JP7454827B2 - vacuum insulation - Google Patents

vacuum insulation Download PDF

Info

Publication number
JP7454827B2
JP7454827B2 JP2019030294A JP2019030294A JP7454827B2 JP 7454827 B2 JP7454827 B2 JP 7454827B2 JP 2019030294 A JP2019030294 A JP 2019030294A JP 2019030294 A JP2019030294 A JP 2019030294A JP 7454827 B2 JP7454827 B2 JP 7454827B2
Authority
JP
Japan
Prior art keywords
core material
vacuum
vacuum insulation
mass
adsorbent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019030294A
Other languages
Japanese (ja)
Other versions
JP2020133816A (en
Inventor
良知 石黒
透 板谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Fiber Glass Co Ltd
Original Assignee
Asahi Fiber Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Fiber Glass Co Ltd filed Critical Asahi Fiber Glass Co Ltd
Priority to JP2019030294A priority Critical patent/JP7454827B2/en
Publication of JP2020133816A publication Critical patent/JP2020133816A/en
Application granted granted Critical
Publication of JP7454827B2 publication Critical patent/JP7454827B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、真空断熱材に関する。 The present invention relates to vacuum insulation materials.

近年、地球温暖化防止等の観点から省エネルギー化、省資源化が強く望まれている。特に、冷蔵庫、冷凍庫、断熱ボックス、ジャー炊飯器、給湯器、自動販売機等の家庭用、業務用電化製品、自動車、複写機、床暖房や、住宅等の分野では、熱エネルギーを効率的に利用するという観点から、真空断熱材が用いられるようになっている。 In recent years, there has been a strong desire to save energy and resources from the perspective of preventing global warming. In particular, thermal energy can be used efficiently in fields such as refrigerators, freezers, insulated boxes, jar rice cookers, water heaters, vending machines, and other household and commercial appliances, automobiles, copiers, floor heating, and housing. From the viewpoint of practical use, vacuum insulation materials have come into use.

従来の真空断熱材は平面形状を有するものが一般的であるが、施工部位に応じて立体形状とする場合には、平面形状の真空断熱材に折り曲げ加工やR加工を施すか、あるいは複数の真空断熱材を貼り合わせている。しかしながら、折り曲げ加工やR加工では、真空断熱材を複雑な起伏のある形状や深絞り形状にすることはできず、折り曲げ箇所やR加工箇所の損傷による断熱性能の低下を招きやすい。また、例えば、リチウムイオン電池などのバッテリーを断熱する目的でカバーに真空断熱材を使用する場合、真空断熱材の貼り合わせでは、継ぎ目部分から熱が漏れて熱橋の不具合が生じ、断熱性能が低下する。従って、貼り合わせや曲げ加工を施すことなく、種々の形状を有する施工箇所に隙間なく密着でき、熱橋の少ない真空断熱材が要求されている。 Conventional vacuum insulation materials generally have a planar shape, but when creating a three-dimensional shape depending on the construction site, the planar vacuum insulation material must be bent or rounded, or multiple Vacuum insulation material is attached. However, by bending or R processing, it is not possible to form the vacuum insulation material into a complicated undulating shape or a deep drawing shape, and the insulation performance is likely to deteriorate due to damage to the bending or R processing. For example, when vacuum insulation is used in a cover to insulate a battery such as a lithium-ion battery, when the vacuum insulation is pasted together, heat leaks from the seams, causing problems with thermal bridges and impairing insulation performance. descend. Therefore, there is a need for a vacuum heat insulating material that can be closely attached to construction sites having various shapes without any gaps without bonding or bending, and has fewer thermal bridges.

また、真空断熱材においては減圧密封により芯材が厚み方向に圧縮されているが、従来の真空断熱材は、経年劣化等により真空度が低下して内圧が高まると芯材の厚みが復元してしまうという問題があった。一般に、真空断熱材は狭い間隙に施工されることが多いので、真空度が低下して厚みが復元すると、他の部材を圧迫するうえ、製品としての外観も損なわれる。従って、真空度が低下しても形状変化が生じない真空断熱材に対する要望がある。 In addition, in vacuum insulation materials, the core material is compressed in the thickness direction by vacuum sealing, but in conventional vacuum insulation materials, when the degree of vacuum decreases due to aging etc. and the internal pressure increases, the core material restores its thickness. There was a problem with this. Generally, vacuum insulation materials are often installed in narrow gaps, so if the degree of vacuum decreases and the thickness is restored, it not only puts pressure on other members, but also impairs the appearance of the product. Therefore, there is a need for a vacuum insulation material that does not change shape even when the degree of vacuum decreases.

ここで、真空断熱材製造工程の減圧密封前に、あらかじめ芯材を成形する技術が知られている。
特許文献1は、ガラスウールマットをプレス成形したグラスウール成形体を芯材とする真空断熱材を開示している。しかしながら、特許文献1は、芯材に立体形状を付与することを開示していない。また、特許文献1では、芯材の成形にバインダーが用いられておらず、芯材の剛性が不足するため、仮に芯材を立体形状に成形したとしても、ガスバリア性の外被材での減圧密封時に形状が崩れてしまう。
Here, a technique is known in which a core material is formed in advance before vacuum sealing in the vacuum insulation manufacturing process.
Patent Document 1 discloses a vacuum insulation material whose core material is a glass wool molded body obtained by press-molding a glass wool mat. However, Patent Document 1 does not disclose imparting a three-dimensional shape to the core material. Furthermore, in Patent Document 1, a binder is not used to mold the core material, and the core material lacks rigidity. It loses its shape when sealed.

特許文献2は、無機バインダーで成形した芯材を含む真空断熱材を開示している。しかしながら、特許文献2は、芯材に立体形状を付与することを開示しておらず、有機バインダーや水分吸着剤及びガス吸着剤の使用についても開示していない。 Patent Document 2 discloses a vacuum insulation material that includes a core material formed with an inorganic binder. However, Patent Document 2 does not disclose imparting a three-dimensional shape to the core material, nor does it disclose the use of an organic binder, moisture adsorbent, or gas adsorbent.

特許文献3は、真空断熱材において、芯材が有機系バインダーで成形されていること、及び水分吸着剤やガス吸着剤を使用することを開示している。しかしながら、特許文献3は、芯材に立体形状を付与することを意図するものではなく、芯材を立体形状に成形するためにバインダー量や吸着剤の量を調節することについては全く言及していない。 Patent Document 3 discloses that in a vacuum heat insulating material, the core material is formed of an organic binder, and that a moisture adsorbent or a gas adsorbent is used. However, Patent Document 3 does not intend to impart a three-dimensional shape to the core material, and does not mention at all about adjusting the amount of binder or adsorbent in order to form the core material into a three-dimensional shape. do not have.

特許第3712129号Patent No. 3712129 特開2006-70908号公報Japanese Patent Application Publication No. 2006-70908 特開2003-156193号公報Japanese Patent Application Publication No. 2003-156193

従来の立体形状付与技術では達成できない要求を満たしつつ、真空度低下時の形状変化が少ない立体形状を有する真空断熱材を提供することを目的として、本発明者は、種々のバインダーを用いて予め立体形状に成形した芯材を試験した。
しかしながら、無機バインダーを用いると、芯材が必要以上に固くなり、角部や稜線部において外被材が損傷する場合があることを見いだした。また無機バインダーは高価であるため、製造コストが増大するという問題もある。
前記無機バインダーの問題は有機バインダーの使用により回避できたが、有機バインダーには経年劣化によりアウトガスが発生して真空度が低下するという問題があることを見いだした。
With the aim of providing a vacuum heat insulating material having a three-dimensional shape that is less likely to change in shape when the degree of vacuum decreases while satisfying requirements that cannot be achieved using conventional three-dimensional shape imparting techniques, the present inventor has developed a three-dimensional shape using various binders in advance. A core material formed into a three-dimensional shape was tested.
However, it has been found that when an inorganic binder is used, the core material becomes harder than necessary, and the outer covering material may be damaged at corners and ridges. Furthermore, since inorganic binders are expensive, there is also the problem of increased manufacturing costs.
Although the problems of inorganic binders can be avoided by using organic binders, it has been found that organic binders have a problem in that outgas is generated due to aging and the degree of vacuum is reduced.

本発明者は鋭意検討を進めたところ、特定種類の有機バインダー(フェノール樹脂製バインダー)と無機繊維とを特定の質量比で用いて立体形状に成形した特定の密度を有する芯材を用い、更にガス吸着剤と水分吸着剤を特定の質量比で用いると、種々の形状を有する施工箇所に隙間なく密着でき熱橋の少ない立体形状を有しつつ、アウトガス発生による真空度低下が少ない真空断熱材が得られることを見いだした。本発明は、この知見に基づいてなされたものである。
すなわち、本発明は、下記〔1〕~〔6〕に関するものである。
After conducting extensive studies, the present inventor found that a core material having a specific density formed into a three-dimensional shape using a specific type of organic binder (phenolic resin binder) and inorganic fibers in a specific mass ratio, and When a gas adsorbent and a moisture adsorbent are used in a specific mass ratio, the vacuum insulation material can adhere to construction sites with various shapes without gaps, and has a three-dimensional shape with few thermal bridges, while reducing the vacuum level drop due to outgassing. I found that it was possible to obtain The present invention has been made based on this knowledge.
That is, the present invention relates to the following [1] to [6].

