JP2014105310A - Method of manufacturing prepreg - Google Patents

Method of manufacturing prepreg Download PDF

Info

Publication number
JP2014105310A
JP2014105310A JP2012261144A JP2012261144A JP2014105310A JP 2014105310 A JP2014105310 A JP 2014105310A JP 2012261144 A JP2012261144 A JP 2012261144A JP 2012261144 A JP2012261144 A JP 2012261144A JP 2014105310 A JP2014105310 A JP 2014105310A
Authority
JP
Japan
Prior art keywords
prepreg
thermoplastic resin
pair
supports
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012261144A
Other languages
Japanese (ja)
Inventor
Hajime Okutsu
肇 奥津
Hiroshi Iwata
紘史 岩田
Nobuyuki Yamamoto
伸之 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP2012261144A priority Critical patent/JP2014105310A/en
Publication of JP2014105310A publication Critical patent/JP2014105310A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method of manufacturing a prepreg.SOLUTION: There is provided a method of manufacturing a prepreg containing a thermoplastic resin and reinforced fiber by arranging the reinforced fiber to have deviations of weight distribution in a width direction of 10% or less, laminating the thermoplastic resin on the reinforced fiber, further sandwiching it with a pair of running supports faced with each other, pre-heating to a temperature with which a zero shear viscosity of the thermoplastic resin becomes 40 to 400 Pa s and applying a press with a linear pressure of 20 to 50 kg/cm at the temperature with which the zero shear viscosity of the thermoplastic resin becomes 20 to 400 Pa s.

Description

ダブルベルト法による高品質なプリプレグを得るための最適な製造条件を提供することにある。   The object is to provide optimum manufacturing conditions for obtaining a high-quality prepreg by the double belt method.

繊維強化複合材料は、軽量かつ高強度の特性から様々な用途で用いられており、長繊維で強化された複合材料は、軽量かつ高強度に加え、高剛性の特性を有し、金属材料代替として飛行機、船舶、鉄道車両、自動車、ゴルフクラブ、テニスラケットなど、スポーツ・レジャー用途から自動車や航空機等の産業用途まで、幅広く用いられている。   Fiber reinforced composite materials are used in various applications because of their light weight and high strength properties. Composite materials reinforced with long fibers have light weight and high strength, as well as high rigidity properties. It is widely used from sports and leisure applications to industrial applications such as automobiles and aircraft, such as airplanes, ships, railway vehicles, automobiles, golf clubs, and tennis rackets.

これら多くの用途の中でも特に近年、エネルギー枯渇の懸念による燃費向上のニーズや電気自動車、ハイブリッド自動車の台頭を背景に、車体軽量化に大きく貢献し得る複合材料使用が自動車分野において爆発的に伸びると期待されている。   Among these many applications, especially in recent years, the use of composite materials that can make a significant contribution to reducing the weight of automobiles will explode in the automotive field against the background of the need for improved fuel consumption due to concerns about energy depletion and the rise of electric vehicles and hybrid vehicles. Expected.

しかし、自動車分野において複合材料を使用するためには課題がある。即ち、従来の熱硬化性樹脂と強化繊維からなるプリプレグを積層させて作る複合材料では、部材への成形加工性が著しく悪く、自動車部材で必須となる高い生産性と低い加工コストが達成できない。   However, there are problems in using composite materials in the automotive field. That is, in a composite material made by laminating a prepreg composed of a conventional thermosetting resin and reinforcing fibers, the molding processability to a member is remarkably poor, and high productivity and low processing cost essential for an automobile member cannot be achieved.

そこで近年、後成形が容易な熱可塑性樹脂を用いた複合材料が市場から期待されている。熱可塑性樹脂を用いたプリプレグは熱可塑性樹脂を加熱溶融させて強化繊維束中に含浸させる製造方法が一般的だが、加熱溶融させた熱可塑性樹脂の粘度は従来の熱硬化プリプレグの含浸時における熱硬化樹脂の粘度に比べて著しく高く、分子量分布も両者では大きく異なるため、強化繊維への含浸挙動が全く異なる。そのため、ボイド(空隙)や熱可塑性樹脂が偏った部分が実質的に無く、強化繊維が良好に分散した高品質熱可塑プリプレグを製造するためには従来の技術の延長では困難であり、新たな製造装置や製造方法が必要となる。このような課題に対し、例えば熱可塑プリプレグの製造装置として特許文献1に記載されているプレス装置がある。   Therefore, in recent years, composite materials using thermoplastic resins that can be easily molded later are expected from the market. A prepreg using a thermoplastic resin is generally produced by a method in which a thermoplastic resin is melted by heating and impregnated in a reinforcing fiber bundle. However, the viscosity of a thermoplastic resin that has been melted by heating is the heat at the time of impregnation with a conventional thermosetting prepreg. Since the viscosity of the cured resin is significantly higher than that of the cured resin and the molecular weight distribution is greatly different between the two, the impregnation behavior into the reinforcing fiber is completely different. Therefore, it is difficult to extend a conventional technique to produce a high-quality thermoplastic prepreg in which voids (voids) and thermoplastic resin are not substantially biased, and the reinforcing fibers are well dispersed. Manufacturing equipment and manufacturing methods are required. For such a problem, for example, there is a press apparatus described in Patent Document 1 as a manufacturing apparatus for a thermoplastic prepreg.

特許第3876276号Patent No. 3876276

この文献では、熱可塑性樹脂のフィルムを強化繊維束に熱プレス法により連続的に含浸させる例が開示されている。しかし、プリプレグ製造装置の設定温度やプレス圧に関しては具体的に開示されているものの、プリプレグの品質として最も重要となる含浸の度合いやプリプレグ中の強化繊維の分散度合いに関する評価が目視による評価なため、結局良好な品質のプリプレグが得られたか否かが不明である。また本発明者らがダブルベルトプレス装置を用いて実際に熱可塑プリプレグを生産したところ、得られたプリプレグは強化繊維に沿って局部的に裂けたり、裂けていない場合でも強化繊維に沿って凹みが多く含まれていたりして、品質として満足なものが安定して得られない事が分かった。このような熱可塑プリプレグは積層されて成形体へと加工される際に層間へのボイド混入の要因となり得るため、早急な改善が望まれる。したがって、更なる熱可塑性プリプレグの生産技術向上のためには、プリプレグの品質に影響の大きいボイドの割合と強化繊維の含有状態の定量化を進め、その数値に根ざしたプリプレグ製造条件の最適化と安定的な生産技術が求められている。本発明は上記の点を鑑みてなされたものであり、高品質な熱可塑プリプレグを得るための最適な製造条件を提供することにある。   This document discloses an example in which a thermoplastic fiber film is continuously impregnated into a reinforcing fiber bundle by a hot press method. However, although the set temperature and press pressure of the prepreg manufacturing apparatus are specifically disclosed, the evaluation regarding the degree of impregnation which is the most important as the quality of the prepreg and the degree of dispersion of the reinforcing fibers in the prepreg is a visual evaluation. In the end, it is unclear whether or not a good quality prepreg was obtained. Further, when the present inventors actually produced a thermoplastic prepreg using a double belt press apparatus, the obtained prepreg was torn locally along the reinforcing fiber, or even if it was not torn, it was recessed along the reinforcing fiber. As a result, it was found that satisfactory quality could not be obtained stably. Since such a thermoplastic prepreg can be a factor of void mixing between layers when it is laminated and processed into a molded body, an immediate improvement is desired. Therefore, in order to further improve the production technology of thermoplastic prepregs, we will proceed with quantification of the proportion of voids that have a large impact on the quality of the prepreg and the content of reinforcing fibers, and optimization of prepreg production conditions rooted in those values. Stable production technology is required. The present invention has been made in view of the above points, and provides an optimum manufacturing condition for obtaining a high-quality thermoplastic prepreg.

