JP7451875B2 - flow measuring device - Google Patents

flow measuring device Download PDF

Info

Publication number
JP7451875B2
JP7451875B2 JP2019047533A JP2019047533A JP7451875B2 JP 7451875 B2 JP7451875 B2 JP 7451875B2 JP 2019047533 A JP2019047533 A JP 2019047533A JP 2019047533 A JP2019047533 A JP 2019047533A JP 7451875 B2 JP7451875 B2 JP 7451875B2
Authority
JP
Japan
Prior art keywords
sensor
flow rate
temperature
measured
fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019047533A
Other languages
Japanese (ja)
Other versions
JP2020148677A (en
Inventor
憲一 半田
保幸 桝井
克行 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Omron Corp
Original Assignee
Omron Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Omron Corp filed Critical Omron Corp
Priority to JP2019047533A priority Critical patent/JP7451875B2/en
Priority to CN201910700262.1A priority patent/CN111693105B/en
Priority to PCT/JP2020/009751 priority patent/WO2020184448A1/en
Publication of JP2020148677A publication Critical patent/JP2020148677A/en
Application granted granted Critical
Publication of JP7451875B2 publication Critical patent/JP7451875B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/68Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using thermal effects
    • G01F1/684Structural arrangements; Mounting of elements, e.g. in relation to fluid flow
    • G01F1/6847Structural arrangements; Mounting of elements, e.g. in relation to fluid flow where sensing or heating elements are not disturbing the fluid flow, e.g. elements mounted outside the flow duct
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/68Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using thermal effects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/68Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using thermal effects
    • G01F1/684Structural arrangements; Mounting of elements, e.g. in relation to fluid flow
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/68Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using thermal effects
    • G01F1/684Structural arrangements; Mounting of elements, e.g. in relation to fluid flow
    • G01F1/6842Structural arrangements; Mounting of elements, e.g. in relation to fluid flow with means for influencing the fluid flow
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/68Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using thermal effects
    • G01F1/684Structural arrangements; Mounting of elements, e.g. in relation to fluid flow
    • G01F1/6845Micromachined devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/68Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using thermal effects
    • G01F1/684Structural arrangements; Mounting of elements, e.g. in relation to fluid flow
    • G01F1/688Structural arrangements; Mounting of elements, e.g. in relation to fluid flow using a particular type of heating, cooling or sensing element
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/68Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using thermal effects
    • G01F1/684Structural arrangements; Mounting of elements, e.g. in relation to fluid flow
    • G01F1/688Structural arrangements; Mounting of elements, e.g. in relation to fluid flow using a particular type of heating, cooling or sensing element
    • G01F1/6888Thermoelectric elements, e.g. thermocouples, thermopiles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/68Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using thermal effects
    • G01F1/696Circuits therefor, e.g. constant-current flow meters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/68Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using thermal effects
    • G01F1/696Circuits therefor, e.g. constant-current flow meters
    • G01F1/6965Circuits therefor, e.g. constant-current flow meters comprising means to store calibration data for flow signal calculation or correction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N25/00Investigating or analyzing materials by the use of thermal means
    • G01N25/56Investigating or analyzing materials by the use of thermal means by investigating moisture content
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/14Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of an electrically-heated body in dependence upon change of temperature
    • G01N27/18Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of an electrically-heated body in dependence upon change of temperature caused by changes in the thermal conductivity of a surrounding material to be tested

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Chemical & Material Sciences (AREA)
  • Pathology (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Measuring Volume Flow (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Description

本発明は、流量測定装置に関する。 The present invention relates to a flow rate measuring device.

路内を流れる流体の流量を、ヒータと2つの測温センサとを備えた熱式のフローセンサを用いて測定する流量測定装置(例えば、特許文献1、2参照)が知られている。また、そのような流量測定装置として、結露の発生を検出可能とするために、所定の間隔をもって併設された2つの電極パターンからなる結露センサを設けたもの(例えば、特許文献3参照)も知られている。 2. Description of the Related Art There is known a flow rate measuring device (for example, see Patent Documents 1 and 2) that measures the flow rate of a fluid flowing in a path using a thermal flow sensor that includes a heater and two temperature sensors. Furthermore, as such a flow rate measuring device, there is also known a device equipped with a dew condensation sensor consisting of two electrode patterns arranged at a predetermined interval in order to be able to detect the occurrence of dew condensation (for example, see Patent Document 3). It is being

特許第3658321号公報Patent No. 3658321 特許第5652315号公報Patent No. 5652315 特開2018-151307号公報Japanese Patent Application Publication No. 2018-151307

結露センサを設けておけば、結露の発生を検出可能となる。ただし、結露センサにより検出可能な結露は、結露センサを構成している2つの電極パターンの間隔よりも大きなサイズの結露だけである。そして、湿度が高くなって(湿度が100%となって)最初に発生するのは、結露センサでは検出できない微小な結露である。 If a dew condensation sensor is provided, it becomes possible to detect the occurrence of dew condensation. However, the dew condensation that can be detected by the dew condensation sensor is only the dew condensation that is larger in size than the interval between the two electrode patterns forming the dew condensation sensor. The first thing that occurs when the humidity becomes high (when the humidity reaches 100%) is minute condensation that cannot be detected by a dew condensation sensor.

本発明は、上記現状を鑑みてなされたものであり、高湿度になったことを検出可能な流量測定装置を提供することを目的とする。 The present invention has been made in view of the above-mentioned current situation, and an object of the present invention is to provide a flow rate measuring device capable of detecting high humidity.

本発明の一観点に係る流量測定装置は、測定対象流体の流量と相関する値を測定する第1センサと、2つの測温部と前記2つの測温部の中央に配置された加熱部とを備えた第2センサであって、前記測定対象流体が第2所定方向に流れる位置に、前記2つの測温部と前記加熱部の並び方向が前記第2所定方向と直交する姿勢で配置された第2センサと、前記第1センサにより測定された値に基づき前記測定対象流体の流量を算出する流量算出処理と、前記第2センサの前記加熱部の温度を上昇させて前記第2センサの前記2つの測温部による測温結果を取得し、取得した測温結果のそれぞれが所定の閾値以下であるか否かにより前記測定対象流体の湿度が所定湿度以上であるか否かを判定する判定処理とを実行可能に構成された制御部と、を備える。 A flow rate measuring device according to one aspect of the present invention includes: a first sensor that measures a value correlated with the flow rate of a fluid to be measured; two temperature measuring sections; and a heating section disposed at the center of the two temperature measuring sections. a second sensor, wherein the two temperature measurement units and the heating unit are arranged in a position where the fluid to be measured flows in a second predetermined direction, and the direction in which the two temperature measuring units and the heating unit are arranged is perpendicular to the second predetermined direction. a second sensor, a flow rate calculation process for calculating the flow rate of the fluid to be measured based on the value measured by the first sensor, and a flow rate calculation process for calculating the flow rate of the fluid to be measured based on the value measured by the first sensor; Obtain temperature measurement results from the two temperature measurement units, and determine whether the humidity of the fluid to be measured is equal to or higher than a predetermined humidity based on whether each of the obtained temperature measurement results is equal to or less than a predetermined threshold. and a control unit configured to be able to execute determination processing.

