JP7454121B2 - Method for manufacturing fiber reinforced thermoplastic resin sheet - Google Patents

Method for manufacturing fiber reinforced thermoplastic resin sheet Download PDF

Info

Publication number
JP7454121B2
JP7454121B2 JP2020063785A JP2020063785A JP7454121B2 JP 7454121 B2 JP7454121 B2 JP 7454121B2 JP 2020063785 A JP2020063785 A JP 2020063785A JP 2020063785 A JP2020063785 A JP 2020063785A JP 7454121 B2 JP7454121 B2 JP 7454121B2
Authority
JP
Japan
Prior art keywords
fiber
thermoplastic resin
reinforced thermoplastic
resin sheet
sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020063785A
Other languages
Japanese (ja)
Other versions
JP2021160212A (en
Inventor
健 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP2020063785A priority Critical patent/JP7454121B2/en
Publication of JP2021160212A publication Critical patent/JP2021160212A/en
Application granted granted Critical
Publication of JP7454121B2 publication Critical patent/JP7454121B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/07Flat, e.g. panels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B15/00Pretreatment of the material to be shaped, not covered by groups B29B7/00 - B29B13/00
    • B29B15/08Pretreatment of the material to be shaped, not covered by groups B29B7/00 - B29B13/00 of reinforcements or fillers
    • B29B15/10Coating or impregnating independently of the moulding or shaping step
    • B29B15/12Coating or impregnating independently of the moulding or shaping step of reinforcements of indefinite length
    • B29B15/122Coating or impregnating independently of the moulding or shaping step of reinforcements of indefinite length with a matrix in liquid form, e.g. as melt, solution or latex
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/15Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor incorporating preformed parts or layers, e.g. extrusion moulding around inserts
    • B29C48/154Coating solid articles, i.e. non-hollow articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/003Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts characterised by the matrix material, e.g. material composition or physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/06Fibrous reinforcements only
    • B29C70/10Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres
    • B29C70/16Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres using fibres of substantial or continuous length
    • B29C70/20Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres using fibres of substantial or continuous length oriented in a single direction, e.g. roofing or other parallel fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/40Shaping or impregnating by compression not applied
    • B29C70/50Shaping or impregnating by compression not applied for producing articles of indefinite length, e.g. prepregs, sheet moulding compounds [SMC] or cross moulding compounds [XMC]
    • B29C70/504Shaping or impregnating by compression not applied for producing articles of indefinite length, e.g. prepregs, sheet moulding compounds [SMC] or cross moulding compounds [XMC] using rollers or pressure bands
    • B29C70/506Shaping or impregnating by compression not applied for producing articles of indefinite length, e.g. prepregs, sheet moulding compounds [SMC] or cross moulding compounds [XMC] using rollers or pressure bands and impregnating by melting a solid material, e.g. sheet, powder, fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/30Mixing; Kneading continuous, with mechanical mixing or kneading devices
    • B29B7/58Component parts, details or accessories; Auxiliary operations
    • B29B7/72Measuring, controlling or regulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/80Component parts, details or accessories; Auxiliary operations
    • B29B7/82Heating or cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/80Component parts, details or accessories; Auxiliary operations
    • B29B7/88Adding charges, i.e. additives
    • B29B7/90Fillers or reinforcements, e.g. fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2101/00Use of unspecified macromolecular compounds as moulding material
    • B29K2101/12Thermoplastic materials

Description

本発明は、長繊維で強化された繊維強化熱可塑性樹脂シートを製造する方法に関する。 The present invention relates to a method for producing a fiber-reinforced thermoplastic resin sheet reinforced with long fibers.

繊維強化熱可塑性複合材料は、その優れた靭性、成形性、貯蔵安定性、リサイクル性などから、付加価値のある材料として着目されている。
繊維強化熱可塑性複合材料を用いた成形品は、強化繊維中に熱可塑性樹脂が含浸した繊維強化熱可塑性樹脂シートを用い、このシートを積層して所定の形状に成形することにより得られる。従って、強化繊維中に熱可塑性樹脂が均一に含浸し、かつ厚み精度の優れた繊維強化熱可塑性樹脂シートを製造することは、品質に優れた繊維強化熱可塑性複合材料成形品を得る上で重要な技術となる。
Fiber-reinforced thermoplastic composite materials are attracting attention as value-added materials due to their excellent toughness, moldability, storage stability, and recyclability.
A molded article using a fiber-reinforced thermoplastic composite material is obtained by using a fiber-reinforced thermoplastic resin sheet in which reinforcing fibers are impregnated with a thermoplastic resin, and by laminating these sheets and molding them into a predetermined shape. Therefore, it is important to manufacture fiber-reinforced thermoplastic resin sheets with excellent thickness accuracy and uniform impregnation of thermoplastic resin into reinforcing fibers in order to obtain fiber-reinforced thermoplastic composite molded products with excellent quality. It becomes a technology.

従来、繊維強化熱可塑性樹脂シートを連続して製造する方法として、ダイを用いる方法、加熱ロールを用いる方法、熱板プレスを用いる方法、ダブルベルトプレスを用いる方法などが知られている。 Conventionally, methods for continuously manufacturing fiber-reinforced thermoplastic resin sheets include a method using a die, a method using a heated roll, a method using a hot plate press, a method using a double belt press, and the like.

(1)ダイを用いる方法
特許文献1には圧縮部を設けたダイを用い強化繊維シート中に熱硬化性樹脂や熱可塑性樹脂を含浸させる方法が示されている。しかしながらこの方法では比較的粘度の高い熱可塑性樹脂を強化繊維シートの内部まで含浸せしめることは困難である。また含浸を促進するためには強化繊維の含有率を低くする必要があり、強化繊維が高含有率で高い機械的特性をもつシートを得ることが困難である。
(1) Method using a die Patent Document 1 discloses a method of impregnating a thermosetting resin or a thermoplastic resin into a reinforcing fiber sheet using a die provided with a compression section. However, with this method, it is difficult to impregnate the inside of the reinforcing fiber sheet with a relatively high viscosity thermoplastic resin. Furthermore, in order to promote impregnation, it is necessary to lower the reinforcing fiber content, and it is difficult to obtain a sheet with high reinforcing fiber content and high mechanical properties.

(2)加熱ロールを用いる方法
特許文献2の実施例には、1mm径のダイスを用いて強化繊維束にポリアミド6が付着した付着物を作り、これらを5本並べ、間隔0.3mmで250℃のロール間を通過させ、さらに間隔0.25mmで200℃のロール間を通過させて10mm幅のシート状物を得る方法が開示されている。この方法ではダイスからの引き出し後に直ちに熱可塑性樹脂の溶融温度に加熱されたロール間を通過させている。そのため、並べた複数の繊維束間に樹脂だまりができやすいため、繊維束をシート内部で均一に分散させることが難しく、機械的特性の低下が避けられない。
(2) Method using heating rolls In the example of Patent Document 2, a 1 mm diameter die is used to make a deposit of polyamide 6 attached to a reinforcing fiber bundle, and 5 of these are lined up at a 250 mm interval with a spacing of 0.3 mm. A method is disclosed in which a sheet material having a width of 10 mm is obtained by passing the material between rolls at 200° C. with an interval of 0.25 mm. In this method, immediately after being drawn out from the die, the material is passed between rolls heated to the melting temperature of the thermoplastic resin. Therefore, resin pools are likely to form between the plurality of fiber bundles arranged side by side, making it difficult to uniformly disperse the fiber bundles inside the sheet, and deterioration of mechanical properties is unavoidable.

(3)熱板プレスを用いる方法
特許文献3には熱可塑性樹脂フィルムと強化繊維シートを積層し、熱板プレス間を間欠走行することにより繊維強化熱可塑性樹脂シートを製造する方法が開示されている。しかしながらこの方法では、熱可塑性樹脂フィルムを含浸するには多大な時間が必要となるために製造速度が上げられないという問題があった。
(3) Method using hot plate press Patent Document 3 discloses a method of manufacturing a fiber reinforced thermoplastic resin sheet by laminating a thermoplastic resin film and a reinforcing fiber sheet and running the sheets intermittently between hot plate presses. There is. However, this method has a problem in that it takes a long time to impregnate the thermoplastic resin film, making it impossible to increase the production speed.

(4)ベルトプレスを用いる方法
特許文献4には、強化繊維シートに溶融粘度が20000ポアズ(2000Pa・s)以下の熱可塑性樹脂が付着した付着物を作り、これらを多数本並べ、加熱領域と冷却領域を有する板状物により加熱加圧して樹脂を含浸し、冷却した後に剥離する方法が記されている。樹脂の付着直後に溶融状態にあるままで引き続く工程、すなわち加熱加圧する含浸工程に供することが効率的であるとされている。
(4) Method using a belt press Patent Document 4 discloses that a thermoplastic resin having a melt viscosity of 20,000 poise (2000 Pa·s) or less is attached to a reinforcing fiber sheet, and a large number of these are arranged in a heating area. A method is described in which a plate-like material having a cooling area is heated and pressurized to impregnate a resin, and then peeled off after cooling. It is said that it is efficient to subject the resin to the subsequent process, that is, the impregnation process of heating and pressurizing it, while it remains in a molten state immediately after the resin is attached.