〔1〕芯材と、ガス吸着剤と、水分吸着剤と、ガスバリア性の外被材とを含む、立体形状を有する真空断熱材であって、
前記芯材が、無機繊維及びフェノール樹脂製バインダーを含み、
前記芯材の密度が、200~390kg/m3であり、
前記芯材が、前記フェノール樹脂製バインダーにより立体形状に成形されており、
前記フェノール樹脂製バインダーの質量(a)が、前記無機繊維の質量に基づいて7~15%であり、
前記ガス吸着剤の質量(b)に対する前記フェノール樹脂製バインダーの質量(a)の比(a/b)が、5.0~25.0であり、
前記水分吸着剤の質量(c)に対する前記ガス吸着剤の質量(b)の比(b/c)が、0.1~1.0であり、
前記芯材、前記ガス吸着剤及び前記水分吸着剤が、前記外被材内に減圧密封されている、真空断熱材。
〔2〕前記ガス吸着剤が、銅イオン交換ZSM-5型ゼオライトである、前記〔1〕に記載の真空断熱材。
〔3〕前記無機繊維が、1~8μmの平均繊維径を有する、前記〔1〕又は〔2〕に記載の真空断熱材。
〔4〕前記芯材が、長さ150mm及び幅50mmの寸法を有する試料を用いてスパン100mm及びひずみ速度50mm/分で3点曲げをして測定した場合に、1.0kN以上の曲げ最大荷重を有する、前記〔1〕~〔3〕のいずれか1項に記載の真空断熱材。
〔5〕前記芯材が、長さ150mm及び幅50mmの寸法を有する試料を用いてスパン100mm及びひずみ速度50mm/分で3点曲げをして測定した場合に、20N/cm以上の曲げ弾性勾配を有する、前記〔1〕~〔4〕のいずれか1項に記載の真空断熱材。
〔6〕前記芯材の厚み方向に10%圧縮したときの応力が70kPa以上である、前記〔1〕~〔5〕のいずれか1項に記載の真空断熱材。
[1] A vacuum insulation material having a three-dimensional shape, including a core material, a gas adsorbent, a moisture adsorbent, and a gas barrier outer covering material,
The core material includes inorganic fibers and a phenolic resin binder,
The core material has a density of 200 to 390 kg/m 3 ,
The core material is formed into a three-dimensional shape by the phenolic resin binder,
The mass (a) of the phenolic resin binder is 7 to 15% based on the mass of the inorganic fiber,
The ratio (a/b) of the mass (a) of the phenolic resin binder to the mass (b) of the gas adsorbent is 5.0 to 25.0,
The ratio (b/c) of the mass (b) of the gas adsorbent to the mass (c) of the moisture adsorbent is 0.1 to 1.0,
A vacuum insulation material, wherein the core material, the gas adsorbent, and the moisture adsorbent are vacuum-sealed within the jacket material.
[2] The vacuum insulation material according to [1] above, wherein the gas adsorbent is a copper ion exchange ZSM-5 type zeolite.
[3] The vacuum insulation material according to [1] or [2] above, wherein the inorganic fiber has an average fiber diameter of 1 to 8 μm.
[4] Maximum bending load of 1.0 kN or more when the core material is measured by 3-point bending at a span of 100 mm and a strain rate of 50 mm/min using a sample having dimensions of 150 mm in length and 50 mm in width. The vacuum heat insulating material according to any one of [1] to [3] above.
[5] The core material has a bending elastic gradient of 20 N/cm or more when measured by three-point bending at a span of 100 mm and a strain rate of 50 mm/min using a sample having dimensions of 150 mm in length and 50 mm in width. The vacuum insulation material according to any one of [1] to [4] above.
[6] The vacuum insulation material according to any one of [1] to [5], wherein the core material has a stress of 70 kPa or more when compressed by 10% in the thickness direction.

本発明により、施工箇所の形状に隙間なく密着でき熱橋が少ない立体形状を有しつつ、アウトガス発生による真空度低下が少なく、安価に製造できる真空断熱材を提供することができる。 ADVANTAGE OF THE INVENTION According to the present invention, it is possible to provide a vacuum heat insulating material that has a three-dimensional shape that can closely fit the shape of the construction site without any gaps and has few thermal bridges, has less decrease in the degree of vacuum due to outgas generation, and can be manufactured at low cost.

図1は、実施例における熱橋の評価の際の、真空断熱材の配置例を示す。FIG. 1 shows an example of the arrangement of vacuum heat insulating materials when evaluating thermal bridges in Examples. 図2は、実施例で作製した立体形状を有する芯材(真空断熱材)を示す。FIG. 2 shows a core material (vacuum heat insulating material) having a three-dimensional shape produced in an example.

本発明は、立体形状を有する真空断熱材であって、
芯材と、ガス吸着剤と、水分吸着剤と、ガスバリア性の外被材とを含み、
前記芯材が、無機繊維及びフェノール樹脂製バインダーを含み、
前記芯材の密度が、200~390kg/m3であり、
前記芯材が、前記フェノール樹脂製バインダーにより立体形状に成形されており、
前記フェノール樹脂製バインダーの質量(a)が、前記無機繊維の質量に基づいて7~15%であり、
前記ガス吸着剤の質量(b)に対する前記フェノール樹脂製バインダーの質量(a)の比(a/b)が、5.0~25.0であり、
前記水分吸着剤の質量(c)に対する前記ガス吸着剤の質量(b)の比(b/c)が、0.1~1.0であり、
前記芯材、前記ガス吸着剤及び前記水分吸着剤が、前記外被材内に減圧密封されている、ことを特徴とする真空断熱材である。
The present invention is a vacuum insulation material having a three-dimensional shape,
Including a core material, a gas adsorbent, a moisture adsorbent, and a gas barrier outer covering material,
The core material includes inorganic fibers and a phenolic resin binder,
The core material has a density of 200 to 390 kg/m 3 ,
The core material is formed into a three-dimensional shape by the phenolic resin binder,
The mass (a) of the phenolic resin binder is 7 to 15% based on the mass of the inorganic fiber,
The ratio (a/b) of the mass (a) of the phenolic resin binder to the mass (b) of the gas adsorbent is 5.0 to 25.0,
The ratio (b/c) of the mass (b) of the gas adsorbent to the mass (c) of the moisture adsorbent is 0.1 to 1.0,
The vacuum insulation material is characterized in that the core material, the gas adsorbent, and the moisture adsorbent are vacuum-sealed within the jacket material.

本発明に用いられる芯材は、無機繊維を含む。無機繊維としては、真空断熱材分野で用いられているものを特に制限なく用いることができ、例えば、グラスウール、グラスファイバー、セラミックウール(シリカウール)、ロックウール、アルミナウール、炭素繊維等を使用することができる。 The core material used in the present invention contains inorganic fibers. As the inorganic fibers, those used in the field of vacuum insulation materials can be used without particular restriction, such as glass wool, glass fiber, ceramic wool (silica wool), rock wool, alumina wool, carbon fiber, etc. be able to.

無機繊維は、好ましくは1~8μm、より好ましくは1.5~6μm、更に好ましくは2~4μmの平均繊維径を有する。平均繊維径が上記範囲内であれば、芯材をプレス成形する際のマットの千切れや、成形品の偏肉や、無機繊維による皮膚刺激を低減しつつ、真空断熱材の経年劣化低減を可能にする適切な芯材強度や優れた断熱性が得られる。平均繊維径は、通気抵抗法または光学顕微鏡によって測定することができる。 The inorganic fibers preferably have an average fiber diameter of 1 to 8 μm, more preferably 1.5 to 6 μm, and even more preferably 2 to 4 μm. If the average fiber diameter is within the above range, it will reduce tearing of the mat when press-molding the core material, uneven thickness of the molded product, and skin irritation caused by inorganic fibers, while also reducing aging deterioration of the vacuum insulation material. Appropriate core material strength and excellent insulation properties can be obtained. The average fiber diameter can be measured by the airflow resistance method or by optical microscopy.

無機繊維としては、成形のしやすさやコストの面で、溶融延伸法で作られたグラスウール(短繊維)が最も好ましいが、長繊維グラスファイバー、ロックウール、シリカウール、アルミナウール、炭素繊維およびこれらの混合品を使用しても構わない。また、熱伝導率の悪化や芯材の剛性を損なわない範囲であれば、化学繊維や天然繊維などを混ぜても良い。 As the inorganic fiber, glass wool (short fiber) made by melt-drawing method is most preferable in terms of ease of molding and cost, but long fiber glass fiber, rock wool, silica wool, alumina wool, carbon fiber and these You may use a mixture of these. Further, chemical fibers, natural fibers, etc. may be mixed as long as they do not deteriorate thermal conductivity or impair the rigidity of the core material.

使用できる化学繊維の例として、ナイロン繊維、レーヨン繊維、アセテート繊維、アラミド繊維、ビニロン繊維、ポリエステル繊維、アクリル繊維、ポリウレタン繊維、ポリ塩化ビニル繊維、ポリエチレン繊維、ポリプロピレン繊維、セルロース繊維(例えばキュプラ)が挙げられる。天然繊維の例としては綿、麻、毛、絹などが挙げられる。 Examples of chemical fibers that can be used include nylon fibers, rayon fibers, acetate fibers, aramid fibers, vinylon fibers, polyester fibers, acrylic fibers, polyurethane fibers, polyvinyl chloride fibers, polyethylene fibers, polypropylene fibers, and cellulose fibers (e.g. cupro). Can be mentioned. Examples of natural fibers include cotton, linen, wool, and silk.

