JP7464523B2 - Denitrification catalyst polishing method and denitrification catalyst polishing device - Google Patents

Denitrification catalyst polishing method and denitrification catalyst polishing device Download PDF

Info

Publication number
JP7464523B2
JP7464523B2 JP2020535145A JP2020535145A JP7464523B2 JP 7464523 B2 JP7464523 B2 JP 7464523B2 JP 2020535145 A JP2020535145 A JP 2020535145A JP 2020535145 A JP2020535145 A JP 2020535145A JP 7464523 B2 JP7464523 B2 JP 7464523B2
Authority
JP
Japan
Prior art keywords
abrasive
denitration catalyst
abrasive grains
polishing
average particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020535145A
Other languages
Japanese (ja)
Other versions
JPWO2021171627A1 (en
Inventor
敏和 吉河
和広 吉田
啓一郎 盛田
亨浩 吉岡
展充 伊田
大輔 坂本
広大 日高
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HASHIDA GIKEN INC.
Chugoku Electric Power Co Inc
Original Assignee
HASHIDA GIKEN INC.
Chugoku Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HASHIDA GIKEN INC., Chugoku Electric Power Co Inc filed Critical HASHIDA GIKEN INC.
Publication of JPWO2021171627A1 publication Critical patent/JPWO2021171627A1/ja
Application granted granted Critical
Publication of JP7464523B2 publication Critical patent/JP7464523B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/56Foraminous structures having flow-through passages or channels, e.g. grids or three-dimensional monoliths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J38/00Regeneration or reactivation of catalysts, in general

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Description

本発明は、脱硝触媒を研磨する、脱硝触媒研磨方法及び脱硝触媒研磨装置に関する。 The present invention relates to a method and apparatus for polishing a denitration catalyst.

火力発電所では、石炭燃焼に伴い窒素酸化物が発生する。環境保全のため、窒素酸化物の排出量は一定水準以下に抑える必要がある。このため、火力発電所には窒素酸化物を還元するための脱硝触媒が充てんされた脱硝装置が設置されている。脱硝触媒は、使用の継続に伴い性能が低下する。性能の低下した脱硝触媒を再生する技術の一つとして研磨再生が挙げられる。研磨再生は、性能の低下した脱硝触媒の表面を研磨することで、触媒性能を回復させる技術である。At thermal power plants, nitrogen oxides are generated when coal is burned. To protect the environment, nitrogen oxide emissions must be kept below a certain level. For this reason, thermal power plants are equipped with de-nitration equipment filled with de-nitration catalysts to reduce nitrogen oxides. The performance of de-nitration catalysts deteriorates with continued use. One technique for regenerating de-nitration catalysts with reduced performance is polishing regeneration. Polishing regeneration is a technique that restores catalytic performance by polishing the surface of de-nitration catalysts with reduced performance.

国際公開第2014/155628号International Publication No. 2014/155628

特許文献1には、研磨材(研削材)と気体との混合物を脱硝触媒の貫通孔に通過させて、貫通孔の内壁を研削する脱硝触媒の再生方法に関する技術が開示されている。脱硝触媒からなる被研削部材の一端部には、当該被研削部材の断面積より大きな断面積の拡開部を具備する上流固定部材が連結される。当該拡開部には、スクリーン部材が配置される。このような拡開部内で、研磨材と気体との混合物は流速が低下されると共に分散され、貫通孔の内壁の均一な研削が可能となる。 Patent Document 1 discloses a technique for regenerating a denitration catalyst in which a mixture of an abrasive (grinding material) and gas is passed through the through-holes of the denitration catalyst to grind the inner walls of the through-holes. An upstream fixed member having an expansion section with a cross-sectional area larger than the cross-sectional area of the grinding member made of the denitration catalyst is connected to one end of the grinding member. A screen member is disposed in the expansion section. Within this expansion section, the flow rate of the mixture of abrasive and gas is reduced and dispersed, enabling uniform grinding of the inner walls of the through-holes.

特許文献1に記載された技術は、拡開部内で研磨材と気体との混合物の流速を低下させ、分散させることで貫通孔を均一に研磨できるものであるが、研磨材の流速を低下させれば研磨効率が低下する問題がある。しかし、研磨効率を向上させるため、研磨材の流速を上昇させるのみでは、必ずしも研磨効率の向上に繋がらない場合があった。The technology described in Patent Document 1 reduces the flow rate of the mixture of abrasive and gas within the expanding section and disperses it, thereby enabling the through-holes to be polished uniformly, but there is a problem in that reducing the flow rate of the abrasive reduces the polishing efficiency. However, there are cases in which simply increasing the flow rate of the abrasive in order to improve the polishing efficiency does not necessarily lead to an improvement in the polishing efficiency.

本発明は、上記に鑑みてなされたものであり、脱硝触媒の研磨効率を向上させることができる脱硝触媒研磨方法及び脱硝触媒研磨装置に関する。The present invention has been made in consideration of the above, and relates to a denitration catalyst polishing method and a denitration catalyst polishing apparatus that can improve the polishing efficiency of the denitration catalyst.

本発明は、長手方向に延びる複数の貫通孔が設けられた脱硝触媒の前記貫通孔に、空気と共に研磨材を流通させて、前記貫通孔の内面を研磨する脱硝触媒研磨方法であって、前記脱硝触媒は、前記貫通孔の流路方向が水平面に対して略垂直になるように配置され、前記研磨材は、前記貫通孔の下方から上方に向けて流通し、前記研磨材は、第1の砥粒と、第2の砥粒と、を含み、前記第1の砥粒と、前記第2の砥粒とは、前記貫通孔を流通する速度が異なる、脱硝触媒研磨方法に関する。The present invention relates to a method for polishing a denitration catalyst, in which an abrasive is caused to flow together with air through the through holes of a denitration catalyst having a plurality of through holes extending in the longitudinal direction to polish the inner surfaces of the through holes, the denitration catalyst is arranged so that the flow direction of the through holes is approximately perpendicular to a horizontal plane, the abrasive flows from below to above the through holes, the abrasive includes first abrasive grains and second abrasive grains, and the first abrasive grains and the second abrasive grains flow through the through holes at different speeds.

前記第1の砥粒の平均粒子径D1は、前記第2の砥粒の平均粒子径D2よりも大きいことが好ましい。It is preferable that the average particle diameter D1 of the first abrasive grains is larger than the average particle diameter D2 of the second abrasive grains.

前記平均粒子径D1は、1.65~2.16mmであり、前記平均粒子径D2は0.30~0.45mmであることが好ましい。It is preferable that the average particle diameter D1 is 1.65 to 2.16 mm and the average particle diameter D2 is 0.30 to 0.45 mm.

前記第1の砥粒は、前記研磨材中に5~15重量%含まれることが好ましい。It is preferable that the first abrasive grains are contained in the abrasive material in an amount of 5 to 15% by weight.

前記研磨材の補充工程を有し、前記研磨材の補充工程で補充される前記第1の砥粒は、補充される前記研磨材中に5~20重量%含まれることが好ましい。It is preferable that the method has a process for replenishing the abrasive material, and that the first abrasive grains replenished in the process for replenishing the abrasive material are contained in an amount of 5 to 20% by weight in the abrasive material being replenished.