特開2019-022886号公報(特許第6451891号)JP 2019-022886 (Patent No. 6451891) 特開昭59-62114号公報Japanese Patent Application Publication No. 59-62114 特開2003-181832号公報(特許第3876276号)Japanese Patent Application Publication No. 2003-181832 (Patent No. 3876276) 特開昭60-36136号公報Japanese Patent Application Publication No. 60-36136

しかしながら、従来の技術では製造工程の効率化は図れるものの、機械的特性の点では十分優れているとは言い難い。特に、機械的特性を高めようとして強化繊維の含有率を高くすると、樹脂量を減らす必要があり、空隙率が高くなって機械的特性が所望するほどには高められないという問題がある。そこで、優れた機械的特性を持つ繊維強化熱可塑性樹脂シートを効率的に生産する方法が強く求められている。 However, although conventional techniques can improve the efficiency of the manufacturing process, they cannot be said to be sufficiently superior in terms of mechanical properties. In particular, if the content of reinforcing fibers is increased in an attempt to improve mechanical properties, the amount of resin must be reduced, resulting in an increase in porosity and a problem in that the mechanical properties cannot be improved as desired. Therefore, there is a strong need for a method for efficiently producing fiber-reinforced thermoplastic resin sheets with excellent mechanical properties.

本発明者はクロスヘッドダイで得られた、比較的空隙率の高い繊維強化熱可塑性樹脂シート前駆体を製造する工程1と、該前駆体中の熱可塑性樹脂を加熱溶融させ、この溶融状態を維持したまま加圧して、強化繊維と熱可塑性樹脂を密着させ、空隙率を低下せしめる工程2とを組み合わせることで高性能な繊維強化熱可塑性樹脂シートを製造するに至った。また、クロスヘッドダイ含浸の課題である強化繊維の含有率を上げられないという問題に対して、第2工程で繊維強化熱可塑性樹脂シート前駆体に別の強化繊維シートを積層することで、強化繊維の高含有率化を達成することができる。 The present inventor has proposed a step 1 of manufacturing a fiber-reinforced thermoplastic resin sheet precursor with a relatively high porosity obtained by a crosshead die, heating and melting the thermoplastic resin in the precursor, and maintaining the molten state. A high-performance fiber-reinforced thermoplastic resin sheet was manufactured by combining the step 2 of applying pressure while maintaining the strength to bring the reinforcing fibers and thermoplastic resin into close contact and to reduce the porosity. In addition, in order to solve the problem of not being able to increase the reinforcing fiber content, which is an issue with crosshead die impregnation, in the second step, we layered another reinforcing fiber sheet on the fiber-reinforced thermoplastic resin sheet precursor. A high fiber content can be achieved.

本発明の要旨は以下の[1]~[11]に存する。
[1] 工程1と工程2からなるとを含む繊維強化熱可塑性樹脂シートの製造方法:
(工程1)強化繊維シートをクロスヘッドダイに通し、該強化繊維シートをダイ内にて溶融状態にある熱可塑性樹脂と複合化し、ダイ通過後に前記熱可塑性樹脂の固化温度以下の加圧面に接触させて加圧することにより繊維強化熱可塑性樹脂シート前駆体を得る工程。
(工程2)該繊維強化熱可塑性樹脂シート前駆体中の熱可塑性樹脂を溶融状態にせしめた状態で、該前駆体を加圧面に接触させ、次いで前記熱可塑性樹脂の固化温度以下に冷却して繊維強化熱可塑性樹脂シートを得る工程。
The gist of the present invention resides in the following [1] to [11].
[1] A method for producing a fiber-reinforced thermoplastic resin sheet comprising Step 1 and Step 2:
(Step 1) A reinforcing fiber sheet is passed through a crosshead die, the reinforcing fiber sheet is composited with a thermoplastic resin in a molten state within the die, and after passing through the die, it comes into contact with a pressurized surface at a temperature below the solidification temperature of the thermoplastic resin. A step of obtaining a fiber-reinforced thermoplastic resin sheet precursor by applying pressure.
(Step 2) With the thermoplastic resin in the fiber-reinforced thermoplastic resin sheet precursor in a molten state, the precursor is brought into contact with a pressurizing surface, and then cooled to a temperature below the solidification temperature of the thermoplastic resin. A process of obtaining a fiber-reinforced thermoplastic resin sheet.

[2] 前記工程2が、該繊維強化熱可塑性樹脂シート前駆体の少なくとも1方の面に繊維シートを積層した積層体を得、次いで該積層体を加熱することにより前記熱可塑性樹脂を溶融状態にせしめた状態で、該積層体を加圧面に接触させ、次いで前記熱可塑性樹脂の固化温度以下に冷却して繊維強化熱可塑性樹脂シートを得る工程である、1に記載の繊維強化熱可塑性樹脂シートの製造方法。 [2] Step 2 obtains a laminate in which a fiber sheet is laminated on at least one surface of the fiber-reinforced thermoplastic resin sheet precursor, and then heats the laminate to bring the thermoplastic resin into a molten state. 2. The fiber-reinforced thermoplastic resin according to 1, which is a step of bringing the laminate into contact with a pressurized surface in a state where the fiber-reinforced thermoplastic resin is pressed, and then cooling to a temperature below the solidification temperature of the thermoplastic resin to obtain a fiber-reinforced thermoplastic resin sheet. Method of manufacturing sheets.

[3]前記繊維シートが前記繊維強化熱可塑性樹脂シート前駆体もしくは強化繊維シートである、2に記載の繊維強化熱可塑性樹脂シートの製造方法。 [3] The method for producing a fiber-reinforced thermoplastic resin sheet according to 2, wherein the fiber sheet is the fiber-reinforced thermoplastic resin sheet precursor or a reinforced fiber sheet.

[4]前記繊維強化熱可塑性樹脂シート前駆体の空隙率が、10%以上90%以下である1から3のいずれか一項に記載の繊維強化熱可塑性樹脂シートの製造方法。
[5]前記繊維強化熱可塑性樹脂シートの空隙率が、0%以上、5%以下である1から4のいずれか一項に記載の繊維強化熱可塑性樹脂シートの製造方法。
[6] 前記強化繊維シートが、開繊された強化繊維シートである1から5のいずれか一項に記載の繊維強化熱可塑性樹脂シートの製造方法。
[7] 前記強化繊維シートは、強化繊維が一方向に配向している一方向シートである1から6のいずれか一項に記載の繊維強化熱可塑性樹脂シートの製造方法。
[8] 前記強化繊維シートが織物である1から6のいずれか一項に記載の繊維強化熱可塑性樹脂シートの製造方法。
[9]前記工程1又は工程2において、加圧面に接触させる際に、前記繊維強化熱可塑性樹脂シート前駆体、もしくは前記積層体を離型紙もしくは離型フィルムで挟む1から8のいずれか一項に記載の繊維強化熱可塑性樹脂シートの製造方法。
[10]前記工程1で得られた繊維強化熱可塑性樹脂シート前駆体をロールに巻き取り、前記工程2において、該ロールから繊維強化熱可塑性樹脂シート前駆体を引き出して使用する1から9のいずれか一項に記載の繊維強化熱可塑性樹脂シートの製造方法。
[11]前記繊維強化熱可塑性樹脂シート前駆体の強化繊維の体積含有率(Vf)が、40~60%である1から10のいずれか一項に記載の繊維強化熱可塑性樹脂シートの製造方法。
[4] The method for producing a fiber-reinforced thermoplastic resin sheet according to any one of 1 to 3, wherein the fiber-reinforced thermoplastic resin sheet precursor has a porosity of 10% or more and 90% or less.
[5] The method for producing a fiber-reinforced thermoplastic resin sheet according to any one of 1 to 4, wherein the fiber-reinforced thermoplastic resin sheet has a porosity of 0% or more and 5% or less.
[6] The method for producing a fiber-reinforced thermoplastic resin sheet according to any one of 1 to 5, wherein the reinforcing fiber sheet is a spread reinforcing fiber sheet.
[7] The method for producing a fiber-reinforced thermoplastic resin sheet according to any one of 1 to 6, wherein the reinforcing fiber sheet is a unidirectional sheet in which reinforcing fibers are oriented in one direction.
[8] The method for producing a fiber-reinforced thermoplastic resin sheet according to any one of 1 to 6, wherein the reinforcing fiber sheet is a woven fabric.
[9] In step 1 or step 2, any one of 1 to 8, in which the fiber-reinforced thermoplastic resin sheet precursor or the laminate is sandwiched between release paper or a release film when brought into contact with the pressurizing surface. A method for producing a fiber-reinforced thermoplastic resin sheet as described in .
[10] Any of 1 to 9, wherein the fiber-reinforced thermoplastic resin sheet precursor obtained in step 1 is wound onto a roll, and in step 2, the fiber-reinforced thermoplastic resin sheet precursor is drawn out from the roll and used. The method for producing a fiber-reinforced thermoplastic resin sheet according to item (1).
[11] The method for producing a fiber-reinforced thermoplastic resin sheet according to any one of 1 to 10, wherein the volume content (Vf) of reinforcing fibers in the fiber-reinforced thermoplastic resin sheet precursor is 40 to 60%. .

本発明では、ダイを用いる方法と加圧含浸方法とを組み合わせる際に、一旦熱可塑性樹脂の溶融温度以下に低下させながら加圧することで前駆体の表面を平滑化し、平滑化した前駆体を使用することで繊維束間の樹脂だまりを抑制して、機械的特性の低下を抑制することができる。また、前駆体を複数積層あるいは別の強化繊維シートを積層する場合にも、前駆体表面の平滑化により樹脂のバラツキが少ない繊維強化熱可塑性樹脂シートを製造できる。さらに、前駆体を別の強化繊維シートと積層することで強化繊維の高含有化を達成できる。 In the present invention, when combining the method using a die and the pressure impregnation method, the surface of the precursor is smoothed by applying pressure while lowering the temperature to below the melting temperature of the thermoplastic resin, and the smoothed precursor is used. By doing so, resin accumulation between fiber bundles can be suppressed, and deterioration of mechanical properties can be suppressed. Furthermore, even when a plurality of precursors are laminated or another reinforcing fiber sheet is laminated, a fiber-reinforced thermoplastic resin sheet with less variation in resin can be produced by smoothing the surface of the precursor. Furthermore, a high content of reinforcing fibers can be achieved by laminating the precursor with another reinforcing fiber sheet.

