JP7454131B2 - Large rice milling factory - Google Patents

Large rice milling factory Download PDF

Info

Publication number
JP7454131B2
JP7454131B2 JP2020102795A JP2020102795A JP7454131B2 JP 7454131 B2 JP7454131 B2 JP 7454131B2 JP 2020102795 A JP2020102795 A JP 2020102795A JP 2020102795 A JP2020102795 A JP 2020102795A JP 7454131 B2 JP7454131 B2 JP 7454131B2
Authority
JP
Japan
Prior art keywords
rice
milling
machine
grains
self
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020102795A
Other languages
Japanese (ja)
Other versions
JP2021194594A (en
Inventor
稔 是田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Satake Corp
Original Assignee
Satake Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Satake Corp filed Critical Satake Corp
Priority to JP2020102795A priority Critical patent/JP7454131B2/en
Publication of JP2021194594A publication Critical patent/JP2021194594A/en
Application granted granted Critical
Publication of JP7454131B2 publication Critical patent/JP7454131B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Adjustment And Processing Of Grains (AREA)

Description

本発明は、大型精米工場に関する。 The present invention relates to a large-scale rice mill.

穀物共同乾燥調製施設(カントリーエレベータ)では、各農家が収穫した籾の持ち分を決定するための自主検定装置が設けられている。この自主検定装置は、テスト用のもみすり機(籾から籾殻を脱離して玄米にする機械)や粒選別機(粒の大きさを選別する機械)や計量機(粒の重さを計量する機械)などにより構成され、各農家のサンプル(約1kg程度)を大粒・中粒・小粒・屑(くず)粒・夾雑物に選別(分類)し、その割合を計算して高精度に各農家の持ち分を決定し、収穫シーズンが終わった後、持ち分に応じて払い戻しが行われている(特許文献1など)。 At the grain communal drying and preparation facility (country elevator), a self-verification device is installed to determine the share of each farmer's harvested paddy. This self-testing equipment is used for testing purposes such as a rice huller (a machine that removes the chaff from rice and turns it into brown rice), a grain sorter (a machine that sorts the size of grains), and a weighing machine (a machine that measures the weight of grains). The system consists of a machine that sorts (classifies) each farmer's sample (approximately 1 kg) into large grains, medium grains, small grains, waste grains, and foreign matter, calculates the proportions, and sends each farmer's sample with high precision. After the harvest season is over, a refund is made according to the share (Patent Document 1, etc.).

このような自主検定装置は、通常、検定対象物としては米や麦や大豆である。設置場所としては圃場の近くで乾燥調製加工を行う、カントリーエレベータやライスセンタなどに設けられる。つまり、カントリーエレベータやライスセンタでは、各農家から持ち込まれる籾が同じ品種であれば全部一括して処理されるから、各農家に籾の持ち分を明確にし、払い戻し精算の際の重要な基礎データを得ておくという必要性があるためである。一方、圃場から離れた都市部で搗精加工を行う大型精米工場では、あらかじめ原料となる玄米を検査するための特別な検査装置は設置されていない。大型精米工場に入荷する原料は業者を指定して納入されているから、業者を信用することとすれば原料の品質検査は簡易的に行えば足りるということになる。 Such self-testing devices usually test rice, wheat, or soybeans as the test target. Installation locations include country elevators and rice centers where drying and preparation processing is performed near fields. In other words, at country elevators and rice centers, if the paddy brought in by each farmer is of the same variety, all of it is processed in one batch, so each farmer is made clear about their share of the paddy, and important basic data is used when paying refunds. This is because there is a need to obtain. On the other hand, large rice mills that perform the milling process in urban areas far from the fields do not have special inspection equipment installed to inspect the brown rice that is the raw material in advance. The raw materials that arrive at large rice mills are delivered to designated vendors, so if you want to trust the vendors, you only need to conduct a simple quality inspection of the raw materials.

一方、大型精米工場における搗精加工にかかる経費内訳は、人件費、事務費、工場経費(電気料金、修繕費、動力・消耗品費)などがある。そして、精米機本体の稼働率(操業率)を上げたり、歩留まり率を上げたりして、加工経費を安く抑えると、大型精米工場の収益を向上させることに繋がる。 On the other hand, the cost breakdown for milling in large rice mills includes personnel costs, administrative costs, and factory costs (electricity costs, repair costs, power and consumables costs). In addition, if processing costs are kept low by increasing the operating rate of the rice milling machine itself and increasing the yield rate, it will lead to improved profits for large rice milling plants.

特開2014-210247号公報Japanese Patent Application Publication No. 2014-210247

本発明は上記問題点にかんがみ、加工経費を安く抑えて収益を向上することができる大型精米工場を提供することを技術的課題とする。 In view of the above-mentioned problems, the technical object of the present invention is to provide a large-scale rice milling factory that can reduce processing costs and improve profits.

上記課題を解決するため本発明は、 搬入される原料玄米を荷受けする荷受部と、該荷受部で荷受された原料玄米を精米する精米部と、を備えた大型精米工場において、前記荷受部と前記精米部との間には、搬入された原料玄米を自主検査する自主検査機を設け、前記自主検査機の検査結果に基づいて、前記精米部で処理する運転パラメータを算出する制御部を備え、前記自主検査機は、精米前の原料である玄米の品質や性状を検査する第一の穀粒判別機と、該第一の穀粒判別機で検定した玄米を供試原料として試験的に精米を行うテスト精米機と、該テスト精米機により精米された穀粒表面の除糠を行うためのクリーニング装置と、精米後の精米の品質や性状を検査する第二の穀粒判別機と、を備える、という技術的手段を講じた。 In order to solve the above-mentioned problems, the present invention provides a large-scale rice milling factory equipped with a receiving section that receives raw brown rice that is brought in, and a rice milling section that mills the raw brown rice that is received at the receiving section. A self-inspection machine for self-inspecting raw raw rice brought in is provided between the rice milling section, and a control section is provided for calculating operating parameters to be processed in the rice milling section based on the inspection results of the self-inspection machine. , the self-inspection machine includes a first grain discriminator that inspects the quality and properties of brown rice, which is the raw material before milling, and a test machine that tests the brown rice tested by the first grain discriminator as a test raw material. A test rice milling machine for milling rice, a cleaning device for removing bran from the surface of grains milled by the test rice milling machine, and a second grain discriminator for inspecting the quality and properties of the milled rice after milling; We took technical measures to provide the following.

