JP4355792B2 - Thermal flow meter - Google Patents

Thermal flow meter Download PDF

Info

Publication number
JP4355792B2
JP4355792B2 JP2002251050A JP2002251050A JP4355792B2 JP 4355792 B2 JP4355792 B2 JP 4355792B2 JP 2002251050 A JP2002251050 A JP 2002251050A JP 2002251050 A JP2002251050 A JP 2002251050A JP 4355792 B2 JP4355792 B2 JP 4355792B2
Authority
JP
Japan
Prior art keywords
temperature
sensor
fluid
pipe
flow rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002251050A
Other languages
Japanese (ja)
Other versions
JP2004093180A (en
Inventor
実 瀬戸
充典 小牧
健 田代
英一 大島
聡 石谷
勝介 島田
学 村岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Gas Co Ltd
Azbil Corp
Original Assignee
Tokyo Gas Co Ltd
Azbil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Gas Co Ltd, Azbil Corp filed Critical Tokyo Gas Co Ltd
Priority to JP2002251050A priority Critical patent/JP4355792B2/en
Priority to PCT/JP2003/011096 priority patent/WO2004020958A1/en
Priority to CNB038204169A priority patent/CN100350223C/en
Priority to AU2003257603A priority patent/AU2003257603A1/en
Priority to DE10393185T priority patent/DE10393185B4/en
Publication of JP2004093180A publication Critical patent/JP2004093180A/en
Application granted granted Critical
Publication of JP4355792B2 publication Critical patent/JP4355792B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/68Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using thermal effects
    • G01F1/684Structural arrangements; Mounting of elements, e.g. in relation to fluid flow
    • G01F1/6845Micromachined devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/68Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using thermal effects
    • G01F1/684Structural arrangements; Mounting of elements, e.g. in relation to fluid flow
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/68Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using thermal effects
    • G01F1/696Circuits therefor, e.g. constant-current flow meters
    • G01F1/6965Circuits therefor, e.g. constant-current flow meters comprising means to store calibration data for flow signal calculation or correction

Description

【0001】
【発明の属する技術分野】
本発明は、熱式流量センサが取り付けられた配管の温度の影響を受けることなく、上記配管を通流する流体の流量を高精度に計測することのできる熱式流量計に関する。
【0002】
【関連する背景技術】
ガスメータ等の積算流量計は、例えば流量センサを用いて所定の流体通路(ガス引込管)を通流する流体(ガス)の瞬時流量を求め、この瞬時流量を積算することで、例えば1ヶ月毎の流体通流量(ガス使用量)を求めるものである。このような積算流量計(ガスメータ)にて求められる積算流量は、直接課金対象となるので、その計測精度が十分に高いことが要求される。
【0003】
そこで最近では、専ら、計測精度の高い熱式流量センサが用いられている。この熱式流量センサは、基本的には図5に示すようにチップ状のシリコン基台B上に設けた発熱抵抗体からなるヒータ素子Rhを間にして、流体の通流方向Fに測温抵抗体からなる一対の温度検出素子Ru,Rdを設けた素子構造を有するセンサチップからなる。そして上記ヒータ素子Rhから発せられる熱の拡散度合い(温度分布)が前記流体の通流によって変化することを利用し、前記温度検出素子Ru,Rdの熱による抵抗値変化から前記流体の質量流速(質量流量)を検出する如く構成される。