無機繊維は公知であり、市場で容易に入手できるか、又は調製可能である。
本発明の真空断熱材に用いる無機繊維は、例えば、溶融ガラスを繊維化してグラスウール等の無機繊維を紡出させて製造できる。繊維化の方法としては、従来公知の遠心法や、火焔法、吹き飛ばし法等が例示でき、特にこれらの方法に限定されない。遠心法による繊維化装置の例としては、スピナー等が挙げられる。グラスウール以外の他の無機繊維についても同様に製造することができる。
Inorganic fibers are known and readily available commercially or can be prepared.
The inorganic fibers used in the vacuum insulation material of the present invention can be produced, for example, by turning molten glass into fibers and spinning out inorganic fibers such as glass wool. Examples of the fiberization method include the conventionally known centrifugation method, flame method, blowing method, etc., but are not particularly limited to these methods. An example of a fiberizing device using a centrifugal method is a spinner. Inorganic fibers other than glass wool can also be produced in the same manner.

芯材の密度は、200~390kg/m3であり、好ましくは220~350kg/m3、より好ましくは240~300kg/m3である。密度が上記範囲内であれば、芯材の立体形状への成形がより容易になり、真空成形時の急激な圧力降下に伴い外被材が芯材を圧縮したときの芯材形状の十分な保持が可能であり、更に真空断熱材の初期熱伝導率を適切な範囲としつつ断熱性の経年劣化を低減できる。 The density of the core material is 200 to 390 kg/m 3 , preferably 220 to 350 kg/m 3 , more preferably 240 to 300 kg/m 3 . If the density is within the above range, it will be easier to form the core material into a three-dimensional shape, and the core material will have a sufficient shape when the outer covering material compresses the core material due to the sudden pressure drop during vacuum forming. In addition, it is possible to maintain the initial thermal conductivity of the vacuum heat insulating material within an appropriate range while reducing aging deterioration of the heat insulating property.

芯材は、フェノール樹脂製バインダーを用いて立体形状に成形されている。フェノール樹脂製バインダーは無機バインダーよりも安価であるので製造コストを低減できる。またフェノール樹脂製バインダーを用いて得られた芯材は優れた剛性を有しつつも、無機バインダーを用いて得られた芯材よりも硬度が低いため、芯材による外被材損傷を防ぐことができる。
フェノール樹脂は大きくレゾール型とノボラック型とに分類されるが、アウトガス発生抑制、得られる芯材の硬度、芯材成形に必要なコスト、取扱性(硬化速度が速く、粘度が低い)等の観点から、揮発分(具体的には一酸化炭素、二酸化炭素、ホルムアルデヒド、低分子量アミン類、未反応フェノールなど)の発生が少ないレゾール型フェノール樹脂が好ましい。フェノール:ホルムアルデヒドのモル比が1:3のレゾール型フェノール樹脂がより好ましい。
本発明に適したフェノール樹脂としては、例えば、水溶性レゾール型やエマルジョン型のレゾール型のものが挙げられる。
フェノール樹脂製バインダーは公知であり、市場において容易に入手することができるか、又は調製可能である。
The core material is molded into a three-dimensional shape using a phenolic resin binder. Phenol resin binders are cheaper than inorganic binders, so manufacturing costs can be reduced. In addition, although the core material obtained using a phenolic resin binder has excellent rigidity, it has lower hardness than the core material obtained using an inorganic binder, so it is difficult to prevent damage to the outer covering material due to the core material. I can do it.
Phenolic resins are broadly classified into resol type and novolac type, but they are different from the viewpoints of outgassing suppression, hardness of the resulting core material, cost required for core material molding, ease of handling (fast curing speed, low viscosity), etc. Therefore, resol-type phenolic resins that generate less volatile components (specifically, carbon monoxide, carbon dioxide, formaldehyde, low molecular weight amines, unreacted phenol, etc.) are preferred. A resol type phenol resin with a phenol:formaldehyde molar ratio of 1:3 is more preferred.
Examples of phenolic resins suitable for the present invention include water-soluble resol type resins and emulsion type resol type resins.
Phenolic resin binders are known and can be readily obtained or prepared on the market.

フェノール樹脂製バインダーの質量(a)は、芯材に含まれる無機繊維の質量に基づいて、7~15%、好ましくは7~14%、より好ましくは7~13%である。フェノール樹脂製バインダーの量が上記範囲内であれば、アウトガスの発生を抑制しつつ芯材に適度な剛性を付与することができる。 The mass (a) of the phenolic resin binder is 7 to 15%, preferably 7 to 14%, more preferably 7 to 13%, based on the mass of the inorganic fibers contained in the core material. If the amount of the phenolic resin binder is within the above range, appropriate rigidity can be imparted to the core material while suppressing the generation of outgas.

芯材は、厚み方向に10%圧縮したときに、好ましくは70kPa以上、より好ましくは70~1200kPa、更に好ましくは80~600kPa、更により好ましくは90~200kPaの応力を有する。芯材の圧縮強度が上記範囲内であれば、真空成形時の急激な圧力降下に伴い外被材が芯材を圧縮したときの芯材形状の十分な保持が可能となる。厚み方向に10%圧縮したときの応力は、例えば、万能試験機を用いてサンプルを20mm/分で10%圧縮した場合の応力として測定することができる。 The core material, when compressed by 10% in the thickness direction, preferably has a stress of 70 kPa or more, more preferably 70 to 1200 kPa, still more preferably 80 to 600 kPa, and even more preferably 90 to 200 kPa. If the compressive strength of the core material is within the above range, the shape of the core material can be sufficiently maintained when the core material is compressed by the outer covering material due to a sudden pressure drop during vacuum forming. The stress when the sample is compressed by 10% in the thickness direction can be measured, for example, as the stress when the sample is compressed by 10% at 20 mm/min using a universal testing machine.

立体形状を有する芯材は下記手順により製造できる。
まず、繊維化装置から遠心力によって排出された無機繊維へフェノール樹脂性バインダーを噴霧しながら集綿して集綿物を得る。集綿物中の前記バインダーは硬化していない。
次に、前記集綿物を、加熱された金型(施工箇所の形状に対応する金型)へ投入し、オーブンで焼成して、前記バインダーを熱硬化させて立体形状の芯材を得る。焼成条件は、バインダーを熱硬化させるのに十分であれば特に制限は無く、焼成時の加熱温度は、例えば、200~250℃であり、加熱時間は、単位面積当たりの無機繊維の質量をA(g/m2)、無機繊維の質量に基づくバインダー付着量をB(%)とした場合に、A×B(秒)であることが好ましい。加熱時の圧力は、芯材の密度に合わせて適宜調節でき、例えば、1.5~3.5t/m2であってもよい。
A core material having a three-dimensional shape can be manufactured by the following procedure.
First, a phenol resin binder is sprayed onto inorganic fibers discharged from a fiberizing device by centrifugal force, and the fibers are collected to obtain a collected material. The binder in the cotton collection has not been cured.
Next, the collected cotton material is put into a heated mold (a mold corresponding to the shape of the construction site) and fired in an oven to thermoset the binder and obtain a three-dimensional core material. The firing conditions are not particularly limited as long as they are sufficient to thermoset the binder, and the heating temperature during firing is, for example, 200 to 250°C, and the heating time is set so that the mass of inorganic fibers per unit area is A. (g/m 2 ), and where B (%) is the amount of binder attached based on the mass of the inorganic fibers, it is preferably A×B (seconds). The pressure during heating can be adjusted as appropriate depending on the density of the core material, and may be, for example, 1.5 to 3.5 t/m 2 .

芯材の形状は、真空断熱材が施工箇所へ隙間なく密着することを可能にする立体形状である。芯材の形状は、熱橋抑制の観点で、継ぎ目部分が最小限(好ましくはゼロ)となるように設定することが好ましい。 The shape of the core material is a three-dimensional shape that allows the vacuum insulation material to adhere closely to the construction site without any gaps. From the viewpoint of suppressing thermal bridges, the shape of the core material is preferably set so that the number of seams is minimal (preferably zero).

芯材の厚み、目付及び密度は、芯材全体に亘って一様であってもよく、断熱性や剛性が必要となる部分の厚み、目付及び/又は密度を他の部分よりも大きくしてもよい。例えば、断熱性が必要な箇所の厚みを芯材の最小厚みの1~5倍の厚みに設計して、断熱性や剛性を高めてもよい。また、真空度が低下した場合の形状崩れ防止のため、R形状部の厚み、目付及び/又は密度を大きく設計することができる。例えば、R3~R50mmの部位について、R頂点からの距離50mmまでの範囲の製品密度を250kg/m3以上としてもよい。 The thickness, area weight, and density of the core material may be uniform throughout the core material, and the thickness, area weight, and/or density of the part where insulation and rigidity are required are larger than other parts. Good too. For example, the thickness of the portion where heat insulation is required may be designed to be 1 to 5 times the minimum thickness of the core material to improve heat insulation and rigidity. Further, in order to prevent the shape from collapsing when the degree of vacuum decreases, the thickness, area weight, and/or density of the rounded portion can be designed to be large. For example, for the region R3 to R50 mm, the product density in the range up to a distance of 50 mm from the R apex may be set to 250 kg/m 3 or more.