これにより、第一の穀粒判別機により、精米前の原料玄米の整粒サンプルの品位や品質を測定し、第二の穀粒判別機により、精米後の整粒サンプルの品位や品質を測定することができ、精米時における精米要素や品質悪化の原因を知ることができる。また、クリーニング装置を設けることで、精米作用により穀温が上昇した穀粒を攪拌しながら冷却するとともに、除糠を行うことができる。また、穀粒表面を乾燥して結露水を排除することもできる。したがって、第二穀粒判別機による測定に際し支障が生じることがない。 As a result, the first grain discriminator measures the grade and quality of the sized sample of raw brown rice before milling, and the second grain discriminator measures the grade and quality of the sized sample after milling. It is possible to know the rice milling factors during rice milling and the causes of quality deterioration. Further, by providing a cleaning device, it is possible to cool the grains whose temperature has increased due to rice polishing while stirring, and to remove the bran. It is also possible to remove condensation water by drying the grain surface. Therefore, there is no problem in measurement by the second grain discriminator.

請求項記載の発明によれば、前記自主検機には、さらに、精米後の精米の食味を検査する食味測定機を備えたことを特徴とする。これにより、精米後の精米の食味を検査することができる。 According to the invention as set forth in claim 2 , the self- inspection machine is further equipped with a taste measuring machine for testing the taste of the polished rice after milling. Thereby, the taste of the polished rice after polishing can be inspected.

請求項記載の発明によれば、前記クリーニング装置は、外筒と、該外筒内に回転可能に横設され、周面に多数の孔を形成した多孔筒体と、該多孔筒体内に通風し精米後の穀粒の冷却と穀粒の表面の乾燥とを行う冷却ファンとを備えたことを特徴とする。これにより、簡易な部材でクリーニング装置を構成することができ、精米後の穀粒を攪拌しながら冷却するとともに、除糠を行い、さらには、結露水を排除することも可能となる。 According to the invention as set forth in claim 3 , the cleaning device includes an outer cylinder, a porous cylinder which is rotatably installed horizontally in the outer cylinder and has a large number of holes formed on the circumferential surface, and a porous cylinder in which a plurality of holes are formed in the peripheral surface. It is characterized by being equipped with a cooling fan that ventilates the grains after milling and dries the surface of the grains. As a result, the cleaning device can be configured with simple members, and it is possible to cool the grains after milling while stirring, remove the bran, and furthermore, eliminate the dew condensation water.

請求項4記載の発明によれば、前記制御部は、前記大型精米工場の各部の情報を収集するとともに、これら情報に基づいて各部の制御を行い、前記自主検機の結果から、原料玄米の特性と、あらかじめ蓄積された情報と、に基づいて、前記精米部で米粒を処理する際に使用する条件が最適となる値を算出することを特徴とする。これにより、搗精加工にかかる工場経費(電気料金、動力・消耗品費)が最安となる最適条件を探すことができる。 According to the invention set forth in claim 4 , the control unit collects information on each part of the large-scale rice milling factory, controls each part based on this information, and determines raw brown rice from the results of the self- inspection machine. The present invention is characterized in that a value that optimizes the conditions used when processing rice grains in the rice milling section is calculated based on the characteristics of the rice grains and previously accumulated information. This makes it possible to find the optimal conditions for the lowest factory costs (electricity charges, power and consumables costs) for milling processing.

本発明によれば、搬入される原料玄米を荷受けする荷受部と、該荷受部で荷受された原料玄米を精米する精米部と、を備えた大型精米工場において、前記荷受部と前記精米部との間には、搬入された原料玄米を自主検査する自主検査機を設け、前記自主検査機の検査結果に基づいて、前記精米部で処理する運転パラメータを算出する制御部を備え、前記自主検査機は、精米前の原料である玄米の品質や性状を検査する第一の穀粒判別機と、該第一の穀粒判別機で検定した玄米を供試原料として試験的に精米を行うテスト精米機と、該テスト精米機により精米された穀粒表面の除糠を行うためのクリーニング装置と、精米後の精米の品質や性状を検査する第二の穀粒判別機と、を備えたので、自主検機の結果から、原料玄米の特性と、あらかじめ蓄積された情報と、に基づいて、精米部で米粒を処理する際に使用する条件(運転パラメータ)が最適となる値を算出することができる。すなわち、製品品質が悪化せず、製品単価が向上する条件や、搗精加工にかかる工場経費(電気料金、動力・消耗品費)最安となる最適条件を探索する。これにより、大型精米工場において加工経費を安く抑えて収益を向上することができるようになる。 According to the present invention, in a large-scale rice milling factory including a receiving section for receiving raw material brown rice to be carried in, and a rice milling section for milling the raw material brown rice received at the receiving section, the receiving section and the rice milling section are connected to each other. A self-inspection machine for self-inspecting raw raw rice brought in is provided between the self-inspection machines, and a control unit is provided for calculating operating parameters to be processed in the rice milling section based on the inspection results of the self-inspection machines. The machine includes a first grain discriminator that inspects the quality and properties of brown rice, which is the raw material before milling, and a test machine that tests the brown rice tested by the first grain discriminator and uses it as a sample raw material for rice polishing. Equipped with a rice milling machine, a cleaning device for removing bran from the surface of grains milled by the test rice milling machine, and a second grain discriminator for inspecting the quality and properties of the polished rice after milling. Based on the results of the self- inspection machine, the characteristics of the raw brown rice, and the information accumulated in advance, the values for the optimal conditions (operating parameters) used when processing rice grains in the rice milling department are calculated. be able to. In other words, we will search for conditions that will improve product unit prices without deteriorating product quality, and optimal conditions that will minimize factory costs (electricity costs, power and consumables costs) for milling and processing. This will enable large-scale rice mills to reduce processing costs and improve profits.