本発明は、熱可塑性樹脂と強化繊維とを含むプリプレグの製造方法であって、
前記強化繊維を強化繊維の目付分布の幅方向の振れ幅が10%以下になるよう引き揃え、
前記強化繊維に、熱可塑性樹脂を積層し、
さらに、相対して走行する1対の支持体で挟んで、
熱可塑性樹脂のゼロせん断粘度が40〜400Pa・secとなる温度まで予熱し、
引き続き、熱可塑性樹脂のゼロせん断粘度が20〜400Pa・secとなる温度で、線圧20〜50kg/cmのプレスを施す、プリプレグの製造方法である。
The present invention is a method for producing a prepreg comprising a thermoplastic resin and reinforcing fibers,
The reinforcing fibers are aligned so that the fluctuation width in the width direction of the basis weight distribution of the reinforcing fibers is 10% or less,
Laminating a thermoplastic resin on the reinforcing fiber,
Furthermore, it is sandwiched between a pair of supports that run relative to each other,
Preheat to a temperature at which the zero shear viscosity of the thermoplastic resin is 40 to 400 Pa · sec,
Then, it is the manufacturing method of a prepreg which performs the press of linear pressure 20-50 kg / cm at the temperature from which the zero shear viscosity of a thermoplastic resin will be 20-400 Pa.sec.

本発明によれば、ボイドや熱可塑性樹脂のみが偏って存在する部分のない、強化繊維束が均一に分散した高品質の熱可塑性樹脂プリプレグの製造方法を提供できる。   ADVANTAGE OF THE INVENTION According to this invention, the manufacturing method of the high quality thermoplastic resin prepreg with which the reinforcing fiber bundle was uniformly disperse | distributed without the part in which only a void and a thermoplastic resin exist unevenly can be provided.

本発明のプリプレグの製造方法で用いる製造装置の一例を示す図である。It is a figure which shows an example of the manufacturing apparatus used with the manufacturing method of the prepreg of this invention.

[強化繊維]
以下、本発明を詳細に説明する。
本発明のプリプレグの製造方法に用いることができる強化繊維としては、炭素繊維、黒鉛繊維、アラミド繊維、炭化ケイ素繊維、アルミナ繊維、ボロン繊維、タングステンカーバイド繊維、ガラス繊維などが挙げられる。これらは1種単独で使用してもよいし、2種以上を組み合わせて使用してもよい。また、連続繊維であることが好ましいが、繊維強化複合材料の使用目的に応じた様々なものが使用できる。これらの中でも比強度、比弾性率に優れる点で、炭素繊維や黒鉛繊維が好適である。
[Reinforcing fiber]
Hereinafter, the present invention will be described in detail.
Examples of reinforcing fibers that can be used in the method for producing a prepreg of the present invention include carbon fibers, graphite fibers, aramid fibers, silicon carbide fibers, alumina fibers, boron fibers, tungsten carbide fibers, and glass fibers. These may be used individually by 1 type and may be used in combination of 2 or more type. Moreover, although it is preferable that it is a continuous fiber, various things according to the intended purpose of a fiber reinforced composite material can be used. Among these, carbon fiber and graphite fiber are preferable because they are excellent in specific strength and specific elastic modulus.

炭素繊維や黒鉛繊維としては、用途に応じてあらゆる種類の炭素繊維や黒鉛繊維を用いることが可能であるが、引張伸度1.5%以上の高強度炭素繊維が繊維強化複合材料の強度発現のため適している。中でも、引張強度4.4GPa以上、引張伸度1.7%以上の高強度高伸度炭素繊維がより好ましく、さらに引張伸度1.9%以上の高強度高伸度炭素繊維が最も適している。また、炭素繊維や黒鉛繊維は他の強化繊維を混合して用いてもよい。   As carbon fiber and graphite fiber, all kinds of carbon fiber and graphite fiber can be used depending on the application, but high-strength carbon fiber with a tensile elongation of 1.5% or more shows strength of fiber-reinforced composite material. Suitable for. Among them, a high strength high elongation carbon fiber having a tensile strength of 4.4 GPa or more and a tensile elongation of 1.7% or more is more preferable, and a high strength high elongation carbon fiber having a tensile elongation of 1.9% or more is most suitable. Yes. Carbon fibers and graphite fibers may be used in combination with other reinforcing fibers.

本発明のプリプレグの製造方法に用いることができる強化繊維の形態としては、強化繊維を一方向に引き揃えた形態、トウの形態、またノンクリンプファブリックの形態などが挙げられる。中でも強度発現の点で、連続繊維を一方向に引き揃えた形態が好ましい。   Examples of the form of the reinforcing fiber that can be used in the method for producing the prepreg of the present invention include a form in which the reinforcing fibers are aligned in one direction, a tow form, and a non-crimp fabric form. Among these, a form in which continuous fibers are aligned in one direction is preferable in terms of strength development.