【0004】
尚、図中Rrは、前記シリコン基台B上の前記ヒータ素子Rhから離れた位置に設けられた測温抵抗体からなる温度検出素子であって、チップに加わる周囲温度(流体の温度)の計測に用いられる。そしてこの熱式流量センサは、上記温度検出素子Rrによって検出される流体の温度よりも前記ヒータ素子Rhの発熱温度が一定温度だけ高くなるように駆動され、このときの前記温度検出素子Ru,Rdの抵抗値変化をセンサ出力(計測値)として求めるものとなっている。
【0005】
【発明が解決しようとする課題】
ところで上述した熱式流量センサは、例えば図6に示すように流体の通流路をなす配管10の壁面に取り付けられて使用される。この際、流量センサを配管10から熱的に絶縁するべく、専ら、そのセンサチップ1をコバール等の台座2に取り付け、更にこの台座2をガラス等の熱絶縁体3を介して配管10に固定するようにしている。尚、図中4はヒータ駆動回路等を搭載したセンサ回路基板(センサブラケット)であり、5はセンサ回路基板4と配管10との間をシールするOリング、6はセンサ回路基板4の固定ねじである。
【0006】
しかしながらこのような熱的対策を施しても、外気温度の影響を受けて台座2の温度が変化することが否めない。するとこれに伴ってセンサチップ1の温度が変化し、センサチップ1上に形成された前記温度検出素子Rrにより検出される温度と配管10を通流する流体の温度とに差が生じる。ちなみに前記温度検出素子Rrは、本来的には前述したように流体の温度を検出し、その検出温度に応じて前記ヒータ素子Rhの発熱温度の制御に用いられるものである。この為、図7(a)にヒータ素子Rhの発熱駆動の概念を模式的に示すように、ヒータ素子Rhを流体の温度(例えば20℃)よりも一定温度(例えば45℃)だけ高く発熱駆動しようとしても、実際的には図7(b)に示すよう温度検出素子Rrがセンサチップ1の温度(例えば21℃)を検出し、この温度よりも一定温度(例えば45℃)だけ高くヒータ素子Rhを発熱駆動してしまう。この結果、流体の加熱温度にずれが生じ、流量センサにより計測された流量に誤差が生じることになる。
【0007】
本発明はこのような事情を考慮してなされたもので、その目的は、流量センサが備える温度温度検出素子により計測される流体の温度、即ち、センサチップの温度と、実際の流体の温度とに温度差がある場合であっても、その温度差に拘わることなく精度の高い流量計測を行い得る簡易な構成の熱式流量計を提供することにある。
【0008】
【課題を解決するための手段】
上述した目的を達成するべく本発明に係る熱式流量計は、ヒータ素子を間にして流体の通流方向にそれぞれ設けられた第1および第2の温度検出素子と、周囲温度を検出する温度検出素子とを備えたセンサチップからなる熱式流量センサを、流体を通流する配管の壁面に該配管から熱的に絶縁して設け、前記ヒータ素子を前記周囲温度を検出する温度検出素子により検出される周囲温度よりも一定温度だけ高く発熱駆動して第1および第2の温度検出素子によりそれぞれ検出される温度の差から流体の流量(流速)を検出するものであって、
特に前記熱式流量センサとは別のセンサであって、前記熱式流量センサが組み込まれた配管を通流する流体の温度を検出する第1の温度センサ、および前記配管の温度を検出する第2の温度センサを設け
これらの第1および第2の温度センサにより検出される前記配管の温度と該配管を通流する流体の温度との温度差に従って前記熱式流量センサにより検出される前記流体の流量を補正すること(温度差補正手段)を特徴としている。
【0009】
即ち、本発明は配管を通流する流体の温度を第1の温度センサにて検出すると共に、前記配管の温度を第2の温度センサを用いて検出し、これらの温度差に従って前記流量センサにおけるヒータ素子の発熱温度のずれ(温度差)を求め、この発熱温度のずれに起因する前記流量センサの検出出力の変動を補正するようにしたものである。
【0010】
好ましくは前記第1の温度センサは、前記配管内の略中央部における流体の温度を検出するように設けられ、また前記第2の温度センサは、前記配管の壁面温度を検出するように設けられる。特に前記第2の温度センサを、前記配管の周方向に離れた複数箇所にそれぞれ設け、その平均値として前記配管の壁面温度を検出するようにすることが好ましい。
【0011】
また本発明の好ましい態様は、前記温度差補正手段は、前記第1および第2の温度センサにより検出された温度差と前記流体の流速とに応じて温度差補正テーブルを参照し、該温度差補正テーブルから補正量を求めて前記流体の流量を補正するように構成される。ちなみに前記温度差補正テーブルは、前記配管の温度と該配管を通流する流体の温度との差に応じた前記熱式流量センサの出力変動量を、流速の異なりに応じた変動特性として登録したものとして構築される。
【0012】
【発明の実施の形態】
以下、図面を参照して本発明の一実施形態に係る熱式流量計について説明する。
この熱式流量計は、概略的には図1に示すように、所定の流体通路をなす配管10の周壁に該配管10内を通流する流体(ガス)の流速(流量)を計測する為の複数(例えば4個)の熱式流量センサ11a,11b,11c,11dを設けると共に、前記流体の温度を検出する為の第1の温度センサ12aおよび前記配管10の温度を検出する為の2個の第2の温度センサ12b,12cと、前記流体の圧力を検出する為の圧力センサ13とをそれぞれ設けて構成される。
【0013】