また、本発明は、長手方向に延びる複数の貫通孔が設けられた脱硝触媒の前記貫通孔に、空気と共に研磨材を流通させて、前記貫通孔の内面を研磨する脱硝触媒研磨装置であって、前記脱硝触媒の上流側に配置され、研磨材と空気とを混合する混合部と、前記混合部と、前記脱硝触媒とを接続し、前記脱硝触媒の下方から空気と混合された前記研磨材が流入する流入路と、前記脱硝触媒を、前記貫通孔の流路方向が水平面に対して略垂直になるように固定する固定部材と、前記脱硝触媒の下流側に配置され、前記脱硝触媒の上方から空気と共に研磨材を吸引する吸引部と、を有し、前記研磨材は、第1の砥粒と、第2の砥粒と、を含み、前記第1の砥粒と、前記第2の砥粒とは、前記貫通孔を流通する速度が異なる、脱硝触媒研磨装置に関する。The present invention also relates to a denitration catalyst polishing device that polishes the inner surface of a denitration catalyst having a plurality of through holes extending in the longitudinal direction by circulating an abrasive together with air through the through holes, the denitration catalyst having a plurality of through holes extending in the longitudinal direction, the denitration catalyst polishing device comprising: a mixing section that is disposed upstream of the denitration catalyst and mixes the abrasive with air; an inflow passage that connects the mixing section to the denitration catalyst and through which the abrasive mixed with air flows in from below the denitration catalyst; a fixing member that fixes the denitration catalyst so that the flow direction of the through holes is approximately perpendicular to a horizontal plane; and a suction section that is disposed downstream of the denitration catalyst and sucks in the abrasive together with air from above the denitration catalyst, the abrasive including first abrasive grains and second abrasive grains, the first abrasive grains and the second abrasive grains flowing through the through holes at different speeds.

本発明は、脱硝触媒の研磨効率を向上させることができる脱硝触媒研磨方法及び脱硝触媒研磨装置を提供できる。 The present invention provides a denitration catalyst polishing method and a denitration catalyst polishing apparatus that can improve the polishing efficiency of the denitration catalyst.

本実施形態に係る脱硝触媒が使用される火力発電設備の構成図である。1 is a configuration diagram of a thermal power plant in which a denitration catalyst according to an embodiment of the present invention is used. 火力発電設備における脱硝装置の構成例を示す図である。FIG. 1 is a diagram showing an example of the configuration of a denitrification device in a thermal power generation facility. 本実施形態に係る脱硝触媒研磨装置の概略構成図である。1 is a schematic configuration diagram of a denitration catalyst polishing apparatus according to an embodiment of the present invention. 本実施形態に係る脱硝触媒研磨方法を示す模式図である。1 is a schematic diagram showing a method for polishing a denitration catalyst according to an embodiment of the present invention;

以下、本発明の実施形態について説明する。
本発明の実施形態に係る脱硝触媒研磨方法及び脱硝触媒研磨装置の被研磨対象である脱硝触媒は、例えば、以下説明する石炭火力発電設備100で一定期間使用され、性能の低下した脱硝触媒Cである。
Hereinafter, an embodiment of the present invention will be described.
The denitration catalyst to be polished by the denitration catalyst polishing method and denitration catalyst polishing apparatus according to the embodiment of the present invention is, for example, a denitration catalyst C that has been used for a certain period of time in a coal-fired power generation facility 100 described below and has deteriorated in performance.

[石炭火力発電設備]
図1に示すように、石炭火力発電設備100は、石炭バンカ110と、給炭機115と、微粉炭機120と、微粉炭供給管130と、燃焼ボイラ140と、燃焼ボイラ140の下流側に設けられる排気通路150と、この排気通路150に設けられる脱硝装置160、空気予熱器170、熱回収用ガスヒータ180、電気集塵装置190、誘引通風機210、湿式脱硫装置220、再加熱用ガスヒータ230、脱硫通風機240、及び煙突250と、を備える。
[Coal-fired power generation facilities]
As shown in FIG. 1, the coal-fired power generation facility 100 includes a coal bunker 110, a coal feeder 115, a coal pulverizer 120, a pulverized coal supply pipe 130, a combustion boiler 140, an exhaust passage 150 provided downstream of the combustion boiler 140, a denitration device 160 provided in the exhaust passage 150, an air preheater 170, a heat recovery gas heater 180, an electrostatic precipitator 190, an induced draft fan 210, a wet desulfurization device 220, a reheat gas heater 230, a desulfurization fan 240, and a chimney 250.

石炭バンカ110は、図示しない石炭サイロから運炭設備により供給される石炭を貯蔵する。給炭機115は、石炭バンカ110から供給される石炭を所定の供給スピードで微粉炭機120に供給する。
微粉炭機120は、給炭機115から供給された石炭を平均粒径60μm~80μmに粉砕して微粉炭を製造する。微粉炭機120としては、ローラミル、チューブミル、ボーラミル、ビータミル、インペラーミル等が用いられる。
The coal bunker 110 stores coal supplied from a coal silo (not shown) by a coal transport facility. The coal feeder 115 supplies the coal supplied from the coal bunker 110 to the coal pulverizer 120 at a predetermined supply speed.
The coal pulverizer 120 pulverizes the coal supplied from the coal feeder 115 to an average particle size of 60 μm to 80 μm to produce pulverized coal. As the coal pulverizer 120, a roller mill, a tube mill, a bora mill, a beater mill, an impeller mill, or the like is used.

燃焼ボイラ140は、微粉炭供給管微粉炭機130から供給された微粉炭を、強制的に供給された空気と共に微粉炭バーナbにより燃焼する。微粉炭を燃焼することによりクリンカアッシュ及びフライアッシュなどの石炭灰が生成されると共に、排ガスが発生する。クリンカアッシュとは、石炭灰のうち、燃焼ボイラ140の底部に落下する塊状の石炭灰をいう。フライアッシュとは、石炭灰のうち、排ガスと共に排気通路150側に流通する、粒径の小さい(粒径200μm程度以下)の石炭灰をいう。
排気通路150は、燃焼ボイラ140の下流側に配置され、燃焼ボイラ140で発生した排ガス及び石炭灰を流通させる。
The combustion boiler 140 burns the pulverized coal supplied from the pulverized coal supply pipe coal pulverizer 130 with forcibly supplied air by the pulverized coal burner b. By burning the pulverized coal, coal ash such as clinker ash and fly ash is generated, and exhaust gas is generated. The clinker ash refers to the coal ash in the form of lumps that fall to the bottom of the combustion boiler 140. The fly ash refers to the coal ash with a small particle size (particle size of about 200 μm or less) that flows into the exhaust passage 150 side together with the exhaust gas.
The exhaust passage 150 is disposed downstream of the combustion boiler 140 and allows the exhaust gas and coal ash generated in the combustion boiler 140 to flow therethrough.

脱硝装置160は、排ガス中の窒素酸化物を除去する。脱硝装置160は、例えば、乾式アンモニア接触還元法により排ガス中の窒素酸化物を除去する。乾式アンモニア接触還元法は、比較的高温(300℃~400℃)の排ガス中に還元剤としてアンモニアガスを注入し、脱硝触媒との作用により排ガス中の窒素酸化物を窒素と水蒸気に分解する方法である。The denitration device 160 removes nitrogen oxides from the exhaust gas. The denitration device 160 removes nitrogen oxides from the exhaust gas, for example, by dry ammonia catalytic reduction. The dry ammonia catalytic reduction method involves injecting ammonia gas as a reducing agent into exhaust gas at a relatively high temperature (300°C to 400°C), and decomposing the nitrogen oxides in the exhaust gas into nitrogen and water vapor through the action of a denitration catalyst.

