子場が重畳された場を発生させる複数の第5多極子を含み、
    前記複数の第4多極子のうちの6回非点補正用第4多極子が発生させる4極子場、および前記複数の第5多極子のうちの6回非点補正用第5多極子が発生させる4極子場によって、6回非点補正用のスター収差を発生させ、
    前記6回非点補正用第4多極子が発生させる8極子場および前記6回非点補正用第5多極子が発生させる8極子場によって、6回非点補正用の4回非点を発生させ、
    前記6回非点補正用のスター収差と前記6回非点補正用の4回非点のコンビネーション収差として6回非点を発生させ、
    前記複数の第4多極子のうちの5次スター収差補正用第4多極子が発生させる4極子場、および前記複数の第5多極子のうちの5次スター収差補正用第5多極子が発生させる4極子場によって、5次スター収差補正用のスター収差を発生させ、
    前記5次スター収差補正用第4多極子が発生させる8極子場および前記5次スター収差補正用第5多極子が発生させる8極子場によって、5次スター収差補正用の4回非点を発生させ、
    前記5次スター収差補正用のスター収差と前記5次スター収差補正用の4回非点のコンビネーション収差として5次スター収差を発生させる、収差補正装置。
  5. 請求項1ないしのいずれか1項において、
    前記第1多極子が発生させる6極子場および前記第2多極子が発生させる6極子場によって、負の球面収差を発生させる、収差補正装置。
  6. 請求項1ないしのいずれか1項において、
    前記複数の第4多極子の各々が発生させる電磁場重畳4極子場、および前記複数の第5多極子の各々が発生させる電磁場重畳4極子場によって、負の色収差を発生させる、収差補正装置。
  7. 請求項1ないしのいずれか1項に記載の収差補正装置を含む、電子顕微鏡。
JP2022025844A 2022-02-22 2022-02-22 収差補正装置および電子顕微鏡 Active JP7465295B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2022025844A JP7465295B2 (ja) 2022-02-22 2022-02-22 収差補正装置および電子顕微鏡
EP23155548.3A EP4231327B1 (en) 2022-02-22 2023-02-08 Aberration correcting device and electron microscope
US18/169,270 US20230268155A1 (en) 2022-02-22 2023-02-15 Aberration Correcting Device and Electron Microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022025844A JP7465295B2 (ja) 2022-02-22 2022-02-22 収差補正装置および電子顕微鏡

Publications (2)

Publication Number Publication Date
JP2023122250A JP2023122250A (ja) 2023-09-01
JP7465295B2 true JP7465295B2 (ja) 2024-04-10

Family

ID=85201980

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022025844A Active JP7465295B2 (ja) 2022-02-22 2022-02-22 収差補正装置および電子顕微鏡

Country Status (3)

Country Link
US (1) US20230268155A1 (ja)
EP (1) EP4231327B1 (ja)
JP (1) JP7465295B2 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015026431A (ja) 2013-07-24 2015-02-05 日本電子株式会社 球面収差補正装置、球面収差補正方法、および荷電粒子線装置
JP2016134295A (ja) 2015-01-20 2016-07-25 日本電子株式会社 多極子レンズおよび荷電粒子ビーム装置
WO2019021455A1 (ja) 2017-07-28 2019-01-31 株式会社 日立ハイテクノロジーズ 収差補正装置及び荷電粒子線装置
JP2019129073A (ja) 2018-01-24 2019-08-01 日本電子株式会社 収差補正装置および電子顕微鏡

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5226367B2 (ja) 2007-08-02 2013-07-03 日本電子株式会社 収差補正装置
JP6054730B2 (ja) 2012-12-11 2016-12-27 日本電子株式会社 色収差補正装置および電子顕微鏡

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015026431A (ja) 2013-07-24 2015-02-05 日本電子株式会社 球面収差補正装置、球面収差補正方法、および荷電粒子線装置
JP2016134295A (ja) 2015-01-20 2016-07-25 日本電子株式会社 多極子レンズおよび荷電粒子ビーム装置
WO2019021455A1 (ja) 2017-07-28 2019-01-31 株式会社 日立ハイテクノロジーズ 収差補正装置及び荷電粒子線装置
JP2019129073A (ja) 2018-01-24 2019-08-01 日本電子株式会社 収差補正装置および電子顕微鏡

Also Published As

Publication number Publication date
US20230268155A1 (en) 2023-08-24
EP4231327A1 (en) 2023-08-23
JP2023122250A (ja) 2023-09-01
EP4231327B1 (en) 2024-06-19

Similar Documents

Publication Publication Date Title
US6329659B1 (en) Correction device for correcting the lens defects in particle-optical apparatus
JP3985057B2 (ja) 粒子光学機器のレンズ収差補正用補正装置
US8178850B2 (en) Chromatic aberration corrector for charged-particle beam system and correction method therefor
US20090014649A1 (en) Electron beam apparatus
EP2722868B1 (en) Octopole device and method for spot size improvement
US9349565B2 (en) Multipole lens, aberration corrector, and electron microscope
JPH11148905A (ja) 電子ビーム検査方法及びその装置
US8785880B2 (en) Chromatic aberration corrector and electron microscope
US10755888B2 (en) Aberration corrector and charged particle beam device
US10720301B2 (en) Aberration corrector and electron microscope
US9256068B2 (en) Spherical aberration corrector, method of spherical aberration correction, and charged particle beam instrument
JP2007128656A (ja) 収差補正装置を備えた荷電粒子ビーム装置
JP4851268B2 (ja) 収差補正方法および電子線装置
US10446362B2 (en) Distortion correction method and electron microscope
JP7465295B2 (ja) 収差補正装置および電子顕微鏡
JP2002134051A (ja) 電磁界重畳型レンズ及びこれを用いた電子線装置
JP7481378B2 (ja) 収差補正装置および電子顕微鏡
JP4135221B2 (ja) 写像型電子顕微鏡
US20200303156A1 (en) Beam splitter for a charged particle device
WO2014030429A1 (ja) 荷電粒子線装置及び対物レンズ
CN114334590A (zh) 用于校正带电粒子***中的两倍五阶寄生像差的方法和***
JP2004355822A (ja) 荷電粒子ビーム装置における収差補正方法および荷電粒子ビーム装置
JPS6273541A (ja) 走査形電子顕微鏡及びその類似装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230612

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240312

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240329

R150 Certificate of patent or registration of utility model

Ref document number: 7465295

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150