大型精米工場の概略構成を示すフロー図である。It is a flow diagram showing a schematic structure of a large-scale rice milling factory. 自主検査機の内部構造を示す概略説明図である。It is a schematic explanatory diagram showing the internal structure of a self-inspection machine. 原料とテスト精米後の製品の品質比較表である。This is a quality comparison table of raw materials and products after test rice milling.

以下、本発明の好適な実施の形態を図面を参照して説明する。 Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings.

図1は、大型精米工場1の概略構成を示すフロー図である。大型精米工場1では、搬入された玄米が精米され、その後、選別・計量を経て袋詰めされ、出荷されることとなる。図1の大型精米工場1では、荷受部2と、精米部3と、精選部4と、計量包装部5と、を備えている。荷受部2は、大型精米工場1に搬入される玄米を受ける荷受ホッパー6と、粗選機7と、荷受計量機8と、を備えている。 FIG. 1 is a flow diagram showing a schematic configuration of a large-scale rice milling factory 1. As shown in FIG. In the large-scale rice milling factory 1, the imported brown rice is polished, then sorted, weighed, packed in bags, and shipped. The large rice milling factory 1 shown in FIG. 1 includes a receiving section 2, a rice milling section 3, a sorting section 4, and a weighing and packaging section 5. The cargo receiving section 2 includes a receiving hopper 6 for receiving brown rice carried into the large-scale rice milling factory 1, a rough sorting machine 7, and a receiving weighing machine 8.

荷受計量機8の排出部には、計量した後に排出される米粒(玄米)の一部を、自主検定用サンプルとして採取するサンプル採取機構9が備えられる。このサンプル採取機構9からは、搬送路10を介して、荷受計量後のサンプル粒(玄米)の品質検査を行う自主検査機11が設けられる。 The discharge section of the receiving and weighing machine 8 is equipped with a sample collection mechanism 9 that collects a portion of the rice grains (brown rice) discharged after weighing as a sample for self-inspection. A self-inspection machine 11 is provided from the sample collection mechanism 9 via a conveyance path 10 for inspecting the quality of sample grains (brown rice) after receiving and weighing the consignment.

精米部3は、複数の精米機12,13,14と、石抜き機15と、を備えている。複数の精米機12,13,14は、竪型研削式精穀機12,竪型摩擦式精穀機13,竪型摩擦式精穀機14という具合に三台を連座して設けると、ムラ搗きを防ぎ、目的に応じた最適な精米を実現することができる。また、石抜き機15は、第三の精米機14の後工程に配置され、製品となる精米から石屑を選別する方式となっているが、第一の精米機12の前工程に配置させ、原料となる玄米から石屑を選別する方式を採用することもできる。 The rice milling section 3 includes a plurality of rice milling machines 12, 13, 14 and a destoning machine 15. When the plurality of rice milling machines 12, 13, and 14 are installed in a row such as the vertical grinding type grain milling machine 12, the vertical friction type grain milling machine 13, and the vertical friction type grain milling machine 14, unevenness can be reduced. This prevents pounding and allows you to achieve optimal rice polishing according to your purpose. Further, the de-stoning machine 15 is placed in the downstream process of the third rice polishing machine 14 to separate stone waste from the polished rice that becomes the product, but it is not placed in the up-stream process of the first rice polishing machine 12. Alternatively, a method can be adopted in which stone chips are separated from brown rice, which is the raw material.

精選部4は、色彩選別機16と篩分け機17とを備えている。計量包装部5は、計量・包装機18を備えている。 The selection section 4 includes a color sorter 16 and a sieve 17. The weighing and packaging section 5 includes a weighing and packaging machine 18.

そして、図1に示す大型精米工場1には、データ保管装置(ストレージ)101により大型精米工場1の各部の情報を収集するとともに、これら情報に基づいて各部の制御を行う制御部100が設けられている。データ保管装置(ストレージ)101は、色彩選別機16の選別データ(不良粒除去率(選別率)、色彩選別機のイジェクタ作動回数、最高電流値、平均電流値、最低電流値、総電力量など)を取得して収録する。また、篩分け機17の篩分けデータ(篩分け機回転数、破砕粒割合、整粒割合、総電力量など)を取得して収録する。計量・包装機18の計量・包装データ(計量回数、累計(出荷済)計量値、累計(出荷済)包袋数、総電力量など)を取得して収録する。これらのデータ保管装置(ストレージ)101に保管された各種データを参照することで、精米部3における複数の精米機12,13,14の稼働率(操業率)を算出したり、歩留まり率を算出したりすることができ、加工経費の算出が可能となる。さらに、制御部100は、自主検査機11の中央制御部21とも電気的に接続して連携をとっている。 The large rice milling factory 1 shown in FIG. 1 is provided with a control unit 100 that collects information on each part of the large rice milling factory 1 using a data storage device (storage) 101 and controls each part based on this information. ing. A data storage device (storage) 101 stores sorting data of the color sorter 16 (defective grain removal rate (sorting rate), number of ejector operations of the color sorter, maximum current value, average current value, minimum current value, total electric energy, etc.). ) and record it. In addition, the sieving data of the sieving machine 17 (sifting machine rotation speed, crushed grain ratio, sieving ratio, total electric energy, etc.) is acquired and recorded. The weighing/packaging data of the weighing/packaging machine 18 (number of measurements, cumulative (shipped) measured value, cumulative (shipped) number of wrapped bags, total amount of electricity, etc.) is acquired and recorded. By referring to the various data stored in these data storage devices (storage) 101, it is possible to calculate the operating rate (operating rate) of the plurality of rice milling machines 12, 13, 14 in the rice milling department 3, and to calculate the yield rate. This makes it possible to calculate processing costs. Furthermore, the control section 100 is also electrically connected to the central control section 21 of the self-inspection machine 11 for cooperation.