脱硝装置160は、図2に示すように、脱硝反応が行われる脱硝反応器161と、脱硝反応器161の内部に配置される複数段の脱硝触媒層162とを備える。脱硝触媒層162は、複数のケーシング163により構成される。ケーシング163には、複数の脱硝触媒Cが収容される。
脱硝触媒Cは、長手方向に延びる複数の貫通孔C1が形成されたハニカム構造を有する、長尺状(直方体状)の触媒である。複数の脱硝触媒Cは、貫通孔C1の延びる方向が排ガスの流路に沿うように配置される。
2, the denitration device 160 includes a denitration reactor 161 in which a denitration reaction takes place, and a plurality of stages of denitration catalyst layers 162 disposed inside the denitration reactor 161. The denitration catalyst layers 162 are composed of a plurality of casings 163. A plurality of denitration catalysts C are housed in the casings 163.
The denitration catalyst C is an elongated (rectangular) catalyst having a honeycomb structure with a plurality of through holes C1 extending in the longitudinal direction. The plurality of denitration catalysts C are arranged such that the extension direction of the through holes C1 is along the flow path of the exhaust gas.

空気予熱器170は、排気通路150における脱硝装置160の下流側に配置される。空気予熱器170は、脱硝装置160を通過した排ガスと燃焼用空気とを熱交換させ、排ガスを冷却すると共に、燃焼用空気を加熱する。加熱された燃焼用空気は、押込通風機175によりボイラ140に供給される。The air preheater 170 is disposed downstream of the denitration device 160 in the exhaust passage 150. The air preheater 170 exchanges heat between the exhaust gas that has passed through the denitration device 160 and the combustion air, cooling the exhaust gas and heating the combustion air. The heated combustion air is supplied to the boiler 140 by the forced draft fan 175.

熱回収用ガスヒータ180は、排気通路150における空気予熱器170の下流側に配置される。熱回収用ガスヒータ180には、空気予熱器170において熱回収された排ガスが供給される。熱回収用ガスヒータ180は、排ガスから更に熱回収を行う。The heat recovery gas heater 180 is disposed downstream of the air preheater 170 in the exhaust passage 150. The heat recovery gas heater 180 is supplied with exhaust gas whose heat has been recovered in the air preheater 170. The heat recovery gas heater 180 further recovers heat from the exhaust gas.

電気集塵装置190は、排気通路150における熱回収用ガスヒータ180の下流側に配置される。電気集塵装置190には、熱回収用ガスヒータ180において熱回収された排ガスが供給される。電気集塵装置190は、電極に電圧を印加することによって排ガス中の石炭灰(フライアッシュ)を収集(捕捉)する装置である。電気集塵装置190において収集(捕捉)されるフライアッシュは、フライアッシュ回収装置191に回収される。The electrostatic precipitator 190 is disposed downstream of the heat recovery gas heater 180 in the exhaust passage 150. The electrostatic precipitator 190 is supplied with exhaust gas whose heat has been recovered in the heat recovery gas heater 180. The electrostatic precipitator 190 is a device that collects (captures) coal ash (fly ash) in the exhaust gas by applying a voltage to the electrodes. The fly ash collected (captured) in the electrostatic precipitator 190 is collected in the fly ash recovery device 191.

誘引通風機210は、排気通路150における電気集塵装置190の下流側に配置される。誘引通風機210は、電気集塵装置190においてフライアッシュが除去された排ガスを、一次側から取り込んで二次側に送り出す。The induced draft fan 210 is disposed downstream of the electrostatic precipitator 190 in the exhaust passage 150. The induced draft fan 210 takes in the exhaust gas from which the fly ash has been removed by the electrostatic precipitator 190 from the primary side and sends it out to the secondary side.

脱硫装置220は、排気通路150における誘引通風機210の下流側に配置される。脱硫装置220には、誘引通風機210から送り出された排ガスが供給される。脱硫装置220は、例えば湿式石灰-石膏法により排ガス中の硫黄酸化物を除去する。湿式石灰-石膏法は、排ガスに石灰石と水との混合液を吹き付けることにより、排ガスに含有されている硫黄酸化物を混合液に吸収させて脱硫石膏スラリーを生成させ、排ガス中の硫黄酸化物を除去する方法である。この際に発生したホウ素やセレン等の微量物質が含まれる排水は、排水処理装置221によって処理される。The desulfurization device 220 is disposed downstream of the induced draft fan 210 in the exhaust passage 150. The desulfurization device 220 is supplied with the exhaust gas sent out from the induced draft fan 210. The desulfurization device 220 removes sulfur oxides from the exhaust gas, for example, by a wet lime-gypsum method. The wet lime-gypsum method is a method in which a mixture of limestone and water is sprayed onto the exhaust gas, causing the sulfur oxides contained in the exhaust gas to be absorbed by the mixture to generate a desulfurized gypsum slurry, thereby removing the sulfur oxides from the exhaust gas. The wastewater generated during this process, which contains trace substances such as boron and selenium, is treated by the wastewater treatment device 221.

再加熱用ガスヒータ230は、排気通路150における脱硫装置220の下流側に配置される。再加熱用ガスヒータ230には、脱硫装置220において硫黄酸化物が除去された排ガスが供給される。再加熱用ガスヒータ230は、排ガスを加熱する。熱回収用ガスヒータ180及び再加熱用ガスヒータ230は、排気通路150における、空気予熱器170と電気集塵装置190との間を流通する排ガスと、脱硫装置220と脱硫通風機240との間を流通する排ガスと、の間で熱交換を行うガス-ガスヒータとして構成してもよい。The reheating gas heater 230 is disposed downstream of the desulfurization device 220 in the exhaust passage 150. The reheating gas heater 230 is supplied with exhaust gas from which sulfur oxides have been removed in the desulfurization device 220. The reheating gas heater 230 heats the exhaust gas. The heat recovery gas heater 180 and the reheating gas heater 230 may be configured as a gas-gas heater that performs heat exchange between the exhaust gas flowing between the air preheater 170 and the electrostatic precipitator 190 in the exhaust passage 150 and the exhaust gas flowing between the desulfurization device 220 and the desulfurization fan 240.

脱硫通風機240は、排気通路150における再加熱用ガスヒータ230の下流側に配置される。脱硫通風機240は、再加熱用ガスヒータ230において加熱された排ガスを一次側から取り込んで二次側に送り出す。The desulfurization fan 240 is disposed downstream of the reheat gas heater 230 in the exhaust passage 150. The desulfurization fan 240 takes in the exhaust gas heated in the reheat gas heater 230 from the primary side and sends it out to the secondary side.

煙突250は、排気通路150における脱硫通風機240の下流側に配置される。煙突250には、再加熱用ガスヒータ230で加熱された排ガスが導入される。煙突250は、排ガスを排出する。The chimney 250 is disposed downstream of the desulfurization fan 240 in the exhaust passage 150. Exhaust gas heated by the reheat gas heater 230 is introduced into the chimney 250. The chimney 250 discharges the exhaust gas.

[脱硝触媒研磨装置]
上記説明した石炭火力発電設備100に用いられる脱硝触媒Cは、使用の継続に伴いシンタリング等の熱的劣化、触媒成分の被毒による化学的劣化、及び煤塵が触媒表面を被覆する物理的劣化等により、脱硝性能が低下する。脱硝性能が低下した脱硝触媒Cは、触媒表面である貫通孔C1の内面を研磨し、表面の付着物等を除去することで脱硝性能が回復する。
以下、脱硝性能の低下した脱硝触媒Cの貫通孔C1の内面を研磨し、脱硝性能を回復させる脱硝触媒研磨装置1について説明する。
[Denitrification catalyst polishing equipment]
The denitration catalyst C used in the above-described coal-fired power plant 100 loses its denitration performance due to thermal deterioration such as sintering with continued use, chemical deterioration due to poisoning of the catalyst components, and physical deterioration due to coating of the catalyst surface with soot, etc. The denitration performance of the denitration catalyst C with reduced denitration performance can be restored by polishing the inner surface of the through hole C1, which is the catalyst surface, and removing the deposits on the surface, etc.
Hereinafter, a description will be given of a denitration catalyst polishing device 1 that polishes the inner surface of the through hole C1 of a denitration catalyst C whose denitration performance has deteriorated, thereby recovering the denitration performance.