本発明の第1の実施形態に係る製造工程の概要を示す概略図。FIG. 1 is a schematic diagram showing an overview of the manufacturing process according to the first embodiment of the present invention. 本発明の第2の実施形態の工程2の概要を示す概略図。FIG. 7 is a schematic diagram showing an overview of step 2 of the second embodiment of the present invention. 本発明の第3の実施形態の工程2の概要を示す概略図。FIG. 7 is a schematic diagram showing an overview of step 2 of the third embodiment of the present invention. 本発明の第4の実施形態に係る製造工程の概要を示す概略図。FIG. 7 is a schematic diagram showing an outline of a manufacturing process according to a fourth embodiment of the present invention.

(繊維強化熱可塑性樹脂シート)
本発明における繊維強化熱可塑性樹脂シートとは、強化繊維シートと熱可塑性樹脂とからなる複合材料であり、本発明では特に強化繊維が連続繊維であるものが好ましく、一方向(uni-direction:UD)プリプレグ、クロスプリプレグ等が挙げられる。また、複数のプリプレグ等が積層されていてもよい。
(Fiber-reinforced thermoplastic resin sheet)
The fiber-reinforced thermoplastic resin sheet in the present invention is a composite material consisting of a reinforced fiber sheet and a thermoplastic resin. In the present invention, it is particularly preferable that the reinforcing fibers are continuous fibers; ) prepreg, cross prepreg, etc. Moreover, a plurality of prepregs etc. may be laminated.

本発明における繊維強化熱可塑性樹脂シートに含まれる強化繊維の含有率は、機械的強度を高めるということと、最終的に成形品を得るための賦形性を持つという観点から、体積含有率で30%以上70%以下が好ましく、40%以上60%以下がさらに好ましい。 The content of reinforcing fibers contained in the fiber-reinforced thermoplastic resin sheet in the present invention is determined by the volume content from the viewpoint of increasing mechanical strength and having formability to finally obtain a molded product. It is preferably 30% or more and 70% or less, and more preferably 40% or more and 60% or less.

本発明における繊維強化熱可塑性樹脂シートの幅は積層の容易性の観点から、5mm以上1000mm以下が好ましく、10mm以上、500mm以下がさらに好ましい。またシートの厚みは賦形の容易さの観点から30μm以上、500μm以下が好ましく、さらに50μm以上、300μm以下が好ましい。前記繊維強化熱可塑性樹脂シートの空隙率が、0%以上10%以下であることが好ましく、0%以上5%以下であることがより好ましい。 From the viewpoint of ease of lamination, the width of the fiber-reinforced thermoplastic resin sheet in the present invention is preferably 5 mm or more and 1000 mm or less, and more preferably 10 mm or more and 500 mm or less. The thickness of the sheet is preferably 30 μm or more and 500 μm or less, more preferably 50 μm or more and 300 μm or less, from the viewpoint of ease of shaping. The porosity of the fiber-reinforced thermoplastic resin sheet is preferably 0% or more and 10% or less, more preferably 0% or more and 5% or less.

(熱可塑性樹脂)
本発明で用いられる熱可塑樹脂としては、一般的な熱可塑性樹脂の何れも使用可能である。例えば、熱可塑性の結晶性樹脂として、ポリアミド、ポリブチレンテレフタレート、ポリエチレンテレフタレート、ポリフェニレンスルフィド、ポリエチレン、ポリプロピレン、ポリアセタール、ポリエーテルエーテルケトンやポリエーテルケトンケトンなどのポリアリールエーテルケトン樹脂、熱可塑性の非晶性樹脂として、ポリカーボネート、アクリル樹脂、ポリスチレン、アクリロニトリルブタジエンスチレン、ポリ塩化ビニル、ポリフェニレンエーテル、ポリエーテルイミド、ポリエーテルスルホン等が挙げられ、また、これらを2種類以上併用し樹脂組成物とする事も可能である。成形性と機械特性のバランスの観点から、ポリアリールエーテルケトン、ポリフェニレンスルフィド、ポリアミドが好ましい。
(Thermoplastic resin)
As the thermoplastic resin used in the present invention, any general thermoplastic resin can be used. For example, thermoplastic crystalline resins include polyamide, polybutylene terephthalate, polyethylene terephthalate, polyphenylene sulfide, polyethylene, polypropylene, polyacetal, polyaryletherketone resins such as polyetheretherketone and polyetherketoneketone, and thermoplastic amorphous resins. Examples of the resin include polycarbonate, acrylic resin, polystyrene, acrylonitrile butadiene styrene, polyvinyl chloride, polyphenylene ether, polyetherimide, polyether sulfone, etc. Also, two or more of these may be used in combination to form a resin composition. It is possible. From the viewpoint of balance between moldability and mechanical properties, polyaryletherketone, polyphenylene sulfide, and polyamide are preferred.

これらの熱可塑性樹脂には、さらに必要に応じて、公知の安定剤、強化剤、無機フィラー、耐衝撃性改質剤、加工助剤、離型剤、着色剤、カーボンブラック、帯電防止剤、難燃剤、フルオロオレフィン等の添加剤を配合してもよい。その含有率は添加剤の種類により異なるが、強化繊維および樹脂ないし樹脂組成分の特性を損なわない範囲内で、必要に応じて配合でき、強化繊維と樹脂ないし樹脂組成分の合計100質量部に対して20質量部以下であり、好ましくは5質量部以下である。生産性をより向上しやすくするために、離型剤を0.1質量部以上0.5質量部以下含んでもよい。 These thermoplastic resins may further contain known stabilizers, reinforcing agents, inorganic fillers, impact modifiers, processing aids, mold release agents, coloring agents, carbon black, antistatic agents, Additives such as flame retardants and fluoroolefins may be added. The content varies depending on the type of additive, but it can be added as necessary within a range that does not impair the properties of the reinforcing fibers and the resin or resin composition, and the total content of the reinforcing fibers and the resin or resin composition is 100 parts by mass. The amount is 20 parts by mass or less, preferably 5 parts by mass or less. In order to more easily improve productivity, a mold release agent may be contained in a range of 0.1 part by mass or more and 0.5 parts by mass or less.

(強化繊維シート)
本発明に用いられる強化繊維シートとは、複数の連続強化繊維束を並べてシート状にしたものを指す。強化繊維を一方向に並べた一方向シート(UDシート)の場合は、シート目付(FAW)で10g/m~300g/mが好ましく、20g/m~200g/mがさらに好ましい。また織物の場合は、平織、綾織、朱子織など一般的な織物は何れも使用可能である。これらの場合、シート目付(FAW)は、100g/m~600g/mが好ましく、100g/m~400g/mがさらに好ましい。
(Reinforced fiber sheet)
The reinforcing fiber sheet used in the present invention refers to a sheet formed by arranging a plurality of continuous reinforcing fiber bundles. In the case of a unidirectional sheet (UD sheet) in which reinforcing fibers are arranged in one direction, the sheet weight (FAW) is preferably 10 g/m 2 to 300 g/m 2 , more preferably 20 g/m 2 to 200 g/m 2 . In the case of textiles, any common textiles such as plain weave, twill weave, and satin weave can be used. In these cases, the sheet weight (FAW) is preferably 100 g/m 2 to 600 g/m 2 , more preferably 100 g/m 2 to 400 g/m 2 .

(強化繊維)
本発明に用いられる強化繊維はガラス繊維、炭素繊維、金属繊維、樹脂繊維等が挙げられるが、機械的強度の観点から炭素繊維が好ましい。
(reinforced fiber)
The reinforcing fibers used in the present invention include glass fibers, carbon fibers, metal fibers, resin fibers, etc., but carbon fibers are preferable from the viewpoint of mechanical strength.

(炭素繊維)
本発明で用いる炭素繊維は、繊維径が5μm以上15μm以下であることが好ましい。さらに好ましくは、5μm以上12μm以下であり、特に好ましくは6μm以上12μm以下である。繊維径が5μm以上であれば、繊維の表面積が大きくなり過ぎることがなく、成形性の低下が抑制できる。繊維径が15μm以下であれば、繊維のアスペクト比が小さくなりすぎることがなく、補強効果に優れる。なお、炭素繊維の繊維径は、電子顕微鏡等を用いて測定することができる。
(Carbon fiber)
The carbon fiber used in the present invention preferably has a fiber diameter of 5 μm or more and 15 μm or less. More preferably, it is 5 μm or more and 12 μm or less, particularly preferably 6 μm or more and 12 μm or less. When the fiber diameter is 5 μm or more, the surface area of the fibers does not become too large, and deterioration in moldability can be suppressed. If the fiber diameter is 15 μm or less, the aspect ratio of the fibers will not become too small and the reinforcing effect will be excellent. Note that the fiber diameter of the carbon fiber can be measured using an electron microscope or the like.

炭素繊維としては、上記繊維径を有するものであれば特に制限なく使用することができ、ポリアクリロニトリル(PAN)系炭素繊維、ピッチ系炭素繊維、レーヨン系炭素繊維、フェノール系炭素繊維のいずれも用いることができる。また、市販品を用いてもよく、具体例としては、例えば、PAN系炭素繊維としては、パイロフィル(三菱ケミカル株式会社登録商標)CFトウ TR50S 6L、TRH50 12L、TRH50 18M、TR50S 12L、TR50S 15L、MR40 12M、MR60H 24P、MS40 12M、HR40 12M、HS40 12P、TRH50 60M、TRW40 50L(以上、三菱ケミカル社製)が挙げられる。好ましくは、TR50S 15L、TRH50 18M、TRW40 50Lである。 As the carbon fiber, any carbon fiber having the above-mentioned fiber diameter can be used without particular restriction, and any of polyacrylonitrile (PAN) carbon fiber, pitch carbon fiber, rayon carbon fiber, and phenol carbon fiber can be used. be able to. Further, commercially available products may be used, and specific examples include, as PAN-based carbon fibers, Pyrofil (registered trademark of Mitsubishi Chemical Corporation) CF Tow TR50S 6L, TRH50 12L, TRH50 18M, TR50S 12L, TR50S 15L, Examples include MR40 12M, MR60H 24P, MS40 12M, HR40 12M, HS40 12P, TRH50 60M, and TRW40 50L (all manufactured by Mitsubishi Chemical Corporation). Preferably, they are TR50S 15L, TRH50 18M, and TRW40 50L.