芯材が施工箇所に応じた立体形状に成形されていることで、真空断熱材は施工箇所の形状に隙間なく密着でき、従来の施工方法である複数の真空断熱材の貼り合わせによって生じる継ぎ目部分の熱橋による断熱性能の低下を防ぐことができる。折れやすい形状を有する部位の周辺には、リブ形状やビード形状を付与して補強してもよい。 Because the core material is molded into a three-dimensional shape according to the construction location, the vacuum insulation material can adhere to the shape of the construction location without any gaps, making it possible to avoid seams caused by pasting multiple vacuum insulation materials together using conventional construction methods. It is possible to prevent the deterioration of insulation performance due to thermal bridges. A rib shape or a bead shape may be added to the periphery of a portion having a shape that is likely to break for reinforcement.

芯材は、長さ150mm及び幅50mmの寸法を有する試料を用いてスパン100mm及びひずみ速度50mm/分で3点曲げをして測定した場合に、1.0kN以上の曲げ最大荷重を有することが好ましく、1.2kN以上の曲げ最大荷重を有することがより好ましい。曲げ最大荷重が1.0kN以上であれば、真空成形前の芯材形状に対する、真空成形後の寸法の変化率を1%以下にできる。 The core material can have a maximum bending load of 1.0 kN or more when measured by three-point bending at a span of 100 mm and a strain rate of 50 mm/min using a sample having dimensions of 150 mm in length and 50 mm in width. Preferably, it is more preferable to have a maximum bending load of 1.2 kN or more. If the maximum bending load is 1.0 kN or more, the rate of change in dimensions after vacuum forming with respect to the core shape before vacuum forming can be 1% or less.

また、芯材は、長さ150mm及び幅50mmの寸法を有する試料を用いてスパン100mm及びひずみ速度50mm/分で3点曲げをして測定した場合に、20N/cm以上の曲げ弾性勾配を有することが好ましく、25N/cm以上の曲げ弾性勾配を有することがより好ましく、28N/cm以上の曲げ弾性勾配を有することが更に好ましい。曲げ弾性勾配が20N/cm以上であれば、真空成形前の芯材形状に対する、真空成形後の寸法の変化率を1%以下にできる。 In addition, the core material has a bending elastic gradient of 20 N/cm or more when measured by three-point bending at a span of 100 mm and a strain rate of 50 mm/min using a sample having dimensions of 150 mm in length and 50 mm in width. It is preferable to have a bending elastic gradient of 25 N/cm or more, more preferably to have a bending elastic gradient of 28 N/cm or more. If the bending elasticity gradient is 20 N/cm or more, the rate of change in dimensions after vacuum forming with respect to the shape of the core material before vacuum forming can be 1% or less.

本発明の真空断熱材は、ガス吸着剤及び水分吸着剤を含む。ガス吸着剤及び水分吸着剤を用いることにより、フェノール樹脂製バインダーから発生するアウトガス、外部から侵入するガス(窒素、酸素、二酸化炭素等)や水分を除去して、経年劣化による真空断熱材の断熱性能の低下を抑制することができる。 The vacuum insulation material of the present invention contains a gas adsorbent and a moisture adsorbent. By using a gas adsorbent and a moisture adsorbent, outgas generated from the phenolic resin binder, gases (nitrogen, oxygen, carbon dioxide, etc.) that enter from the outside, and moisture are removed, and insulation of vacuum insulation materials due to aging deterioration is removed. Deterioration in performance can be suppressed.

本発明に用いられるガス吸着剤は、前記のアウトガスや外部侵入ガスを吸着する物質であれば特に制限されない。フェノール樹脂製バインダーからは一酸化炭素、二酸化炭素、ホルムアルデヒドや、アミン類等の低分子量のアウトガスが発生するので、これらのアウトガスを吸着することができる吸着剤が好ましい。そのようなガス吸着剤としては、例えば、ゼオライト、コバルトやリチウム等からなる合金や、活性炭等が挙げられる。ガス吸着性能及び生産性の観点から、ゼオライトが好ましく、銅イオン交換ZSM-5型ゼオライトがより好ましい。
ガス吸着剤は公知であり、市場において容易に入手することができるか、又は調製可能である。
The gas adsorbent used in the present invention is not particularly limited as long as it is a material that adsorbs the above-mentioned outgas and externally invaded gas. Since a phenolic resin binder generates low molecular weight outgases such as carbon monoxide, carbon dioxide, formaldehyde, and amines, an adsorbent that can adsorb these outgasses is preferable. Examples of such gas adsorbents include zeolite, alloys made of cobalt, lithium, etc., and activated carbon. From the viewpoint of gas adsorption performance and productivity, zeolite is preferred, and copper ion exchange ZSM-5 type zeolite is more preferred.
Gas adsorbents are known and readily available on the market or can be prepared.

ガス吸着剤は、ガス吸着剤の質量(b)に対するフェノール樹脂製バインダーの質量(a)の比(a/b)が、5.0~25.0、好ましくは6.0~24.0、より好ましくは7.0~22.0、更に好ましくは7.5~20.0となる量で、真空断熱材に含まれる。ガス吸着剤の量が上記範囲内であれば、フェノール樹脂バインダーから生じるアウトガスを効率よく吸着しつつ、製造費用を抑えることができる。 The gas adsorbent has a ratio (a/b) of the mass (a) of the phenolic resin binder to the mass (b) of the gas adsorbent from 5.0 to 25.0, preferably from 6.0 to 24.0. The amount contained in the vacuum insulation material is more preferably 7.0 to 22.0, and even more preferably 7.5 to 20.0. If the amount of the gas adsorbent is within the above range, it is possible to efficiently adsorb outgas generated from the phenolic resin binder while reducing manufacturing costs.

水分吸着剤は、水分を吸着する物質であれば特に制限無く使用することができ、例えば、酸化カルシウム等のアルカリ土類金属酸化物、酸化ナトリウム等のアルカリ金属酸化物、ゼオライトや、シリカゲル等が挙げられる。
水分吸着剤は公知であり、市場において容易に入手することができるか、又は調製可能である。
The moisture adsorbent can be used without any particular restriction as long as it is a substance that adsorbs moisture.For example, alkaline earth metal oxides such as calcium oxide, alkali metal oxides such as sodium oxide, zeolite, silica gel, etc. Can be mentioned.
Moisture adsorbents are known and readily available on the market or can be prepared.

水分吸着剤は、水分吸着剤の質量(c)に対するガス吸着剤の質量(b)の比(b/c)が、0.1~1.0、好ましくは0.15~0.9、より好ましくは0.2~0.8、更に好ましくは0.25~0.75となる量で、真空断熱材に含まれる。水分吸着剤の量が上記範囲内であれば、真空断熱材の経年劣化による断熱性能の低下を抑制しつつ、製造費用を抑えることができる。 The moisture adsorbent has a ratio (b/c) of the mass (b) of the gas adsorbent to the mass (c) of the moisture adsorbent from 0.1 to 1.0, preferably from 0.15 to 0.9. It is preferably contained in the vacuum insulation material in an amount of 0.2 to 0.8, more preferably 0.25 to 0.75. If the amount of the moisture adsorbent is within the above range, manufacturing costs can be suppressed while suppressing deterioration of insulation performance due to aging of the vacuum insulation material.

本発明に用いられる外被材は、ガスバリア性を有していれば特に制限はないが、シール層及びガスバリア層を予め積層した多層フィルムが好ましく、芯材に接する側から順にシール層、ガスバリア層及び樹脂フィルム層を積層したものがより好ましい。
外被材の厚さは、特に制限はないが、損傷や真空度の低下を防ぐため、従来用いられているものよりも厚い外被材、例えば厚さ50~150μmのものを使用するのが好ましい。
The outer covering material used in the present invention is not particularly limited as long as it has gas barrier properties, but a multilayer film in which a sealing layer and a gas barrier layer are laminated in advance is preferable, and the sealing layer and the gas barrier layer are sequentially layered from the side in contact with the core material. It is more preferable to have a laminated resin film layer.
There is no particular limit to the thickness of the outer sheathing material, but in order to prevent damage and a decrease in the degree of vacuum, it is recommended to use an outer sheathing material that is thicker than that conventionally used, for example, one with a thickness of 50 to 150 μm. preferable.