本実施形態に係る脱硝触媒研磨装置1は、脱硝触媒Cの貫通孔C1に空気と共に研磨材Aを流通させて、貫通孔C1の内面を研磨する装置である。脱硝触媒研磨装置1は、図3に示すように、混合部10と、流入路20と、流出路30と、サイクロン40と、コンプレッサ50と、バグフィルタ60と、吸引ファン70と、を備える。脱硝触媒研磨装置1の被研磨対象である脱硝触媒Cは、流入路20における上流側固定部材22と、流出路30における下流側固定部材32との間に挟持される。脱硝触媒Cは、脱硝触媒Cの貫通孔C1の流路方向が水平面に対して略垂直になるように固定される。The denitration catalyst polishing device 1 according to this embodiment is a device that polishes the inner surface of the through hole C1 of the denitration catalyst C by circulating the abrasive A together with air through the through hole C1. As shown in FIG. 3, the denitration catalyst polishing device 1 includes a mixing section 10, an inlet passage 20, an outlet passage 30, a cyclone 40, a compressor 50, a bag filter 60, and a suction fan 70. The denitration catalyst C, which is the object to be polished by the denitration catalyst polishing device 1, is sandwiched between an upstream fixing member 22 in the inlet passage 20 and a downstream fixing member 32 in the outlet passage 30. The denitration catalyst C is fixed so that the flow direction of the through hole C1 of the denitration catalyst C is approximately perpendicular to the horizontal plane.

混合部10は、空気と研磨材Aとを混合し、流入路20を介して脱硝触媒Cに空気と混合された研磨材Aを供給する。混合部10には、ブラストガン11と、漏斗部12と、これらを収容するキャビネット13とが設けられる。ブラストガン11は、エアホース51を介してコンプレッサ50と連結されており、圧縮空気を噴射可能である。ブラストガン11は、複数台設けられていてもよい。ブラストガン11には、後述する研磨材供給路33が連結される。ブラストガン11から圧縮空気が噴射されると、エジェクター効果が生じ、研磨材供給路33を通じて研磨材Aがブラストガン11内に供給される。そして、ブラストガン11の内部で研磨材Aと圧縮空気とが混合され、漏斗部12に噴射される。噴射された研磨材Aは、空気と均一に混合された状態で、漏斗部12を通じて流入路20に流入する。The mixing section 10 mixes air and abrasive A, and supplies the abrasive A mixed with air to the denitrification catalyst C through the inflow passage 20. The mixing section 10 is provided with a blast gun 11, a funnel section 12, and a cabinet 13 that houses them. The blast gun 11 is connected to a compressor 50 through an air hose 51, and can inject compressed air. A plurality of blast guns 11 may be provided. The blast gun 11 is connected to an abrasive supply passage 33, which will be described later. When compressed air is injected from the blast gun 11, an ejector effect occurs, and the abrasive A is supplied into the blast gun 11 through the abrasive supply passage 33. Then, the abrasive A and the compressed air are mixed inside the blast gun 11 and injected into the funnel section 12. The injected abrasive A flows into the inflow passage 20 through the funnel section 12 in a state where it is uniformly mixed with air.

流入路20は、脱硝触媒Cの上流側の流路であり、空気と混合された研磨材Aが脱硝触媒Cの下方から流入する流路である。流入路20は、上流側流路21及び上流側固定部材22からなる。上流側流路21は、屈曲部を有する流路であり、上流側が漏斗部12と連結され、下流側が上流側固定部材22と連結される。上流側固定部材22は、直線状の流路を有し、下流側が脱硝触媒Cの下端部(上流側端部)と連結されて脱硝触媒Cを固定する。空気と混合された研磨材Aは、上流側固定部材22を通じて脱硝触媒Cの貫通孔C1に流入する。脱硝触媒Cの貫通孔C1に流入する研磨材Aの構成については、後段で詳述する。The inlet passage 20 is a flow path on the upstream side of the denitration catalyst C, and is a flow path through which the abrasive A mixed with air flows in from below the denitration catalyst C. The inlet passage 20 consists of an upstream flow path 21 and an upstream fixing member 22. The upstream flow path 21 is a flow path with a bent portion, and the upstream side is connected to the funnel portion 12, and the downstream side is connected to the upstream fixing member 22. The upstream fixing member 22 has a straight flow path, and the downstream side is connected to the lower end (upstream end) of the denitration catalyst C to fix the denitration catalyst C. The abrasive A mixed with air flows into the through hole C1 of the denitration catalyst C through the upstream fixing member 22. The configuration of the abrasive A flowing into the through hole C1 of the denitration catalyst C will be described in detail later.

流出路30は、脱硝触媒Cの下流側の流路である。流出路30は、研磨材Aと、脱硝触媒Cの表面が研磨されることで生じた被研磨物とが流通する流路である。研磨材Aと被研磨物とは、吸引部としての吸引ファン70により空気と共に吸引される。流出路30の途中にはサイクロン40が設けられ、研磨材Aと被研磨物とが分離される。
流出路30は、脱硝触媒Cの上端部(下流側端部)と連結されて脱硝触媒Cを固定する下流側固定部材32と、下流側固定部材32とサイクロン40とを連結する下流側流路31と、サイクロン40と混合部10とを連結する研磨材供給路33と、を有する。
The outflow path 30 is a flow path downstream of the denitration catalyst C. The outflow path 30 is a flow path through which the abrasive A and the object to be polished generated by polishing the surface of the denitration catalyst C flow. The abrasive A and the object to be polished are sucked together with air by a suction fan 70 serving as a suction section. A cyclone 40 is provided midway through the outflow path 30, and the abrasive A and the object to be polished are separated.
The outflow path 30 has a downstream fixing member 32 that is connected to the upper end (downstream end) of the denitration catalyst C to fix the denitration catalyst C, a downstream flow path 31 that connects the downstream fixing member 32 to the cyclone 40, and an abrasive supply path 33 that connects the cyclone 40 to the mixing section 10.

サイクロン40は、公知のサイクロン分級器であり、混合部10よりも高い位置に配置される。サイクロン40の上流端は、下流側流路31と連結される。サイクロン40の下部には研磨材供給路33が連結され、サイクロン40により分離された研磨材Aは、研磨材供給路33を通じて重力により落下して混合部10に供給される。サイクロン40の下流端は、搬送パイプ41と連結され、搬送パイプ41の下流端は、バグフィルタ60と連結される。サイクロン40により分離された被研磨物は、空気と共に搬送パイプ41を通じてバグフィルタ60に流入する。The cyclone 40 is a known cyclone classifier and is positioned higher than the mixing section 10. The upstream end of the cyclone 40 is connected to the downstream flow path 31. The abrasive supply path 33 is connected to the bottom of the cyclone 40, and the abrasive A separated by the cyclone 40 falls by gravity through the abrasive supply path 33 and is supplied to the mixing section 10. The downstream end of the cyclone 40 is connected to the conveying pipe 41, and the downstream end of the conveying pipe 41 is connected to the bag filter 60. The polished material separated by the cyclone 40 flows into the bag filter 60 through the conveying pipe 41 together with air.