ピッチ系炭素繊維としては、ダイアリード(三菱ケミカル株式会社登録商標)K1352U、K1392U、K13C2U、13C6U、K13D2U、K13312、K63712、K13916、K63A12等(以上、三菱ケミカル社製)が挙げられ、好ましくはK63712、K13312である。 Examples of pitch-based carbon fibers include Dialead (registered trademark of Mitsubishi Chemical Corporation) K1352U, K1392U, K13C2U, 13C6U, K13D2U, K13312, K63712, K13916, K63A12 (all manufactured by Mitsubishi Chemical Corporation), and preferably K63712. , K13312.

また、炭素繊維は表面処理されたものであることが好ましい。表面処理剤としては、サイジング剤が挙げられ、例えば、エポキシ系サイジング剤、ウレタン系サイジング剤、ナイロン系サイジング剤、オレフィン系サイジング剤等が挙げられる。 Moreover, it is preferable that the carbon fiber is surface-treated. Examples of the surface treatment agent include sizing agents, such as epoxy sizing agents, urethane sizing agents, nylon sizing agents, and olefin sizing agents.

上記の繊維径の炭素繊維は、単繊維で取り扱うのが困難なため、炭素繊維束(トウ)の状態で用いるのが好ましい。炭素繊維束に含まれる単繊維は、3,000本以上が好ましく、12,000本以上がより好ましく、特に好ましくは15,000本以上である。また、100,000本以下が好ましく、60,000本以下がより好ましい。炭素繊維束に含まれる単繊維の本数が少なすぎると生産効率が低くなる場合がある。多すぎると炭素繊維束に樹脂ないし樹脂組成分の含浸がし難くなり、品質が低くなる場合がある。 Since it is difficult to handle carbon fibers having the above-mentioned fiber diameters as single fibers, it is preferable to use them in the form of carbon fiber bundles (tows). The number of single fibers contained in the carbon fiber bundle is preferably 3,000 or more, more preferably 12,000 or more, particularly preferably 15,000 or more. Further, the number is preferably 100,000 or less, and more preferably 60,000 or less. If the number of single fibers included in the carbon fiber bundle is too small, production efficiency may decrease. If the amount is too large, it becomes difficult to impregnate the carbon fiber bundle with the resin or the resin component, which may result in poor quality.

(繊維強化熱可塑性樹脂シート前駆体)
繊維強化熱可塑性樹脂シート前駆体とは、強化繊維シートと熱可塑性樹脂とが複合化された状態を表し、該複合化とは以下の状態を表す。
(A)強化繊維シートの一部もしくは全部が熱可塑性樹脂で濡れた状態、強化繊維シートと熱可塑性樹脂が層状に積層された状態で強化繊維シートの一部もしくは全部が熱可塑性樹脂と溶着された状態、または
(B)強化繊維シート中に樹脂が含浸した状態。
繊維強化熱可塑性樹脂シート前駆体の空隙率の空隙率は、10%以上90%以下が好ましい。また、繊維強化熱可塑性樹脂シート前駆体中の強化繊維の体積含有率(Vf)は、20~75%が好ましく、40~60%がより好ましい。
(Fiber-reinforced thermoplastic resin sheet precursor)
The fiber-reinforced thermoplastic resin sheet precursor refers to a state in which a reinforcing fiber sheet and a thermoplastic resin are composited, and the composite refers to the following state.
(A) Part or all of the reinforcing fiber sheet is wetted with the thermoplastic resin, or the reinforcing fiber sheet and the thermoplastic resin are laminated in layers, and some or all of the reinforcing fiber sheet is welded to the thermoplastic resin. or (B) a state in which the reinforcing fiber sheet is impregnated with resin.
The porosity of the fiber-reinforced thermoplastic resin sheet precursor is preferably 10% or more and 90% or less. Further, the volume content (Vf) of reinforcing fibers in the fiber-reinforced thermoplastic resin sheet precursor is preferably 20 to 75%, more preferably 40 to 60%.

本発明における(工程1)とは、上記繊維強化熱可塑性樹脂シート前駆体を得る工程である。つまり、強化繊維シートをクロスヘッドダイに通し、該強化繊維シートをダイ内にて溶融状態にある熱可塑性樹脂と複合化し、ダイ通過後に前記熱可塑性樹脂の固化温度以下の加圧面に接触させて加圧するものである。
熱可塑性樹脂を溶融状態にする方法は、クロスヘッドダイに接続された押出機にて熱可塑性樹脂の溶融温度以上の温度で溶融させ、この溶融状態の熱可塑性樹脂をクロスヘッドダイに供給することで達成される。
(Step 1) in the present invention is a step of obtaining the fiber-reinforced thermoplastic resin sheet precursor. That is, a reinforcing fiber sheet is passed through a crosshead die, the reinforcing fiber sheet is composited with a thermoplastic resin in a molten state within the die, and after passing through the die, it is brought into contact with a pressurized surface at a temperature below the solidification temperature of the thermoplastic resin. It applies pressure.
The method for making thermoplastic resin into a molten state is to melt it at a temperature higher than the melting temperature of the thermoplastic resin using an extruder connected to a crosshead die, and then supply this molten thermoplastic resin to the crosshead die. is achieved.

(クロスヘッドダイ)
本発明で用いられるクロスヘッドダイは、熱可塑性樹脂と強化繊維シートを複合化させるためのダイであり、クロスヘッドダイの中に強化繊維シートを通しながら押出機等からクロスヘッドダイに熱可塑性樹脂を供給して複合化させる。例えば、ひとつの入り口から強化繊維、その入り口と異なる方向にある別の入り口から溶融状態の樹脂を供給し、クロスヘッドダイの内部で強化繊維と樹脂を合流させて複合化する。さらにクロスヘッドダイ出口の開口部からを引き抜く事により、本発明の繊維強化熱可塑性樹脂シート前駆体を得る。クロスヘッドダイとは押出機と直交方向に取り付けられたダイのことであり、押出機より溶融した熱可塑性樹脂をT状もしくはコートハンガー状のマニホールドを用いて拡幅して樹脂を押出すダイを表す。本発明のクロスヘッドダイは拡幅後に樹脂だまりを設け、その樹脂だまりを強化繊維シートが通過することで、熱可塑性樹脂と強化繊維シートを複合化させる。この樹脂だまりの形状には特に制限はないが、強化繊維シートを容易に通過させるためには、最大隙間が1mm以上あることが好ましい。また樹脂だまりの下流側には熱可塑性樹脂と強化繊維を密着させるための縮小部を設けることが好ましい。この縮小部の形状には特に制限はないが、最大隙間を1mm未満にすることが好ましい。
ここで、「複合化」とは上記(A)、(B)の状態である。
固化温度以下の加圧面とは、非加熱あるいは冷却されたローラを用いるのが一般的である。
(Crosshead die)
The crosshead die used in the present invention is a die for compounding thermoplastic resin and reinforcing fiber sheet, and the thermoplastic resin is passed from an extruder etc. to the crosshead die while passing the reinforcing fiber sheet through the crosshead die. is supplied and compounded. For example, reinforcing fibers are supplied from one entrance, and molten resin is supplied from another entrance in a direction different from that entrance, and the reinforcing fibers and resin are combined inside a crosshead die to form a composite. Further, the fiber-reinforced thermoplastic resin sheet precursor of the present invention is obtained by pulling it out from the opening of the crosshead die outlet. A crosshead die is a die installed perpendicular to the extruder, and is a die that extrudes the resin by widening the molten thermoplastic resin from the extruder using a T-shaped or coat hanger-shaped manifold. . The crosshead die of the present invention provides a resin pool after widening, and the reinforcing fiber sheet passes through the resin pool, thereby compounding the thermoplastic resin and the reinforcing fiber sheet. Although there is no particular restriction on the shape of this resin pool, in order to allow the reinforcing fiber sheet to pass through easily, it is preferable that the maximum gap is 1 mm or more. Further, it is preferable to provide a reduced portion on the downstream side of the resin pool for bringing the thermoplastic resin and reinforcing fiber into close contact with each other. Although there is no particular restriction on the shape of this reduced portion, it is preferable that the maximum gap be less than 1 mm.
Here, "compounding" refers to the states (A) and (B) above.
As the pressure surface below the solidification temperature, an unheated or cooled roller is generally used.