次に、図2を参照して前記自主検査機11の構成を詳述する。自主検機11は、受入れホッパー部19と、装置本体20とにより構成されている。装置本体20は、自主検機11への穀粒の受け入れ可能や受け入れ停止の指示や、各機器の連携や各機器の制御を行う中央制御部21と、精米前の原料である玄米の品質や性状を検査する第一の穀粒判別機22と、該第一の穀粒判別機22で検定した玄米を供試原料として試験的に精米を行うテスト精米機23と、該テスト精米機23により精米された穀粒表面の除糠を行うためのクリーニング装置24と、精米後の精米の品質や性状を検査する第二の穀粒判別機25と、精米後の精米の食味を検査する食味測定機26とを備えて構成されている。 Next, the configuration of the self-inspection machine 11 will be described in detail with reference to FIG. The self- inspection machine 11 includes a receiving hopper section 19 and a device main body 20. The device body 20 includes a central control unit 21 that instructs the self- inspection machine 11 to accept or stop accepting grains, coordinates and controls each device, and controls the quality of brown rice, which is the raw material before milling. a first grain discriminating machine 22 for inspecting rice grains and properties, a test rice milling machine 23 for experimentally milling rice using the brown rice verified by the first grain discriminating machine 22 as a test raw material, and the test rice milling machine 23. a cleaning device 24 for removing bran from the surface of the milled rice; a second grain discriminator 25 for inspecting the quality and properties of the polished rice; and a taster for inspecting the taste of the polished rice after the milling. The measuring device 26 is configured to include a measuring device 26.

前記テスト精米機23は、筐体27と、周面に多数の孔を形成した除糠金網筒28と、除糠金網筒28内に回転可能に設けて穀粒を攪拌する精米ロール29と、精米作用により除糠金網筒28から漏出した糠を回収する糠吸引ファン30とを備えて構成されている。 The test rice milling machine 23 includes a casing 27, a bran removal wire mesh tube 28 with a large number of holes formed on its circumferential surface, and a rice polishing roll 29 rotatably installed in the bran removal wire mesh tube 28 to stir the grains. It is configured to include a bran suction fan 30 that collects the bran leaked from the bran removal wire mesh tube 28 due to the rice polishing action.

前記クリーニング装置24は、外筒31と、該外筒31内に回転可能に横設され、周面に多数の孔を形成した多孔筒体32と、該多孔筒体32内に通風し精米後の穀粒の冷却と穀粒の表面の乾燥とを行う冷却ファン(図示せず)とを備えて構成される。このクリーニング装置24は、多孔筒体32を回転させながら冷却ファンから通風を行うことで、精米作用により穀温が上昇した精米後の穀粒を攪拌しながら冷却するとともに、除糠を行うことができる。また、穀粒表面に結露が生じたとしても攪拌しながら冷却するという作用によって、穀粒表面を乾燥して結露水を排除することができる。そして、クリーニング装置24からは穀粒表面が完全に乾いた状態で排出されるため、後工程の第二穀粒判別機25及び食味測定機26による測定に際し支障が生じることがない。 The cleaning device 24 includes an outer cylinder 31, a porous cylinder 32 which is rotatably installed horizontally within the outer cylinder 31 and has a large number of holes formed on its circumferential surface, and a porous cylinder 32 that ventilates the inside of the porous cylinder 32 to remove rice after polishing. and a cooling fan (not shown) that cools the grains and dries the surface of the grains. This cleaning device 24 rotates the porous cylindrical body 32 and generates ventilation from a cooling fan, thereby cooling the milled grains whose temperature has increased due to the rice milling action while stirring, and removing the bran. can. Moreover, even if dew condensation occurs on the surface of the grain, the action of cooling while stirring allows the surface of the grain to be dried and the condensed water to be removed. Since the grain surface is discharged from the cleaning device 24 in a completely dry state, there is no problem in measurement by the second grain discriminator 25 and taste measuring device 26 in the subsequent process.

前記クリーニング装置24と前記第二穀粒判別機25との間は、流路33により連絡され、前記クリーニング装置24と前記食味値測定機26との間は、流路34により連絡される。 The cleaning device 24 and the second grain discriminator 25 are connected by a flow path 33, and the cleaning device 24 and the taste value measuring device 26 are connected by a flow path 34.

以下、上記構成における作用を図面を参照しながら説明する。 Hereinafter, the operation of the above configuration will be explained with reference to the drawings.

荷受部2(図1参照)にて荷受された玄米は、荷受ホッパー6から粗選機7に供給されて粗選別が行われ、本ライン上にある整粒が荷受計量機8により計量される。荷受計量機8にて計量された整粒の一部は、サンプル採取機構9により採取され、搬送路10を経て自主検査機11に供給される。 The brown rice received at the receiving section 2 (see Figure 1) is supplied from the receiving hopper 6 to the rough sorting machine 7 where it is roughly sorted, and the sorted grains on the main line are weighed by the receiving weighing machine 8. . A part of the sorted grains weighed by the receiving weighing machine 8 is collected by a sample collecting mechanism 9 and supplied to the self-inspection machine 11 via a conveyance path 10.

そして、自主検査機11(図2参照)では、内部の中央制御部21において、荷受部2の荷受ホッパー6及び粗選機7により得られた荷受データ(穀粒の重量値、荷受水分値、品種、農家の所有者コード、生産地(圃場の場所)など)や、粗選データ(紐状物など異物の混入の割合、整粒重量など)が取得され、整粒サンプルと関連づけが行われる。 In the self-inspection machine 11 (see FIG. 2), the internal central control unit 21 controls the receiving data (grain weight value, receiving moisture value, Variety, farm owner code, production area (field location), etc.) and rough selection data (rate of foreign matter such as strings, grain weight, etc.) are obtained and correlated with grain samples. .

上記荷受データ及び粗選データに関連づけられた整粒サンプルは、自主検査機11の受入れホッパー部19に投入される。次いで、整粒サンプルは第一の穀粒判別機22に投入される。第一の穀粒判別機22では、整粒サンプルの米温、水分、白度などの物性値のほか、整粒(良品)の割合(%)、粉状質粒(不良粒)の割合(%)、砕粒(不良粒)の割合(%)、着色粒(不良粒)の割合(%)、胚芽残存(不良粒)の割合(%)などの品位や品質が測定されることとなる。 The sorted samples associated with the above-mentioned receiving data and rough selection data are put into the receiving hopper section 19 of the self-inspecting machine 11. Next, the sized grain sample is fed into the first grain discriminator 22. The first grain discriminator 22 measures physical property values such as rice temperature, moisture, and whiteness of the grain sample, as well as the percentage (%) of grain size (good grains) and the percentage (%) of powdery grains (defective grains). ), the percentage of crushed grains (defective grains) (%), the percentage of colored grains (defective grains) (%), and the percentage of germs remaining (defective grains) (%), etc., will be measured.