[熱可塑性樹脂]
本発明のプリプレグの製造方法に用いることができる熱可塑性樹脂としては、特に制限はないが、耐衝撃性に優れ、かつ、成形が容易である熱可塑性樹脂が好ましい。そのような熱可塑性樹脂としては、例えば、ポリエチレンテレフタレート、ポリブチレンテレフタレート、液晶ポリエステル等のポリエステルや、ポリエチレン、ポリプロピレン、ポリブチレン等のポリオレフィンや、ポリオキシメチレン、ポリアミド、ポリカーボネート、ポリメチレンメタクリレート、ポリ塩化ビニル、ポリフェニレンスルフィド、ポリフェニレンエーテル、ポリイミド、ポリアミドイミド、ポリエーテルイミド、ポリスルホン、ポリエーテルスルホン、ポリエーテルケトン、ポリエーテルエーテルケトン、フェノール(ノボラック型)等やこれらの共重合体、変性体、および2種類以上ブレンドした樹脂等が挙げられる。また、更に耐衝撃性向上のために、上記樹脂にエラストマー、もしくは、ゴム成分を添加した樹脂であっても良い。これらの樹脂は、2種以上併用しても良い。
[Thermoplastic resin]
The thermoplastic resin that can be used in the prepreg production method of the present invention is not particularly limited, but a thermoplastic resin that is excellent in impact resistance and easy to mold is preferable. Examples of such thermoplastic resins include polyesters such as polyethylene terephthalate, polybutylene terephthalate, and liquid crystal polyester, polyolefins such as polyethylene, polypropylene, and polybutylene, polyoxymethylene, polyamide, polycarbonate, polymethylene methacrylate, and polyvinyl chloride. , Polyphenylene sulfide, polyphenylene ether, polyimide, polyamideimide, polyetherimide, polysulfone, polyethersulfone, polyetherketone, polyetheretherketone, phenol (novolac type) and their copolymers, modified products, and two types The resin blended above is mentioned. Further, in order to further improve the impact resistance, an elastomer or a resin in which a rubber component is added to the above resin may be used. Two or more of these resins may be used in combination.

[製造装置]
図1は本発明で用いられる製造装置の一例を模式的に示している。上下に一対の支持体(エンドレスベルト1,2)が配され、それらの各エンドレスベルト1,2は図示せぬフレームに設置された前後一対の駆動ロール3,4及び従動ロール5,6のそれぞれに掛け回されている。上下に配された前記駆動ロール3,4は単一の駆動モーター7によってチェーン8を介して同調して駆動され、上下のエンドレスベルト1,2の対面領域では両ベルト1,2を同一方向に走行するようにしている。
[manufacturing device]
FIG. 1 schematically shows an example of a manufacturing apparatus used in the present invention. A pair of support bodies (endless belts 1 and 2) are arranged above and below, and each of these endless belts 1 and 2 is a pair of front and rear drive rolls 3 and 4 and driven rolls 5 and 6 installed on a frame (not shown). It is hung around. The upper and lower drive rolls 3 and 4 are driven synchronously via a chain 8 by a single drive motor 7, and in the facing region of the upper and lower endless belts 1 and 2, both belts 1 and 2 are moved in the same direction. I try to run.

前記支持体の材質としては特に制限はないが、一般に熱可塑性樹脂を溶融させる温度が、200℃以上であることから、耐熱性や剛性の観点から厚み1mm以上の銅、鉄、ステンレスなどの金属、あるいは厚み0.2mm以上のPTFE含有ガラスクロスなどが材質として好ましい。   Although there is no restriction | limiting in particular as a material of the said support body, Since the temperature which fuses a thermoplastic resin is generally 200 degreeC or more, it is metal, such as copper, iron, stainless steel of thickness 1mm or more from a heat resistant and rigid viewpoint. Alternatively, a PTFE-containing glass cloth having a thickness of 0.2 mm or more is preferable as the material.

また前記従動ロール5,6にはシリンダーが具備されており、エンドレスベルト1、2を所要の張力に調整する機構が備わっている。更に、前記従動ロール5、6は図示せぬ加熱手段を内蔵しており、上下エンドレスベルト1、2に対して予備加熱できるようにしている。上記上下一対の駆動ロール3,4は、下部の駆動ロール4に図示せぬ減速機を介して駆動モーター7に直結されている。   The driven rolls 5 and 6 are provided with cylinders and have a mechanism for adjusting the endless belts 1 and 2 to a required tension. Further, the driven rolls 5 and 6 incorporate heating means (not shown) so that the upper and lower endless belts 1 and 2 can be preheated. The pair of upper and lower drive rolls 3 and 4 are directly connected to the drive motor 7 via a reduction gear (not shown) to the lower drive roll 4.

前記従動ロール5,6にて相対した上下エンドレスベルト1,2は予備加熱装置9により予熱される。予備加熱装置9の加熱方式としては特に制限はないが、熱ロールなどの接触式や赤外線、カートリッジヒーターを鋳込んだアルミヒータ、誘導加熱などの非接触式などを用いる事ができる。   The upper and lower endless belts 1 and 2 opposed by the driven rolls 5 and 6 are preheated by a preheating device 9. Although there is no restriction | limiting in particular as a heating system of the preheating apparatus 9, A non-contact system, such as a contact type, such as a heat roll, infrared rays, the aluminum heater which cast the cartridge heater, induction heating, etc. can be used.

[プリプレグの製造]
次に、プリプレグの製造の実施形態について具体的に説明する。
本発明のプリプレグの製造方法では、図1で示す製造装置で熱可塑樹脂と強化繊維が積層される前工程として、強化繊維は少なくとも3本以上のスプレッダーバーを用いて引き揃えられる。スプレッダーバーの材質は特に制限がないが、強化繊維による磨耗を防ぐため金属がよく用いられ、表面仕上げも鏡面に仕上げたもの、梨地状に荒らしたもの、めっきを施したものなどが好適に用いられる。スプレッダーバーの直径は剛性の観点から10mm以上が好ましく、3本以上の互いのバーの配置は50mm以上離してある事が十分な開繊効果を得るために好ましい。開繊バーへ導く際の強化繊維の張力は、開繊効果と毛羽発生の観点から、強化繊維1束あたりの張力が100〜500g/強化繊維束となるよう調整するのが好ましい。
[Manufacture of prepreg]
Next, an embodiment of manufacturing a prepreg will be specifically described.
In the prepreg manufacturing method of the present invention, the reinforcing fibers are aligned using at least three or more spreader bars as a pre-process for laminating the thermoplastic resin and the reinforcing fibers with the manufacturing apparatus shown in FIG. The material of the spreader bar is not particularly limited, but metal is often used to prevent abrasion due to reinforcing fibers, and the surface finish is also a mirror-finished surface, roughened surface, or plated. It is done. The diameter of the spreader bar is preferably 10 mm or more from the viewpoint of rigidity, and the arrangement of three or more bars is preferably separated by 50 mm or more in order to obtain a sufficient opening effect. The tension of the reinforcing fibers at the time of guiding to the opening bar is preferably adjusted so that the tension per reinforcing fiber bundle is 100 to 500 g / reinforcing fiber bundle from the viewpoint of the opening effect and generation of fluff.

次に開繊された強化繊維束と熱可塑性樹脂とが図1で示す製造装置へ導かれながら互いに積層される。本発明では強化繊維束と熱可塑性樹脂とを積層する方法としては特に限定されず、図1に示すような予めフィルム状に成形された熱可塑性樹脂と強化繊維束を製造装置の入り口で連続的に重ね合わせる方式や、走行する強化繊維束に溶融させた熱可塑性樹脂を塗布する方法などが使用できる。   Next, the opened reinforcing fiber bundle and the thermoplastic resin are laminated to each other while being guided to the manufacturing apparatus shown in FIG. In the present invention, the method for laminating the reinforcing fiber bundle and the thermoplastic resin is not particularly limited, and the thermoplastic resin and the reinforcing fiber bundle previously formed into a film shape as shown in FIG. And a method of applying a molten thermoplastic resin to the traveling reinforcing fiber bundle can be used.