このように形成された繊維強化熱可塑性樹脂シート前駆体は、熱可塑性樹脂の固化温度以下に冷却されているため、ロールに巻き取ることができる。なお、前駆体の状態は空隙が多く、また前駆体中の強化繊維の体積含有率(Vf)も低い場合がある。そのため本発明では、(工程2)として、空隙を減らすために一旦固化温度以下まで冷却された熱可塑性樹脂を再溶融し、加圧して強化繊維に樹脂を含浸させる。Vfが低い場合は、強化繊維シートを追加して、Vfを高めることができる。
(工程2)とは、該繊維強化熱可塑性樹脂シート前駆体中の熱可塑性樹脂を溶融状態にせしめた状態で、該前駆体を加圧面に接触させ、次いで前記熱可塑性樹脂の固化温度以下に冷却して繊維強化熱可塑性樹脂シートを得る工程である。
溶融状態にする方法の代表例としてIRヒーター、熱板、加熱ロール、加熱プレス、加熱ベルトプレス、などで外部より加熱して溶かす方法が挙げられる。より好ましくは、IRヒーター等により非接触で加熱した後、溶融状態を維持したまま加圧面となる加熱ロール、加熱プレス、加熱ベルトプレスによる加熱を組み合わせる。
ここで加圧面としては、加熱ロール、加熱プレス、加熱ベルトプレスなどの加熱機構付きの加圧手段でもよく、また、また、通常のローラ、プレス板、プレスベルトなど加熱機構のない加圧手段でもよい。
溶融状態の樹脂は加圧面となる加熱ロール、加熱プレス、加熱ベルトプレス等の加圧手段に付着しやすいため、これらの表面を離型処理するか、離型フィルムあるいは離型紙を挟んでこれらの手段により加圧することが好ましく、加圧手段への離型処理を不要とする点で後者の離型フィルムあるいは離型紙を挟んで加圧する方法が好ましい。
また、固化温度以下に冷却する手段として、代表例として冷却ロール、冷却プレス、冷却ベルトプレス、などで加圧しながら冷却することが好ましい。ベルトプレスの場合、熱伝導性の良好なベルト部材と加熱ローラと冷却ローラを組み合わせて、加熱と冷却を行うこともできる。
また、工程2において、繊維強化熱可塑性樹脂シート前駆体の少なくとも1方の面に繊維シートを積層した積層体を得、次いで該積層体中の熱可塑性樹脂を溶融状態にせしめた状態で、該積層体を加圧面に接触させ、次いで前記熱可塑性樹脂の固化温度以下に冷却して繊維強化熱可塑性樹脂シートを得ることも可能である。
ここで繊維シートとは、別の繊維強化熱可塑性樹脂シート前駆体であってもよく、樹脂未含浸の強化繊維シートであってもよい。さらには、繊維シートは別の積層体であってもよい。積層のさせ方としては、後述の実施形態に示すように、工程1で得た繊維強化熱可塑性樹脂シート前駆体のロールからそれぞれ巻きだして積層する方法、繊維強化熱可塑性樹脂シート前駆体のロールから巻きだした面の熱可塑性樹脂を少なくとも溶融し、強化繊維シートをその溶融した面と合わせて加熱加圧する方法などがある。
The fiber-reinforced thermoplastic resin sheet precursor thus formed can be wound onto a roll because it has been cooled to a temperature below the solidification temperature of the thermoplastic resin. Note that the state of the precursor may have many voids, and the volume content (Vf) of reinforcing fibers in the precursor may also be low. Therefore, in the present invention, in step 2, in order to reduce voids, the thermoplastic resin that has been cooled to below the solidification temperature is remelted and pressurized to impregnate the reinforcing fibers with the resin. If Vf is low, a reinforcing fiber sheet can be added to increase Vf.
(Step 2) refers to bringing the thermoplastic resin in the fiber-reinforced thermoplastic resin sheet precursor into a molten state, bringing the precursor into contact with a pressurizing surface, and then lowering the temperature to below the solidification temperature of the thermoplastic resin. This is a step of cooling to obtain a fiber-reinforced thermoplastic resin sheet.
Typical examples of methods for bringing the material into a molten state include methods for heating and melting it from the outside using an IR heater, hot plate, heated roll, heated press, heated belt press, etc. More preferably, after non-contact heating with an IR heater or the like, heating is performed using a heating roll, heating press, or heating belt press, which serves as a pressing surface while maintaining the molten state.
Here, the pressurizing surface may be a pressurizing means with a heating mechanism such as a heated roll, a heated press, or a heated belt press, or may be a pressurizing means without a heating mechanism such as an ordinary roller, press plate, or press belt. good.
Molten resin tends to adhere to pressure means such as heated rolls, heated presses, heated belt presses, etc., which serve as pressurizing surfaces. Pressure is preferably applied by a means, and the latter method of applying pressure by sandwiching a release film or paper is preferable since it does not require a mold release treatment to the pressure means.
Further, as a means for cooling to a temperature below the solidification temperature, it is preferable to cool while applying pressure using a cooling roll, a cooling press, a cooling belt press, etc. as a representative example. In the case of a belt press, heating and cooling can also be performed by combining a belt member with good thermal conductivity, a heating roller, and a cooling roller.
In step 2, a laminate is obtained in which a fiber sheet is laminated on at least one surface of a fiber-reinforced thermoplastic resin sheet precursor, and then the thermoplastic resin in the laminate is brought into a molten state. It is also possible to obtain a fiber-reinforced thermoplastic resin sheet by bringing the laminate into contact with a pressurizing surface and then cooling it to a temperature below the solidification temperature of the thermoplastic resin.
Here, the fiber sheet may be another fiber-reinforced thermoplastic resin sheet precursor, or may be a reinforcing fiber sheet not impregnated with resin. Furthermore, the fiber sheet may be a separate laminate. As shown in the embodiment described below, the lamination method includes a method of unwinding each roll of the fiber-reinforced thermoplastic resin sheet precursor obtained in step 1 and laminating them, and a method of laminating the rolls of the fiber-reinforced thermoplastic resin sheet precursor obtained in step 1. There is a method of melting at least the thermoplastic resin on the side unwound from the sheet, and heating and pressing the reinforcing fiber sheet together with the molten side.

(空隙率)
本発明における繊維強化熱可塑性樹脂シートの空隙率は、シートの厚み方向断面を以下のように観察して求めることができる。
シートをアクリル樹脂で包埋したサンプルを用意し、シートの厚み方向断面が良好に観察できるようになるまで、前記サンプルを研磨する。この研磨したサンプルを、超深度カラー3D形状測定顕微鏡VHX-9500(コントローラー部)/VHZ-100R(測定部)((株)キーエンス製)を使用して、拡大倍率500倍で撮影する。撮影範囲は、サンプルの厚み×500μm幅の範囲とする。撮影画像において、サンプルの断面積および空隙となっている部分の面積を求め、次式により空隙率を算出することができる。
空隙率(%)=(空隙が占める部分の総面積)/(サンプルの総断面積)×100
(porosity)
The porosity of the fiber-reinforced thermoplastic resin sheet in the present invention can be determined by observing a cross section in the thickness direction of the sheet as follows.
A sample of a sheet embedded in an acrylic resin is prepared, and the sample is polished until a cross section of the sheet in the thickness direction can be observed well. This polished sample is photographed at a magnification of 500 times using an ultra-deep color 3D shape measuring microscope VHX-9500 (controller section)/VHZ-100R (measurement section) (manufactured by Keyence Corporation). The imaging range is the thickness of the sample x 500 μm width. In the photographed image, the cross-sectional area of the sample and the area of the void portion are determined, and the porosity can be calculated using the following formula.
Porosity (%) = (Total area occupied by voids) / (Total cross-sectional area of sample) x 100

(開繊)
本発明における開繊とは、強化繊維束を幅方向に広げて厚みが均一なシート状にせしめることであり、一般的な手法はいずれも使用可能である。開繊方法の例としては、擦過開繊、揺動開繊、空気開繊などが挙げられる。
(opening)
Spreading in the present invention means spreading the reinforcing fiber bundle in the width direction to form a sheet having a uniform thickness, and any general method can be used. Examples of the opening method include rubbing opening, rocking opening, air opening, and the like.

(離型紙または離型フィルム)
離型紙として、紙の片面、或いは両面に離型効果を有する物質を塗布した物が例示される。離型効果を有する物質としてシリコーン系、フッ素系(例えば、テフロン(登録商標))、セラミクス系が例示される。
離型フィルムとして、樹脂フィルムの片面、或いは両面に離型効果を有する物質を塗布した物が例示される。樹脂フィルムとしてポリエステルフィルム、フッ素樹脂フィルム(例えば、テフロン(登録商標))等が例示される。樹脂フィルム自体に離型効果を有すればそのフィルムに離型処理を施す必要はないが、離型効果が不十分な場合には、離型処理を施しても良い。離型効果を有する物質としてシリコーン系、フッ素系(例えば、テフロン(登録商標))、セラミクス系が例示される。
(Release paper or release film)
Examples of release paper include paper coated with a substance having a release effect on one or both sides. Examples of substances having a mold release effect include silicone-based materials, fluorine-based materials (eg, Teflon (registered trademark)), and ceramic-based materials.
An example of the release film is a resin film coated with a substance having a release effect on one or both sides. Examples of the resin film include a polyester film, a fluororesin film (eg, Teflon (registered trademark)), and the like. If the resin film itself has a mold release effect, it is not necessary to perform mold release treatment on the film, but if the mold release effect is insufficient, mold release treatment may be performed. Examples of substances having a mold release effect include silicone-based materials, fluorine-based materials (eg, Teflon (registered trademark)), and ceramic-based materials.