ガスバリア層は、ガスを透過しない層であり、真空断熱材の真空度の低下を防ぐ観点から用いられる。ガスバリア層としては、金属箔や、樹脂フィルム上に金属等を蒸着した積層フィルム(蒸着膜フィルム)等が挙げられる。
金属箔の金属としては、アルミニウム、銅、ステンレス、鉄等が挙げられる。好ましくは、アルミニウムが用いられる。
蒸着膜は、蒸着法、スパッタ法等により、アルミニウム、ステンレス、コバルト、ニッケル等の金属又はシリカ、アルミナ、若しくはこれらの組み合わせを蒸着させて形成する。蒸着膜フィルムの基材となる樹脂フィルムとしては、ポリエチレンテレフタレート(PET)樹脂、ポリブチレンテレフタレート(PBT)樹脂等の芳香族ポリエステル系樹脂;ポリエチレン樹脂、ポリプロピレン樹脂、オレフィン共重合体等のポリオレフィン系樹脂;ポリ塩化ビニル樹脂、塩化ビニル共重合体等の塩化ビニル系樹脂;ナイロン6、ナイロン66、メタキシリレンジアミン・アジピン酸縮合体等のポリアミド樹脂;ポリビニルアルコール樹脂、アクリロニトリル・ブタジエン・スチレン共重合体、アクリロニトリル・スチレン共重合体等のスチレン系樹脂;ポリメチルメタクリレート樹脂、アクリル酸エステル樹脂とメチルメタクリル酸エステル共重合体等のアクリル系樹脂、エチレン-ビニルアルコール共重合体、ポリビニルアルコール樹脂及びこれを部分ケン化した物等の熱可塑性樹脂、フェノール樹脂、ユリア樹脂等の熱硬化性樹脂から製造されるフィルムが用いられる。
ガスバリア層は、好ましくはポリビニルアルコール樹脂上にアルミ蒸着を行った積層フィルム又はアルミ箔である。
ガスバリア層の厚さは特に制限はないが、蒸着膜フィルムの場合には、蒸着膜の厚さは800~2400Åであることが好ましく、金属箔の場合には、6~50μmであることが好ましい。
ガスバリア層に用いられる金属箔や蒸着膜フィルムは公知であり、市場において容易に入手することができるか、又は調製可能である。
The gas barrier layer is a layer that does not allow gas to pass through, and is used from the viewpoint of preventing the degree of vacuum of the vacuum insulation material from decreasing. Examples of the gas barrier layer include metal foil and a laminated film (deposited film) in which a metal or the like is deposited on a resin film.
Examples of the metal of the metal foil include aluminum, copper, stainless steel, and iron. Preferably aluminum is used.
The deposited film is formed by depositing a metal such as aluminum, stainless steel, cobalt, or nickel, or silica, alumina, or a combination thereof by a vapor deposition method, a sputtering method, or the like. The resin film that serves as the base material for the vapor-deposited film includes aromatic polyester resins such as polyethylene terephthalate (PET) resin and polybutylene terephthalate (PBT) resin; polyolefin resins such as polyethylene resin, polypropylene resin, and olefin copolymers. ; Vinyl chloride resins such as polyvinyl chloride resins and vinyl chloride copolymers; Polyamide resins such as nylon 6, nylon 66, metaxylylenediamine-adipic acid condensates; Polyvinyl alcohol resins, acrylonitrile-butadiene-styrene copolymers , styrene resins such as acrylonitrile-styrene copolymers; acrylic resins such as polymethyl methacrylate resins, acrylic ester resins and methyl methacrylic ester copolymers, ethylene-vinyl alcohol copolymers, polyvinyl alcohol resins, and A film manufactured from a thermosetting resin such as a partially saponified thermoplastic resin, a phenolic resin, or a urea resin is used.
The gas barrier layer is preferably a laminated film or aluminum foil in which aluminum is vapor-deposited on a polyvinyl alcohol resin.
The thickness of the gas barrier layer is not particularly limited, but in the case of a vapor-deposited film, the thickness of the vapor-deposited film is preferably 800 to 2400 Å, and in the case of metal foil, it is preferably 6 to 50 μm. .
Metal foils and vapor-deposited films used for gas barrier layers are well known and can be easily obtained or prepared on the market.

シール層は、加熱により融着可能な樹脂である。熱融着可能な樹脂であれば、特に制限はない。具体的には、ポリエチレン樹脂、ポリプロピレン樹脂等のポリオレフィン樹脂、ポリアクリロニトリル樹脂、ポリエステル樹脂、エチレン-ビニルアルコール共重合体、又はそれらの混合体からなるフィルム等を用いることができる。好ましくはポリエチレン樹脂、ポリプロピレン樹脂、エチレン-ビニルアルコール共重合体が用いられる。
ポリエチレン樹脂は、0.90~0.98g/cm3の密度のものが好ましい。
ポリプロピレン樹脂は、0.85~0.95g/cm3の密度のものが好ましい。
シール層の厚さは特に制限はないが、50~200μmであることが好ましい。
シール層に用いられる樹脂は公知であり、市場において容易に入手することができるか、又は調製可能である。
The seal layer is a resin that can be fused by heating. There is no particular restriction as long as the resin can be heat-sealed. Specifically, films made of polyolefin resins such as polyethylene resins and polypropylene resins, polyacrylonitrile resins, polyester resins, ethylene-vinyl alcohol copolymers, or mixtures thereof can be used. Preferably, polyethylene resin, polypropylene resin, or ethylene-vinyl alcohol copolymer is used.
The polyethylene resin preferably has a density of 0.90 to 0.98 g/cm 3 .
The polypropylene resin preferably has a density of 0.85 to 0.95 g/cm 3 .
The thickness of the sealing layer is not particularly limited, but is preferably 50 to 200 μm.
The resins used in the sealing layer are known and can be easily obtained or prepared on the market.

樹脂フィルム層は、ガスバリア層を保護する目的で、ガスバリア層上に任意に設けられる層である。樹脂フィルム層としては、ポリエチレンテレフタレート(PET)樹脂、ポリブチレンテレフタレート(PBT)樹脂等の芳香族ポリエステル系樹脂;ポリエチレン樹脂、ポリプロピレン樹脂、オレフィン共重合体等のポリオレフィン系樹脂;ポリ塩化ビニル樹脂、塩化ビニル共重合体等の塩化ビニル系樹脂;ナイロン6、ナイロン66、メタキシリレンジアミン・アジピン酸縮合体等のポリアミド樹脂;ポリビニルアルコール樹脂、アクリロニトリル・ブタジエン・スチレン共重合体、アクリロニトリル・スチレン共重合体等のスチレン系樹脂;ポリメチルメタクリレート樹脂、アクリル酸エステル樹脂とメチルメタクリル酸エステル共重合体等のアクリル系樹脂等の熱可塑性樹脂、フェノール樹脂、ユリア樹脂等の熱硬化性樹脂から製造されるフィルムが用いられる。好ましくは、PET樹脂、ナイロン6又はナイロン66である。
これらの樹脂フィルムには、有機質、無機質のフィラーを添加することもできる。これらの樹脂は単独で又は2種以上を混合して用いることができる。
樹脂フィルム層には、ガスバリア性フィルムのガスバリア性能を更に向上させるために、塩化ビニリデン樹脂、アクリロニトリル樹脂、ビニルアルコール樹脂等のビニルモノマーを重合、共重合させて得られるガスバリア性樹脂を塗布したり、積層したり、それらの粒子を樹脂フィルム層中に混合分散させることもできる。
樹脂フィルム層の厚さは特に制限はないが、12~30μmであることが好ましい。
樹脂フィルム層に用いられる樹脂は公知であり、市場において容易に入手することができるか、又は調製可能である。
The resin film layer is a layer that is optionally provided on the gas barrier layer for the purpose of protecting the gas barrier layer. For the resin film layer, aromatic polyester resins such as polyethylene terephthalate (PET) resins and polybutylene terephthalate (PBT) resins; polyolefin resins such as polyethylene resins, polypropylene resins, and olefin copolymers; polyvinyl chloride resins, chlorinated resins, etc. Vinyl chloride resins such as vinyl copolymers; polyamide resins such as nylon 6, nylon 66, metaxylylenediamine-adipic acid condensates; polyvinyl alcohol resins, acrylonitrile-butadiene-styrene copolymers, acrylonitrile-styrene copolymers Films manufactured from styrene resins such as polymethyl methacrylate resins, thermoplastic resins such as acrylic resins such as acrylic ester resins and methyl methacrylic ester copolymers, and thermosetting resins such as phenolic resins and urea resins. is used. Preferably, PET resin, nylon 6 or nylon 66 is used.
Organic or inorganic fillers can also be added to these resin films. These resins can be used alone or in combination of two or more.
In order to further improve the gas barrier performance of the gas barrier film, the resin film layer may be coated with a gas barrier resin obtained by polymerizing or copolymerizing vinyl monomers such as vinylidene chloride resin, acrylonitrile resin, or vinyl alcohol resin. It is also possible to laminate them or to mix and disperse these particles in a resin film layer.
The thickness of the resin film layer is not particularly limited, but is preferably 12 to 30 μm.
The resin used for the resin film layer is known and can be easily obtained or prepared on the market.

本発明の真空断熱材において、芯材、ガス吸着剤及び水分吸着剤を減圧密封した部位の周りには、通常、外被材を構成するガスバリア性フィルムのシール層同士が接着した「耳部」が形成される。耳部は、芯材に沿って耳部を折る「耳折り」によって折りたたまれてもよく、その際、真空断熱材の施工時に熱源に接しない側の面に折りたたむのが好ましい。 In the vacuum insulation material of the present invention, around the part where the core material, gas adsorbent, and moisture adsorbent are sealed under reduced pressure, there is usually an "edge part" where the sealing layers of the gas barrier film constituting the outer covering material are adhered to each other. is formed. The ear portion may be folded by “ear folding” in which the ear portion is folded along the core material, and in this case, it is preferable to fold the ear portion to the side that does not come into contact with the heat source during construction of the vacuum insulation material.

本発明の真空断熱材において、芯材、ガス吸着剤及び水分吸着剤は、ガスバリア性の外被材内に減圧密封されている。真空断熱材の内部圧力は、例えば、0.5~20Pa、好ましくは0.5~10Paである。内部圧力が上記範囲内であれば、真空断熱材内部のガスを介する熱伝導を抑制できるため、真空断熱材の断熱性を高めることができる。 In the vacuum heat insulating material of the present invention, the core material, the gas adsorbent, and the moisture adsorbent are sealed under reduced pressure within the outer cover material having gas barrier properties. The internal pressure of the vacuum insulation material is, for example, 0.5 to 20 Pa, preferably 0.5 to 10 Pa. If the internal pressure is within the above range, heat conduction through the gas inside the vacuum insulation material can be suppressed, so that the insulation properties of the vacuum insulation material can be improved.