強化繊維に熱可塑性樹脂を塗布する方法としては特に限定されず、公知の方法を使用できる。具体的には、タッチロール方式、ディップ方式、ダイ方式、ディスペンサー方式などが挙げられる。この中でも、可撓性支持体への塗布の直前まで塗布液が空気にさらされることがないため樹脂組成物の変化がないこと、形成された塗布膜の幅方向の膜厚均一性に優れていること、および塗布膜形成面の平滑性に優れていること等の理由によりダイ方式が好ましい。   It does not specifically limit as a method of apply | coating a thermoplastic resin to a reinforced fiber, A well-known method can be used. Specifically, a touch roll method, a dip method, a die method, a dispenser method, and the like can be given. Among these, since the coating liquid is not exposed to air until immediately before application to the flexible support, there is no change in the resin composition, and excellent thickness uniformity in the width direction of the formed coating film. The die method is preferable because it has excellent smoothness on the coating film forming surface.

フィルム状に成形された熱可塑性樹脂と強化繊維を製造装置の入り口で連続的に重ね合わせる方式の実施形態においては、被加工品である強化繊維及びフィルム状に成形された熱可塑性樹脂フィルムが強化繊維を上側又は下側、さらには上下両側から挟み込むよう積層されて上下の従動ロール5,6側から導入され、上下の駆動ロール3,4側から送り出される。   In the embodiment of the method in which the thermoplastic resin and the reinforcing fiber formed into a film are continuously overlapped at the entrance of the manufacturing apparatus, the reinforcing fiber that is a workpiece and the thermoplastic resin film that is formed into a film are reinforced. The fibers are stacked so as to be sandwiched from the upper side or the lower side, and further from both the upper and lower sides, introduced from the upper and lower driven rolls 5 and 6 side, and fed from the upper and lower driving rolls 3 and 4 side.

従動ロールへの導入時においては、熱プレス工程までの効率的な予熱のため、従動ロール5、6を加熱しておくのが一般的であるが、フィルム状の熱可塑性樹脂は従動ロールと接すると極めて短時間で溶融するため、熱可塑樹脂とエンドレスベルトとの接触点で空気を噛み込むと、そのまま抜けずに熱プレス工程までいってしまい、プレス工程にて圧密化された強化繊維の隙間に沿ってエアがプレスロールを潜り抜けるため、強化繊維に沿った凹みや裂け目が生じる事が原因であることを突き止めた。   At the time of introduction to the driven roll, the driven rolls 5 and 6 are generally heated for efficient preheating up to the hot press process. However, the film-like thermoplastic resin is in contact with the driven roll. Then, since it melts in a very short time, if air is caught at the contact point between the thermoplastic resin and the endless belt, it will not go out and it will go to the hot pressing process, and the gap between the reinforcing fibers consolidated in the pressing process As the air passes through the press roll along the surface, it has been found that the cause is a dent or tear along the reinforcing fiber.

したがって、良好な品質のプリプレグを安定的に得るためには、従動ロールへの導入時のフィルム状の熱可塑性樹脂の張力を、10〜100gとすることが好ましく、強化繊維は張力を、100〜500g/繊維束あたりの範囲に調整しながら少なくとも3本のスプレッダーバーを用いて引き揃える事が好ましい。そして支持体との抱き角αが10°以上となるようにフィルム状の熱可塑性樹脂及びシート状強化繊維とを供給することが好ましい。抱き角αはガイドロール15の位置を調整する事で任意に設定可能で有る。このような方法によれば、供給時にエアを噛み込む事がないため、得られる熱可塑プリプレグが裂けたり、繊維が乱れてしまうことがない。   Therefore, in order to stably obtain a good quality prepreg, the tension of the film-like thermoplastic resin at the time of introduction into the driven roll is preferably 10 to 100 g, and the reinforcing fiber has a tension of 100 to 100 g. It is preferable to align using at least three spreader bars while adjusting the range per 500 g / fiber bundle. And it is preferable to supply a film-like thermoplastic resin and a sheet-like reinforcing fiber so that the holding angle (alpha) with a support body may be 10 degrees or more. The holding angle α can be arbitrarily set by adjusting the position of the guide roll 15. According to such a method, since air is not caught at the time of supply, the obtained thermoplastic prepreg is not torn or the fibers are not disturbed.

次に積層された強化繊維と熱可塑性樹脂とは図1で示す製造装置の対面ベルト領域において、一方向に駆動回転する上下のエンドレスベルト1,2に挟まれた状態で直線状に移送される間に、前記エンドレスベルト1,2を介して温度計10によって制御されている予熱ヒータ9により所定の温度にまで予熱される。予熱ヒータの方式としては特に制限がなく、加熱ロールを多段でプレスする方式、赤外線による輻射ヒータ、カートリッジ式ヒータをアルミ等の金属ブロック内部に装着させた輻射ヒータ、誘導加熱による輻射ヒータなどの輻射方式などが好適に用いられる。これらヒータにより、熱可塑性樹脂はそのゼロせん断粘度が40〜400Pa・secとなるまで予熱される。熱可塑性樹脂のゼロせん断粘度は一般的なレオメーター等の測定機器を用いて別途把握する事が可能である。   Next, the laminated reinforcing fibers and the thermoplastic resin are linearly transferred in a state of being sandwiched between upper and lower endless belts 1 and 2 that are driven and rotated in one direction in the facing belt region of the manufacturing apparatus shown in FIG. In the meantime, it is preheated to a predetermined temperature by the preheater 9 controlled by the thermometer 10 through the endless belts 1 and 2. There are no particular restrictions on the preheater system, and there are no restrictions, such as a system in which heating rolls are pressed in multiple stages, an infrared radiation heater, a radiation heater with a cartridge heater mounted inside a metal block such as aluminum, and an induction heating radiation heater. A method or the like is preferably used. By these heaters, the thermoplastic resin is preheated until the zero shear viscosity becomes 40 to 400 Pa · sec. The zero shear viscosity of the thermoplastic resin can be separately grasped using a measuring instrument such as a general rheometer.

さらに図1で示すシリンダー12により加圧されたプレスロール対11によりベルトを介して上下から加熱加圧される。プレスロールの直径及び本数は特に制限はないが、プレス圧力に耐えうる剛性確保の観点から、直径は100mm以上あることが好ましい。プレスロールの本数は少なくとも上下1対あれば良いが、より高速な生産速度を狙う場合は、多段にする事で対応可能である。プレスロールの加熱機構としては特に制限がなく、誘導加熱方式、熱媒を内部に流通させる方式などがある。   Furthermore, it is heated and pressurized from above and below via a belt by a press roll pair 11 pressurized by a cylinder 12 shown in FIG. The diameter and number of the press rolls are not particularly limited, but the diameter is preferably 100 mm or more from the viewpoint of securing rigidity capable of withstanding the pressing pressure. The number of press rolls may be at least one pair at the top and bottom, but when aiming for a higher production speed, it can be handled by making it multi-stage. The heating mechanism of the press roll is not particularly limited, and includes an induction heating method, a method of circulating a heat medium, and the like.