整粒サンプルの米温、水分、白度などの物性値及び整粒割合などの品位・品質が測定されると、次に、整粒サンプルはテスト精米機23に投入され、テスト精米が行われることとなる。テスト精米機23によるテスト精米により生じた糠は糠吸引ファン30により機外に排出される一方、テスト精米により生成した精白米は、次のクリーニング装置24に投入される。このとき、テスト精米機23から排出された直後の米温を測定することにより、テスト精米機23に投入前の米温とテスト精米機23から排出後の米温とを比較し、テスト精米による温度上昇値を算出することができる。 After the physical properties such as rice temperature, moisture content, whiteness, etc., and the grade and quality such as the grain size ratio of the grained sample are measured, the grained sample is then fed into the test rice milling machine 23 and test rice is polished. It happens. The bran produced by the test rice milling by the test rice milling machine 23 is discharged outside the machine by the bran suction fan 30, while the polished rice produced by the test rice milling is fed into the next cleaning device 24. At this time, by measuring the temperature of the rice immediately after being discharged from the test rice polishing machine 23, the rice temperature before being input into the test rice polishing machine 23 and the rice temperature after being discharged from the test rice polishing machine 23 are compared. A temperature rise value can be calculated.

テスト精米が終了すると、精白米サンプルはクリーニング装置24に投入され、前述のような穀粒の冷却と、穀粒表面の乾燥が行われる。そして、クリーニング装置24から排出された精白米サンプルは、流路33を介して第二の穀粒判別機25に供給されるとともに、流路34を介して食味測定機26に供給される。 When the test rice milling is completed, the polished rice sample is put into the cleaning device 24, where the grains are cooled and the grain surfaces are dried as described above. The polished rice sample discharged from the cleaning device 24 is supplied to the second grain discriminator 25 via the flow path 33, and is also supplied to the taste measuring device 26 via the flow path 34.

前記第二の穀粒判別機25では、精白米サンプルの米温、水分、白度などの物性値のほか、整粒(良品)の割合(%)、粉状質粒(不良粒)の割合(%)、砕粒(不良粒)の割合(%)、着色粒(不良粒)の割合(%)、胚芽残存(不良粒)の割合(%)の品位・品質が測定され、前記食味測定機26では、水分やタンパク量などの成分の物性値から推定した食味値が算出される。 The second grain discriminator 25 determines physical property values such as rice temperature, moisture content, and whiteness of the polished rice sample, as well as the proportion (%) of regular grains (good grains) and the ratio (%) of powdery grains (defective grains). %), the percentage of crushed grains (defective grains), the percentage of colored grains (defective grains), and the percentage of germ remaining (defective grains) (%). The taste value estimated from the physical property values of components such as moisture and protein content is calculated.

図3は、受入れホッパー部19で受け入れた原料玄米を、第一の穀粒判別機25により測定した結果と、テスト精米機23及びクリーニング装置24を経た精白米を、第二の穀粒判別機25及び食味測定機26により測定した結果を示す比較表である。 FIG. 3 shows the results of measuring the raw brown rice received in the receiving hopper section 19 with the first grain discriminator 25, and the results of measuring the raw rice that has passed through the test rice mill 23 and cleaning device 24 with the second grain discriminator. 25 is a comparison table showing the results measured by the taste measuring device 25 and the taste measuring device 26.

図3を参照すると、図3の1.に示す表は、高品質の原料玄米を供試サンプルに用いた事例を記載し、図3の2.に示す表は、中品質の原料玄米を供試サンプルに用いた事例を記載している。図3の1.に示す表のように、原料玄米Aは、第一の穀粒判別機22に供給され、その結果、一等級の品質の原料玄米であることが分かった。そのときの白度値は20であった。 Referring to FIG. 3, 1. The table shown in Figure 3 describes an example in which high-quality raw brown rice was used as a test sample. The table shown below describes an example in which medium-quality raw brown rice was used as a test sample. As shown in the table 1 in FIG. 3, the raw brown rice A was supplied to the first grain discriminator 22, and as a result, it was found that the raw brown rice was of first grade quality. The whiteness value at that time was 20.

この原料玄米Aを、A条件(運転パラメータ)のもとでテスト精米した。精米後の品質は、一等級の品質の精白米に仕上がった(歩留まりは90%程度)。そのときの白度値は38、食味値は98であった。 This raw material brown rice A was test polished under A conditions (operating parameters). After milling, the quality of the rice was first grade (yield was about 90%). At that time, the whiteness value was 38 and the taste value was 98.

同様の原料玄米Aを、B条件(運転パラメータ)のもとでテスト精米した。精米後の品質は、二等級の品質の精白米に仕上がった(歩留まりは89%程度)。これは、精米時に砕米が多くなったのが原因と思われる。そのときの白度値は42、食味値は83であった。 Similar raw material brown rice A was test milled under B conditions (operating parameters). After milling, the quality of the rice was second grade (yield was about 89%). This seems to be due to the increased amount of broken rice during rice milling. At that time, the whiteness value was 42 and the taste value was 83.