ちなみに4つの熱式流量センサ11a,11b,11c,11dは、基本的には前述した図5に示す素子構造を有するものである。そしてこれらの熱式流量センサ11a,11b,11c,11dは、例えば低流量域検出用の低速流量センサ11a,11bと、高流量域検出用の高速流量センサ11c,11dとからなる。そしてこれらの流量センサ11a,11b,11c,11dは、円筒状の配管10の周方向に沿って90°間隔で、その左上側、右上側、左下側、および右下側からなる対角方向の4箇所にそれぞれ対向して設けられる。またサーミスタ等からなる第1の温度センサ12aは、配管10の略中央部に向けて突出して該配管10内の流体(ガス)の温度を検出するように設けられる。更に第2の温度センサ12b,12cは、前記配管10の互いに対向する面にそれぞれ設けられる。ちなみにこれらの第2の温度センサ12b,12cについては、前記低速流量センサ11a,11bよりも前記高速流量センサ11c,11dに近傍に設けることが好ましい。
【0014】
尚、低速流量センサ11a,11bおよび高速流量センサ11c,11dは、前述したヒータ素子Rhと一対の温度検出素子Ru,Rdとの離間距離を異ならせることで、流速(流量)に対する計測レンジを異ならせたものからなる。また上記各流量センサ11a,11b,11c,11dは、そのヒータ素子Rhの駆動回路や一対の温度検出素子Ru,Rdの抵抗値差(温度差)を検出するセンシング回路(ブリッジ回路)と共に所定の回路基板に搭載されて前記配管10に組み込まれている。
【0015】
これらの各流量センサ(回路基板)11a,11b,11c,11dは、前記配管10の外周壁に取り付けられたセレクタ回路基板14からの制御を受けて作動するものであって、またそのセンサ出力(検出信号)を上記セレクタ回路基板14を介して出力するようになっている。このセレクタ回路基板14は、後述する計測装置本体20にケーブル16を介して接続されるもので、前記各流量センサ(回路基板)11a,11b,11c,11dのインターフェース部をなす。また前記第1および第2の温度センサ12a,12b,12c、および前記圧力センサ13もインターフェース部としての上記セレクタ回路基板14を介して計測装置本体20に接続される。
【0016】
さてCPUを主体として構成される計測装置本体20は、基本的には前記流量センサ(回路基板)11a,11b,11c,11dによりそれぞれ求められる検出信号(センサ出力)に従って、前記配管10を通流する流体(ガス)の瞬時流量Qを算出する流量演算部21を備える。またこの計測装置本体20は、前記第1の温度センサ12aにより検出される流体(ガス)の温度に応じて、前記検出信号(センサ出力)を温度補正する為の温度補正テーブル22を備えると共に、前記圧力センサ13により検出される流体(ガス)の圧力に応じて、前記検出信号(センサ出力)を圧力補正する為の圧力補正テーブル23を備えている。
【0017】
更にこの計測装置本体20が特徴とするところは、前記温度差補正テーブル24を備え、前記第1および第2の温度センサ12a,12b,12cによりそれぞれ検出される流体の温度と配管10の温度との差(温度差)に従って上記温度差補正テーブル24を参照して前記流量センサ11(11a,11b,11c,11d)により検出された流体の流量を温度差補正する機能(温度差補正手段)を備えた点にある。
【0018】
具体的には温度差補正テーブル24は、流体の温度と配管10の温度との差に応じた前記流量センサ11の検出出力(流量)の変動量を、その流速の異なりに応じた変化特性として予め登録したものからからなる。具体的には上記流体の温度と配管10の温度との差に応じた前記流量センサ11の出力変動は、配管10に流速センサ11を組み込んだ試験体を恒温槽に設置し、その雰囲気温度と流体の通流速度(流量)を変えながら、そのときの前記流量センサ11の出力(検出流量)を実測することによって求められる。
【0019】
このようにして求められる流量センサ11の出力変動量は、流速に依存するものの、雰囲気温度に拘わらず図2に特性Aとして示すように単位温度当たりの変動割合(%/1℃)がほぼ一定であることが確認された。即ち、流体の温度と配管10の温度との差に起因する流量センサ11の出力変動量は、専ら、流体の流速に依存して変化し、また上記温度差によって変化するものの、その単位温度当たりの変動割合は雰囲気温度の変化に拘わらず流速毎にほぼ一定であることが確認できた。
【0020】
そこでこの発明に係る熱式流量計においては、このような流体の温度と配管10の温度との差に起因する流量センサ11の出力変動を補正するべく、図2に特性Bとして示すような、前記変動特性Aとは逆の特性を流体の流速に応じた単位温度当たりの流量補正量として前記温度差補正テーブル24に登録している。そして前記第1および第2の温度センサ12a,12b,12cにより検出される前記流体の温度と配管10の温度との温度差と、そのときに前記流量センサ11により検出される流体の流速(流量)とに応じて前記温度差補正テーブル24から温度差補正量(単位温度当たりの補正量)を求め、該流量センサ11により検出された流量を温度差補正するものとなっている。
【0021】
即ち、前記流量センサ11により検出される流体の流速(流量)に応じて前記温度差補正テーブル24から上記流速での単位温度当たりの補正量を求める。そしてこの単位温度当たりの補正量に、前記前記流体の温度と配管10の温度との温度差を掛けることにより、その温度差において必要な流量補正量を求める。その上で、この流量補正量を前記流量センサ11により検出された流体の流量に加算することでその流量を温度差補正し、配管10を通流した流体の実際の流量を精度良く求めるものとなっている。
【0022】