バグフィルタ60は、公知の集塵装置である。バグフィルタ60は、脱硝触媒Cの被研磨物を含む空気中の粉塵を捕集する。捕集された粉塵は、バグフィルタ60の下部に設けられた図示しない貯蔵部に貯蔵され、所望のタイミングで回収される。バグフィルタ60の下流端は、連結パイプ61と連結される。連結パイプ61の下流端は、吸引部としての吸引ファン70に連結される。バグフィルタ60を通過して粉塵が除去された清浄な空気は、吸引ファン70によって吸引されて、排気ダクト71により大気中に排出される。The bag filter 60 is a known dust collecting device. The bag filter 60 captures dust particles in the air, including the polished material of the denitration catalyst C. The captured dust particles are stored in a storage unit (not shown) provided at the bottom of the bag filter 60, and are collected at the desired timing. The downstream end of the bag filter 60 is connected to a connecting pipe 61. The downstream end of the connecting pipe 61 is connected to a suction fan 70 as a suction unit. The clean air from which dust particles have been removed by passing through the bag filter 60 is sucked in by the suction fan 70 and discharged into the atmosphere by an exhaust duct 71.

次に、本実施形態に係る脱硝触媒研磨装置1の、脱硝触媒Cに流入する研磨材Aの構成について、図面を参照して以下説明する。図4は、上流側固定部材22に固定された脱硝触媒C付近の断面を示す概念図である。Next, the configuration of the abrasive A flowing into the denitration catalyst C in the denitration catalyst polishing device 1 according to this embodiment will be described below with reference to the drawings. Figure 4 is a conceptual diagram showing a cross section near the denitration catalyst C fixed to the upstream fixing member 22.

図4に示すように、本実施形態に係る脱硝触媒Cは、複数の貫通孔C1の流路方向が水平面に対して略垂直になるように配置されて固定される。そして、複数の貫通孔C1に対し、脱硝触媒Cの下方に連結される上流側固定部材22を通じ、空気と混合された研磨材Aが、下方から上方に向けて流通し、貫通孔C1の内面が研磨される。As shown in Figure 4, the denitration catalyst C according to this embodiment is arranged and fixed so that the flow direction of the multiple through holes C1 is approximately perpendicular to the horizontal plane. Abrasive A mixed with air flows from the bottom to the top of the multiple through holes C1 through the upstream fixing member 22 connected to the bottom of the denitration catalyst C, polishing the inner surface of the through holes C1.

本実施形態に係る研磨材Aは、第1の砥粒A1と、第2の砥粒A2(以下、単に「砥粒A1」及び「砥粒A2」と記載する場合がある)と、からなり、砥粒A1と砥粒A2とは、貫通孔C1を流通する速度が異なる。例えば、砥粒A1と砥粒A2とは、平均粒子径及び密度のうち、少なくとも何れかが異なる。
砥粒A1と、砥粒A2とは、図4に示すように、例えば粒径の大きな砥粒A1と、粒径の小さな砥粒A2と、からなる。砥粒A1と砥粒A2の密度が同じである場合、粒径の大きな砥粒A1は、砥粒A2と比較し、質量が大きい。従って、砥粒A1及び砥粒A2が空気と共に下方から上方に向けて貫通孔C1を流通する際、砥粒A1に働く重力が砥粒A2よりも大きいため、砥粒A1の流通速度は砥粒A2の流通速度よりも小さくなる。すると、砥粒A1に対し、砥粒A2が衝突し、砥粒A2は貫通孔C1の中で飛散する。これにより、貫通孔C1の内面に衝突する砥粒A2の割合が増える結果、脱硝触媒Cの研磨効率が向上する。
The abrasive A according to this embodiment is composed of first abrasive grains A1 and second abrasive grains A2 (hereinafter, sometimes simply referred to as "abrasive grains A1" and "abrasive grains A2"). The abrasive grains A1 and A2 have different flow rates through the through holes C1. For example, the abrasive grains A1 and A2 have different average particle diameters and/or densities.
As shown in FIG. 4, the abrasive grains A1 and A2 are, for example, abrasive grains A1 with a large grain size and abrasive grains A2 with a small grain size. When the density of the abrasive grains A1 and A2 is the same, the abrasive grains A1 with a large grain size have a larger mass than the abrasive grains A2. Therefore, when the abrasive grains A1 and A2 flow through the through hole C1 from the bottom to the top together with the air, the gravity acting on the abrasive grains A1 is larger than that on the abrasive grains A2, so that the flow speed of the abrasive grains A1 is smaller than that of the abrasive grains A2. Then, the abrasive grains A2 collide with the abrasive grains A1, and the abrasive grains A2 are scattered in the through hole C1. As a result, the ratio of the abrasive grains A2 that collide with the inner surface of the through hole C1 increases, and the polishing efficiency of the denitration catalyst C is improved.

仮に、研磨材Aに含まれる砥粒の流通速度が同じである場合、上記のような衝突は起こりにくい。そうすると、研磨材Aの流速を増加させた場合に、貫通孔C1の内面に衝突せず、貫通孔C1をすり抜けてしまう砥粒の割合が増加する。従って、研磨材Aの流速を増加させても、それに見合う研磨効率の向上が得られない場合がある。本実施形態においては、2種類の流通速度が異なる砥粒A1及び砥粒A2を研磨材Aとして用いる事で、脱硝触媒Cの研磨効率を向上させることができる。If the flow speed of the abrasive grains contained in the abrasive A is the same, the above collision is unlikely to occur. In that case, when the flow speed of the abrasive A is increased, the proportion of abrasive grains that do not collide with the inner surface of the through hole C1 and slip through the through hole C1 increases. Therefore, even if the flow speed of the abrasive A is increased, there are cases where an increase in the flow speed of the abrasive A does not result in a commensurate improvement in the polishing efficiency. In this embodiment, by using two types of abrasive grains A1 and A2, which have different flow speeds, as the abrasive A, the polishing efficiency of the denitrification catalyst C can be improved.

砥粒A1は、上記研磨効率を向上させるため、JIS R6001に規定される粒度がF7~F14であることが好ましく、粒度F8~F12であることがより好ましく、粒度F10であることが更に好ましい。同様に、砥粒A2の平均粒子径は、JIS R6001に規定される粒度がF36~F60であることが好ましく、粒度F40~F54であることがより好ましく、F46であることが更に好ましい。砥粒A1の累積高さ50%点の粒子径である平均粒子径は、1.65~2.16mmであることが好ましい。砥粒A2の累積高さ50%点の粒子径である平均粒子径は、0.30~0.45mmであることが好ましい。In order to improve the polishing efficiency, the grain size of the abrasive grain A1 is preferably F7 to F14 as specified in JIS R6001, more preferably F8 to F12, and even more preferably F10. Similarly, the average grain size of the abrasive grain A2 is preferably F36 to F60 as specified in JIS R6001, more preferably F40 to F54, and even more preferably F46. The average grain size of the abrasive grain A1 at the 50% point of the cumulative height is preferably 1.65 to 2.16 mm. The average grain size of the abrasive grain A2 at the 50% point of the cumulative height is preferably 0.30 to 0.45 mm.