すなわち、流量測定装置は、各測温部による測温結果が測定対象流体の流量(流速)の影響を受けないように配置された第2センサを備える。そして、第2センサの加熱部の温度を上昇させて第2センサの2つの測温部による測温結果を取得し、取得した測温結果のそれぞれを閾値と比較すれば、測定対象流体の湿度が当該閾値に応じた湿度であるか否かを判定できることが各種実験より確認されている。従って、流量測定装置によれば、高湿度(所定の閾値に応じた湿度)となったことを検出することが出来る。 That is, the flow rate measurement device includes a second sensor arranged so that the temperature measurement results by each temperature measurement section are not influenced by the flow rate (flow velocity) of the fluid to be measured. Then, by increasing the temperature of the heating section of the second sensor, obtaining temperature measurement results from the two temperature measurement sections of the second sensor, and comparing each of the obtained temperature measurement results with a threshold value, the humidity of the fluid to be measured can be determined. It has been confirmed through various experiments that it is possible to determine whether or not the humidity corresponds to the threshold value. Therefore, according to the flow rate measuring device, it is possible to detect that the humidity is high (humidity according to a predetermined threshold value).

流量測定装置の第2センサは、湿度が所定湿度以上となったか否かの判定のみに用いられるセンサであっても良い。また、制御部を、前記加熱部の温度を第1温度まで上昇させて取得した前記2つの測温部の中の一方の測温部による測温結果と前記加熱部の温度を前
記第1温度とは異なる第2温度まで上昇させて取得した前記一方の測温部による測温結果とから、前記流量算出処理における流量の算出時に使用される補正係数を算出する補正係数算出処理を実行可能に構成することで、第2センサを、補正係数の算出にも用いても良い。
The second sensor of the flow rate measuring device may be a sensor used only to determine whether the humidity has reached a predetermined humidity or higher. Further, the control unit is configured to set the temperature measurement result obtained by one of the two temperature measurement units obtained by increasing the temperature of the heating unit to the first temperature and the temperature of the heating unit to the first temperature. It is possible to execute a correction coefficient calculation process of calculating a correction coefficient used when calculating the flow rate in the flow rate calculation process from the temperature measurement result obtained by the one temperature measurement unit raised to a second temperature different from the temperature measurement unit. By configuring this, the second sensor may also be used for calculating the correction coefficient.

流量測定装置に、所定の間隔をもって併設された2つの電極パターンからなる結露センサを付加すると共に、制御部を、前記結露センサの抵抗値に基づき、結露が発生しているか否かを判定する第2判定処理を実行可能に構成しておいても良い。 A condensation sensor consisting of two electrode patterns arranged side by side at a predetermined interval is added to the flow rate measuring device, and a control section is configured to determine whether or not condensation is occurring based on the resistance value of the condensation sensor. 2 determination processing may be configured to be executable.

第2センサの各測温部は、抵抗温度センサやサーモカップルであっても良いが、各測温部を、出力電圧が大きなサーモパイルとしておけば、ノイズの影響を受けにくい流量測定装置を得ることが出来る。また、第1センサ、第2センサのそれぞれとして、同構成のセンサを用いておけば、第1センサと第2センサとを別構成のセンサとした場合に比して流量測定装置の製造コストを低減することが出来る。 Each temperature measuring section of the second sensor may be a resistance temperature sensor or a thermocouple, but if each temperature measuring section is a thermopile with a large output voltage, a flow rate measuring device that is less susceptible to noise can be obtained. I can do it. In addition, if sensors with the same configuration are used as the first sensor and the second sensor, the manufacturing cost of the flow rate measuring device can be reduced compared to the case where the first sensor and the second sensor are sensors with different configurations. can be reduced.

本発明によれば、高湿度になったことを検出可能な流量測定装置を提供することができる。 According to the present invention, it is possible to provide a flow rate measuring device capable of detecting high humidity.

図1は、本発明の一実施形態に係る流量測定装置1の分解斜視図である。FIG. 1 is an exploded perspective view of a flow rate measuring device 1 according to an embodiment of the present invention. 図2は、流量測定装置の断面図である。FIG. 2 is a cross-sectional view of the flow rate measuring device. 図3は、流量測定装置が備える副流路部の平面図である。FIG. 3 is a plan view of the sub-flow path section included in the flow rate measurement device. 図4は、流量検出用センサ及び物性検出用センサとして使用されているセンサの平面図である。FIG. 4 is a plan view of a sensor used as a flow rate detection sensor and a physical property detection sensor. 図5Aは、流量検出用センサの説明図である。FIG. 5A is an explanatory diagram of a flow rate detection sensor. 図5Bは、物性値検出用センサの説明図である。FIG. 5B is an explanatory diagram of a sensor for detecting physical property values. 図6は、流量測定装置における流量測定原理を説明するための図である。FIG. 6 is a diagram for explaining the principle of flow measurement in the flow measurement device. 図7は、流量測定装置の制御部が実行する状態検出処理の流れ図である。FIG. 7 is a flowchart of the state detection process executed by the control unit of the flow rate measuring device. 図8は、流量測定装置の回路基板における制御部と各センサとの間の接続形態の説明図である。FIG. 8 is an explanatory diagram of the connection form between the control section and each sensor on the circuit board of the flow rate measuring device. 図9は、流量測定装置を開発するために行われた実験結果の説明図である。FIG. 9 is an explanatory diagram of the results of an experiment conducted to develop a flow rate measuring device.

以下、図面を参照して、本発明の実施の形態について説明する。 Embodiments of the present invention will be described below with reference to the drawings.

図1に、本発明の一実施形態に係る流量測定装置1の分解斜視図を示し、図2に、流量測定装置1の断面図を示す。 FIG. 1 shows an exploded perspective view of a flow rate measuring device 1 according to an embodiment of the present invention, and FIG. 2 shows a sectional view of the flow rate measuring device 1.

本実施形態に係る流量測定装置1は、流体の流量の監視や調整が必要とされる装置(ガスメータ、燃料電池等)に組み込まれて使用される装置である。図1に示してあるように、流量測定装置1は、主流路部2、副流路部3、シール4、回路基板5及びカバー6を備える。 The flow rate measuring device 1 according to the present embodiment is a device that is used by being incorporated into a device (such as a gas meter, a fuel cell, etc.) that requires monitoring and adjustment of the flow rate of fluid. As shown in FIG. 1, the flow rate measuring device 1 includes a main flow path section 2, a sub flow path section 3, a seal 4, a circuit board 5, and a cover 6.