かくしてこのような温度差補正によれば、例えば図3に雰囲気温度が−25℃、40℃、および60℃における温度差補正された検出流量の誤差(特性a,b,c)と、雰囲気温度が−25℃のときの温度差補正しなかったときの検出流量の誤差(特性d)とを対比して示すように、温度差補正した場合の計測誤差を1%以下と十分に小さく抑え、その計測精度を十分に高め得ることが確認できた。即ち、本発明においては前記配管10を通して流量センサ11のチップ1に加わる温度、つまり温度検出素子Rrが検出する温度と、実際に流量センサ11上を通流する流体の温度との差を、第1および第2の温度センサ12a,12b,12cにより検出される前記流体の温度と配管10の温度との温度差として簡易に捉えている。そしてこの温度差に応じて温度差補正テーブル24を参照することで前記流体の流速に応じた補正量を求めるので、前記流量センサ11にて検出される流体の流量を簡易にして効果的に温度差補正し、その計測精度を高めることができる。
【0023】
上述した温度差補正は、具体的には図4に流量演算部21における概略的な処理手順を示すように実行される。先ず流量センサ11からのセンサ出力を入力する[ステップS1]。次いで前記流体の種別(ガス種)に応じて前記流量センサ11の検出感度を調整するべく上記センサ出力を補正する[ステップS2]。更には前記流体の圧力に応じて前記圧力補正テーブル23を参照して前記センサ出力を圧力補正すると共に[ステップS3]、前記流体の温度に応じて前記温度補正テーブル22を参照して前記センサ出力を温度補正する[ステップS4]。即ち、前記流量センサ11の検出特性の、流体の種別に依存する変化分、およびその圧力と温度に依存する変化をそれぞれ補正する。その後、前記流量センサ11の基準検出特性に応じてその個体差を補正し[ステップS5]、これらの補正を施したセンサ出力に従って前記配管10を通流した流体の流量(流速)を求める[ステップS6]。
【0024】
尚、以上の補正処理と、補正したセンサ出力に基づく流量(流速)の算出処理は、前述した4つの流量センサ11a,11b,11c,11d毎にそれぞれ行われる。ちなみにこれらの処理は並列的に行っても良く、或いは前述したセレクタ回路基板14を介して前記各流量センサ11a,11b,11c,11dのセンサ出力を所定の周期で巡回的に入力する場合には、時分割的に実行することも勿論可能である。
【0025】
このようにして前記各流量センサ11a,11b,11c,11dのセンサ出力からそれぞれ流体の流量(流速)が求められたならば、次に各流量(流速)の平均値を求める[ステップS7]。そしてこの流量値(流速)と前記第1および第2の温度センサ12a,12b,12cにより検出される前記流体の温度と配管10の温度との温度差に基づいて前記温度差補正テーブル24を参照して温度差補正量を求め、上記流量値を温度差補正する[ステップS8]。そしてこの温度差補正された流量値を、流量計にて計測された最終的な流量値として出力する[ステップS9]。以降、上述した処理を繰り返し実行することで、前記配管10を通流する流体の流量計測を継続して実行する。
【0026】
かくして上述した如く構成された熱式流量計によれば、配管10を通して熱流センサ11に加わる温度により生じる温度検出素子Rrの検出温度と実際の流体の温度との温度差に起因する前記流量センサ11の検出出力(検出流量)の誤差を、簡単に補正することができる。しかも配管10に取り付けた第1の温度センサ12aと、第2の温度センサ12b,12cとにより配管10と流体との温度差を検出し、その温度差に基づいた温度差補正を行うと言う簡単な手法により前記流量センサ11の検出出力(検出流量)の誤差を打ち消すことができる。
【0027】
この際、2つの第2の温度センサ12b,12cによりそれぞれ計測される温度の平均値を配管10の温度して検出すれば、例えば配管10の片面側にだけが太陽光により照らされてその温度が高くなっているような場合であっても、その配管10の温度を正しく評価することができる。また前述したように第2の温度センサ12b,12cを高速流量センサ11c,11dの近傍に設けているので、低速流量センサ11a,11bを用いて流量計測している場合でも、上記低速流量センサ11a,11bからの熱的影響を受けることなしに配管10の温度を正確に検出することができる。尚、高速流量センサ11b,11cを用いて流量計測している場合には、その流速自体が早いので上記高速流量センサ11b,11cからの熱的影響を殆ど受けることなしに配管10の温度を正確に検出することができる。従って配管10の温度を正確に検出しながら、前述した温度差補正を効果的に行うことができる。
【0028】
更には前記温度差補正テーブル24には、温度差に対する補正量を、単位温度当たりの補正量として登録しておけば良いので、温度差補正テーブル24の構成の簡素化を図ることができる。そして検出流量に応じて前記温度差補正テーブル24からその補正量を求めるだけでよいので、その温度差補正を複雑な処理を伴うことなしに簡単に行うことができる等の実用上多大なる効果が奏せられる。
【0029】
尚、本発明は上述した実施形態に限定されるものではない。例えば実施形態においては複数の流量センサ11を備えた流量計について説明したが、流量センサ11の数は特に限定されるものではなく、また必ずしも低速流量センサと高速流量センサの双方を備える必要もない。また第1および第2の温度センサ12a,12b,12cの数も特に限定されない。その他、本発明はその要旨を逸脱しない範囲で種々変形して実施することができる。
【0030】
【発明の効果】
以上説明したように本発明によれば、流体を通流する配管の壁面に該配管から熱的に絶縁して流量センサを設けると共に、この流量センサが組み込まれた配管に、前記流量センサとは別のセンサであって、前記配管を通流する流体の温度を検出する第1の温度センサおよび前記配管の温度を検出する第2の温度センサを設け、これらの温度センサにより検出される配管と流体との温度差に応じて前記流量センサにより検出された流体の流量を温度差補正する。従って配管を通して流量センサに加わる温度に拘わることなく、流体の流量を高精度に検出することができる。しかもその構成の非常に簡単である等の実用上多大なる効果が奏せられる。
【図面の簡単な説明】