次に、本発明の実施形態について図面を参照して説明する。
[第1の実施形態]
図1は、本発明に係る繊維強化熱可塑性樹脂シートの製造方法の第1の実施形態の概要を示す図である。
下記工程1と工程2より繊維強化熱可塑性シートを得る。
(工程1)クリール1より巻き出された強化繊維2はヒーター3で加熱された後に開繊ゾーン4を経て強化繊維シート5となる。開繊ゾーン4では複数のローラで摺擦することで開繊しているがこれに限定されない。次いで該強化繊維シート5をクロスヘッドダイ6に通し、押出機7等から供給された熱可塑性樹脂と複合化する。複合化したものは、熱可塑性樹脂の固化温度以下の温度に設定された引き取りローラ対8によりクロスヘッドダイ出口の開口部から引き抜く。その際、引き取りローラ対8により加圧されることにより、強化繊維内部に樹脂が含浸されると共に、表面が平滑化された繊維強化熱可塑性樹脂シート前駆体9を得る。得られた該繊維強化熱可塑性樹脂シート前駆体9は一旦ロール9Rに巻き取る。開繊される強化繊維としては、主にUDプリプレグを製造する強化繊維の束(トウ)であることが好ましい。また、織物などを開繊織物とすることもできる。
Next, embodiments of the present invention will be described with reference to the drawings.
[First embodiment]
FIG. 1 is a diagram showing an outline of a first embodiment of a method for manufacturing a fiber-reinforced thermoplastic resin sheet according to the present invention.
A fiber-reinforced thermoplastic sheet is obtained from Steps 1 and 2 below.
(Step 1) The reinforcing fibers 2 unwound from the creel 1 are heated by a heater 3 and then pass through a fiber opening zone 4 to become a reinforcing fiber sheet 5. In the opening zone 4, the fibers are opened by rubbing with a plurality of rollers, but the invention is not limited thereto. Next, the reinforcing fiber sheet 5 is passed through a crosshead die 6 and composited with a thermoplastic resin supplied from an extruder 7 or the like. The composite material is pulled out from the crosshead die exit opening by a pair of take-off rollers 8 set at a temperature below the solidification temperature of the thermoplastic resin. At this time, by being pressurized by the pair of take-off rollers 8, the interior of the reinforcing fibers is impregnated with resin, and a fiber-reinforced thermoplastic resin sheet precursor 9 whose surface is smoothed is obtained. The obtained fiber-reinforced thermoplastic resin sheet precursor 9 is once wound up onto a roll 9R. The reinforcing fibers to be opened are preferably bundles (tows) of reinforcing fibers mainly used to produce UD prepreg. Further, a woven fabric or the like can also be used as a spread fabric.

このようにして形成される繊維強化熱可塑性樹脂シート前駆体9は空隙が多く存在していてもよく、好ましくは、空隙率が10%以上90%以下となるようにクロスヘッドダイにおける接触時間や温度、引き取りローラ対8での加圧力及び温度等を調整する。
ここでは引き取りローラ対を用いて、固化温度以下の加圧面に接触させて加圧することを実施しているが、引き取りローラとは別の冷却ローラを設けたり、平板プレスにより加圧したりする方法でもよい。
このように、本発明では、繊維強化熱可塑性樹脂シート前駆体をダイからの引き出し直後に熱可塑樹脂の固化温度以下まで冷却して加圧することで、前駆体の表面を平滑にする点に特徴がある。前駆体の表面を平滑にすることで、樹脂だまりの発生を抑制し、また、ロール9Rへの巻き取りが容易となる。従来は、さらに樹脂を強化繊維に含浸させるため、ダイからの引き出し後の温度が固化温度以下に低下する前に加圧する追含浸と呼ばれる操作が実施されている。また、ロールへ巻き取ることを想定した場合、離型フィルム等をロール巻き上げ面に配置してロール化していたが、本実施形態では、熱可塑性樹脂の固化温度以下まで冷却して巻き上げているため、前駆体への離型フィルム付与は不要となる。
The fiber-reinforced thermoplastic resin sheet precursor 9 formed in this way may have many voids, and preferably the contact time in the crosshead die is adjusted so that the void ratio is 10% or more and 90% or less. The temperature, the pressure applied by the pair of take-up rollers 8, the temperature, etc. are adjusted.
Here, a pair of take-up rollers is used to apply pressure by contacting the pressure surface below the solidification temperature, but it is also possible to provide a cooling roller separate from the take-up roller or apply pressure using a flat plate press. good.
As described above, the present invention is characterized in that the surface of the fiber-reinforced thermoplastic resin sheet precursor is smoothed by cooling it to below the solidification temperature of the thermoplastic resin and pressurizing it immediately after pulling it out from the die. There is. Smoothing the surface of the precursor suppresses the formation of resin pools and facilitates winding onto the roll 9R. Conventionally, in order to further impregnate the reinforcing fibers with resin, an operation called additional impregnation has been carried out in which pressure is applied before the temperature after drawing out from the die falls below the solidification temperature. In addition, when winding into a roll is assumed, a release film or the like is placed on the roll winding surface to form a roll, but in this embodiment, the thermoplastic resin is cooled to below the solidification temperature and then rolled up. , it becomes unnecessary to apply a release film to the precursor.

(工程2)該繊維強化熱可塑性樹脂シート前駆体9をロール9Rより巻き出し、ヒーター10により予備加熱を行った後、上下面に離型フィルム11を配置し、次いで、熱可塑性樹脂の融点以上に加熱した加熱ローラ12で加圧することで該繊維強化熱可塑性樹脂シート前駆体内の熱可塑性樹脂を溶融状態とし、強化繊維シートを密着させる。その後冷却ローラ13で冷却後に離型フィルム11を除去して、繊維強化熱可塑性シート14を得る。得られた繊維強化熱可塑性シート14はロール14Rとしてまとめておく。冷却ローラでは、繊維強化熱可塑性シートを樹脂の固化温度以下に冷却するのと同時に加圧によりさらに樹脂を強化繊維へ含浸させてもよい。
このように熱可塑性樹脂の溶融状態を維持したまま加圧することで前駆体内の空隙を減らし、強化繊維シートに熱可塑性樹脂を密に接触させる。得られた繊維強化熱可塑性シート13における空隙率はより少ないことが好ましく、5%以下がより好ましく、実質0%となるまで処理することもできる。
(Step 2) The fiber-reinforced thermoplastic resin sheet precursor 9 is unwound from the roll 9R, preheated by a heater 10, and then a release film 11 is placed on the upper and lower surfaces, and then the melting point of the thermoplastic resin is The thermoplastic resin in the fiber-reinforced thermoplastic resin sheet precursor is brought into a molten state by applying pressure with a heating roller 12 heated to 120° C., thereby bringing the reinforcing fiber sheets into close contact with each other. Thereafter, the release film 11 is removed after cooling with a cooling roller 13 to obtain a fiber-reinforced thermoplastic sheet 14. The obtained fiber-reinforced thermoplastic sheet 14 is put together as a roll 14R. The cooling roller may cool the fiber-reinforced thermoplastic sheet to below the solidification temperature of the resin and at the same time impregnate the reinforcing fibers with the resin by applying pressure.
By pressurizing the thermoplastic resin while maintaining its molten state in this manner, the voids within the precursor are reduced and the thermoplastic resin is brought into close contact with the reinforcing fiber sheet. The porosity in the obtained fiber-reinforced thermoplastic sheet 13 is preferably as low as possible, more preferably 5% or less, and can be treated until it becomes substantially 0%.

[第2の実施形態]
図2は、本発明に係る繊維強化熱可塑性樹脂シートの製造方法の第2の実施形態の概要を示す図である。
第1の実施形態の前記工程1に次いで下記工程2より繊維強化熱可塑性シートを得る。
[Second embodiment]
FIG. 2 is a diagram showing an outline of a second embodiment of the method for manufacturing a fiber-reinforced thermoplastic resin sheet according to the present invention.
Following the step 1 of the first embodiment, a fiber-reinforced thermoplastic sheet is obtained in step 2 below.

(工程2)前記繊維強化熱可塑性樹脂シート前駆体9を複数のロール9Rより巻き出した後に圧着ローラ21を経由して積層体22とし、ヒーター10により予備加熱を行った後、第1の実施形態と同様に積層体22の上下面に離型フィルム11を配置し、次いで、高温側を熱可塑性樹脂の融点以上に、低温側を固化温度以下に設定したベルトプレス23で加圧することで該繊維強化熱可塑性樹脂シート前駆体内の熱可塑性樹脂と強化繊維シートを密着させる。その後離型フィルムを除去して、繊維強化熱可塑性シート24を得る。 (Step 2) The fiber-reinforced thermoplastic resin sheet precursor 9 is unwound from a plurality of rolls 9R, passed through a pressure roller 21 to form a laminate 22, preheated by a heater 10, and then subjected to the first implementation. Similar to the embodiment, the release films 11 are arranged on the upper and lower surfaces of the laminate 22, and then the high temperature side is pressurized with a belt press 23 whose temperature is set above the melting point of the thermoplastic resin and the low temperature side is set below the solidification temperature. The thermoplastic resin in the fiber reinforced thermoplastic resin sheet precursor and the reinforced fiber sheet are brought into close contact. Thereafter, the release film is removed to obtain a fiber-reinforced thermoplastic sheet 24.