主流路部2は、流量を測定すべき流体(以下、測定対象流体と表記する)が流れる管状部材である。図2に示してあるように、主流路部2の内周面の、測定対象流体の流れ方向における上流側には、流入口34Aが設けられている。また、主流路部2の内周面の、測定対象流体の流れ方向における下流側には、流出口35Aが設けられている。さらに、主流路部2の流入口34Aと流出口35Aとの間には、副流路部3(詳細は後述)を流れる流体の量を調整するためのオリフィス21が設けられている。 The main flow path portion 2 is a tubular member through which a fluid whose flow rate is to be measured (hereinafter referred to as a fluid to be measured) flows. As shown in FIG. 2, an inlet 34A is provided on the inner circumferential surface of the main flow path section 2 on the upstream side in the flow direction of the fluid to be measured. Further, an outflow port 35A is provided on the inner peripheral surface of the main flow path section 2 on the downstream side in the flow direction of the fluid to be measured. Furthermore, an orifice 21 is provided between the inlet 34A and the outlet 35A of the main flow path 2 to adjust the amount of fluid flowing through the sub flow path 3 (details will be described later).

回路基板5(図1)は、流量検出用センサ11、物性値検出用センサ12、制御部13、結露センサ14(図3参照)をプリント配線板に取り付けたユニット(プリント回路板)である。流量検出用センサ11、物性値検出用センサ12及び結露センサ14は、回路基板5の表面(副流路部3と対向する側の面;図1における下側の面)に設けられており、制御部13は、回路基板5の裏面に設けられている。センサ11、12及び14と制御部13の詳細については後述する。 The circuit board 5 (FIG. 1) is a unit (printed circuit board) in which a flow rate detection sensor 11, a physical property value detection sensor 12, a control section 13, and a dew condensation sensor 14 (see FIG. 3) are attached to a printed wiring board. The flow rate detection sensor 11, the physical property value detection sensor 12, and the dew condensation sensor 14 are provided on the surface of the circuit board 5 (the surface facing the sub-flow path section 3; the lower surface in FIG. 1), The control unit 13 is provided on the back surface of the circuit board 5. Details of the sensors 11, 12, and 14 and the control unit 13 will be described later.

副流路部3(図1,図2)は、流量等の測定のために設けられた、測定対象流体のバイパス流路である。副流路部3は、回路基板5がシール4を挟んだ状態で固定されることにより封止されている。 The sub-flow path section 3 (FIGS. 1 and 2) is a bypass flow path for a fluid to be measured, which is provided for measuring flow rate and the like. The sub-channel portion 3 is sealed by fixing the circuit board 5 with the seal 4 sandwiched therebetween.

図3に、副流路部3の平面図を示す。この平面図には、回路基板5が副流路部3に対して固定されている状態でのセンサ11,12及び14の位置も点線枠で示してある。 FIG. 3 shows a plan view of the sub-channel section 3. In this plan view, the positions of the sensors 11, 12, and 14 in a state where the circuit board 5 is fixed to the sub-channel section 3 are also shown by dotted lines.

図3及び図2に示してあるように、副流路部3は、流入口34Aに通じた流入用流路34と、流出口35Aに通じた流出用流路35と、いずれも、流入用流路34と流出用流路35との間を接続する流路である物性値検出用流路32及び流量検出用流路33とを備えている。図3に示してあるように、副流路部3の各流路の形状、回路基板5の各センサの位置等は、回路基板5が副流路部3に対して固定されると、流量検出用センサ11が流量検出用流路33を流れる流体と接し、物性値検出用センサ12が物性値検出用流路32を流れる流体と接し、結露センサ14が物性値検出用流路32及び流量検出用流路33を流れる流体と接するように定められている。 As shown in FIGS. 3 and 2, the sub-channel section 3 has an inflow channel 34 that communicates with the inflow port 34A, and an outflow channel 35 that communicates with the outflow port 35A. It includes a physical property value detection flow path 32 and a flow rate detection flow path 33, which are flow paths that connect between the flow path 34 and the outflow flow path 35. As shown in FIG. 3, the shape of each flow path in the sub-flow path section 3, the position of each sensor on the circuit board 5, etc. are determined when the circuit board 5 is fixed to the sub-flow path section 3. The detection sensor 11 is in contact with the fluid flowing through the flow path 33, the physical property value detection sensor 12 is in contact with the fluid flowing through the physical property value detection flow path 32, and the dew condensation sensor 14 is in contact with the fluid flowing through the physical property value detection flow path 32 and the flow rate. It is determined to be in contact with the fluid flowing through the detection flow path 33.

また、物性値検出用流路32は、流量検出用流路33よりも断面積が小さな流路となっている。そのため、矢印P及びQの大きさで模式的に示してあるように、物性値検出用流路32を流れる流体の量の方が流量検出用流路33を流れる流体の量よりも少なくなっている。流量検出用流路33を流れる流体の量を少なくしている理由については後述する。 Further, the physical property value detection channel 32 has a smaller cross-sectional area than the flow rate detection channel 33. Therefore, as schematically shown by the sizes of arrows P and Q, the amount of fluid flowing through the physical property value detection channel 32 is smaller than the amount of fluid flowing through the flow rate detection channel 33. There is. The reason why the amount of fluid flowing through the flow rate detection channel 33 is reduced will be described later.

カバー6(図1)は、副流路部3に固定された回路基板5を保護するための部材である。 The cover 6 (FIG. 1) is a member for protecting the circuit board 5 fixed to the sub-channel section 3.

以下、回路基板5の各構成要素について説明する。
結露センサ14(図3参照)は、各部の間隔が所定間隔となるように形成された2つの電極パターン(本実施形態では、櫛歯状電極パターン)により構成されたセンサである。
Each component of the circuit board 5 will be explained below.
The dew condensation sensor 14 (see FIG. 3) is a sensor composed of two electrode patterns (comb-like electrode patterns in this embodiment) formed so that the intervals between each part are a predetermined interval.

流量検出用センサ11、物性値検出用センサ12は、いずれも、図4に示した構成を有するセンサ100である。なお、このセンサ100は、マイクロヒータ103と、マイクロヒータ103を挟んで対称に設けられたサーモパイル101及び102とを備えた絶縁膜をシリコン基台上に形成した、いわゆるMEMSフローセンサである。センサ100の絶縁膜には、基準温度を測定するための温度センサ104も設けられている。また、センサ100のシリコン基台の中央部分には、絶縁膜の対向する部分(マイクロヒータ103が設けられている部分等)の熱容量を小さくするために、キャビティ(空洞)が設けられている(図6参照)。 Both the flow rate detection sensor 11 and the physical property value detection sensor 12 are sensors 100 having the configuration shown in FIG. 4 . Note that this sensor 100 is a so-called MEMS flow sensor in which an insulating film including a microheater 103 and thermopiles 101 and 102 provided symmetrically with the microheater 103 in between is formed on a silicon base. The insulating film of the sensor 100 is also provided with a temperature sensor 104 for measuring a reference temperature. In addition, a cavity is provided in the central part of the silicon base of the sensor 100 in order to reduce the heat capacity of the opposing part of the insulating film (the part where the micro-heater 103 is provided, etc.). (See Figure 6).