プレスロールの温度設定は先述の通り、予め測定された熱可塑性樹脂のゼロせん断粘度が20〜400Pa・secになる温度になるよう、設定する。プレスロールの線圧は強化繊維束へ溶融状態にある熱可塑性樹脂を十分に含浸させるために20kg/cm以上であることが好ましい。一方、プレスロールの線圧が強すぎると、熱可塑性プリプレグの断面内に存在するボイドの割合を1%以下にする事はできるものの、線圧が過大であると溶融した熱可塑性樹脂が強化繊維束の内部へ含浸する際にショートパスが起こり、得られた熱可塑性プリプレグの断面を観察すると熱可塑性樹脂と強化繊維束が互いに集まったような不均一構造を形成する。このため、断面の厚み方向及び幅方向における強化繊維の含有率の振れ幅が20%以内であるような高品質の熱可塑性プリプレグを得るためには、プレスロールの線圧は50kg/cm以下であることが好ましい。   As described above, the temperature setting of the press roll is set so that the zero shear viscosity of the thermoplastic resin measured in advance is 20 to 400 Pa · sec. The linear pressure of the press roll is preferably 20 kg / cm or more in order to sufficiently impregnate the reinforcing fiber bundle with the thermoplastic resin in a molten state. On the other hand, if the linear pressure of the press roll is too strong, the percentage of voids present in the cross section of the thermoplastic prepreg can be reduced to 1% or less, but if the linear pressure is excessive, the molten thermoplastic resin is reinforced fiber. When the inside of the bundle is impregnated, a short path occurs, and when the cross section of the obtained thermoplastic prepreg is observed, a heterogeneous structure is formed in which the thermoplastic resin and the reinforcing fiber bundle are gathered together. For this reason, in order to obtain a high-quality thermoplastic prepreg in which the fluctuation width of the reinforcing fiber content in the thickness direction and the width direction of the cross section is within 20%, the linear pressure of the press roll is 50 kg / cm or less. Preferably there is.

その後冷却ロール13により冷却され、剥離ロール14によりベルトと該積層体は剥離することで熱可塑プリプレグを得る事ができる。冷却ロールは内部に水や油などの冷媒を流通させる方式が一般的である。設定温度は熱可塑性樹脂のTg以下であれば特に制限はないが、プレスロールにて高温に加熱された上下のエンドレスベルトをあまりに温度差の大きな冷却を行うとエンドレスベルトの材料劣化につながるため、冷却ロールの設定温度はプレスロールの設定温度から400℃を引いた値よりも大きな温度である事が好ましい。   Thereafter, the belt is cooled by the cooling roll 13 and the belt and the laminate are peeled off by the peeling roll 14, whereby a thermoplastic prepreg can be obtained. The cooling roll generally has a system in which a coolant such as water or oil is circulated. If the set temperature is equal to or lower than the Tg of the thermoplastic resin, there is no particular limitation, but if the upper and lower endless belts heated to a high temperature with a press roll are cooled with a large temperature difference, the endless belt material will deteriorate. The set temperature of the cooling roll is preferably higher than the value obtained by subtracting 400 ° C. from the set temperature of the press roll.

以上説明したように、本発明によれば、ボイド(空隙)や熱可塑性樹脂が偏った部分が実質的に無く、強化繊維が良好に分散した高品質なプリプレグを安定的に製造するための方法を提供できる。   As described above, according to the present invention, a method for stably manufacturing a high-quality prepreg in which voids (voids) and thermoplastic resin are substantially free from uneven portions and in which reinforcing fibers are well dispersed. Can provide.

以下、本発明について実施例を挙げて具体的に説明する。ただし、本発明はこれらに限定されるものではない。
[プリプレグ断面におけるボイド及び繊維含有率の割合の計算]
プリプレグの断面の任意の部分における0.01mmあたりのボイドの割合及び繊維含有率は以下の手順にて計算した。
まず、得られたプリプレグの周囲にエポキシ系接着剤を塗布し、室温で硬化させて顕微鏡観察用サンプルを作成した。得られた該サンプルを湿式カッターで切断後、スラリー研磨機にて切断面を研磨した後に、倍率300倍の光学顕微鏡(キーエンス社製、製品名:マイクロスコープVHX−100)で断面画像をデジタル撮影した。
得られた断面画像データを画像処理ソフト(三谷商事製、製品名:WinROOF)にてボイド部分を2値化処理することで、断面内の任意の部分における0.01mmあたりのボイドの割合を計算した。更に、得られた該断面画像データの強化繊維部分を2値化処理し、断面内における幅方向及び厚み方向の強化繊維の分布を数値化する事で、断面内の任意の部分における0.01mmあたり、繊維含有率が3%以下である樹脂リッチ部分の割合が0.1%以下であるかどうかを計算した。
Hereinafter, the present invention will be specifically described with reference to examples. However, the present invention is not limited to these.
[Calculation of void and fiber content ratio in prepreg cross section]
The ratio of voids per 0.01 mm 2 and the fiber content in an arbitrary part of the prepreg cross section were calculated by the following procedure.
First, an epoxy adhesive was applied around the obtained prepreg and cured at room temperature to prepare a sample for microscope observation. After cutting the obtained sample with a wet cutter and polishing the cut surface with a slurry polisher, a cross-sectional image is digitally photographed with an optical microscope (product name: Microscope VHX-100, manufactured by Keyence Corporation) with a magnification of 300 times. did.
By binarizing the void part with the image processing software (product name: WinROOF, manufactured by Mitani Corporation) for the obtained cross-sectional image data, the ratio of voids per 0.01 mm 2 in an arbitrary part in the cross section is obtained. Calculated. Further, the reinforcing fiber portion of the obtained cross-sectional image data is binarized, and the distribution of the reinforcing fibers in the width direction and the thickness direction in the cross section is digitized, whereby 0.01 mm in an arbitrary portion in the cross section. It was calculated whether the ratio of the resin rich portion having a fiber content of 3% or less per 2 was 0.1% or less.