砥粒A1の研磨材Aにおける割合は、5~15重量%であることが好ましい。砥粒A1の割合が上記範囲に対して少なすぎると、研磨効率を十分向上させることができない。また、砥粒A1の割合が上記範囲に対して多すぎると、脱硝触媒Cを均一に研磨できず、研磨が不十分な箇所と、研磨過剰な箇所が生じてしまう。また、脱硝触媒Cが破損する恐れがある。The proportion of abrasive grains A1 in abrasive material A is preferably 5 to 15% by weight. If the proportion of abrasive grains A1 is too low relative to the above range, the polishing efficiency cannot be sufficiently improved. Furthermore, if the proportion of abrasive grains A1 is too high relative to the above range, the denitration catalyst C cannot be polished uniformly, resulting in some areas that are insufficiently polished and others that are over-polished. There is also a risk of the denitration catalyst C being damaged.

砥粒A1及び砥粒A2の材質としては、特に制限されないが、例えば、ダイヤモンド、CBN(立方晶窒化ホウ素)、B4C(炭化ホウ素)、炭化ケイ素、シリカ、セリア、アルミナ、ホワイトアルミナ、ジルコニア、チタニア、マンガン酸化物、炭酸バリウム、酸化クロム、及び酸化鉄等が挙げられる。砥粒A1及び砥粒A2の材質を同一とする場合、砥粒A1及び砥粒A2の平均粒子径を異なるものとすることで、砥粒A1及び砥粒A2の貫通孔C1を流通する速度を異なるものにできる。
また、砥粒A1及び砥粒A2の材質を異なるものとしてもよい。この場合、平均粒子径以外に、砥粒A1と砥粒A2との密度差により、砥粒A1及び砥粒A2の貫通孔C1を流通する速度を異なるものにできる。更に、流通速度の小さい砥粒を砥粒A1とした場合に、砥粒A1の硬度を、流通速度が大きい砥粒A2の硬度よりも高いものとすることが好ましい。砥粒A1及び砥粒A2は、使用の継続に伴い、割れや欠けが生じ、また、角が取れることで研磨効率が低下するので、一定時間ごとに補充の必要がある。上記構成により、砥粒A1が摩耗しにくくなり、砥粒A1の補充頻度を低減することができる。例えば、砥粒A2としてアルミナやホワイトアルミナを用いる場合、砥粒A1として、より硬度の高いダイヤモンドやCBNを用いることが好ましい。
The material of the abrasive grains A1 and A2 is not particularly limited, and examples thereof include diamond, CBN (cubic boron nitride), B4C (boron carbide), silicon carbide, silica, ceria, alumina, white alumina, zirconia, titania, manganese oxide, barium carbonate, chromium oxide, and iron oxide, etc. When the material of the abrasive grains A1 and A2 is the same, the average particle diameters of the abrasive grains A1 and A2 can be made different from each other to make the speeds at which the abrasive grains A1 and A2 flow through the through holes C1 different.
The abrasive grains A1 and A2 may be made of different materials. In this case, in addition to the average particle size, the density difference between the abrasive grains A1 and A2 can make the flow speeds of the abrasive grains A1 and A2 through the through holes C1 different. Furthermore, when the abrasive grains A1 have a low flow speed, it is preferable that the hardness of the abrasive grains A1 is higher than the hardness of the abrasive grains A2 have a high flow speed. The abrasive grains A1 and A2 are cracked or chipped with continued use, and the polishing efficiency is reduced by the corners being rounded off, so they need to be replenished at regular intervals. With the above configuration, the abrasive grains A1 are less likely to wear out, and the frequency of replenishment of the abrasive grains A1 can be reduced. For example, when alumina or white alumina is used as the abrasive grains A2, it is preferable to use diamond or CBN, which has a higher hardness, as the abrasive grains A1.

(研磨再生方法)
次に、脱硝触媒研磨装置1を用いて脱硝触媒Cを研磨再生する方法について説明する。
脱硝触媒研磨装置1の被研磨対象である、脱硝性能が低下した脱硝触媒Cを、石炭火力発電設備100の脱硝装置160から取り外す。この際、脱硝触媒Cの貫通孔C1は、石炭灰等で閉塞されている場合があるため、適宜エアブローや水洗等により閉塞物を取り除く。次に、上流側固定部材22と、下流側固定部材32との間に脱硝触媒Cを挟持し、脱硝触媒Cを固定する。この際、例えば脱硝触媒Cの、脱硝装置160における排ガスの入口側端部であった付着物の多い側を、研磨材Aの流速の高い下流側となるように配置して固定してもよい。
(Polishing and Regeneration Method)
Next, a method for polishing and regenerating the denitration catalyst C using the denitration catalyst polishing apparatus 1 will be described.
The denitration catalyst C with reduced denitration performance, which is the object to be polished by the denitration catalyst polishing device 1, is removed from the denitration device 160 of the coal-fired power plant 100. At this time, since the through-holes C1 of the denitration catalyst C may be blocked by coal ash or the like, the blocked material is removed by air blowing, water washing, or the like as appropriate. Next, the denitration catalyst C is sandwiched between the upstream fixing member 22 and the downstream fixing member 32 to fix the denitration catalyst C. At this time, for example, the side of the denitration catalyst C with more deposits, which was the inlet end of the exhaust gas inlet of the denitration device 160, may be arranged and fixed so that it is located downstream, where the flow rate of the abrasive A is high.

脱硝触媒研磨装置1の作動を開始すると、吸引ファン70及びコンプレッサ50が作動を開始し、混合部10で空気と混合された研磨材Aが上流側に吸引される。研磨材Aは、上流側流路21及び上流側固定部材22を介して脱硝触媒Cの貫通孔C1に流入する。研磨材Aは、砥粒A1及び砥粒A2からなり、例えば砥粒A1は砥粒A2よりも平均粒子径が大きく、貫通孔C1における流通速度が砥粒A2よりも小さい。従って、砥粒A2は砥粒A1と衝突して飛散することで、貫通孔C1の内面に衝突しやすい。このような砥粒A1及び砥粒A2により、効率よく貫通孔C1の内面が研磨される。When the denitration catalyst polishing device 1 starts operating, the suction fan 70 and compressor 50 start operating, and the abrasive A mixed with air in the mixing section 10 is sucked upstream. The abrasive A flows into the through hole C1 of the denitration catalyst C via the upstream flow path 21 and the upstream fixing member 22. The abrasive A is composed of abrasive grains A1 and A2. For example, the abrasive grains A1 have a larger average particle diameter than the abrasive grains A2, and have a smaller flow rate in the through hole C1 than the abrasive grains A2. Therefore, the abrasive grains A2 collide with the abrasive grains A1 and scatter, and are likely to collide with the inner surface of the through hole C1. The inner surface of the through hole C1 is efficiently polished by such abrasive grains A1 and A2.

研磨材Aは、貫通孔C1の内面の研磨を行った後、下流側固定部材32から流出する。流出した研磨材Aと被研磨物とは、空気と共に吸引ファン70により吸引されて、下流側流路31を介してサイクロン40に流入する。サイクロン40では、研磨材Aと被研磨物とが分離され、研磨材Aは研磨材供給路33を介して混合部10に供給される。即ち、研磨材Aは脱硝触媒研磨装置1内を循環する。サイクロン40で分離された被研磨物は吸引ファン70により吸引されて、搬送パイプ41を介してバグフィルタ60に流入して捕集される。被研磨物が捕集された後の空気は排気ダクト71を通じて外部に排出される。所定時間、脱硝触媒研磨装置1の作動を継続させ、脱硝触媒Cの貫通孔C1の内面を研磨し、貫通孔C1の内面に付着した付着物等を取り除くことで脱硝触媒Cを再生する。After polishing the inner surface of the through hole C1, the abrasive A flows out from the downstream fixed member 32. The flowed out abrasive A and the object to be polished are sucked in by the suction fan 70 together with the air and flow into the cyclone 40 through the downstream flow path 31. In the cyclone 40, the abrasive A and the object to be polished are separated, and the abrasive A is supplied to the mixing section 10 through the abrasive supply path 33. That is, the abrasive A circulates inside the denitration catalyst polishing device 1. The object to be polished separated in the cyclone 40 is sucked in by the suction fan 70 and flows into the bag filter 60 through the conveying pipe 41 and is collected. The air after the object to be polished is discharged to the outside through the exhaust duct 71. The operation of the denitration catalyst polishing device 1 is continued for a predetermined time, the inner surface of the through hole C1 of the denitration catalyst C is polished, and the adhering matter attached to the inner surface of the through hole C1 is removed to regenerate the denitration catalyst C.