上述のような、原料玄米Aという同原料を使用しながら、品質に違いが生じたのは、一般的に精米機により玄米を搗精する際は、精米機のロール回転数、抵抗蓋の抵抗のかけ方、原料の供給流量、噴風、米温などが関係してくるためであると思われる。これらの要素は、搗精後の精白米の品質を決定する重要な要素である。上述の例であれば、B条件(運転パラメータ)でテスト精米するよりも、A条件(運転パラメータ)でテスト精米する方が、精白米の品質を最良化することができると思われる。したがって、大型精米工場1における本ライン上の搗精においても、精米部3には、A条件の要素を設定して搗精の制御をするのがよい。 As mentioned above, the difference in quality occurred while using the same raw material raw material brown rice A. Generally speaking, when milling brown rice with a rice mill, the number of rotations of the rolls of the rice mill and the resistance of the resistor lid are affected. This is thought to be due to factors such as the method of pouring, the flow rate of raw materials supplied, the blowing air, and the temperature of the rice. These factors are important factors that determine the quality of polished rice after milling. In the above example, it seems that test milling under condition A (operating parameters) can optimize the quality of polished rice rather than test milling under conditions B (operating parameters). Therefore, even in the milling on the main line in the large-scale rice milling factory 1, it is preferable to set the elements of the A condition in the rice milling section 3 to control the milling.

図3の2.に示す表の中品質の原料玄米についても、同様に原料玄米BをA条件か又はB条件のもとでテスト精米を行う。原料玄米Bは、第一の穀粒判別機22に供給され、その結果、二等級の品質の原料玄米であることが分かった。そのときの白度値は20であった。 2 in Figure 3. For medium-quality raw brown rice in the table shown in the table, test milling is similarly performed on raw brown rice B under conditions A or B. Raw material brown rice B was supplied to the first grain discriminator 22, and as a result, it was found that it was raw material brown rice of second grade quality. The whiteness value at that time was 20.

この原料玄米Bを、A条件(運転パラメータ)のもとでテスト精米した。精米後の品質は、二等級の品質の精白米に仕上がった(歩留まりは90%程度)。そのときの白度値は38、食味値は83であった。 This raw material brown rice B was test polished under conditions A (operating parameters). After milling, the quality of the rice was second grade (yield was about 90%). At that time, the whiteness value was 38 and the taste value was 83.

同様の原料玄米Bを、B条件(運転パラメータ)のもとでテスト精米した。精米後の品質は、三等級の品質の精白米に仕上がった(歩留まりは89%程度)。これは、精米時に砕米が多くなったのが原因と思われる。そのときの白度値は42、食味値は65であった。 Similar raw material brown rice B was test milled under B conditions (operating parameters). After milling, the quality of the rice was third grade (yield was about 89%). This seems to be due to the increased amount of broken rice during rice milling. At that time, the whiteness value was 42 and the taste value was 65.

上記のように、原料玄米Aであっても、原料玄米Bであっても(精米前の玄米の産地や銘柄を異ならせた場合であっても)、B条件(運転パラメータ)のもとでテスト精米するときは、品質が大きく低下してしまうことが分かった。これは、精米機側の要素が大きく作用し(例えば、ロール回転数、抵抗蓋への抵抗のかけ方、流量、噴風、米温)、B条件の要素は品質が悪い方向へシフトしていることが分かった。つまり、ロール回転数、抵抗蓋への抵抗圧力および流量の各設定が基準よりも極端に大きい場合には、砕米が多く発生することとなり、品質悪化の原因となってしまうこととなる。 As mentioned above, whether it is raw brown rice A or raw brown rice B (even if the origin or brand of brown rice before milling is different), under B conditions (operating parameters) It was found that when test rice was milled, the quality deteriorated significantly. This is due to factors on the rice milling machine side (for example, roll rotation speed, how to apply resistance to the resistance lid, flow rate, jet air, and rice temperature), and the factors in condition B shift toward poor quality. I found out that there is. In other words, if the settings of the roll rotation speed, resistance pressure to the resistance lid, and flow rate are extremely higher than the standards, a large amount of broken rice will occur, which will cause quality deterioration.

すなわち、大型精米工場11では、搬入された玄米の一部を自主検定用サンプルとして採取し、自主検査機11で検査を行った後、精米条件を決定し、本ライン上で本格的に精米処理することとすれば、加工経費を安く抑えて収益を向上することができるのである。 In other words, in the large-scale rice milling factory 11, a portion of the brown rice brought in is collected as a sample for self-inspection, and after being inspected by the self-inspection machine 11, the rice milling conditions are determined, and the rice is milled in earnest on the main line. By doing so, it is possible to keep processing costs low and improve profits.

また、大型精米工場1のデータ保管装置101及び制御部100は、精米部3の、一番精米機12の搗精データ(電流値、歩留り、白度、総駆動時間、総電力量など)、二番精米機13の搗精データ、三番精米機14の搗精データをそれぞれ取得する。さらに、石抜き機15の、石抜きデータ(石粒の重量、整粒の重量、石の混入率、総電力量など)を取得する。 In addition, the data storage device 101 and the control unit 100 of the large-scale rice milling factory 1 store the milling data (current value, yield, whiteness, total driving time, total electric energy, etc.) of the first rice milling machine 12 of the rice milling department 3; The milling data of the No. 1 rice milling machine 13 and the milling data of the No. 3 rice milling machine 14 are obtained, respectively. Furthermore, the stone removing data (weight of stone grains, weight of sized grains, stone mixing rate, total power consumption, etc.) of the stone removing machine 15 is acquired.

同様に、データ保管装置101及び制御部100は、精選部4の、色彩選別機16の選別データ(不良粒除去率(選別率)、色彩選別機のイジェクタ作動回数、最高電流値、平均電流値、最低電流値、総電力量など)を取得し、篩分け機17の篩分けデータ(篩分け機回転数、破砕粒割合、整粒割合、総電力量など)を取得する。さらに、データ保管装置101及び制御部100は、計量包装部5の、計量・包装データ(計量回数、累計(出荷済)計量値、累計(出荷済)包袋数、総電力量など)を取得する。 Similarly, the data storage device 101 and the control unit 100 store the sorting data of the color sorter 16 (defective grain removal rate (sorting rate), number of ejector operations of the color sorter, maximum current value, average current value) of the sorting unit 4. , minimum current value, total electric energy, etc.), and sieving data of the sieving machine 17 (sieving machine rotation speed, crushed grain ratio, sized grain ratio, total electric power, etc.). Furthermore, the data storage device 101 and the control unit 100 acquire weighing and packaging data (number of measurements, cumulative (shipped) weight value, cumulative (shipped) number of packaging bags, total amount of electricity, etc.) from the weighing and packaging unit 5. do.