上記のように、流量検出用センサ11及び物性値検出用センサ12は、同構成のセンサ100である。ただし、流量検出用センサ11として使用されているセンサ100は、図5Bに示した状態、すなわち、測定対象流体(矢印Q)がマイクロヒータ103の長さ方向と直交する方向に流れる状態を形成できる姿勢で回路基板5に取り付けられている。また、物性値検出用センサ12として使用されているセンサ100は、図5Aに示した状態、すなわち、測定対象流体(矢印P)がマイクロヒータ103の長さ方向に流れる状態を形成できる姿勢で回路基板5に取り付けられている。以下、流量検出用センサ11として使用されているセンサ100のサーモパイル101、サーモパイル102、マイクロヒータ103のことを、図5Bに示してあるように、それぞれ、サーモパイル111、サーモパイル112、マイクロヒータ113と表記する。また、物性値検出用センサ12として使用されているセンサ100のサーモパイル101、サーモパイル102、マイクロヒータ103のことを、図5Aに示してあるように、それぞれ、サーモパイル121、サーモパイル122、マイクロヒータ123と表記する。 As described above, the flow rate detection sensor 11 and the physical property value detection sensor 12 are the sensors 100 having the same configuration. However, the sensor 100 used as the flow rate detection sensor 11 can form the state shown in FIG . It is attached to the circuit board 5 in a posture. Furthermore, the sensor 100 used as the physical property value detection sensor 12 is circuited in the state shown in FIG. It is attached to the board 5. Hereinafter, the thermopile 101, thermopile 102, and microheater 103 of the sensor 100 used as the flow rate detection sensor 11 will be referred to as thermopile 111, thermopile 112, and microheater 113, respectively, as shown in FIG. 5B . do. Furthermore, as shown in FIG. 5A , the thermopile 101, thermopile 102, and microheater 103 of the sensor 100 used as the physical property value detection sensor 12 are referred to as the thermopile 121, thermopile 122, and microheater 123, respectively. write.

制御部13は、外部装置と通信を行うための通信インターフェース回路を備えた、流量算出処理と感度補正係数算出処理と状態検出処理とを実行するユニット(本実施形態では、ASIC)である。本実施形態に係る制御部13は、各処理を周期的に行うものであるが、制御部13は、外部装置から各処理の実行指示が与えられたときに各処理を実行するものであっても良い。 The control unit 13 is a unit (ASIC in this embodiment) that includes a communication interface circuit for communicating with an external device and executes a flow rate calculation process, a sensitivity correction coefficient calculation process, and a state detection process. The control unit 13 according to the present embodiment performs each process periodically, but the control unit 13 executes each process when an instruction to execute each process is given from an external device. Also good.

以下、制御部13が実行する各処理の内容を説明する。 The contents of each process executed by the control unit 13 will be explained below.

《流量算出処理》
流量算出処理は、流量検出用センサ11のマイクロヒータ113の温度を上昇させて流量検出用センサ11のサーモパイル111、112の出力電圧の差ΔV(以下、センサ出力値ΔVと表記する)を測定し、測定したセンサ出力値ΔVに基づき測定対象流体の流量を算出する処理である。
《Flow rate calculation process》
The flow rate calculation process involves increasing the temperature of the microheater 113 of the flow rate detection sensor 11 and measuring the difference ΔV between the output voltages of the thermopiles 111 and 112 of the flow rate detection sensor 11 (hereinafter referred to as sensor output value ΔV). , is a process of calculating the flow rate of the fluid to be measured based on the measured sensor output value ΔV.

すなわち、気体が流れていない状態で、流量検出用センサ11のマイクロヒータ113の温度を上昇させると、図6(A)に示したように、気体の温度分布は、マイクロヒータ113の上流側と下流側とで対象なものとなる。一方、気体が流れている状態で、マイクロヒータ113の温度を上昇させると、図6(B)に示したように、マイクロヒータ113の下流側の気体の温度の方が高くなる。そして、気体が流れている状態での上流側と下流側の温度差は、自然対流の影響が大きい等の特殊な事情がない場合には、気体の流速の平方根と比例する。また、主流路部2における測定対象流体の流量は、流量検出用流路33における測定対象流体の流速と比例する。 That is, when the temperature of the micro-heater 113 of the flow rate detection sensor 11 is increased in a state where gas is not flowing, the temperature distribution of the gas changes to the upstream side of the micro-heater 113 as shown in FIG. 6(A). It is a target on the downstream side. On the other hand, when the temperature of the micro-heater 113 is increased while gas is flowing, the temperature of the gas downstream of the micro-heater 113 becomes higher, as shown in FIG. 6(B). The temperature difference between the upstream side and the downstream side when gas is flowing is proportional to the square root of the gas flow rate unless there are special circumstances such as a large influence of natural convection. Further, the flow rate of the fluid to be measured in the main flow path section 2 is proportional to the flow rate of the fluid to be measured in the flow path 33 for flow rate detection.

従って、主流路部2における測定対象流体の流量を、センサ出力値(サーモパイル111,112の出力電圧の差)ΔVから求めることが出来る。ただし、測定対象流体の流量や温度が変わらなくても、測定対象流体の、熱伝導率、密度、比熱容量等の物性値が変化すると、センサ出力値ΔVも変化する。そのため、流量算出処理は、感度補正係数を乗ずることで、センサ出力値ΔVを、測定対象流体の各種物性値が基準値である場合におけるセンサ出力値ΔVに変換してから、流量を算出する処理となっている。 Therefore, the flow rate of the fluid to be measured in the main flow path section 2 can be determined from the sensor output value (difference between the output voltages of the thermopiles 111 and 112) ΔV. However, even if the flow rate and temperature of the fluid to be measured do not change, if the physical properties of the fluid to be measured, such as thermal conductivity, density, and specific heat capacity, change, the sensor output value ΔV also changes. Therefore, the flow rate calculation process is a process of converting the sensor output value ΔV into the sensor output value ΔV when the various physical property values of the fluid to be measured are reference values by multiplying it by a sensitivity correction coefficient, and then calculating the flow rate. It becomes.

《感度補正係数算出処理》
感度補正係数算出処理は、流量算出処理時に使用される感度補正係数を算出される処理である。この感度補正係数算出処理時、制御部13は、以下のように動作する。
《Sensitivity correction coefficient calculation process》
The sensitivity correction coefficient calculation process is a process in which a sensitivity correction coefficient used during the flow rate calculation process is calculated. During this sensitivity correction coefficient calculation process, the control section 13 operates as follows.

感度補正係数算出処理を開始した制御部13は、まず、第1所定電圧を印加することで物性値検出用センサ12のマイクロヒータ123の温度を上昇させてから物性値検出用センサ12のサーモカップル121の出力電圧V1を取得する。次いで、制御部13は、第2所定電圧(>第1所定電圧)を印加することでマイクロヒータ123の温度を上昇させてからサーモカップル121の出力電圧V2を取得する。 The control unit 13 that has started the sensitivity correction coefficient calculation process first increases the temperature of the microheater 123 of the physical property value detection sensor 12 by applying a first predetermined voltage, and then increases the temperature of the microheater 123 of the physical property value detection sensor 12. 121 is obtained. Next, the control unit 13 increases the temperature of the microheater 123 by applying a second predetermined voltage (>first predetermined voltage), and then acquires the output voltage V2 of the thermocouple 121.