[実施例1]
図1に示す装置を用い、プリプレグを製造した。
強化繊維として炭素繊維(三菱レイヨン株式会社製、製品名:TR50S12L、目付:800mg/m、引張強度:4.90GPa、引張弾性率:240GPa)の20束を用い、1束あたり200gの張力にて保ちながら1m/分の速度で走行させながら、4本のスプレッダーバーにて擦過させることで一方向に引き揃え、繊維1束あたりの幅が10mm、目付100mg/mのシート状とした強化繊維シートを用いた。マイクロメーターを用いてこの強化繊維シートの目付分布を幅方向に20点、長手方向に10点測定したところ、±8%の範囲内に収まっていた。
[Example 1]
A prepreg was manufactured using the apparatus shown in FIG.
20 bundles of carbon fiber (manufactured by Mitsubishi Rayon Co., Ltd., product name: TR50S12L, basis weight: 800 mg / m, tensile strength: 4.90 GPa, tensile elastic modulus: 240 GPa) are used as reinforcing fibers at a tension of 200 g per bundle. Reinforced fiber sheet with a width of 10 mm and a fabric weight of 100 mg / m, aligned in one direction by rubbing with four spreader bars while running at a speed of 1 m / min. Was used. When the basis weight distribution of this reinforcing fiber sheet was measured using a micrometer at 20 points in the width direction and 10 points in the longitudinal direction, it was within a range of ± 8%.

次に、厚さ38μmのフィルムとした変性ポリプロピレン(三菱化学社製:モディック(登録商標)P958)フィルムにて該強化繊維シートを上下から挟み込んだ積層状態で、1m/分で走行する図1に示す製造装置へ、抱き角αを20°として導入した。
製造装置の予熱ヒータ9は赤外線加熱方式であり、予熱温度は温度計10が250℃を示す温度に設定した。尚、用いた変性ポリプロピレン樹脂のゼロせん断粘度を別途レオメーターにより測定したところ、250℃においては200Pa・secであった。
Next, in FIG. 1 which runs at 1 m / min in a laminated state in which the reinforcing fiber sheet is sandwiched from above and below with a modified polypropylene (Mitsubishi Chemical Corporation: Modic (registered trademark) P958) film having a thickness of 38 μm. The hugging angle α was introduced to the shown manufacturing apparatus at 20 °.
The preheating heater 9 of the manufacturing apparatus is an infrared heating method, and the preheating temperature is set to a temperature at which the thermometer 10 indicates 250 ° C. In addition, when the zero shear viscosity of the modified polypropylene resin used was separately measured with a rheometer, it was 200 Pa · sec at 250 ° C.

製造装置のプレスロールは誘導加熱方式であり、プレスロールの設定温度は250℃に設定した。また、プレスロールの線圧は33kgf/cmに設定した。   The press roll of the manufacturing apparatus was an induction heating method, and the set temperature of the press roll was set to 250 ° C. The linear pressure of the press roll was set to 33 kgf / cm.

さらに製造装置の冷却ロールは水冷式であり、温度は80℃、線圧は20kgf/cmに設定した。
以上のような工程を経て、プリプレグを得た。
Furthermore, the cooling roll of the manufacturing apparatus was a water cooling type, the temperature was set to 80 ° C., and the linear pressure was set to 20 kgf / cm.
A prepreg was obtained through the above steps.

得られたプリプレグの外観を目視にて確認したところ、毛羽がなく、ドライトウも無かった。また4時間以上の連続運転において、得られたプリプレグには強化繊維に沿った裂け目や繊維の乱れは見られなかった。さらに、プリプレグの断面を切り出して顕微鏡撮影し、画像処理ソフトを用いて断面の任意の部分0.01mmにおけるボイドの割合を計算したところ0.28%であった。また、同じ顕微鏡画像を用いて繊維含有率が3%以下の樹脂リッチ部分の割合を計算したところ0.0%であった。 When the appearance of the obtained prepreg was confirmed by visual observation, there was no fluff and no drought. Further, in the continuous operation for 4 hours or more, the resulting prepreg did not show any tears or fiber disturbance along the reinforcing fibers. Further, the cross section of the prepreg was cut out and photographed under a microscope, and the void ratio in an arbitrary part of the cross section of 0.01 mm 2 was calculated using image processing software. As a result, it was 0.28%. Moreover, it was 0.0% when the ratio of the resin rich part whose fiber content rate is 3% or less was calculated using the same microscope image.

[実施例2〜3]
予熱温度T1、プレスロール温度T2、プレスロール設定圧力を変えた以外は実施例1と同様の方法にて熱可塑プリプレグを得た。具体条件は表1に示す。
[Examples 2-3]
A thermoplastic prepreg was obtained in the same manner as in Example 1 except that the preheating temperature T1, the press roll temperature T2, and the press roll set pressure were changed. Specific conditions are shown in Table 1.

[比較例1〜3]
予熱温度T1、プレスロール温度T2、プレスロール設定圧力を変えた以外は実施例1と同様の方法にて熱可塑プリプレグを得た。具体条件は表1に示す。
[Comparative Examples 1-3]
A thermoplastic prepreg was obtained in the same manner as in Example 1 except that the preheating temperature T1, the press roll temperature T2, and the press roll set pressure were changed. Specific conditions are shown in Table 1.

[比較例4]
フィルムにて該強化繊維を上下から挟み込んだ状態で図1で示す製造装置へと導入し、抱き角αを5°とした以外は実施例1と同様の方法にてプリプレグを得た。4時間の連続運転において、製造装置の剥離ロール14においてベルトから剥離してプリプレグが出てくる際、強化繊維に沿って1m以上も裂けてしまった箇所が5箇所認められ、製品として満足できるものではなかった。
[Comparative Example 4]
A prepreg was obtained in the same manner as in Example 1 except that the reinforcing fibers were sandwiched from above and below by a film and introduced into the production apparatus shown in FIG. 1 and the holding angle α was set to 5 °. In a continuous operation for 4 hours, when the prepreg comes off from the belt in the peeling roll 14 of the manufacturing apparatus, five places where 1 m or more along the reinforcing fiber have been torn are recognized, which is satisfactory as a product It wasn't.

表1に示すとおり、実施例1〜3のプリプレグはその断面におけるボイドの割合が1%以下であり、かつ強化繊維の含有率が3%以下の樹脂リッチな部分が実質的に無い極めて高い品質のものであった。   As shown in Table 1, the prepregs of Examples 1 to 3 have an extremely high quality in which the ratio of voids in the cross section is 1% or less and there is substantially no resin-rich portion with a reinforcing fiber content of 3% or less. It was a thing.

一方、表1に示す実施例1と比較例1との比較により、予熱温度T1とプレスロール温度T2とが本発明の範囲外であると、プリプレグの断面におけるボイドの割合が大きくなり、実施例1と比較例2との比較により、予熱温度T1が本発明の範囲内であっても、プレスロール温度T2が本発明の範囲外であると、繊維含有率が3%以下である樹脂リッチな部分がプリプレグの断面内に存在し、プリプレグの品質としては劣っていた。   On the other hand, when the preheating temperature T1 and the press roll temperature T2 are outside the scope of the present invention by comparison between Example 1 and Comparative Example 1 shown in Table 1, the proportion of voids in the cross section of the prepreg increases. 1 and Comparative Example 2 show that even if the preheating temperature T1 is within the range of the present invention, if the press roll temperature T2 is outside the range of the present invention, the fiber content is 3% or less. The part existed in the cross section of the prepreg, and the quality of the prepreg was inferior.