上記精米部3、精選部4及び計量・包装部5から取得した情報は、データ保管装置101及び制御部100において、前述の荷受データ及び自主検査データと各々対応付けられ、原料玄米の識別情報とともに、蓄積される。 The information acquired from the rice milling section 3, sorting section 4, and weighing/packaging section 5 is associated with the aforementioned consignment data and self-inspection data, respectively, in the data storage device 101 and the control section 100, and together with the identification information of the raw brown rice. , is accumulated.

そして、制御部100は、自主検機11の結果から、原料玄米の特性と、データ保管装置101に蓄積された情報と、に基づいて、精米部3で米粒を処理する際に使用する条件(運転パラメータ)が最適となる値を算出する。すなわち、製品品質が悪化せず、製品単価が向上する条件や、搗精加工にかかる工場経費(電気料金、動力・消耗品費)最安となる最適条件を探索することになる。これにより、大型精米工場において加工経費を安く抑えて収益を向上することができるようになる。 Then, the control unit 100 determines the conditions to be used when processing the rice grains in the rice milling unit 3 based on the characteristics of the raw brown rice and the information accumulated in the data storage device 101 from the results of the self- inspection device 11. (Operating parameters) calculate the optimal value. In other words, we will search for conditions that will improve the product unit price without deteriorating product quality, and optimal conditions that will minimize factory costs (electricity costs, power and consumables costs) for milling and processing. This will enable large-scale rice mills to reduce processing costs and improve profits.

上記制御部100の最適条件の探索は、図3のデータに示すようなデータを基礎とした論理的な推論や、過去の経験から学習する人工知能(Artificial Intelligence、「AI」)が利用されてもよい。また、例えば、実験計画法、ニューラルネットワーク、ディープラーニング、ファジィ推論、多変量解析(マハラノビス距離、重回帰分析ほか)、スパースモデリング、サポートベクターマシンなど、種々の既知の手法及びアルゴリズムが使用されてもよい。 The search for the optimal conditions for the control unit 100 uses logical reasoning based on data such as the data shown in FIG. 3 and artificial intelligence (AI) that learns from past experience. Good too. Furthermore, various known methods and algorithms may be used, such as, for example, design of experiments, neural networks, deep learning, fuzzy inference, multivariate analysis (Mahalanobis distance, multiple regression analysis, etc.), sparse modeling, support vector machines, etc. good.

以上のように、本実施形態によれば、搬入される原料玄米を荷受けする荷受部2と、該荷受部2で荷受された原料玄米を精米する精米部3と、を備えた大型精米工場1において、前記荷受部2と前記精米部3との間には、搬入された原料玄米を自主検査する自主検査機11を設け、前記大型精米工場1には、前記自主検査機の検査結果に基づいて、前記精米部で処理する運転パラメータを算出する制御部を備えたので、自主検機11の結果から、原料玄米の特性と、あらかじめ蓄積された情報と、に基づいて、精米部3で米粒を処理する際に使用する条件(運転パラメータ)が最適となる値を算出することができる。すなわち、製品品質が悪化せず、製品単価が向上する条件や、搗精加工にかかる工場経費(電気料金、動力・消耗品費)最安となる最適条件を探索する。これにより、大型精米工場において加工経費を安く抑えて収益を向上することができるようになる。 As described above, according to the present embodiment, a large-scale rice milling factory 1 includes a receiving section 2 that receives the raw material brown rice that is carried in, and a rice milling section 3 that mills the raw material brown rice that is received at the receiving section 2. , a self-inspection machine 11 is installed between the cargo receiving section 2 and the rice milling section 3 for self-inspecting raw raw rice brought in, and the large-scale rice milling factory 1 is equipped with As a result, the rice milling section 3 calculates the operating parameters to be processed in the rice milling section 3, based on the results of the self- inspection device 11, the characteristics of the raw brown rice, and the information accumulated in advance. It is possible to calculate values that optimize the conditions (operating parameters) used when processing rice grains. In other words, we will search for conditions that will improve product unit prices without deteriorating product quality, and optimal conditions that will minimize factory costs (electricity costs, power and consumables costs) for milling and processing. This will enable large-scale rice mills to reduce processing costs and improve profits.

本発明は、大型精米工場に適用することができる。 The present invention can be applied to large-scale rice milling plants.

1 大型精米工場
2 荷受部
3 精米部
4 精選部
5 計量包装部
6 荷受ホッパー
7 粗選機
8 荷受計量機
9 サンプル採取機構
10 搬送路
11 自主検査機
12 精米機
13 精米機
14 精米機
15 石抜き機
16 色彩選別機
17 篩分け機
18 計量・包装機
19 受入れホッパー部
20 装置本体
21 中央制御部
22 第一穀粒判別機
23 テスト精米機
24 クリーニング装置
25 第二穀粒判別機
26 食味測定機
27 筐体
28 除糠金網筒
29 精米ロール
30 糠吸引ファン
31 外筒
32 多孔筒体
33 流路
34 流路
100 制御部
101 データ保管装置
1 Large rice milling factory 2 Receiving section 3 Rice milling section 4 Sorting section 5 Weighing and packaging section 6 Receiving hopper 7 Rough sorting machine 8 Receiving weighing machine 9 Sample collection mechanism 10 Conveyance path 11 Self-inspection machine 12 Rice milling machine 13 Rice milling machine 14 Rice milling machine 15 Stone Cutting machine 16 Color sorting machine 17 Sieving machine 18 Weighing/packaging machine 19 Receiving hopper section 20 Main body 21 Central control section 22 First grain discriminator 23 Test rice polishing machine 24 Cleaning device 25 Second grain discriminator 26 Taste measurement Machine 27 Housing 28 Wire mesh cylinder for removing bran 29 Rice polishing roll 30 Rice bran suction fan 31 Outer cylinder 32 Porous cylinder 33 Flow path 34 Flow path 100 Control unit 101 Data storage device

Claims (4)