その後、制御部13は、電圧差“V2-V1”に予め定められている係数を乗ずること
により感度補正係数を算出する。そして、制御部13は、算出した感度補正係数を、以降の流量算出処理で使用する感度補正係数として記憶してから、感度補正係数算出処理を終了する。
Thereafter, the control unit 13 calculates a sensitivity correction coefficient by multiplying the voltage difference "V2-V1" by a predetermined coefficient. Then, the control unit 13 stores the calculated sensitivity correction coefficient as a sensitivity correction coefficient to be used in the subsequent flow rate calculation process, and then ends the sensitivity correction coefficient calculation process.

なお、既に説明したように(図5B参照)、流量測定装置1は、測定対象流体が、物性値検出用センサ12のマイクロヒータ123の長さ方向(換言すれば、サーモパイル121及び122とマイクロヒータ123の並び方向に直交する方向)に流れるように、且つ、物性値検出用流路32を流れる流体の量の方が流量検出用流路33を流れる流体の量よりも少なくなるように構成されている。流量測定装置1をそのような装置として構成している理由は、サーモカップル121の出力電圧V1、V2を、測定対象流体の流速の影響を受けない値(測定対象流体の、流速以外の物性値を示す値)とするためである。 As already explained (see FIG. 5B), the flow rate measurement device 1 is configured such that the fluid to be measured is distributed in the length direction of the microheater 123 of the physical property value detection sensor 12 (in other words, between the thermopiles 121 and 122 and the microheater). 123), and the amount of fluid flowing through the physical property value detection channel 32 is smaller than the amount of fluid flowing through the flow rate detection channel 33. ing. The reason why the flow measuring device 1 is configured as such is that the output voltages V1 and V2 of the thermocouple 121 are set to values that are not affected by the flow velocity of the fluid to be measured (physical property values of the fluid to be measured other than the flow velocity). This is to make it a value indicating .

《状態検出処理》
以下、図7及び図8を用いて、制御部13が実行する状態検出処理の内容を説明する。図7は、状態検出処理の流れ図である。図8は、回路基板5における制御部13と各センサ間の接続形態の説明図である。この図8では、マイクロヒータ111及び121の図示、並びに、外部装置と通信を行うための信号線の図示は省略してある。
《Status detection processing》
The contents of the state detection process executed by the control unit 13 will be described below with reference to FIGS. 7 and 8. FIG. 7 is a flowchart of the state detection process. FIG. 8 is an explanatory diagram of the connection form between the control unit 13 and each sensor on the circuit board 5. As shown in FIG. In FIG. 8, illustrations of the microheaters 111 and 121 and signal lines for communicating with external devices are omitted.

状態検出処理は、測定対象流体の湿度に関する状態を検出するための処理である。図7に示してあるように、状態検出処理を開始した制御部13は、まず、結露センサ14の抵抗を測定する(ステップS101)。次いで、制御部13は、抵抗の測定結果が予め定められている抵抗閾値以下となっているか否かを判断する(ステップS102)。測定結果が抵抗閾値以下となっていた場合(ステップS102;YES)、制御部13は、結露センサ14で検知可能なサイズの結露が発生していると判定して、判定結果を外部装置に通知する(ステップS107)。このステップS107の処理は、要求時に外部装置に判定結果を通知するために、判定結果を記憶しておく処理であっても良い。そして、ステップS107の処理を終えた制御部13は、状態検出処理を終了する。 The state detection process is a process for detecting a state related to the humidity of the fluid to be measured. As shown in FIG. 7, the control unit 13 that has started the state detection process first measures the resistance of the dew condensation sensor 14 (step S101). Next, the control unit 13 determines whether the resistance measurement result is less than or equal to a predetermined resistance threshold (step S102). If the measurement result is less than or equal to the resistance threshold (step S102; YES), the control unit 13 determines that condensation of a size that can be detected by the condensation sensor 14 has occurred, and notifies the external device of the determination result. (Step S107). The process of step S107 may be a process of storing the determination result in order to notify the external device of the determination result upon request. After completing the process of step S107, the control unit 13 then ends the state detection process.

なお、入力端子数を増やさなくても良いようにするために、制御部13と各センサ間は、図8に示したように接続されている。そのため、ステップS101で実際に測定される抵抗は、結露センサ14の抵抗ではなく、結露センサ14とサーモカップル122を並列接続した回路の抵抗となっている。ただし、結露が生じているか否かにより結露センサ14の抵抗は大きく変化するので、抵抗閾値を適切に定めておけば、上記内容の処理で結露センサ14で検知可能なサイズの結露が発生しているか否かを判定できる。 Note that in order to avoid the need to increase the number of input terminals, the control unit 13 and each sensor are connected as shown in FIG. 8. Therefore, the resistance actually measured in step S101 is not the resistance of the dew condensation sensor 14, but the resistance of the circuit in which the dew condensation sensor 14 and the thermocouple 122 are connected in parallel. However, the resistance of the condensation sensor 14 changes greatly depending on whether or not condensation is occurring, so if the resistance threshold is appropriately determined, the above process will ensure that condensation of a size that can be detected by the condensation sensor 14 occurs. It can be determined whether there is a

制御部13は、測定結果が抵抗閾値以下ではなかった場合(ステップS102;YES)には、物性値検出用センサ12のマイクロヒータ123に所定電圧を印加することでマイクロヒータ123の温度を上昇させる(ステップS103)。次いで、制御部13は、物性値検出用センサ12のサーモパイル121の出力電圧TA1と物性値検出用センサ12のサーモパイル122の出力電圧TB2とを取得する(ステップS104)。このステップS104の処理は、サーモパイル121、122の出力電圧の一回の検出結果を、TA2、TB2として取得する処理であっても、サーモパイル121、122の出力電圧の複数回の検出結果の平均値又は積算値を、TA2、TB2として取得する処理であっても良い。 If the measurement result is not below the resistance threshold (step S102; YES), the control unit 13 increases the temperature of the microheater 123 by applying a predetermined voltage to the microheater 123 of the physical property value detection sensor 12. (Step S103). Next, the control unit 13 acquires the output voltage TA1 of the thermopile 121 of the physical property value detection sensor 12 and the output voltage TB2 of the thermopile 122 of the physical property value detection sensor 12 (step S104). The process of step S104 is a process of acquiring the single detection result of the output voltage of the thermopiles 121, 122 as TA2, TB2, or the average value of the multiple detection results of the output voltage of the thermopiles 121, 122. Alternatively, the integrated value may be acquired as TA2 and TB2.

ステップS104の処理を終えた制御部13は、TA2が、予め定められている閾値A以下であり、且つ、TB2が、予め定められている閾値B以下であるという条件が満たされているか否かを判断する(ステップS104)。 After completing the process of step S104, the control unit 13 determines whether the conditions that TA2 is less than or equal to a predetermined threshold value A and TB2 is less than or equal to a predetermined threshold value B are satisfied. (Step S104).