【図1】本発明の一実施形態に係る熱式流量計の要部概略構成図。
【図2】図1に示す熱式流量計が備える温度差補正テーブルに登録される、流速に応じた温度差補正量の例を示す図。
【図3】温度差補正による流量計測精度の向上結果を示す図。
【図4】図1に示す熱式流量計における流量演算部での概略的な処理手順を示す図。
【図5】熱式流量センサの概略的な素子構造を示す図。
【図6】熱式流量センサの配管への組み込み構造を概略的に示す断面図。
【図7】配管に組み込まれた流量センサに加わる温度に起因する流量検出精度の劣化を説明する為の熱的な模式図。
【符号の説明】
10 配管(流体流路)
11a,11b,11c,11d 熱式流量センサ
12a 第1の温度センサ(流体温度検出用)
12b,12c 第2の温度センサ(配管温度検出用)
13 圧力センサ
21 流量演算部
22 温度補正テーブル
23 圧力補正テーブル
24 温度差補正テーブル
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a thermal flow meter that can measure the flow rate of a fluid flowing through the pipe with high accuracy without being affected by the temperature of the pipe to which a thermal flow sensor is attached.
[0002]
[Related background]
An integrated flow meter such as a gas meter obtains an instantaneous flow rate of a fluid (gas) flowing through a predetermined fluid passage (gas inlet pipe) using a flow sensor, for example, and integrates the instantaneous flow rate, for example, every month. The flow rate of fluid (the amount of gas used) is determined. Since the integrated flow rate calculated by such an integrated flow meter (gas meter) is directly charged, the measurement accuracy is required to be sufficiently high.
[0003]
Therefore, recently, a thermal flow sensor with high measurement accuracy is exclusively used. As shown in FIG. 5, this thermal flow sensor basically measures temperature in a fluid flow direction F with a heater element Rh formed of a heating resistor provided on a chip-like silicon base B interposed therebetween. It consists of a sensor chip having an element structure provided with a pair of temperature detection elements Ru, Rd made of resistors. Then, by utilizing the fact that the degree of diffusion (temperature distribution) of the heat generated from the heater element Rh changes due to the flow of the fluid, the mass flow velocity of the fluid (from the resistance value change due to the heat of the temperature detection elements Ru, Rd) Mass flow rate).
[0004]
In the figure, Rr is a temperature detection element made of a resistance temperature detector provided at a position away from the heater element Rh on the silicon base B, and is an ambient temperature (fluid temperature) applied to the chip . Used for measurement. The thermal flow sensor is driven such that the heat generation temperature of the heater element Rh is higher than the temperature of the fluid detected by the temperature detection element Rr by a certain temperature, and the temperature detection elements Ru, Rd at this time are driven. Is obtained as a sensor output (measured value).