本実施形態では、繊維強化熱可塑性樹脂シート前駆体を複数積層した積層体とすることで、厚みのある繊維強化熱可塑性シートを得ることができる。特に、前駆体表面を一旦平滑にすることで、積層体とした際に樹脂厚みのバラツキが少なくなる。又、ベルトプレスによる方法は、熱可塑性樹脂を溶融状態から固化状態まで連続して押圧しているため、得られる繊維強化熱可塑性樹脂シートの表面平滑性がさらに改善される。積層する枚数は、図では2層であるがこれに限定されず、必要な積層数で積層することができる。又、積層は一度に行う必要は必ずしもなく、同じ操作を複数回繰り返し、積層体の外側にさらに積層する構成としてもよい。このとき、溶融される樹脂は、積層される層間の密着性が確保されればよく、最初の積層体(厚み方向に中心となる部分はすでに溶融密着されている)の樹脂は溶融状態とならなくてもよい。
また、例えば、UDシートを中心にクロスシートを外側にして、UDシートの繊維方向と平行とならない方向にクロスシートの繊維方向を合わせると、より撓みの少ない繊維強化熱可塑性樹脂シートを得ることもできる。
In this embodiment, a thick fiber-reinforced thermoplastic sheet can be obtained by forming a laminate in which a plurality of fiber-reinforced thermoplastic resin sheet precursors are laminated. In particular, once the surface of the precursor is made smooth, variations in resin thickness are reduced when a laminate is formed. Further, in the method using a belt press, since the thermoplastic resin is continuously pressed from a molten state to a solidified state, the surface smoothness of the resulting fiber-reinforced thermoplastic resin sheet is further improved. Although the number of layers to be laminated is two in the figure, it is not limited to this, and any required number of layers can be laminated. Further, the lamination does not necessarily need to be carried out at once, and the same operation may be repeated multiple times to further laminate the layers on the outside of the laminate. At this time, the resin to be melted only needs to ensure adhesion between the laminated layers, and the resin in the first laminate (the central part in the thickness direction has already been melted and adhered) must be in a molten state. You don't have to.
Also, for example, by placing the cross sheet outside with the UD sheet in the center and aligning the fiber direction of the cross sheet in a direction that is not parallel to the fiber direction of the UD sheet, it is possible to obtain a fiber-reinforced thermoplastic resin sheet with less deflection. can.

[第3の実施形態]
図3は、本発明に係る繊維強化熱可塑性樹脂シートの製造方法の第3の実施形態の概要を示す図である。
第1の実施形態の前記工程1に次いで下記工程2より繊維強化熱可塑性シートを得る。
[Third embodiment]
FIG. 3 is a diagram showing an outline of a third embodiment of the method for manufacturing a fiber-reinforced thermoplastic resin sheet according to the present invention.
Following the step 1 of the first embodiment, a fiber-reinforced thermoplastic sheet is obtained in step 2 below.

(工程2)強化繊維シート5をロールより巻き出し、複数のロール9Rより巻き出した前記繊維強化熱可塑性樹脂シート前駆体9と圧着ローラ31を経由して積層して複合積層体32を形成し、ヒーター10により予備加熱を行った後、上下面に離型フィルム11を配置し、次いで、融点以上に加熱した熱板プレス35により加圧し、固化温度以下に冷却した冷却プレス36により加圧することにより複合積層体内の熱可塑性樹脂と強化繊維シートを密着させる。その後離型フィルムを除去して、繊維強化熱可塑性シート37を得る。離型フィルムの貼着及び剥離は貼着ローラ33と剥離ローラ34を用いる。 (Step 2) The reinforcing fiber sheet 5 is unrolled from a roll and laminated with the fiber-reinforced thermoplastic resin sheet precursor 9 unwound from a plurality of rolls 9R via a pressure roller 31 to form a composite laminate 32. After preliminary heating with the heater 10, release films 11 are placed on the upper and lower surfaces, and then pressurized with a hot plate press 35 heated above the melting point, and pressurized with a cooling press 36 cooled below the solidification temperature. The thermoplastic resin in the composite laminate and the reinforcing fiber sheet are brought into close contact with each other. Thereafter, the release film is removed to obtain a fiber-reinforced thermoplastic sheet 37. A sticking roller 33 and a peeling roller 34 are used to stick and peel off the release film.

本実施形態では、樹脂含浸していない強化繊維シート5を樹脂含浸しているシート前駆体の少なくとも1方の面に積層することで強化繊維の含有率を高めることができる。図3では、シート前駆体の間に強化繊維シートを挟み込む構成としたが、逆に強化繊維シートの間にシート前駆体を挟み込む構成、すなわち、シート前駆体の両面に強化繊維シートを積層する構成でもよい。又、第2の実施形態と組み合わせて、複合積層体の複数を積層して多層の複合積層体とすることも可能である。その際も、複合積層体の外側シート前駆体の間に強化繊維シートを挟み込む構成としてもよい。 In this embodiment, the reinforcing fiber content can be increased by laminating the reinforcing fiber sheet 5 that is not impregnated with resin on at least one surface of the sheet precursor that is impregnated with resin. In Fig. 3, the reinforcing fiber sheet is sandwiched between the sheet precursors, but conversely, the sheet precursor is sandwiched between the reinforcing fiber sheets, that is, the reinforcing fiber sheets are laminated on both sides of the sheet precursor. But that's fine. Further, in combination with the second embodiment, it is also possible to laminate a plurality of composite laminates to form a multilayer composite laminate. Also in this case, a reinforcing fiber sheet may be sandwiched between the outer sheet precursors of the composite laminate.

[第4の実施形態]
図4は、本発明に係る繊維強化熱可塑性樹脂シートの製造方法の第4の実施形態の概要を示す図である。
下記工程1と工程2より繊維強化熱可塑性シートを得る。
[Fourth embodiment]
FIG. 4 is a diagram showing an outline of the fourth embodiment of the method for manufacturing a fiber-reinforced thermoplastic resin sheet according to the present invention.
A fiber-reinforced thermoplastic sheet is obtained from Steps 1 and 2 below.

(工程1)あらかじめ開繊した、もしくは織物である強化繊維シート41をロールより巻き出し、ヒーター3で加熱した後に、該強化繊維シートをクロスヘッドダイ6に通し、押出機等7から供給された熱可塑性樹脂と複合化し、クロスヘッドダイ出口の開口部から引き抜くことにより、繊維強化熱可塑性樹脂シート前駆体42を得る。得られた該繊維強化熱可塑性樹脂シート前駆体42を一旦ロール42Rに巻き取る。 (Step 1) A reinforcing fiber sheet 41 that has been opened in advance or is a woven fabric is unwound from a roll, heated with a heater 3, and then passed through a crosshead die 6 to be fed from an extruder or the like 7. A fiber-reinforced thermoplastic resin sheet precursor 42 is obtained by compounding it with a thermoplastic resin and pulling it out from the crosshead die exit opening. The obtained fiber-reinforced thermoplastic resin sheet precursor 42 is once wound onto a roll 42R.

(工程2)複数のロール42Rより巻き出した前記繊維強化熱可塑性樹脂シート前駆体42を圧着ローラ43を経由して積層し積層体44とする。次に積層体44は、ヒーター10により予備加熱を行った後、上下面に離型フィルム11を配置し、次いで、熱可塑性樹脂の融点以上に加熱した熱板プレス47により加圧し、固化温度以下に冷却した冷却プレス48により加圧することにより積層体内の熱可塑性樹脂と強化繊維シートを密着させる。その後離型フィルムを除去して、繊維強化熱可塑性シート49を得る。離型フィルムの貼着及び剥離は貼着ローラ45と剥離ローラ46を用いる。
本実施形態では、第1の実施形態の工程1から開繊工程を省略あるいは強化繊維として織物を用いる場合について説明している。その他は、第1~第3の実施形態と同様の組み合わせを適宜実施できる。
(Step 2) The fiber-reinforced thermoplastic resin sheet precursor 42 unwound from the plurality of rolls 42R is laminated via a pressure roller 43 to form a laminate 44. Next, the laminate 44 is preheated with a heater 10, and then a release film 11 is placed on the upper and lower surfaces, and then pressurized with a hot plate press 47 heated above the melting point of the thermoplastic resin and below the solidification temperature. The thermoplastic resin in the laminate and the reinforcing fiber sheet are brought into close contact with each other by applying pressure using a cooling press 48 that has been cooled to a temperature of 100.degree. Thereafter, the release film is removed to obtain a fiber-reinforced thermoplastic sheet 49. A sticking roller 45 and a peeling roller 46 are used to stick and peel off the release film.
In this embodiment, a case is described in which the opening step is omitted from step 1 of the first embodiment or a woven fabric is used as the reinforcing fiber. In other respects, combinations similar to those in the first to third embodiments can be implemented as appropriate.

1 クリール
2 強化繊維
3、10 ヒーター
4 開繊ゾーン
5、41 強化繊維シート
6 クロスヘッドダイ
7 押出機
8 引き取りローラ対
9、42 繊維強化熱可塑性樹脂シート前駆体
9R、42R 前駆体ロール
11 離型フィルム
12 加熱ローラ
13 冷却ローラ
14、24、37 繊維強化熱可塑性シート
14R、24R ロール
21、31、43 圧着ローラ
22、44 積層体
23 ベルトプレス
32 複合積層体
33、45 貼着ローラ
34、46 剥離ローラ
35、47 熱板プレス
36、48 冷却プレス
1 Creel 2 Reinforced fiber 3, 10 Heater 4 Spreading zone 5, 41 Reinforced fiber sheet 6 Crosshead die 7 Extruder 8 Take-off roller pair 9, 42 Fiber reinforced thermoplastic resin sheet precursor 9R, 42R Precursor roll 11 Release Film 12 Heating roller 13 Cooling rollers 14, 24, 37 Fiber-reinforced thermoplastic sheets 14R, 24R Rolls 21, 31, 43 Pressure rollers 22, 44 Laminate 23 Belt press 32 Composite laminate 33, 45 Sticking rollers 34, 46 Peeling Rollers 35, 47 Hot plate press 36, 48 Cooling press

Claims (12)