制御部13は、上記条件が満たされていなかった場合(ステップS104;NO)には
、特に処理を行うことなく、状態検出処理を終了する。一方、上記条件が満たされていた場合(ステップS104;YES)、制御部13は、湿度が100%である(結露センサ14では検知できない微小結露が発生している)と判定して、判定結果を外部装置に通知する(ステップS105)。このステップS105の処理も、要求時に外部装置に判定結果を通知するために、判定結果を記憶しておく処理であっても良い。
If the above conditions are not satisfied (step S104; NO), the control unit 13 ends the state detection process without performing any particular process. On the other hand, if the above conditions are met (step S104; YES), the control unit 13 determines that the humidity is 100% (minor condensation that cannot be detected by the dew condensation sensor 14 has occurred), and the determination result is is notified to the external device (step S105). The process in step S105 may also be a process in which the determination result is stored in order to notify the external device of the determination result upon request.

そして、ステップS105の処理を終えた制御部13は、状態検出処理を終了する。 After completing the process in step S105, the control unit 13 then ends the state detection process.

状態検出処理のステップS103~S105の処理は、以下の知見に基づき想到されたものである。 The processing in steps S103 to S105 of the state detection processing was conceived based on the following knowledge.

流量測定装置1には、結露センサ14では検知できないサイズの結露も検知できることが望まれる。そのため、流量測定装置1に各種湿度の測定対象流体を導入した場合におけるTA2及びTB2を測定した所、図9に示したように、湿度が100%の測定対象流体の導入時におけるTA1及びTA2と、乾燥した測定対象流体の導入時におけるTA2及びTB2とが大きく異なることが確認された。また、測定対象流体の湿度が100%でなくても、外乱(流量測定装置1の外力による振動等)があると、TA2及びTB2の一方が小さくなる場合があることも確認された。そして、実験結果に基づき適切な閾値A、Bを定めた上で、TA2≦閾値A、且つ、TB2≦閾値Bという条件を用いれば、湿度が100%近傍でもないにも拘わらず、湿度が100%であると判定されることを防止できることが分かったため、状態検出処理のステップS103~S105の処理を、上記手順の処理としているのである。 It is desired that the flow rate measuring device 1 be able to detect dew condensation of a size that cannot be detected by the dew condensation sensor 14. Therefore, when measuring TA2 and TB2 when fluids to be measured with various humidity levels are introduced into the flow rate measurement device 1, as shown in FIG. It was confirmed that TA2 and TB2 at the time of introducing the dry fluid to be measured were significantly different. It was also confirmed that even if the humidity of the fluid to be measured is not 100%, one of TA2 and TB2 may become smaller if there is a disturbance (such as vibration due to an external force of the flow rate measuring device 1). Then, by determining appropriate thresholds A and B based on the experimental results and using the conditions TA2≦Threshold A and TB2≦Threshold B, the humidity will be 100% even though the humidity is not near 100%. % can be prevented, so the processing of steps S103 to S105 of the state detection processing is performed according to the above procedure.

なお、状態検出処理のステップS103~S105の処理は、上記知見に基づき想到されたものである。従って、ステップS103~S105の処理で実際に判定できることは、湿度が、閾値A、Bに応じた湿度以上となったか否かである。また、TA2についての閾値(“閾値A”)とTB2についての閾値(“閾値B”)とを別に設けているのは、製造誤差があるため、温接点、冷接点間の温度差が同一であっても、通常(図9参照)、サーモパイル121の出力電圧とサーモパイル122の出力電圧とが異なるためである。従って、サーモパイル121とサーモパイル122とが同性能のものである場合や同性能とみなせるものである場合には、閾値A及び閾値Bとして同じ値を用いることが出来る。 Note that the processing in steps S103 to S105 of the state detection processing was conceived based on the above knowledge. Therefore, what can actually be determined in the processing of steps S103 to S105 is whether the humidity has become equal to or higher than the humidity corresponding to the threshold values A and B. Also, the reason why the threshold value for TA2 ("threshold value A") and the threshold value for TB2 ("threshold value B") are set separately is because there is manufacturing error, so the temperature difference between the hot junction and the cold junction is the same. Even if there is, the output voltage of the thermopile 121 and the output voltage of the thermopile 122 are usually different (see FIG. 9). Therefore, when the thermopile 121 and the thermopile 122 have the same performance or can be considered to have the same performance, the same value can be used as the threshold value A and the threshold value B.

以上、説明したように、本実施形態に係る流量測定装置1は、サーモパイル121,122による測温結果が測定対象流体の流速の影響を受けないように配置された物性値検出用センサ12を備える。そして、物性値検出用センサ12のマイクロヒータ121の温度を上昇させたときのサーモパイル121,122の出力電圧のそれぞれが所定の閾値以下であるか否かを判断すれば、測定対象流体の湿度がほぼ100%となっているか否かを判定できることが各種実験より確認されている。従って、本実施形態に係る流量測定装置1によれば、湿度が、高湿度(閾値A、Bに応じた湿度以上の湿度)となったことを検出することが出来る。 As described above, the flow rate measuring device 1 according to the present embodiment includes the physical property value detection sensor 12 arranged so that the temperature measurement results by the thermopiles 121 and 122 are not affected by the flow velocity of the fluid to be measured. . Then, if it is determined whether the output voltages of the thermopiles 121 and 122 are below a predetermined threshold when the temperature of the microheater 121 of the physical property value detection sensor 12 is increased, the humidity of the fluid to be measured can be determined. It has been confirmed through various experiments that it is possible to determine whether or not it is approximately 100%. Therefore, according to the flow rate measuring device 1 according to the present embodiment, it is possible to detect that the humidity has become high humidity (humidity higher than the humidity corresponding to the threshold values A and B).

また、流量測定装置1は、結露センサ14を備えている。流量測定装置1によれば、大きな結露が発生しているか否か(早急な対策が必要であるか否か)も判定することが出来る。 The flow rate measuring device 1 also includes a dew condensation sensor 14 . According to the flow rate measuring device 1, it is also possible to determine whether or not large condensation is occurring (whether or not immediate countermeasures are required).

さらに、流量測定装置1には、流量検出用センサ11及び物性値検出用センサ12のそれぞれとして、同構成のセンサ100が使用されている。従って、流量測定装置1は、流量検出用センサ11と物性値検出用センサ12として別構成のセンサを使用した場合に比して低コストで製造できる装置となっていることになる。 Further, in the flow rate measurement device 1, sensors 100 having the same configuration are used as the flow rate detection sensor 11 and the physical property value detection sensor 12, respectively. Therefore, the flow rate measuring device 1 can be manufactured at a lower cost than when separate sensors are used as the flow rate detection sensor 11 and the physical property value detection sensor 12.

《変形例》
上記した流量測定装置1は、各種の変形が可能なものである。例えば、感度補正係数による補正が不要な場合には、流量測定装置1を、感度補正係数算出処理を行えない制御部13を備えた装置に変形しても良い。また、流量測定装置1を、結露センサ14を備えない装置に変形しても良い。
《Modified example》
The flow rate measuring device 1 described above can be modified in various ways. For example, if correction using a sensitivity correction coefficient is not required, the flow rate measuring device 1 may be modified to a device including a control unit 13 that cannot perform sensitivity correction coefficient calculation processing. Furthermore, the flow rate measuring device 1 may be modified into a device that does not include the dew condensation sensor 14.