熱や衝撃等による損傷対策として、真空断熱材の表面にグラスウールや発泡体などの断熱材を張り合わせて真空断熱材を保護してもよい。 As a measure against damage caused by heat, impact, etc., the vacuum insulation material may be protected by laminating a heat insulating material such as glass wool or foam on the surface of the vacuum insulation material.

本発明の真空断熱材は、袋状の外被材の内部に、立体形状に成形された芯材、ガス吸着剤及び水分吸着剤を配置し、外被材で芯材、ガス吸着剤及び水分吸着剤を減圧密封することにより製造することができる。減圧密封の方法は、当該技術分野において従来公知の方法を用いることができる。 In the vacuum insulation material of the present invention, a core material, a gas adsorbent, and a moisture adsorbent formed into a three-dimensional shape are arranged inside a bag-like outer covering material, and the core material, gas adsorbent, and moisture absorbent are arranged in the outer covering material. It can be manufactured by sealing the adsorbent under reduced pressure. As the vacuum sealing method, a method conventionally known in the technical field can be used.

減圧密封前に、好ましくは減圧密封装置に挿入する直前まで、芯材及び外被材を加熱乾燥しておくことで、得られる真空断熱材の熱伝導率を低減することができる。乾燥温度は、芯材については、例えば、150~250℃であり、外被材については、例えば、50~80℃である。
減圧密封時にガス吸着剤や水分吸着剤の位置がずれないよう、吸着剤の形状に応じた窪みや穴を予め芯材に設けておくことが好ましい。
The thermal conductivity of the resulting vacuum insulation material can be reduced by heating and drying the core material and the outer covering material before vacuum sealing, preferably just before inserting into the vacuum sealing device. The drying temperature is, for example, 150 to 250°C for the core material, and 50 to 80°C for the outer covering material.
In order to prevent the position of the gas adsorbent or moisture adsorbent from shifting during vacuum sealing, it is preferable to provide a depression or a hole in the core material in advance in accordance with the shape of the adsorbent.

外被材を芯材に沿ってシワなく密着させるために、減圧密封装置内に金型を設置しておき、装置内を真空にした後に真空断熱材を特定形状にプレスしてもよい。金型は、下型と上型の組み合わせでもよく、下型のみでもよい。下型は凸形状であることが好ましい。
外被材として2枚の多層フィルムで芯材を挟んで外縁のシール層を熱融着させる場合には、同じ大きさの多層フィルムを用いてもよく、減圧密封後の外被材のシワを減らすために、芯材の立体形状に応じて異なる大きさの多層フィルムを用いてもよい。
In order to tightly fit the outer cover material along the core material without wrinkles, a mold may be installed in a vacuum sealing device, and after the inside of the device is evacuated, the vacuum insulation material may be pressed into a specific shape. The mold may be a combination of a lower mold and an upper mold, or only the lower mold. It is preferable that the lower mold has a convex shape.
When the core material is sandwiched between two multilayer films and the sealing layer on the outer edge is heat-sealed as the outer covering material, multilayer films of the same size may be used to prevent wrinkles on the outer covering material after vacuum sealing. To reduce this, multilayer films of different sizes may be used depending on the three-dimensional shape of the core material.

真空断熱材は、バインダーからのアウトガス発生による真空度の低下に伴って熱伝導率が上昇する。従って、アウトガス発生による真空度の低下は、真空断熱材の熱伝導率の経時的変化を測定することによって、間接的に評価することができる。 The thermal conductivity of the vacuum insulation material increases as the degree of vacuum decreases due to outgas generation from the binder. Therefore, the decrease in the degree of vacuum due to the generation of outgas can be indirectly evaluated by measuring the change over time in the thermal conductivity of the vacuum insulation material.

本発明の真空断熱材は、従来の真空断熱材と同様の用途、例えば、冷蔵庫、自動販売機、蓄電池、建築、土木、断熱ボックス、貯塔タンク、冷凍コンテナ、冷凍倉庫等の断熱材が用いられる一般的な分野等に用いることができる。特に、立体形状を有するリチウムイオン電池などのバッテリー用断熱ケース、自動車の内装断熱材、電磁波遮蔽材などの自動車部品、風呂やエコ給湯、床暖房用断熱材など熱源設備の保温材、並びに医療用又は娯楽用のクーラーボックス用断熱材として適している。 The vacuum insulation material of the present invention can be used in the same applications as conventional vacuum insulation materials, such as refrigerators, vending machines, storage batteries, architecture, civil engineering, insulation boxes, storage tanks, refrigerated containers, and frozen warehouses. It can be used in general fields, etc. In particular, insulation cases for batteries such as three-dimensional lithium-ion batteries, automotive interior insulation materials, electromagnetic wave shielding materials and other automotive parts, heat insulating materials for heat source equipment such as baths, eco-hot water heaters, floor heating insulation materials, and medical applications. It is also suitable as an insulation material for recreational cooler boxes.

(芯材の製造)
溶融遠心法による繊維化装置を用いてガラス繊維(平均繊維径3μm)を製造した。装置から排出されたガラス繊維にフェノール樹脂製バインダーを噴霧しながら集綿して、集綿物を得た。集綿物を210℃に加熱した金型へ投入し、2.5t/m2(実施例1~5及び比較例1~3)又は4.0t/m2(比較例4)の圧力をかけながら12分間焼成してバインダーを硬化させて、平板状(450mm×450mm×15mm)の芯材(密度250kg/m3(実施例1~5及び比較例1~3)又は400kg/m3(比較例4))を得た。
(Manufacture of core material)
Glass fibers (average fiber diameter 3 μm) were produced using a fiberizing device using a melt centrifugation method. Glass fibers discharged from the apparatus were collected while spraying a phenolic resin binder to obtain a collected material. The collected cotton material was put into a mold heated to 210°C, and a pressure of 2.5 t/m 2 (Examples 1 to 5 and Comparative Examples 1 to 3) or 4.0 t/m 2 (Comparative Example 4) was applied. The binder was cured by baking for 12 minutes while heating, and then the core material of a flat plate (450 mm x 450 mm x 15 mm) with a density of 250 kg/m 3 (Examples 1 to 5 and Comparative Examples 1 to 3) or 400 kg/m 3 (Comparative Example 4)) was obtained.

(外被材の製袋)
ポリエチレン(厚み50μm)、アルミ箔(厚み6.5μm)、ポリエチレンテレフタレート(厚み12μm)、ポリアミド(厚み25μm)をこの順に積層して構成されたガスバリア性の多層フィルムを、互いのポリエチレン層が接するように2枚重ね、芯材の挿入のための開口部を残して外周部をヒートシールして袋状に形成した。
(Bag making of outer cover material)
A gas barrier multilayer film made by laminating polyethylene (thickness 50 μm), aluminum foil (thickness 6.5 μm), polyethylene terephthalate (thickness 12 μm), and polyamide (thickness 25 μm) in this order is placed so that the polyethylene layers are in contact with each other. Two sheets were stacked on top of each other, and the outer periphery was heat-sealed to form a bag shape, leaving an opening for inserting the core material.

(真空断熱材の製造)
芯材を210℃で1時間、袋状の外被材を80℃で1時間それぞれ乾燥した後、袋状の外被材の内部に、芯材、ガス吸着剤(銅イオン交換ZSM-5型ゼオライト、表1に示す量)及び水分吸着剤(酸化カルシウム、10g)を配置した。外被材を真空チャンバー内に置き、真空チャンバー内を2Pa以下に真空引きして5分保持し、ヒートシールして外被材の開口部を密封し、平板状(450mm×450mm×15mm)の実施例1~5及び比較例1~3の真空断熱材(密度250kg/m3)及び比較例4の真空断熱材(密度400kg/m3)を得た。各真空断熱材における、芯材中のガラス繊維の質量に基づくフェノール樹脂製バインダーの質量(強熱減量)、フェノール樹脂製バインダーの質量(樹脂量)、ガス吸着剤添加量、ガス吸着剤の質量(b)に対するフェノール樹脂製バインダーの質量(a)の比(a/b)、及び水分吸着剤の質量(c)に対するガス吸着剤の質量(b)の比(b/c)は、表1に示される通りであった。
(Manufacture of vacuum insulation materials)
After drying the core material at 210°C for 1 hour and the bag-shaped outer covering material for 1 hour at 80°C, the core material and gas adsorbent (copper ion exchange ZSM-5 type) were dried inside the bag-shaped outer covering material. Zeolite, the amount shown in Table 1) and a water adsorbent (calcium oxide, 10 g) were placed. Place the outer cover material in a vacuum chamber, evacuate the inside of the vacuum chamber to 2 Pa or less, hold for 5 minutes, heat seal to seal the opening of the outer cover material, and form a flat plate (450 mm x 450 mm x 15 mm). Vacuum insulation materials of Examples 1 to 5 and Comparative Examples 1 to 3 (density 250 kg/m 3 ) and Comparative Example 4 (density 400 kg/m 3 ) were obtained. For each vacuum insulation material, the mass of the phenolic resin binder (ignition loss) based on the mass of the glass fiber in the core material, the mass of the phenolic resin binder (resin amount), the amount of gas adsorbent added, the mass of the gas adsorbent The ratio (a/b) of the mass (a) of the phenolic resin binder to (b) and the ratio (b/c) of the mass (b) of the gas adsorbent to the mass (c) of the moisture adsorbent are shown in Table 1. It was as shown in