本実施形態に係る脱硝触媒Cの研磨再生方法は、研磨材Aの補充工程を含む。所定時間、脱硝触媒Cの研磨を行うと、研磨材に割れや欠けが生じ、また、研磨材の角が取れることで研磨効率が低下する。また、粒子径が一定以上小さくなった砥粒は、被研磨物と共にサイクロン40で分離されてバグフィルタ60側に流入する。つまり、装置内を循環する研磨材Aの量は研磨時間と共に減少する。従って、研磨効率を維持するため、研磨材Aの補充工程により、研磨材Aの補充を行う。上記補充工程は、例えば脱硝触媒研磨装置1を停止させ、脱硝触媒Cを取り換えるタイミングで行うことができる。あるいは、脱硝触媒Cの研磨中に、脱硝触媒研磨装置1の混合部10に研磨材Aを投入して補充してもよい。The polishing and regenerating method for the denitration catalyst C according to this embodiment includes a refilling process for the abrasive A. When the denitration catalyst C is polished for a certain period of time, the abrasive cracks and chips, and the polishing efficiency decreases due to the corners of the abrasive being rounded off. In addition, the abrasive grains whose particle diameter has become smaller than a certain value are separated by the cyclone 40 together with the object to be polished and flow into the bag filter 60. In other words, the amount of the abrasive A circulating in the device decreases with the polishing time. Therefore, in order to maintain the polishing efficiency, the abrasive A is replenished by the refilling process for the abrasive A. The refilling process can be performed, for example, when the denitration catalyst polishing device 1 is stopped and the denitration catalyst C is replaced. Alternatively, the abrasive A may be added to the mixing section 10 of the denitration catalyst polishing device 1 during the polishing of the denitration catalyst C to refill it.

研磨材Aの補充工程では、例えば平均粒子径の大きな砥粒A1の、研磨材Aにおける割合を5~20重量%とし、残りを平均粒子径の小さな砥粒A2とした研磨材Aを補充する。上記砥粒A1の割合は、研磨開始前の研磨材Aにおける砥粒A1の割合よりも高い。これは、砥粒A1は、砥粒A2と衝突して割れが生じる等の理由により、流通速度の小さい砥粒A1として機能しなくなる割合が砥粒A2よりも高いためである。In the process of replenishing abrasive A, for example, 5-20% by weight of abrasive grains A1 with a large average particle size is replenished with abrasive grains A2 with a small average particle size. The proportion of abrasive grains A1 is higher than the proportion of abrasive grains A1 in abrasive A before polishing begins. This is because abrasive grains A1 collide with abrasive grains A2 and fail to function as abrasive grains A1 with a low flow rate at a higher rate than abrasive grains A2, due to reasons such as cracking.

本発明は、上記実施形態に制限されるものではなく、適宜変更が可能である。The present invention is not limited to the above embodiments and can be modified as appropriate.

上記実施形態に係る砥粒A1及び砥粒A2を、平均粒子径が異なるものとして説明したが、上記に限定されない。砥粒A1及び砥粒A2は、貫通孔C1を流通する速度が異なるものであればよい。例えば、砥粒A1の密度が砥粒A2の密度よりも大きく、大きさが同じである場合、砥粒A1の質量は砥粒A2の質量と比較して大きくなる。これにより、同様に2種類の砥粒の流通速度に差が生じて砥粒A1に砥粒A2が衝突して飛散する同様の現象が起こり、研磨効率を向上させることができる。例えば砥粒A1と砥粒A2の材質を異なるものとすることで、砥粒A1と砥粒A2の平均密度を異なるものとすることができる。砥粒A1と砥粒A2とは、平均粒子径と平均密度のいずれもが異なることで、流通速度に差があるものであってもよい。Although the abrasive grains A1 and A2 in the above embodiment have been described as having different average particle diameters, the present invention is not limited to the above. The abrasive grains A1 and A2 may have different flow speeds through the through hole C1. For example, if the density of the abrasive grains A1 is greater than that of the abrasive grains A2 and the grains are the same size, the mass of the abrasive grains A1 will be greater than the mass of the abrasive grains A2. This will cause a difference in the flow speed of the two types of abrasive grains, resulting in a similar phenomenon in which the abrasive grains A2 collide with the abrasive grains A1 and scatter, thereby improving the polishing efficiency. For example, by making the materials of the abrasive grains A1 and A2 different, the average densities of the abrasive grains A1 and A2 can be made different. The abrasive grains A1 and A2 may have different flow speeds due to differences in both average particle diameter and average density.

上記実施形態では、研磨材Aを砥粒A1及び砥粒A2からなるものとして説明したが、上記に限定されない。研磨材Aは、砥粒A1及び砥粒A2以外に、他の砥粒を含んでいてもよい。In the above embodiment, the abrasive A is described as being composed of abrasive grains A1 and A2, but is not limited to the above. The abrasive A may contain other abrasive grains in addition to the abrasive grains A1 and A2.

1 脱硝触媒研磨装置
10 混合部
20 流入路
22 上流側固定部材
70 吸引ファン(吸引部)
C 脱硝触媒
C1 貫通孔
A 研磨材
A1 第1の砥粒
A2 第2の砥粒
1 Denitration catalyst polishing device 10 Mixing section 20 Inflow passage 22 Upstream side fixing member 70 Suction fan (suction section)
C Denitration catalyst C1 Through hole A Abrasive A1 First abrasive grain A2 Second abrasive grain

Claims (9)