状態検出処理を、ステップS104及びS105の処理を複数回繰り返し、“TA2≦閾値Aand TB2≦閾値B”という条件が連続的に満たされたときに、湿度が100%となったと判定する処理に変形しても良い。 The state detection process is modified to a process that repeats steps S104 and S105 multiple times and determines that the humidity has reached 100% when the conditions "TA2≦Threshold A and TB2≦Threshold B" are continuously satisfied. You may do so.

また、流量検出用センサ11及び物性値検出用センサ12の位置は上記したものに限られない。例えば、流量検出用センサ11及び物性値検出用センサ12を、主流路2の内面に配置しても良い。 Further, the positions of the flow rate detection sensor 11 and the physical property value detection sensor 12 are not limited to those described above. For example, the flow rate detection sensor 11 and the physical property value detection sensor 12 may be arranged on the inner surface of the main flow path 2.

流量検出用センサ11と物性値検出用センサ12とを別構成のセンサとしておいても良い。流量検出用センサ11及び/又は物性値検出用センサ12の代わりに、サーモパイル以外の測温センサ(抵抗温度センサ、サーモカップル等)を備えたセンサを用いても良い。 The flow rate detection sensor 11 and the physical property value detection sensor 12 may be provided as separate sensors. Instead of the flow rate detection sensor 11 and/or the physical property value detection sensor 12, a sensor equipped with a temperature sensor other than a thermopile (resistance temperature sensor, thermocouple, etc.) may be used.

《付記》
測定対象流体の流量と相関する値を測定する第1センサ(11)と、
2つの測温部(121、122)と前記2つの測温部(121、122)の中央に配置された加熱部(123)とを備えた第2センサ(12)であって、前記測定対象流体が第2所定方向に流れる位置に、前記2つの測温部(121、122)と前記加熱部(123)の並び方向が前記第2所定方向と直交する姿勢で配置された第2センサ(12)と、
前記第1センサ(11)により測定された値に基づき前記測定対象流体の流量を算出する流量算出処理と、前記第2センサ(12)の前記加熱部(123)の温度を上昇させて前記第2センサの前記2つの測温部(121、122)による測温結果を取得し、取得した測温結果のそれぞれが所定の閾値以下であるか否かにより前記測定対象流体の湿度が所定湿度以上であるか否かを判定する判定処理とを実行可能に構成された制御部(13)と、
を備えることを特徴とする流量測定装置(1)。
《Additional notes》
a first sensor (11) that measures a value correlated with the flow rate of the fluid to be measured;
A second sensor (12) comprising two temperature measuring sections (121, 122) and a heating section (123) arranged in the center of the two temperature measuring sections (121, 122), the second sensor (12) comprising: a second sensor () disposed at a position where the fluid flows in a second predetermined direction, with a direction in which the two temperature measurement units (121, 122) and the heating unit (123) are arranged in a direction perpendicular to the second predetermined direction; 12) and
a flow rate calculation process of calculating the flow rate of the fluid to be measured based on the value measured by the first sensor (11); and a process of calculating the flow rate of the fluid to be measured based on the value measured by the first sensor (11); Temperature measurement results by the two temperature measuring units (121, 122) of the two sensors are acquired, and the humidity of the fluid to be measured is determined to be higher than a predetermined humidity depending on whether each of the acquired temperature measurement results is below a predetermined threshold. a control unit (13) configured to be able to execute a determination process for determining whether or not the
A flow rate measuring device (1) characterized by comprising:

1 流量測定装置
2 主流路部
3 副流路部
4 シール
5 回路基板
11 流量検出用センサ
12 物性値検出用センサ
13 制御部
14 結露センサ
21 オリフィス
32 物性値検出用流路
33 流量検出用流路
34 流入用流路
34A 流入口
35 流出用流路
35A 流出口
100 センサ
101,102,111,112,121,122 サーモパイル
103,113,123 マイクロヒータ
104 温度センサ
1 Flow rate measurement device 2 Main flow path section 3 Sub flow path section 4 Seal 5 Circuit board 11 Flow rate detection sensor 12 Physical property value detection sensor 13 Control section 14 Condensation sensor 21 Orifice 32 Physical property value detection flow path 33 Flow rate detection flow path 34 Inflow channel 34A Inflow port 35 Outflow channel 35A Outlet port 100 Sensor 101, 102, 111, 112, 121, 122 Thermopile 103, 113, 123 Micro heater 104 Temperature sensor

Claims (4)

測定対象流体の流量と相関する値を測定する第1センサと、
2つの測温部と前記2つの測温部の中央に配置された加熱部とを備えた第2センサであって、前記測定対象流体が第2所定方向に流れる位置に、前記2つの測温部と前記加熱部の並び方向が前記第2所定方向と直交する姿勢で配置された第2センサと、
前記第1センサにより測定された値に基づき前記測定対象流体の流量を算出する流量算出処理と、前記第2センサの前記加熱部の温度を上昇させて前記第2センサの前記2つの測温部による測温結果を取得し、取得した測温結果のそれぞれが、前記2つの測温部に対して別に設けられた所定の閾値以下であるか否かにより前記測定対象流体の湿度が所定湿度以上であるか否かを判定する判定処理とを実行可能に構成された制御部と、
を備え
所定の間隔をもって併設された2つの電極パターンからなる結露センサを、さらに、備え、
前記制御部は、前記結露センサの抵抗値に基づき、結露が発生しているか否かを判定する第2判定処理を実行し、
前記制御部は、前記結露センサの抵抗値が抵抗閾値以下の場合に、前記第2判定処理において結露が発生していると判定し、
前記結露センサの抵抗値が抵抗閾値より大きい場合に、前記判定処理を実行することを特徴とする流量測定装置。
a first sensor that measures a value correlated with the flow rate of the fluid to be measured;
A second sensor comprising two temperature measuring sections and a heating section disposed at the center of the two temperature measuring sections, wherein the two temperature measuring sections are arranged at a position where the fluid to be measured flows in a second predetermined direction. a second sensor arranged in a posture in which the direction in which the part and the heating part are arranged is orthogonal to the second predetermined direction;
a flow rate calculation process of calculating the flow rate of the fluid to be measured based on the value measured by the first sensor; and increasing the temperature of the heating section of the second sensor to increase the temperature of the two temperature measuring sections of the second sensor. The humidity of the fluid to be measured is determined to be higher than a predetermined humidity depending on whether each of the obtained temperature measurement results is below a predetermined threshold set separately for the two temperature measurement units. a control unit configured to be able to execute a determination process for determining whether or not the
Equipped with
further comprising a dew condensation sensor consisting of two electrode patterns arranged at a predetermined interval,
The control unit executes a second determination process for determining whether or not condensation is occurring based on the resistance value of the dew condensation sensor,
The control unit determines that dew condensation has occurred in the second determination process when the resistance value of the dew condensation sensor is less than or equal to a resistance threshold;
A flow rate measuring device characterized in that the determination process is executed when the resistance value of the dew condensation sensor is greater than a resistance threshold value .
前記制御部は、前記加熱部の温度を第1温度まで上昇させて取得した前記2つの測温部の中の一方の測温部による測温結果と前記加熱部の温度を前記第1温度とは異なる第2温度まで上昇させて取得した前記一方の測温部による測温結果とから、前記流量算出処理における流量の算出時に使用される補正係数を算出する補正係数算出処理を実行可能に構成されている、
ことを特徴とする請求項1に記載の流量測定装置。
The control unit sets the temperature measurement result obtained by one of the two temperature measurement units obtained by raising the temperature of the heating unit to a first temperature and the temperature of the heating unit to the first temperature. is configured to be able to execute a correction coefficient calculation process of calculating a correction coefficient to be used when calculating the flow rate in the flow rate calculation process from the temperature measurement result obtained by the one temperature measurement unit obtained by raising the temperature to a different second temperature. has been,
The flow rate measuring device according to claim 1, characterized in that:
前記第2センサの各測温部が、サーモパイルである、
ことを特徴とする請求項1または2に記載の流量測定装置。
Each temperature measuring part of the second sensor is a thermopile,
The flow rate measuring device according to claim 1 or 2, characterized in that:
前記第1センサと前記第2センサとが、同構成のセンサである、
ことを特徴とする請求項1から3のいずれか一項に記載の流量測定装置。
the first sensor and the second sensor have the same configuration;
The flow rate measuring device according to any one of claims 1 to 3, characterized in that:
JP2019047533A 2019-03-14 2019-03-14 flow measuring device Active JP7451875B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2019047533A JP7451875B2 (en) 2019-03-14 2019-03-14 flow measuring device
CN201910700262.1A CN111693105B (en) 2019-03-14 2019-07-31 Flow rate measuring device
PCT/JP2020/009751 WO2020184448A1 (en) 2019-03-14 2020-03-06 Flow rate measurement device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019047533A JP7451875B2 (en) 2019-03-14 2019-03-14 flow measuring device