工程1と工程2とを含む繊維強化熱可塑性樹脂シートの製造方法:
(工程1)強化繊維シートをクロスヘッドダイに通し、該強化繊維シートをダイ内にて溶融状態にある熱可塑性樹脂と複合化し、ダイ通過後に該熱可塑性樹脂の固化温度以下の加圧面に接触させて加圧することにより繊維強化熱可塑性樹脂シート前駆体を得る工程。
(工程2)該繊維強化熱可塑性樹脂シート前駆体中の熱可塑性樹脂を溶融状態にせしめた状態で、該前駆体を加圧面に接触させ、次いで前記熱可塑性樹脂の固化温度以下に冷却して繊維強化熱可塑性樹脂シートを得る工程。
Method for manufacturing a fiber reinforced thermoplastic resin sheet including Step 1 and Step 2:
(Step 1) Pass the reinforcing fiber sheet through a crosshead die, compound the reinforcing fiber sheet with the thermoplastic resin in a molten state within the die, and after passing through the die, contact the pressurized surface at a temperature below the solidification temperature of the thermoplastic resin. A step of obtaining a fiber-reinforced thermoplastic resin sheet precursor by applying pressure.
(Step 2) With the thermoplastic resin in the fiber-reinforced thermoplastic resin sheet precursor in a molten state, the precursor is brought into contact with a pressurizing surface, and then cooled to a temperature below the solidification temperature of the thermoplastic resin. A process of obtaining a fiber-reinforced thermoplastic resin sheet.
前記工程2が、該繊維強化熱可塑性樹脂シート前駆体の少なくとも1方の面に繊維シートを積層した積層体を得、次いで該積層体中の熱可塑性樹脂を溶融状態にせしめた状態で、該積層体を加圧面に接触させ、次いで前記熱可塑性樹脂の固化温度以下に冷却して繊維強化熱可塑性樹脂シートを得る工程である請求項1に記載の繊維強化熱可塑性樹脂シートの製造方法。 In step 2, a laminate is obtained in which a fiber sheet is laminated on at least one surface of the fiber-reinforced thermoplastic resin sheet precursor, and then the thermoplastic resin in the laminate is brought into a molten state. 2. The method for producing a fiber-reinforced thermoplastic resin sheet according to claim 1, which comprises the step of bringing the laminate into contact with a pressurizing surface, and then cooling to a temperature below the solidification temperature of the thermoplastic resin to obtain a fiber-reinforced thermoplastic resin sheet. 前記工程1または工程2において、加圧面に接触させる際に、前記繊維強化熱可塑性樹脂シート前駆体を離型紙もしくは離型フィルムで挟む請求項1に記載の繊維強化熱可塑性樹脂シートの製造方法。2. The method for producing a fiber-reinforced thermoplastic resin sheet according to claim 1, wherein the fiber-reinforced thermoplastic resin sheet precursor is sandwiched between release paper or a release film when it is brought into contact with a pressurizing surface in step 1 or step 2. 前記工程1または工程2において、加圧面に接触させる際に、前記積層体を離型紙もしくは離型フィルムで挟む請求項2に記載の繊維強化熱可塑性樹脂シートの製造方法。3. The method for producing a fiber-reinforced thermoplastic resin sheet according to claim 2, wherein the laminate is sandwiched between release paper or a release film when it is brought into contact with a pressurizing surface in step 1 or step 2. 前記繊維シートが、前記繊維強化熱可塑性樹脂シート前駆体もしくは強化繊維シートである、請求項2又は4に記載の繊維強化熱可塑性樹脂シートの製造方法。 The method for producing a fiber-reinforced thermoplastic resin sheet according to claim 2 or 4 , wherein the fiber sheet is the fiber-reinforced thermoplastic resin sheet precursor or a reinforced fiber sheet. 前記繊維強化熱可塑性樹脂シート前駆体の空隙率が、10%以上90%以下である請求項1からのいずれか一項に記載の繊維強化熱可塑性樹脂シートの製造方法。 The method for producing a fiber-reinforced thermoplastic resin sheet according to any one of claims 1 to 5 , wherein the fiber-reinforced thermoplastic resin sheet precursor has a porosity of 10% or more and 90% or less. 前記繊維強化熱可塑性樹脂シートの空隙率が、0%以上5%以下である請求項1からのいずれか一項に記載の繊維強化熱可塑性樹脂シートの製造方法。 The method for producing a fiber-reinforced thermoplastic resin sheet according to any one of claims 1 to 6 , wherein the fiber-reinforced thermoplastic resin sheet has a porosity of 0% or more and 5% or less. 前記強化繊維シートが、開繊された強化繊維シートである請求項1からのいずれか一項に記載の繊維強化熱可塑性樹脂シートの製造方法。 The method for manufacturing a fiber-reinforced thermoplastic resin sheet according to any one of claims 1 to 7 , wherein the reinforcing fiber sheet is a spread reinforcing fiber sheet. 前記強化繊維シートが、強化繊維が一方向に配向している一方向シートである請求項1からのいずれか一項に記載の繊維強化熱可塑性樹脂シートの製造方法。 The method for producing a fiber-reinforced thermoplastic resin sheet according to any one of claims 1 to 8 , wherein the reinforcing fiber sheet is a unidirectional sheet in which reinforcing fibers are oriented in one direction. 前記強化繊維シートが、織物である請求項1からのいずれか一項に記載の繊維強化熱可塑性樹脂シートの製造方法。 The method for producing a fiber-reinforced thermoplastic resin sheet according to any one of claims 1 to 8 , wherein the reinforcing fiber sheet is a woven fabric. 前記工程1で得られた繊維強化熱可塑性樹脂シート前駆体をロールに巻き取り、前記工程2において、該ロールから繊維強化熱可塑性樹脂シート前駆体を引き出して使用する請求項1から10のいずれか一項に記載の繊維強化熱可塑性樹脂シートの製造方法。 Any one of claims 1 to 10 , wherein the fiber-reinforced thermoplastic resin sheet precursor obtained in step 1 is wound onto a roll, and in step 2, the fiber-reinforced thermoplastic resin sheet precursor is drawn out from the roll and used. The method for producing a fiber-reinforced thermoplastic resin sheet according to item 1. 記繊維強化熱可塑性樹脂シート前駆体の強化繊維の体積含有率(Vf)が、40~60%である請求項1から11のいずれか一項に記載の繊維強化熱可塑性樹脂シートの製造方法。 The method for producing a fiber-reinforced thermoplastic resin sheet according to any one of claims 1 to 11 , wherein the volume content (Vf) of reinforcing fibers in the fiber-reinforced thermoplastic resin sheet precursor is 40 to 60%. .
JP2020063785A 2020-03-31 2020-03-31 Method for manufacturing fiber reinforced thermoplastic resin sheet Active JP7454121B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020063785A JP7454121B2 (en) 2020-03-31 2020-03-31 Method for manufacturing fiber reinforced thermoplastic resin sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020063785A JP7454121B2 (en) 2020-03-31 2020-03-31 Method for manufacturing fiber reinforced thermoplastic resin sheet

Publications (2)

Publication Number Publication Date
JP2021160212A JP2021160212A (en) 2021-10-11
JP7454121B2 true JP7454121B2 (en) 2024-03-22

Family

ID=78002110

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020063785A Active JP7454121B2 (en) 2020-03-31 2020-03-31 Method for manufacturing fiber reinforced thermoplastic resin sheet

Country Status (1)

Country Link
JP (1) JP7454121B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012153839A (en) 2011-01-27 2012-08-16 Fukui Prefecture Molded article for flying object or windmill
JP2016172322A (en) 2015-03-16 2016-09-29 三菱レイヨン株式会社 Method for producing fiber-reinforced thermoplastic resin-molded article

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012153839A (en) 2011-01-27 2012-08-16 Fukui Prefecture Molded article for flying object or windmill
JP2016172322A (en) 2015-03-16 2016-09-29 三菱レイヨン株式会社 Method for producing fiber-reinforced thermoplastic resin-molded article

Also Published As

Publication number Publication date
JP2021160212A (en) 2021-10-11

Similar Documents

Publication Publication Date Title
CA2775053C (en) Thermoplastic composites and methods of making and using same
EP2939832B1 (en) Method for preparing continuous carbon fiber-reinforced thermoplastic prepreg
EP0271026A2 (en) Pultrasion apparatus, process and product
US20100075144A1 (en) Flexible composite prepreg materials
JP5447665B2 (en) Method and apparatus for manufacturing fiber reinforced resin sheet
KR20090091104A (en) Reinforced thermoplastic-resin multilayer sheet material, process for producing the same, and method of forming molded thermoplastic-resin composite material
JP7215419B2 (en) Method for producing coating-liquid-impregnated reinforced fiber fabric, sheet-like monolith, prepreg, prepreg tape, and fiber-reinforced composite material
JP2514412B2 (en) Resin impregnation method
JP2014105310A (en) Method of manufacturing prepreg
CN112566766B (en) Method for producing sheet-like reinforcing fiber bundle impregnated with thermoplastic resin
JP7243629B2 (en) Prepreg manufacturing method and manufacturing apparatus
CN106239937A (en) A kind of device preparing continuous fiber reinforced thermoplastic prepreg tape
JPWO2020040122A5 (en) Method for manufacturing a sheet-shaped reinforcing fiber bundle impregnated with a thermoplastic resin
JP7454121B2 (en) Method for manufacturing fiber reinforced thermoplastic resin sheet
JP5301132B2 (en) Prepreg manufacturing equipment
JPH0724830A (en) Production of thermoplastic unidirectional prepreg sheet
CN215750203U (en) Fiber/resin distribution controllable thermoplastic prepreg preparation system
JP5918171B2 (en) FRP fabric, molding material using FRP fabric, and method for manufacturing FRP fabric
JPH04229209A (en) Manufacture for composite material of carbon fiber-reinforced thermoplastic polymer
CN113574100A (en) Method for producing a fiber composite
JPS61229536A (en) Method and apparatus for producing fiber-reinforced resin sheet
CN115990963A (en) Improved resin fiber composite material pultrusion method and device
AU2010298260B2 (en) Thermoplastic composites and methods of making and using same
CN116214967A (en) Continuous fiber woven cloth reinforced thermoplastic sheet and preparation method and equipment thereof
JPH08134235A (en) Process and apparatus for continuously producing composite material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221114

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230913

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230926

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240208

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240221

R151 Written notification of patent or utility model registration

Ref document number: 7454121

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151