長手方向に延びる複数の貫通孔が設けられた脱硝触媒の前記貫通孔に、空気と共に研磨材を流通させて、前記貫通孔の内面を研磨する脱硝触媒研磨方法であって、
前記脱硝触媒は、前記貫通孔の流路方向が水平面に対して略垂直になるように配置され、
前記研磨材は、前記貫通孔の下方から上方に向けて流通し、
前記研磨材は、第1の砥粒と、第2の砥粒と、を含み、
前記第1の砥粒と、前記第2の砥粒とは、前記貫通孔を流通する速度が異なる、脱硝触媒研磨方法。
A method for polishing a denitration catalyst, the method comprising: passing an abrasive through a plurality of through holes extending in a longitudinal direction of the denitration catalyst together with air to polish an inner surface of the through holes, the method comprising the steps of:
The denitration catalyst is disposed such that a flow path direction of the through hole is substantially perpendicular to a horizontal plane,
The abrasive flows from the bottom to the top of the through hole,
The abrasive material includes a first abrasive grain and a second abrasive grain,
A method for polishing a Denitration catalyst, wherein the first abrasive grains and the second abrasive grains flow through the through holes at different speeds.
前記第1の砥粒の平均粒子径D1は、前記第2の砥粒の平均粒子径D2よりも大きい、請求項1に記載の脱硝触媒研磨方法。 A denitration catalyst polishing method as described in claim 1, wherein the average particle diameter D1 of the first abrasive grains is larger than the average particle diameter D2 of the second abrasive grains. 前記平均粒子径D1は、1.65~2.16mmであり、前記平均粒子径D2は0.30~0.45mmである、請求項2に記載の脱硝触媒研磨方法。 A method for polishing a denitration catalyst as described in claim 2, wherein the average particle diameter D1 is 1.65 to 2.16 mm and the average particle diameter D2 is 0.30 to 0.45 mm. 前記第1の砥粒は、前記研磨材中に5~15重量%含まれる、請求項1~3いずれかに記載の脱硝触媒研磨方法。 A method for polishing a denitration catalyst as described in any one of claims 1 to 3, wherein the first abrasive grains are contained in the abrasive material in an amount of 5 to 15 weight %. 前記研磨材の補充工程を有し、
前記研磨材の補充工程で補充される前記第1の砥粒は、補充される前記研磨材中に5~20重量%含まれる、請求項1~4いずれかに記載の脱硝触媒研磨方法。
A step of replenishing the abrasive material,
5. The method for polishing a denitration catalyst according to claim 1, wherein the first abrasive grains replenished in the step of replenishing the abrasive are contained in the replenished abrasive in an amount of 5 to 20% by weight.
長手方向に延びる複数の貫通孔が設けられた脱硝触媒の前記貫通孔に、空気と共に研磨材を流通させて、前記貫通孔の内面を研磨する脱硝触媒研磨装置であって、
前記脱硝触媒の上流側に配置され、研磨材と空気とを混合する混合部と、
前記混合部と、前記脱硝触媒とを接続し、前記脱硝触媒の下方から空気と混合された前記研磨材が流入する流入路と、
前記脱硝触媒を、前記貫通孔の流路方向が水平面に対して略垂直になるように固定する固定部材と、
前記脱硝触媒の下流側に配置され、前記脱硝触媒の上方から空気と共に研磨材を吸引する吸引部と、を有し、
前記研磨材は、第1の砥粒と、第2の砥粒と、を含み、
前記第1の砥粒と、前記第2の砥粒とは、前記貫通孔を流通する速度が異なる、脱硝触媒研磨装置。
A denitration catalyst polishing apparatus for polishing an inner surface of a denitration catalyst having a plurality of through holes extending in a longitudinal direction, the apparatus comprising:
A mixing section disposed upstream of the denitration catalyst and configured to mix an abrasive with air;
an inflow passage connecting the mixing section and the denitration catalyst, through which the abrasive mixed with air flows in from below the denitration catalyst;
a fixing member that fixes the denitration catalyst so that a flow path direction of the through hole is approximately perpendicular to a horizontal plane;
a suction section that is disposed downstream of the denitration catalyst and that sucks in an abrasive together with air from above the denitration catalyst;
The abrasive material includes a first abrasive grain and a second abrasive grain,
The first abrasive grains and the second abrasive grains flow through the through holes at different speeds.
前記第1の砥粒の平均粒子径D1は、前記第2の砥粒の平均粒子径D2よりも大きい、請求項6に記載の脱硝触媒研磨装置。 A denitration catalyst polishing apparatus as described in claim 6, wherein the average particle diameter D1 of the first abrasive grains is larger than the average particle diameter D2 of the second abrasive grains. 前記平均粒子径D1は、1.65~2.16mmであり、前記平均粒子径D2は0.30~0.45mmである、請求項7に記載の脱硝触媒研磨装置。 A denitration catalyst polishing apparatus as described in claim 7, wherein the average particle diameter D1 is 1.65 to 2.16 mm and the average particle diameter D2 is 0.30 to 0.45 mm. 前記第1の砥粒は、前記研磨材中に5~15重量%重量%含まれる、請求項6~8いずれかに記載の脱硝触媒研磨装置。A denitration catalyst polishing device as described in any one of claims 6 to 8, wherein the first abrasive grains are contained in the abrasive material in an amount of 5 to 15% by weight.
JP2020535145A 2020-02-28 2020-02-28 Denitrification catalyst polishing method and denitrification catalyst polishing device Active JP7464523B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/008547 WO2021171627A1 (en) 2020-02-28 2020-02-28 Denitration catalyst abrasion method and denitration catalyst abrasion device

Publications (2)

Publication Number Publication Date
JPWO2021171627A1 JPWO2021171627A1 (en) 2021-09-02
JP7464523B2 true JP7464523B2 (en) 2024-04-09

Family

ID=77490898

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020535145A Active JP7464523B2 (en) 2020-02-28 2020-02-28 Denitrification catalyst polishing method and denitrification catalyst polishing device

Country Status (2)

Country Link
JP (1) JP7464523B2 (en)
WO (1) WO2021171627A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012000693A (en) 2010-06-14 2012-01-05 Hidaka Fine-Technologies Co Ltd Grinding device and grinding method
US20180141034A1 (en) 2015-05-12 2018-05-24 Geesco Co., Ltd. Method for regenerating catalyst

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58150439A (en) * 1982-03-04 1983-09-07 Mitsubishi Heavy Ind Ltd Activation of catalyst
JPS6257864A (en) * 1985-09-09 1987-03-13 Ebara Corp Polishing method for bend part
JPH04197451A (en) * 1990-11-29 1992-07-17 Japan Carlit Co Ltd:The Recycling of denitration catalyst

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012000693A (en) 2010-06-14 2012-01-05 Hidaka Fine-Technologies Co Ltd Grinding device and grinding method
US20180141034A1 (en) 2015-05-12 2018-05-24 Geesco Co., Ltd. Method for regenerating catalyst

Also Published As

Publication number Publication date
JPWO2021171627A1 (en) 2021-09-02
WO2021171627A1 (en) 2021-09-02

Similar Documents

Publication Publication Date Title
US9643117B2 (en) Dust separator useful with dry scrubber system
JPS5824174B2 (en) Exhaust gas treatment method
EP2878889B1 (en) Dry scrubber system with air preheater protection
JP6978345B2 (en) Denitration catalyst polishing device and denitration catalyst polishing method
WO2017022521A1 (en) Coal-fired power generation equipment
JP3621822B2 (en) Smoke treatment method and equipment
JP7464523B2 (en) Denitrification catalyst polishing method and denitrification catalyst polishing device
CN208591702U (en) A kind of coke oven flue gas dry cleaning processing unit
WO2021171628A1 (en) Denitration catalyst abrasion device
JP7002964B2 (en) Method for determining polishing time of denitration catalyst and method for regeneration of denitration catalyst
JP6233545B2 (en) Coal-fired power generation facility
WO2021245841A1 (en) Denitration catalyst abrasion device
WO2017022518A1 (en) Coal-fired power generation equipment
WO2021245842A1 (en) Denitration catalyst abrasion device
JP6848598B2 (en) How to reuse denitration catalyst
WO2021171625A1 (en) Denitration catalyst abrasion device
WO2021171629A1 (en) Denitration catalyst abrasion device
WO2021171624A1 (en) Denitration catalyst abrasion device
JP6627310B2 (en) Coal-fired power plant
WO2021171626A1 (en) Denitrification catalyst abrading method and denitrification catalyst abrading device
JP6601981B2 (en) Multipass boiler
CN212119494U (en) Ultra-clean treatment system for sintering flue gas
JPH05309229A (en) Semi-dry or dry desulfurizer
JP4965323B2 (en) Exhaust gas treatment method and exhaust gas treatment apparatus
JPH0376963B2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240305

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240328

R150 Certificate of patent or registration of utility model

Ref document number: 7464523

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150