また実施例1と比較例3との比較により、プレスロール設定圧力が高すぎるとプリプレグの断面において樹脂リッチな部分が存在し、品質が劣っていた。   Moreover, by comparison between Example 1 and Comparative Example 3, when the press roll set pressure was too high, a resin-rich portion was present in the prepreg cross section, and the quality was poor.

更に実施例1と比較例4との比較により、抱き角αを本発明の範囲内にしないと安定的な製品の取得が難しい事が分かる。以上より、本発明の範囲内においては高い品質の熱可塑プリプレグが安定的に得られる事は明らかである。   Furthermore, it can be seen from the comparison between Example 1 and Comparative Example 4 that it is difficult to obtain a stable product unless the holding angle α is within the range of the present invention. From the above, it is apparent that high quality thermoplastic prepreg can be stably obtained within the scope of the present invention.

1・・・エンドレスベルト
2・・・エンドレスベルト
3・・・駆動ロール
4・・・駆動ロール
5・・・従動ロール
6・・・従動ロール
7・・・駆動モーター
8・・・チェーン
9・・・予熱ヒータ
10・・・温度計
11・・・プレスロール対
12・・・シリンダー
13・・・冷却ロール
14・・・剥離ロール
15・・・ガイドロール
16・・・スプレッダーバー
20・・・強化繊維
21・・・熱可塑性樹脂
DESCRIPTION OF SYMBOLS 1 ... Endless belt 2 ... Endless belt 3 ... Drive roll 4 ... Drive roll 5 ... Driven roll 6 ... Driven roll 7 ... Drive motor 8 ... Chain 9 ... -Preheater 10 ... Thermometer 11 ... Press roll pair 12 ... Cylinder 13 ... Cooling roll 14 ... Peeling roll 15 ... Guide roll 16 ... Spreader bar 20 ... Strengthening Fiber 21 ... thermoplastic resin

Claims (11)

熱可塑性樹脂と強化繊維とを含むプリプレグの製造方法であって、
前記強化繊維を強化繊維の目付分布の幅方向の振れ幅が10%以下になるよう引き揃え、
前記強化繊維に、熱可塑性樹脂を積層し、
さらに、相対して走行する1対の支持体で挟んで、
熱可塑性樹脂のゼロせん断粘度が40〜400Pa・secとなる温度まで予熱し、
引き続き、熱可塑性樹脂のゼロせん断粘度が20〜400Pa・secとなる温度で、線圧20〜50kg/cmのプレスを施す、プリプレグの製造方法。
A method for producing a prepreg comprising a thermoplastic resin and reinforcing fibers,
The reinforcing fibers are aligned so that the fluctuation width in the width direction of the basis weight distribution of the reinforcing fibers is 10% or less,
Laminating a thermoplastic resin on the reinforcing fiber,
Furthermore, it is sandwiched between a pair of supports that run relative to each other,
Preheat to a temperature at which the zero shear viscosity of the thermoplastic resin is 40 to 400 Pa · sec,
Then, the manufacturing method of a prepreg which performs the press of linear pressure 20-50 kg / cm at the temperature from which the zero shear viscosity of a thermoplastic resin will be 20-400 Pa.sec.
前記熱可塑性樹脂がフィルム状である請求項1に記載のあるプリプレグの製造方法。   The method for producing a prepreg according to claim 1, wherein the thermoplastic resin is in a film form. 前記一対の支持体で強化繊維と熱可塑性樹脂を挟んで、プレスを施す際に、一対の支持体を挟むように配置した一対以上のプレスロールによりプレスを施す請求項1または2のいずれかに記載のあるプリプレグの製造方法。   3. The press according to claim 1, wherein the press is performed by a pair of press rolls arranged so as to sandwich the pair of supports when the pair of supports sandwiches the reinforcing fiber and the thermoplastic resin. The manufacturing method of the prepreg with description. 前記強化繊維を引き揃える際に、少なくとも3本以上のスプレッダーバーを用いる請求項1〜3のいずれか1項に記載のあるプリプレグの製造方法。   The method for producing a prepreg according to any one of claims 1 to 3, wherein at least three or more spreader bars are used when aligning the reinforcing fibers. 前記強化繊維と熱可塑性樹脂を、一対の支持体に導入する際に、一方の支持体に抱き角αを10°以上とする請求項1〜4のいずれか1項に記載のあるプリプレグの製造方法。   The prepreg according to any one of claims 1 to 4, wherein when the reinforcing fiber and the thermoplastic resin are introduced into a pair of supports, the holding angle α is set to 10 ° or more on one of the supports. Method. 前記フィルム状の熱可塑性樹脂の厚さが、10〜200μmである請求項2〜5のいずれか1項に記載のあるプリプレグの製造方法。   The thickness of the said film-like thermoplastic resin is 10-200 micrometers, The manufacturing method of the prepreg as described in any one of Claims 2-5. 前記フィルム状の熱可塑性樹脂の張力を、10〜100g/cmの範囲として、一対の支持体で挟む、請求項2〜6のいずれか1項に記載のあるプリプレグの製造方法。   The method for producing a prepreg according to any one of claims 2 to 6, wherein the film-like thermoplastic resin is sandwiched between a pair of supports in a range of 10 to 100 g / cm. 前記強化繊維の張力を、100〜500g/繊維束あたりの範囲として、一対の支持体で挟む、請求項1〜7のいずれか1項に記載のあるプリプレグの製造方法。   The manufacturing method of the prepreg as described in any one of Claims 1-7 which pinches | interposes the tension | tensile_strength of the said reinforcement fiber as a range per 100-500g / fiber bundle with a pair of support body. 前記熱可塑性樹脂が、ポリプロピレン樹脂、ポリアミド樹脂、ポリフェニレンサルファイド樹脂、ポリエーテルイミド樹脂および/または、これらの変性樹脂から選ばれる1種以上の熱可塑性樹脂である請求項1〜8のいずれか1項に記載のあるプリプレグの製造方法。   The thermoplastic resin is one or more thermoplastic resins selected from polypropylene resins, polyamide resins, polyphenylene sulfide resins, polyetherimide resins and / or modified resins thereof. The manufacturing method of the prepreg as described in. 前記1対の支持体が、厚み1.0mm以上のステンレス製エンドレスベルトである請求項1〜9のいずれか1項に記載のあるプリプレグの製造方法。   The method for producing a prepreg according to any one of claims 1 to 9, wherein the pair of supports are stainless steel endless belts having a thickness of 1.0 mm or more. 前記1対の支持体が、厚み0.2mm以上のPTFE含有ガラスクロスである請求項1〜9のいずれか1項に記載のあるプリプレグの製造方法。   The method for producing a prepreg according to any one of claims 1 to 9, wherein the pair of supports is a PTFE-containing glass cloth having a thickness of 0.2 mm or more.
JP2012261144A 2012-11-29 2012-11-29 Method of manufacturing prepreg Pending JP2014105310A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012261144A JP2014105310A (en) 2012-11-29 2012-11-29 Method of manufacturing prepreg