Publications (2)

Publication Number Publication Date
JP2020148677A JP2020148677A (en) 2020-09-17
JP7451875B2 true JP7451875B2 (en) 2024-03-19

Family

ID=72426985

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019047533A Active JP7451875B2 (en) 2019-03-14 2019-03-14 flow measuring device

Country Status (3)

Country Link
JP (1) JP7451875B2 (en)
CN (1) CN111693105B (en)
WO (1) WO2020184448A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112577571B (en) * 2020-12-11 2024-04-16 浙江启尔机电技术有限公司 Liquid supply system with sensor calibration flow path and calibration method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160290849A1 (en) 2013-11-19 2016-10-06 Endress+Hauser Flowtec Ag Measuring device and method for determining a corrected mass flow and uses of the measuring device
JP2018091726A (en) 2016-12-02 2018-06-14 株式会社デンソー Physical quantity measurement device, abnormality detection device, and abnormality detection method
JP2018124225A (en) 2017-02-03 2018-08-09 地方独立行政法人東京都立産業技術研究センター Heat conduction type sensor
JP2018151307A (en) 2017-03-14 2018-09-27 オムロン株式会社 Device and method for measuring flow rate

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10239130A (en) * 1997-02-24 1998-09-11 Omron Corp Flow sensor
CA2447915C (en) * 1997-06-17 2008-08-19 Fisher & Paykel Limited Respiratory humidification system
JP4089152B2 (en) * 2000-06-23 2008-05-28 オムロン株式会社 Heat generating device for sensor, sensor and acceleration sensor
JP4261797B2 (en) * 2001-10-01 2009-04-30 矢崎総業株式会社 Gas flow meter
JP3945385B2 (en) * 2002-11-15 2007-07-18 オムロン株式会社 Flow sensor and flow measurement method
JP4907959B2 (en) * 2005-11-21 2012-04-04 矢崎総業株式会社 Flow sensor correction unit, fluid discrimination device, and flow measurement device
US7685875B2 (en) * 2007-10-23 2010-03-30 Therm-O-Disc, Incorporated Fluid flow rate sensor and method of operation
JP5652315B2 (en) * 2011-04-28 2015-01-14 オムロン株式会社 Flow measuring device
JP6641820B2 (en) * 2015-09-16 2020-02-05 株式会社デンソー Flow measurement device
KR101824866B1 (en) * 2016-08-18 2018-02-05 한국표준과학연구원 Thermal Micro Flow Meter and Flow Measuring Method Using Thereof
JP2019002717A (en) * 2017-06-12 2019-01-10 オムロン株式会社 Flow rate measurement device
JP6867909B2 (en) * 2017-08-02 2021-05-12 アズビル株式会社 Thermal flow meter

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160290849A1 (en) 2013-11-19 2016-10-06 Endress+Hauser Flowtec Ag Measuring device and method for determining a corrected mass flow and uses of the measuring device
JP2018091726A (en) 2016-12-02 2018-06-14 株式会社デンソー Physical quantity measurement device, abnormality detection device, and abnormality detection method
JP2018124225A (en) 2017-02-03 2018-08-09 地方独立行政法人東京都立産業技術研究センター Heat conduction type sensor
JP2018151307A (en) 2017-03-14 2018-09-27 オムロン株式会社 Device and method for measuring flow rate

Also Published As

Publication number Publication date
CN111693105B (en) 2022-09-06
WO2020184448A1 (en) 2020-09-17
CN111693105A (en) 2020-09-22
JP2020148677A (en) 2020-09-17

Similar Documents

Publication Publication Date Title
JP5652315B2 (en) Flow measuring device
JP5450204B2 (en) Flowmeter
JP6073489B2 (en) Air mass flow meter with sensor element
JP4355792B2 (en) Thermal flow meter
JP7451875B2 (en) flow measuring device
WO2018230478A1 (en) Flow measuring device
JP5336640B1 (en) Thermal flow meter
US7469583B2 (en) Flow sensor
JP6615217B2 (en) Apparatus and method for mixing combustible gas and combustion air, hot water equipment provided thereby, and method for measuring mass flow rate of gas flow
WO2019163349A1 (en) Flow rate measuring apparatus
JP7104502B2 (en) Flow measuring device
JP2000304584A (en) Microflow sensor
KR102021643B1 (en) Air mass flowmeter
JP6460911B2 (en) Thermal mass flow controller and tilt error improving method thereof
JP6680248B2 (en) Flow rate measuring device and flow rate measuring method
JP2011209038A (en) Flow sensor
JP6475081B2 (en) Thermal flow meter and method for improving tilt error
JP6475080B2 (en) Thermal flow meter and method for improving tilt error
US6250150B1 (en) Sensor employing heating element with low density at the center and high density at the end thereof
JP7487501B2 (en) Flow Measuring Device
JP2007322320A (en) Flow sensor and manufacturing method
JP7487500B2 (en) Flow Measuring Device
JP2009243958A (en) Thermal-type flow meter
JP7128946B2 (en) Heat transfer coefficient measuring element
WO2020080189A1 (en) Flow rate measuring device, and method for controlling flow rate measuring device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230221

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20230331

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20231003

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231221

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20240109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240219

R150 Certificate of patent or registration of utility model

Ref document number: 7451875

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150