Figure 0007454827000001
Figure 0007454827000001

実施例1、実施例4及び比較例4の芯材について、長さ150mm及び幅50mmの寸法を有する試料を用いてスパン100mm及びひずみ速度50mm/分で3点曲げをして測定した場合の曲げ最大荷重及び曲げ弾性勾配、万能試験機を用いて試料を20mm/分で10%圧縮した場合の応力(圧縮強度)並びに真空成型時の変形率を測定した。結果を表2に示す。

Figure 0007454827000002
The bending of the core materials of Example 1, Example 4, and Comparative Example 4 was measured by performing three-point bending at a span of 100 mm and a strain rate of 50 mm/min using a sample having dimensions of 150 mm in length and 50 mm in width. The maximum load and bending elastic gradient, the stress when the sample was compressed by 10% at 20 mm/min using a universal testing machine (compressive strength), and the deformation rate during vacuum forming were measured. The results are shown in Table 2.
Figure 0007454827000002

(アウトガス発生による真空度低下の評価)
製造した各真空断熱材について、90℃恒温槽でエージング試験を行ない、経過日数0、7、14、29及び57日での熱伝導率を測定した。熱伝導率は、JIS1412-2に準拠し、熱伝導率計(英弘精機製 HC-074/600)を用いて熱流計法で測定した。結果を、表3に示す。
(Evaluation of decrease in vacuum level due to outgas generation)
For each manufactured vacuum insulation material, an aging test was conducted in a 90° C. constant temperature bath, and the thermal conductivity was measured at 0, 7, 14, 29, and 57 days. The thermal conductivity was measured in accordance with JIS1412-2 using a heat flow meter method using a thermal conductivity meter (HC-074/600 manufactured by Hideko Seiki). The results are shown in Table 3.

Figure 0007454827000003
Figure 0007454827000003

実施例1~3は、同じフェノールバインダー質量(強熱減量(%))を有する比較例1と比較して、試験期間中の熱伝導率変化量が小さく、アウトガス発生による真空度低下が少なかったことが示されている。同様に、実施例4及び5は、同じフェノールバインダー質量(強熱減量(%))を有する比較例2及び3と比較して、試験期間中の熱伝導率変化量が小さく、アウトガス発生による真空度低下が少なかったことが示されている。また、芯材密度が400kg/m3である比較例4では、製造直後の初期熱伝導率が、実施例1~5及び比較例1~3よりも大きく、5mW/mKを超えていた。 In Examples 1 to 3, compared to Comparative Example 1 having the same phenol binder mass (ignition loss (%)), the amount of change in thermal conductivity during the test period was smaller, and the degree of vacuum decreased less due to outgassing. It has been shown that Similarly, in Examples 4 and 5, compared to Comparative Examples 2 and 3 having the same phenol binder mass (ignition loss (%)), the amount of change in thermal conductivity during the test period was small, and the vacuum due to outgas generation was It is shown that there was little decrease in the degree of Furthermore, in Comparative Example 4 in which the core material density was 400 kg/m 3 , the initial thermal conductivity immediately after production was higher than Examples 1 to 5 and Comparative Examples 1 to 3, exceeding 5 mW/mK.

(熱橋の評価)
本願発明では、三次元形状にすることで、継ぎ目をなくして(又は減らして)熱橋を低減できる。立体形状の真空断熱材では熱伝導率の直接の測定ができないため、平板形状の真空断熱材を用いて、継ぎ目をなくすことによる熱橋の低減を評価した。継ぎ目からの熱橋は、立体形状の場合でも平板形状の場合と同等に発生する。
(Evaluation of thermal bridge)
In the present invention, by creating a three-dimensional shape, it is possible to eliminate (or reduce) seams and reduce thermal bridges. Since it is not possible to directly measure the thermal conductivity of three-dimensional vacuum insulation materials, we evaluated the reduction of thermal bridges by using flat plate-shaped vacuum insulation materials and eliminating seams. Thermal bridges from seams occur equally in the case of a three-dimensional shape as in the case of a flat plate shape.

図1に示すように、継ぎ目を有さない真空断熱材(縦500mm×横500mm×厚さ15mmを1枚、配置例1)と、継ぎ目を有する真空断熱材(縦250mm×横250mm×厚さ15mmを4枚、配置例2)を用いて、熱伝導率を測定した。熱伝導率は、JIS1412-2に準拠し、熱伝導率計(英弘精機製 HC-074/600)を用いて熱流計法で測定した。熱伝導率の測定値は、配置例1では0.003009W/mK、配置例2では0.009235W/mKであった。配置例1と配置例2の熱伝導率の差は、継ぎ目からの熱橋の有無によることが確認される。 As shown in Figure 1, vacuum insulation material without seams (one sheet of 500 mm length x 500 mm width x 15 mm thickness, arrangement example 1) and vacuum insulation material with seams (250 mm length x 250 mm width x thickness) Thermal conductivity was measured using four 15 mm pieces according to arrangement example 2). The thermal conductivity was measured in accordance with JIS1412-2 using a heat flow meter method using a thermal conductivity meter (HC-074/600 manufactured by Hideko Seiki). The measured value of thermal conductivity was 0.003009 W/mK for Arrangement Example 1 and 0.009235 W/mK for Arrangement Example 2. It is confirmed that the difference in thermal conductivity between Arrangement Example 1 and Arrangement Example 2 is due to the presence or absence of a thermal bridge from the seam.

(立体形状を有する真空断熱材の製造)
(1)立体形状を有する芯材の製造
溶融遠心法による繊維化装置を用いてガラス繊維(平均繊維径3μm)を製造した。装置から排出されたガラス繊維にフェノールバインダーを、噴霧しながら集綿して、集綿物を得た。集綿物を210℃に加熱した立体形状を有する金型へ投入し、2.5t/m2の圧力をかけながら12分間焼成してバインダーを硬化させて、図2に示す立体形状を有する芯材(密度250kg/m3)を得た。
(Manufacture of vacuum insulation material with three-dimensional shape)
(1) Production of core material having a three-dimensional shape Glass fibers (average fiber diameter 3 μm) were produced using a fiberizing device using a melt centrifugation method. A phenol binder was sprayed onto the glass fibers discharged from the apparatus, and the fibers were collected to obtain a collected material. The collected cotton material was put into a mold having a three-dimensional shape heated to 210°C, and baked for 12 minutes while applying a pressure of 2.5 t/m 2 to harden the binder, resulting in a core having a three-dimensional shape as shown in Figure 2. A material (density 250 kg/m 3 ) was obtained.

(2)外被材の製袋
ポリエチレン(厚み50μm)、アルミ箔(厚み6.5μm)、ポリエチレンテレフタレート(厚み12μm)、ポリアミド(厚み25μm)をこの順に積層して構成されたガスバリア性の多層フィルムを、互いのポリエチレン層が接するように2枚重ね、芯材の挿入のための開口部を残して外周部をヒートシールして袋状に形成した。
(2) Bag making of outer covering material A gas barrier multilayer film made by laminating polyethylene (thickness 50 μm), aluminum foil (thickness 6.5 μm), polyethylene terephthalate (thickness 12 μm), and polyamide (thickness 25 μm) in this order. Two polyethylene layers were stacked one on top of the other so that the polyethylene layers were in contact with each other, and the outer periphery was heat-sealed to form a bag shape, leaving an opening for inserting the core material.

(3)立体形状を有する真空断熱材の製造
芯材を210℃で1時間、袋状の外被材を80℃で1時間それぞれ乾燥した後、袋状の外被材の内部に、芯材、ガス吸着剤(銅イオン交換ZSM-5型ゼオライト)及び水分吸着剤(酸化カルシウム)を配置した。外被材を真空チャンバー内に置き、真空チャンバー内を2Pa以下に真空引きして5分保持し、ヒートシールして外被材の開口部を密封し、密度250kg/m3の、芯材の形状と同様の立体形状を有する真空断熱材を得た。
(3) Production of vacuum insulation material with three-dimensional shape After drying the core material at 210°C for 1 hour and the bag-shaped outer covering material for 1 hour at 80°C, the core material is dried inside the bag-shaped outer covering material. , a gas adsorbent (copper ion exchange ZSM-5 type zeolite) and a water adsorbent (calcium oxide) were arranged. Place the outer cover material in a vacuum chamber, evacuate the vacuum chamber to 2 Pa or less, hold for 5 minutes, heat seal the opening of the outer cover material, and remove the core material with a density of 250 kg/ m3 . A vacuum insulation material having a three-dimensional shape similar to the shape was obtained.

本発明の真空断熱材は、立体形状を有する部材に施工する断熱材として特に有用である。 The vacuum heat insulating material of the present invention is particularly useful as a heat insulating material applied to a member having a three-dimensional shape.