[0005]
[Problems to be solved by the invention]
By the way, the thermal flow sensor described above is used by being attached to the wall surface of a pipe 10 that forms a fluid passage, for example, as shown in FIG. At this time, in order to thermally insulate the flow sensor from the pipe 10, the sensor chip 1 is exclusively attached to a base 2 such as Kovar, and the base 2 is fixed to the pipe 10 via a thermal insulator 3 such as glass. Like to do. In the figure, 4 is a sensor circuit board (sensor bracket) on which a heater drive circuit and the like are mounted, 5 is an O-ring that seals between the sensor circuit board 4 and the pipe 10, and 6 is a fixing screw for the sensor circuit board 4. It is.
[0006]
However, even if such thermal measures are taken, it cannot be denied that the temperature of the base 2 changes due to the influence of the outside air temperature. As a result, the temperature of the sensor chip 1 changes, and a difference occurs between the temperature detected by the temperature detection element Rr formed on the sensor chip 1 and the temperature of the fluid flowing through the pipe 10. Incidentally, the temperature detecting element Rr is originally used for detecting the temperature of the fluid as described above and controlling the heat generation temperature of the heater element Rh according to the detected temperature. For this reason, as schematically shown in FIG. 7A, the concept of heat generation driving of the heater element Rh, the heater element Rh is heated by a certain temperature (eg, 45 ° C.) higher than the fluid temperature (eg, 20 ° C.). Even if trying to do so, the temperature detection element Rr actually detects the temperature of the sensor chip 1 (for example, 21 ° C.) as shown in FIG. 7B, and the heater element is higher than this temperature by a certain temperature (for example, 45 ° C.). Rh is driven to generate heat. As a result, a deviation occurs in the heating temperature of the fluid, and an error occurs in the flow rate measured by the flow rate sensor.
[0007]
The present invention has been made in consideration of such circumstances, and its purpose is to determine the temperature of the fluid measured by the temperature / temperature detecting element provided in the flow sensor, that is, the temperature of the sensor chip and the actual temperature of the fluid. It is an object of the present invention to provide a thermal flow meter having a simple configuration that can perform highly accurate flow rate measurement regardless of the temperature difference even when there is a temperature difference.
[0008]
[Means for Solving the Problems]
In order to achieve the above-described object, the thermal flow meter according to the present invention includes first and second temperature detection elements provided in the direction of fluid flow with a heater element therebetween, and a temperature for detecting an ambient temperature. A thermal flow sensor comprising a sensor chip with a detection element is provided on a wall surface of a pipe through which a fluid flows and is thermally insulated from the pipe, and the heater element is detected by a temperature detection element that detects the ambient temperature. The heat generation is driven by a certain temperature higher than the detected ambient temperature, and the flow rate (flow velocity) of the fluid is detected from the difference between the temperatures detected by the first and second temperature detection elements,
In particular, it is a sensor different from the thermal flow sensor, a first temperature sensor for detecting the temperature of a fluid flowing through a pipe in which the thermal flow sensor is incorporated, and a first temperature sensor for detecting the temperature of the pipe. the second temperature sensor is provided,
Correcting the flow rate of the fluid detected by the thermal flow sensor according to the temperature difference between the temperature of the pipe detected by the first and second temperature sensors and the temperature of the fluid flowing through the pipe. (Temperature difference correction means).
[0009]
That is, according to the present invention, the temperature of the fluid flowing through the pipe is detected by the first temperature sensor, and the temperature of the pipe is detected by using the second temperature sensor. A deviation (temperature difference) in the heat generation temperature of the heater element is obtained, and a variation in the detection output of the flow rate sensor due to the deviation in the heat generation temperature is corrected.
[0010]
Preferably, the first temperature sensor is provided so as to detect a temperature of a fluid at a substantially central portion in the pipe, and the second temperature sensor is provided so as to detect a wall surface temperature of the pipe. . In particular, it is preferable that the second temperature sensors are provided at a plurality of locations separated in the circumferential direction of the pipe, and the wall surface temperature of the pipe is detected as an average value thereof.
[0011]
In a preferred aspect of the present invention, the temperature difference correction means refers to a temperature difference correction table in accordance with the temperature difference detected by the first and second temperature sensors and the flow velocity of the fluid. A correction amount is obtained from the correction table, and the flow rate of the fluid is corrected. Incidentally, in the temperature difference correction table, the output fluctuation amount of the thermal flow sensor according to the difference between the temperature of the pipe and the temperature of the fluid flowing through the pipe is registered as a fluctuation characteristic according to the difference in flow velocity. Built as a thing.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, a thermal type flow meter according to an embodiment of the present invention will be described with reference to the drawings.
As shown schematically in FIG. 1, this thermal flow meter is for measuring the flow velocity (flow rate) of a fluid (gas) flowing through the pipe 10 on the peripheral wall of the pipe 10 forming a predetermined fluid passage. A plurality of (for example, four) thermal flow sensors 11a, 11b, 11c, and 11d, and a first temperature sensor 12a for detecting the temperature of the fluid and 2 for detecting the temperature of the pipe 10. Each of the second temperature sensors 12b, 12c and a pressure sensor 13 for detecting the pressure of the fluid are provided.