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012261144A JP2014105310A (en) 2012-11-29 2012-11-29 Method of manufacturing prepreg

Publications (1)

Publication Number Publication Date
JP2014105310A true JP2014105310A (en) 2014-06-09

Family

ID=51027086

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012261144A Pending JP2014105310A (en) 2012-11-29 2012-11-29 Method of manufacturing prepreg

Country Status (1)

Country Link
JP (1) JP2014105310A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2990185A1 (en) 2014-08-28 2016-03-02 Teijin Limited Composite material including unidirectional continuous fibers thermoplastic resin
JP2016132210A (en) * 2015-01-21 2016-07-25 株式会社Ihi Double belt press
JP2016216654A (en) * 2015-05-22 2016-12-22 株式会社神戸製鋼所 Tape-like prepreg and fiber-reinforced molded body
WO2019017057A1 (en) * 2017-07-18 2019-01-24 東レ株式会社 Unidirectionally-oriented tape-shaped prepreg, and molded article thereof
JP2019084781A (en) * 2017-11-09 2019-06-06 トヨタ自動車株式会社 Method for joining fiber reinforced thermoplastic resin member and apparatus for joining fiber reinforced thermoplastic resin member
CN112743875A (en) * 2020-12-29 2021-05-04 东莞泰合复合材料有限公司 Composite material workpiece forming method and composite material workpiece
KR20230052303A (en) 2020-09-25 2023-04-19 가부시키가이샤 아이에이치아이 부츠류 산교 시스테무 double belt press device
US11826940B2 (en) 2014-09-17 2023-11-28 Mitsubishi Chemical Corporation Production method for fiber-reinforced thermoplastic resin composite material, production method for fiber-reinforced thermoplastic resin tape, production method for press-molding material, production method for molded article, unidirectional prepreg, and molded article

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2990185A1 (en) 2014-08-28 2016-03-02 Teijin Limited Composite material including unidirectional continuous fibers thermoplastic resin
KR20160026747A (en) 2014-08-28 2016-03-09 데이진 가부시키가이샤 Composite material including unidirectional continuous fibers and thermoplastic resin
US10889070B2 (en) 2014-08-28 2021-01-12 Teijin Limited Composite material including unidirectional continuous fibers and thermoplastic resin
US11826940B2 (en) 2014-09-17 2023-11-28 Mitsubishi Chemical Corporation Production method for fiber-reinforced thermoplastic resin composite material, production method for fiber-reinforced thermoplastic resin tape, production method for press-molding material, production method for molded article, unidirectional prepreg, and molded article
CN106715096A (en) * 2015-01-21 2017-05-24 株式会社Ihi Double belt press
KR20170042665A (en) * 2015-01-21 2017-04-19 가부시키가이샤 아이에이치아이 Double belt press
TWI598204B (en) * 2015-01-21 2017-09-11 Ihi股份有限公司 Double belt press
KR101929694B1 (en) 2015-01-21 2018-12-14 가부시키가이샤 아이에이치아이 Double belt press
WO2016117239A1 (en) * 2015-01-21 2016-07-28 株式会社Ihi Double belt press
JP2016132210A (en) * 2015-01-21 2016-07-25 株式会社Ihi Double belt press
JP2016216654A (en) * 2015-05-22 2016-12-22 株式会社神戸製鋼所 Tape-like prepreg and fiber-reinforced molded body
WO2019017057A1 (en) * 2017-07-18 2019-01-24 東レ株式会社 Unidirectionally-oriented tape-shaped prepreg, and molded article thereof
JP2019084781A (en) * 2017-11-09 2019-06-06 トヨタ自動車株式会社 Method for joining fiber reinforced thermoplastic resin member and apparatus for joining fiber reinforced thermoplastic resin member
KR20230052303A (en) 2020-09-25 2023-04-19 가부시키가이샤 아이에이치아이 부츠류 산교 시스테무 double belt press device
CN112743875A (en) * 2020-12-29 2021-05-04 东莞泰合复合材料有限公司 Composite material workpiece forming method and composite material workpiece

Similar Documents

Publication Publication Date Title
JP2014105310A (en) Method of manufacturing prepreg
JP2009062474A (en) Molding material, fiber-reinforced plastic, and manufacturing method for them
WO2013129541A1 (en) Sheet for fiber-reinforced plastic molded body, and molded body thereof
KR102434377B1 (en) Coating solution impregnated sheet-type reinforcing fiber bundle and sheet-like integrated product manufacturing method, coating device
CA2775053A1 (en) Thermoplastic composites and methods of making and using same
JP2013202890A (en) Molding material and method of manufacturing the same
KR102300301B1 (en) Coating solution-impregnated reinforced fiber fabric, sheet-like integral body, prepreg, prepreg tape, and manufacturing method of fiber-reinforced composite material
JP2016216654A (en) Tape-like prepreg and fiber-reinforced molded body
EP2664447A2 (en) Apparatus for manufacturing a high-strength composite sheet having superior embeddability, and method for manufacturing a high-strength composite sheet using same
JP2015166130A (en) Method for producing fiber-reinforced plastic
JP7259229B2 (en) chopped fiber bundle mat
JP2514412B2 (en) Resin impregnation method
CN112566766B (en) Method for producing sheet-like reinforcing fiber bundle impregnated with thermoplastic resin
TW201920398A (en) Prepreg laminate, method for manufacturing fiber-reinforced plastic using prepreg laminate, and fiber-reinforced plastic
JP7243629B2 (en) Prepreg manufacturing method and manufacturing apparatus
CN106239937A (en) A kind of device preparing continuous fiber reinforced thermoplastic prepreg tape
JP2015224297A (en) Production method of prepreg
JP2014104641A (en) Laminate substrate and fiber-reinforced composite material
JPH0724830A (en) Production of thermoplastic unidirectional prepreg sheet
TW202112917A (en) Fiber-reinforced resin substrate, integrated molded article, and method for manufacturing fiber-reinforced resin substrate
JP4759303B2 (en) Composite material using multiaxial fabric
JP2004338270A (en) Method for producing fiber-reinforced resin composite material and fiber-reinforced resin composite material
JP7454121B2 (en) Method for manufacturing fiber reinforced thermoplastic resin sheet
JP2014105245A (en) Method for producing thermoplastic molding
JP2008308626A (en) Sheet-like fiber-reinforced composite material and production method therefor