搬入される原料玄米を荷受けする荷受部と、該荷受部で荷受された原料玄米を精米する精米部と、を備えた大型精米工場において、
前記荷受部と前記精米部との間には、搬入された原料玄米を自主検査する自主検査機を設け、前記自主検査機の検査結果に基づいて、前記精米部で処理する運転パラメータを算出する制御部を備え
前記自主検査機は、精米前の原料である玄米の品質や性状を検査する第一の穀粒判別機と、該第一の穀粒判別機で検定した玄米を供試原料として試験的に精米を行うテスト精米機と、該テスト精米機により精米された穀粒表面の除糠を行うためのクリーニング装置と、精米後の精米の品質や性状を検査する第二の穀粒判別機と、を備えていることを特徴とする大型精米工場。
In a large-scale rice milling factory that is equipped with a receiving section that receives raw brown rice that is brought in, and a rice milling section that mills the raw brown rice that is received at the receiving section,
A self-inspection machine for self-inspecting raw raw rice brought in is provided between the cargo receiving section and the rice milling section, and operating parameters to be processed in the rice milling section are calculated based on the inspection results of the self-inspection machine. Equipped with a control unit ,
The self-inspection machine includes a first grain discriminator that inspects the quality and properties of brown rice, which is the raw material before milling, and a grain discriminator that tests the brown rice tested by the first grain discriminator as a test raw material. A test rice milling machine that performs this, a cleaning device that removes bran from the surface of the grains milled by the test rice miller, and a second grain discriminator that inspects the quality and properties of the polished rice after milling. A large rice mill that is characterized by the following :
前記自主検機には、さらに、精米後の精米の食味を検査する食味測定機を備えてる請求項記載の大型精米工場。 2. The large-scale rice milling factory according to claim 1 , wherein the self- inspection machine further includes a taste measuring machine for testing the taste of the polished rice after milling. 前記クリーニング装置は、外筒と、該外筒内に回転可能に横設され、周面に多数の孔を形成した多孔筒体と、該多孔筒体内に通風し精米後の穀粒の冷却と穀粒の表面の乾燥とを行う冷却ファンとを備えて構成される請求項記載の大型精米工場。 The cleaning device includes an outer cylinder, a porous cylinder that is rotatably installed horizontally in the outer cylinder and has a large number of holes formed on its circumferential surface, and a porous cylinder that cools grains after milling by ventilation in the porous cylinder. The large-scale rice milling factory according to claim 1 , further comprising a cooling fan that dries the surface of the grains. 前記制御部は、前記大型精米工場の各部の情報を収集するとともに、これら情報に基づいて各部の制御を行い、前記自主検機の結果から、原料玄米の特性と、あらかじめ蓄積された情報と、に基づいて、前記精米部で米粒を処理する際に使用する条件が最適となる値を算出してなる請求項1記載の大型精米工場。 The control unit collects information on each part of the large-scale rice mill, controls each part based on this information, and determines the characteristics of raw brown rice and previously accumulated information from the results of the self- inspection machine. 2. The large-scale rice milling factory according to claim 1, wherein a value that optimizes the conditions used when processing rice grains in the rice milling section is calculated based on .
JP2020102795A 2020-06-15 2020-06-15 Large rice milling factory Active JP7454131B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020102795A JP7454131B2 (en) 2020-06-15 2020-06-15 Large rice milling factory

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020102795A JP7454131B2 (en) 2020-06-15 2020-06-15 Large rice milling factory

Publications (2)

Publication Number Publication Date
JP2021194594A JP2021194594A (en) 2021-12-27
JP7454131B2 true JP7454131B2 (en) 2024-03-22

Family

ID=79196693

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020102795A Active JP7454131B2 (en) 2020-06-15 2020-06-15 Large rice milling factory

Country Status (1)

Country Link
JP (1) JP7454131B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000074844A (en) 1998-08-31 2000-03-14 Mitsuhashi:Kk Character evaluation device and character evaluation method for rice

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000074844A (en) 1998-08-31 2000-03-14 Mitsuhashi:Kk Character evaluation device and character evaluation method for rice

Also Published As

Publication number Publication date
JP2021194594A (en) 2021-12-27

Similar Documents

Publication Publication Date Title
Zareiforoush et al. Design, development and performance evaluation of an automatic control system for rice whitening machine based on computer vision and fuzzy logic
JPWO2018016509A1 (en) Operation support system of grain processing facility
Delwiche et al. High-speed optical sorting of soft wheat for reduction of deoxynivalenol
Inamdar et al. Application of color sorter in wheat milling
WO2018016512A1 (en) Operation assistance system for grain processing facility, and automatic operation control method for satellite facility
JPH07841A (en) Improved wheat milling method and milled wheat article
CN104237048A (en) Method for rapidly detecting head rice rate of purchased and warehoused unhusked rice
Lapis et al. Measuring head rice recovery in rice
JP7454131B2 (en) Large rice milling factory
Gbabo et al. Performance Evaluation of a Ricemill Developed in NCRI
Saini et al. A study of moisture dependent changes in engineering properties and debranning characteristics of purple wheat
Bayram et al. Determination of applicability and effects of colour sorting system in bulgur production line
JP7392375B2 (en) Cultivation management system using grain inspection equipment
JPH03201941A (en) Grain-classifying method in grain drying and processing facility and apparatus therefor
JP2022146983A (en) Grain inspection device and growth management system using the same
CN102485051B (en) Pumpkin seed kernel production line and continuous production method of pumpkin seed kernels
JP2023179916A (en) grain sorting system
JP3657085B2 (en) Grain quality discrimination device
JP3790515B2 (en) Grain inspection equipment
US11684930B1 (en) Method of optimizing milling process using chemical imaging
Adetola et al. Influence of Process Variables on a Rice De-stoning Machine
JP2004279229A (en) Independence test device in unhulled rice drying preparation facility
JPH04264231A (en) Taste inspection equipment for cereal drying/preparation facility
JP7428966B2 (en) color sorter
JP5634557B2 (en) Stripping machine and self-testing device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230331

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20231013

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231116

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240209

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240222

R150 Certificate of patent or registration of utility model

Ref document number: 7454131

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150