[0013]
Incidentally, the four thermal flow sensors 11a, 11b, 11c, and 11d basically have the element structure shown in FIG. The thermal flow sensors 11a, 11b, 11c, and 11d include, for example, low-speed flow sensors 11a and 11b for detecting a low flow area and high-speed flow sensors 11c and 11d for detecting a high flow area. These flow sensors 11a, 11b, 11c, and 11d are arranged at 90 ° intervals along the circumferential direction of the cylindrical pipe 10 in diagonal directions including the upper left side, the upper right side, the lower left side, and the lower right side. It is provided to face each other at four locations. The first temperature sensor 12a made of a thermistor or the like is provided so as to project toward the substantially central portion of the pipe 10 and detect the temperature of the fluid (gas) in the pipe 10. Further, the second temperature sensors 12b and 12c are provided on the surfaces of the pipe 10 facing each other. Incidentally, the second temperature sensors 12b and 12c are preferably provided closer to the high-speed flow rate sensors 11c and 11d than the low-speed flow rate sensors 11a and 11b.
[0014]
The low-speed flow rate sensors 11a and 11b and the high-speed flow rate sensors 11c and 11d have different measurement ranges for the flow rate (flow rate) by making the separation distance between the heater element Rh and the pair of temperature detection elements Ru and Rd different from each other. Made up of. Each of the flow sensors 11a, 11b, 11c, and 11d has a predetermined circuit together with a driving circuit for the heater element Rh and a sensing circuit (bridge circuit) that detects a resistance value difference (temperature difference) between the pair of temperature detection elements Ru and Rd. It is mounted on the circuit board and incorporated in the pipe 10.
[0015]
Each of these flow sensors (circuit boards) 11a, 11b, 11c, and 11d is operated under the control of the selector circuit board 14 attached to the outer peripheral wall of the pipe 10, and the sensor output ( Detection signal) is output via the selector circuit board 14. The selector circuit board 14 is connected to a measuring apparatus body 20 described later via a cable 16 and serves as an interface for the flow sensors (circuit boards) 11a, 11b, 11c, and 11d. The first and second temperature sensors 12a, 12b, 12c and the pressure sensor 13 are also connected to the measuring apparatus body 20 via the selector circuit board 14 as an interface unit.
[0016]
The measuring device main body 20 mainly composed of a CPU basically passes the pipe 10 in accordance with detection signals (sensor outputs) respectively obtained by the flow sensors (circuit boards) 11a, 11b, 11c, and 11d. A flow rate calculation unit 21 that calculates an instantaneous flow rate Q of the fluid (gas) to be operated is provided. The measuring device body 20 includes a temperature correction table 22 for correcting the temperature of the detection signal (sensor output) according to the temperature of the fluid (gas) detected by the first temperature sensor 12a. A pressure correction table 23 for correcting the pressure of the detection signal (sensor output) according to the pressure of the fluid (gas) detected by the pressure sensor 13 is provided.
[0017]
Further, the measuring device main body 20 is characterized by including the temperature difference correction table 24, and the temperature of the fluid and the temperature of the pipe 10 detected by the first and second temperature sensors 12a, 12b, and 12c, respectively. A function (temperature difference correction means) for correcting the temperature difference of the flow rate of the fluid detected by the flow rate sensor 11 (11a, 11b, 11c, 11d) with reference to the temperature difference correction table 24 according to the difference (temperature difference) of It is in the point prepared.
[0018]
Specifically, the temperature difference correction table 24 uses the variation amount of the detection output (flow rate) of the flow rate sensor 11 according to the difference between the temperature of the fluid and the temperature of the pipe 10 as a change characteristic according to the difference in the flow velocity. It consists of pre-registered ones. Specifically, the output fluctuation of the flow rate sensor 11 according to the difference between the temperature of the fluid and the temperature of the pipe 10 is obtained by installing a test body in which the flow rate sensor 11 is incorporated in the pipe 10 in a constant temperature bath, It is obtained by actually measuring the output (detected flow rate) of the flow sensor 11 at that time while changing the flow rate (flow rate) of the fluid.
[0019]
Although the output fluctuation amount of the flow sensor 11 obtained in this way depends on the flow velocity, the fluctuation ratio (% / 1 ° C.) per unit temperature is almost constant as shown by the characteristic A in FIG. 2 regardless of the ambient temperature. It was confirmed that. That is, the output fluctuation amount of the flow sensor 11 caused by the difference between the temperature of the fluid and the temperature of the pipe 10 changes depending on the flow velocity of the fluid and changes due to the temperature difference, but per unit temperature. It was confirmed that the fluctuation ratio was substantially constant for each flow rate regardless of the change in ambient temperature.