Claims (5)

芯材と、ガス吸着剤と、水分吸着剤と、ガスバリア性の外被材とを含む、平板形状ではない立体形状を有する真空断熱材であって、
前記芯材が、無機繊維及びフェノール樹脂製バインダーを含み、
前記芯材の密度が、200~390kg/m3であり、
前記芯材が、前記フェノール樹脂製バインダーにより平板形状ではない立体形状に成形されており、
前記フェノール樹脂製バインダーの質量(a)が、前記無機繊維の質量に基づいて7~15%であり、
前記ガス吸着剤の質量(b)に対する前記フェノール樹脂製バインダーの質量(a)の比(a/b)が、5.0~25.0であり、
前記水分吸着剤の質量(c)に対する前記ガス吸着剤の質量(b)の比(b/c)が、0.1~1.0であり、
前記芯材、前記ガス吸着剤及び前記水分吸着剤が、前記外被材内に減圧密封されており、
前記ガス吸着剤が、銅イオン交換ZSM-5型ゼオライトである、真空断熱材。
A vacuum insulation material having a three-dimensional shape other than a flat plate shape, including a core material, a gas adsorbent, a moisture adsorbent, and a gas barrier outer covering material,
The core material includes inorganic fibers and a phenolic resin binder,
The core material has a density of 200 to 390 kg/m 3 ,
The core material is formed into a three-dimensional shape other than a flat plate shape by the phenolic resin binder,
The mass (a) of the phenolic resin binder is 7 to 15% based on the mass of the inorganic fiber,
The ratio (a/b) of the mass (a) of the phenolic resin binder to the mass (b) of the gas adsorbent is 5.0 to 25.0,
The ratio (b/c) of the mass (b) of the gas adsorbent to the mass (c) of the moisture adsorbent is 0.1 to 1.0,
The core material, the gas adsorbent, and the moisture adsorbent are vacuum-sealed within the jacket material,
A vacuum insulation material, wherein the gas adsorbent is a copper ion exchange ZSM-5 type zeolite .
前記無機繊維が、1~8μmの平均繊維径を有する、請求項1記載の真空断熱材。 The vacuum insulation material according to claim 1, wherein the inorganic fibers have an average fiber diameter of 1 to 8 μm. 前記芯材が、長さ150mm及び幅50mmの寸法を有する試料を用いてスパン100mm及びひずみ速度50mm/分で3点曲げをして測定した場合に、1.0kN以上の曲げ最大荷重を有する、請求項1又は2に記載の真空断熱材。 The core material has a maximum bending load of 1.0 kN or more when measured by three-point bending at a span of 100 mm and a strain rate of 50 mm/min using a sample having dimensions of 150 mm in length and 50 mm in width. The vacuum insulation material according to claim 1 or 2 . 前記芯材が、長さ150mm及び幅50mmの寸法を有する試料を用いてスパン100mm及びひずみ速度50mm/分で3点曲げをして測定した場合に、20N/cm以上の曲げ弾性勾配を有する、請求項1~のいずれか1項に記載の真空断熱材。 The core material has a bending elastic gradient of 20 N/cm or more when measured by three-point bending at a span of 100 mm and a strain rate of 50 mm/min using a sample having dimensions of 150 mm in length and 50 mm in width. The vacuum insulation material according to any one of claims 1 to 3 . 前記芯材の厚み方向に10%圧縮したときの応力が70kPa以上である、請求項1~のいずれか1項に記載の真空断熱材。 The vacuum heat insulating material according to any one of claims 1 to 4 , wherein the core material has a stress of 70 kPa or more when compressed by 10% in the thickness direction.
JP2019030294A 2019-02-22 2019-02-22 vacuum insulation Active JP7454827B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019030294A JP7454827B2 (en) 2019-02-22 2019-02-22 vacuum insulation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019030294A JP7454827B2 (en) 2019-02-22 2019-02-22 vacuum insulation

Publications (2)

Publication Number Publication Date
JP2020133816A JP2020133816A (en) 2020-08-31
JP7454827B2 true JP7454827B2 (en) 2024-03-25

Family

ID=72278136

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019030294A Active JP7454827B2 (en) 2019-02-22 2019-02-22 vacuum insulation

Country Status (1)

Country Link
JP (1) JP7454827B2 (en)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004011705A (en) 2002-06-05 2004-01-15 Matsushita Refrig Co Ltd Vacuum heat insulating material, heat insulator, heat insulation box, heat insulation door, storage warehouse, and refrigerator
JP2007016806A (en) 2005-07-05 2007-01-25 Matsushita Electric Ind Co Ltd Vacuum heat insulating material
JP2007205530A (en) 2006-02-06 2007-08-16 Hitachi Appliances Inc Vacuum heat-insulating material and its manufacturing method
US20080280090A1 (en) 2005-11-22 2008-11-13 Kyung-Do Kim Vaccum Insulation Panal And Insulation Structure Of Refrigerator Using The Same
JP2009063064A (en) 2007-09-06 2009-03-26 Hitachi Appliances Inc Vacuum heat insulating material and refrigerator using the same
JP2011122727A (en) 2011-01-26 2011-06-23 Sharp Corp Core material for vacuum heat insulating material, vacuum heat insulating material and manufacturing method for them
JP2012013114A (en) 2010-06-30 2012-01-19 Hitachi Ltd Heat insulating member and building member using the same
JP2013076459A (en) 2011-09-12 2013-04-25 Hitachi Appliances Inc Vacuum heat insulating material, refrigerator using the same, and equipment
JP2013142498A (en) 2012-01-11 2013-07-22 Panasonic Corp Refrigerator
JP2014531562A (en) 2011-08-31 2014-11-27 エルジー・ハウシス・リミテッドLg Hausys,Ltd. Vacuum insulation including composite getter material
JP2017109150A (en) 2015-12-15 2017-06-22 旭ファイバーグラス株式会社 Gas adsorbent
WO2017125414A1 (en) 2016-01-18 2017-07-27 Basf Se Process for producing porous materials

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4726974A (en) * 1986-10-08 1988-02-23 Union Carbide Corporation Vacuum insulation panel

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004011705A (en) 2002-06-05 2004-01-15 Matsushita Refrig Co Ltd Vacuum heat insulating material, heat insulator, heat insulation box, heat insulation door, storage warehouse, and refrigerator
JP2007016806A (en) 2005-07-05 2007-01-25 Matsushita Electric Ind Co Ltd Vacuum heat insulating material
US20080280090A1 (en) 2005-11-22 2008-11-13 Kyung-Do Kim Vaccum Insulation Panal And Insulation Structure Of Refrigerator Using The Same
JP2007205530A (en) 2006-02-06 2007-08-16 Hitachi Appliances Inc Vacuum heat-insulating material and its manufacturing method
JP2009063064A (en) 2007-09-06 2009-03-26 Hitachi Appliances Inc Vacuum heat insulating material and refrigerator using the same
JP2012013114A (en) 2010-06-30 2012-01-19 Hitachi Ltd Heat insulating member and building member using the same
JP2011122727A (en) 2011-01-26 2011-06-23 Sharp Corp Core material for vacuum heat insulating material, vacuum heat insulating material and manufacturing method for them
JP2014531562A (en) 2011-08-31 2014-11-27 エルジー・ハウシス・リミテッドLg Hausys,Ltd. Vacuum insulation including composite getter material
JP2013076459A (en) 2011-09-12 2013-04-25 Hitachi Appliances Inc Vacuum heat insulating material, refrigerator using the same, and equipment
JP2013142498A (en) 2012-01-11 2013-07-22 Panasonic Corp Refrigerator
JP2017109150A (en) 2015-12-15 2017-06-22 旭ファイバーグラス株式会社 Gas adsorbent
WO2017125414A1 (en) 2016-01-18 2017-07-27 Basf Se Process for producing porous materials

Also Published As

Publication number Publication date
JP2020133816A (en) 2020-08-31

Similar Documents

Publication Publication Date Title
KR100540522B1 (en) Vacuum insulating material and device using the same
JP4777661B2 (en) Vacuum insulation
JP5388603B2 (en) Vacuum heat insulating material and heat insulating box equipped with the same
US20130142983A1 (en) Composite core material for vacuum insulation panel, preparation method thereof, and vacuum insulation panel using the same
KR20090017645A (en) Vacuum heat insulation material
US9151435B2 (en) Vacuum insulation material including an inner bag, and method for manufacturing same
JP2004308691A (en) Vacuum heat insulating material and manufacturing method thereof
JP2006125631A (en) Vacuum insulation material and manufacturing method thereof
JP2001336691A (en) Vacuum insulation material and refrigerator using vacuum insulation material
JP2011074934A (en) Vacuum thermal insulator and thermally insulating box including the vacuum thermal insulator
JP7454827B2 (en) vacuum insulation
JP6192554B2 (en) Manufacturing method of vacuum insulation
JP2010281444A (en) Heat insulating material
JP2011038574A (en) Vacuum heat insulating material and refrigerator using this
JPH09145241A (en) Vacuum heat-insulating material
JP2007138976A (en) Vacuum heat insulating material and its manufacturing method
KR100965971B1 (en) Vacuum heat insulation material
JP2008215538A (en) Vacuum heat insulation material
JP2007050521A (en) Manufacturing method of vacuum heat insulating member
JP2003155651A (en) Vacuum heat insulation material and core material for vacuum heat insulation
JP6793571B2 (en) Vacuum heat insulating material, equipment equipped with it, and manufacturing method of vacuum heat insulating material
JP2008002598A (en) Heat insulating material and its manufacturing method
WO2015115460A1 (en) Vacuum heat-insulating material
EP2985376B1 (en) Core material for vacuum insulator, comprising organic synthetic fiber, and vacuum insulator containing same
WO2000075557A1 (en) Evacuated insulation article having a plurality of porous inner supports

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220112

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221121

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230511

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230921

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240213

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240305

R150 Certificate of patent or registration of utility model

Ref document number: 7454827

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150