[0020]
Therefore, in the thermal type flow meter according to the present invention, in order to correct the output fluctuation of the flow rate sensor 11 due to the difference between the temperature of the fluid and the temperature of the pipe 10, as shown as a characteristic B in FIG. A characteristic opposite to the fluctuation characteristic A is registered in the temperature difference correction table 24 as a flow rate correction amount per unit temperature corresponding to the fluid flow velocity. And the temperature difference between the temperature of the fluid detected by the first and second temperature sensors 12a, 12b, 12c and the temperature of the pipe 10, and the flow velocity (flow rate) of the fluid detected by the flow sensor 11 at that time. ), A temperature difference correction amount (correction amount per unit temperature) is obtained from the temperature difference correction table 24, and the flow rate detected by the flow rate sensor 11 is corrected for the temperature difference.
[0021]
That is, the correction amount per unit temperature at the flow velocity is obtained from the temperature difference correction table 24 according to the flow velocity (flow rate) of the fluid detected by the flow sensor 11. Then, by multiplying the correction amount per unit temperature by the temperature difference between the temperature of the fluid and the temperature of the pipe 10, a flow rate correction amount necessary for the temperature difference is obtained. Then, the flow rate correction amount is added to the flow rate of the fluid detected by the flow rate sensor 11 to correct the temperature difference, and the actual flow rate of the fluid flowing through the pipe 10 is obtained with high accuracy. It has become.
[0022]
Thus, according to such a temperature difference correction, for example, the detected flow rate error (characteristics a, b, c) corrected for the temperature difference at -25 ° C., 40 ° C. and 60 ° C. in FIG. As shown in comparison with the error (characteristic d) of the detected flow rate when the temperature difference is not corrected when the temperature difference is −25 ° C., the measurement error when the temperature difference is corrected is sufficiently suppressed to 1% or less, It was confirmed that the measurement accuracy could be sufficiently improved. That is, in the present invention, the difference between the temperature applied to the chip 1 of the flow sensor 11 through the pipe 10, that is, the temperature detected by the temperature detection element Rr, and the temperature of the fluid actually flowing on the flow sensor 11 is expressed as follows. The temperature difference between the temperature of the fluid detected by the first and second temperature sensors 12a, 12b, and 12c and the temperature of the pipe 10 is simply grasped. The correction amount corresponding to the flow velocity of the fluid is obtained by referring to the temperature difference correction table 24 in accordance with the temperature difference, so that the flow rate of the fluid detected by the flow rate sensor 11 can be simplified and effective in temperature. It is possible to correct the difference and increase the measurement accuracy.
[0023]
Specifically, the above-described temperature difference correction is executed as shown in a schematic processing procedure in the flow rate calculation unit 21 in FIG. First, the sensor output from the flow sensor 11 is input [step S1]. Next, the sensor output is corrected to adjust the detection sensitivity of the flow sensor 11 according to the type of fluid (gas type) [step S2]. Further, the sensor output is pressure-corrected with reference to the pressure correction table 23 according to the pressure of the fluid [Step S3], and the sensor output with reference to the temperature correction table 22 according to the temperature of the fluid. Is corrected for temperature [step S4]. That is, the change depending on the type of fluid and the change depending on the pressure and temperature of the detection characteristic of the flow sensor 11 are corrected. Thereafter, the individual difference is corrected in accordance with the reference detection characteristic of the flow sensor 11 [Step S5], and the flow rate (flow velocity) of the fluid flowing through the pipe 10 is determined according to the sensor output subjected to these corrections [Step S5]. S6].
[0024]
The above correction process and the flow rate (flow velocity) calculation process based on the corrected sensor output are performed for each of the four flow rate sensors 11a, 11b, 11c, and 11d. Incidentally, these processes may be performed in parallel, or when the sensor outputs of the flow sensors 11a, 11b, 11c, and 11d are cyclically input at a predetermined cycle via the selector circuit board 14 described above. Of course, it is also possible to execute in a time-sharing manner.
[0025]
If the fluid flow rate (flow velocity) is obtained from the sensor outputs of the flow sensors 11a, 11b, 11c, and 11d as described above, then the average value of the flow rates (flow velocity) is obtained [step S7]. Then, the temperature difference correction table 24 is referred to based on this flow rate value (flow velocity) and the temperature difference between the fluid temperature detected by the first and second temperature sensors 12a, 12b, and 12c and the temperature of the pipe 10. Then, the temperature difference correction amount is obtained, and the flow rate value is corrected for the temperature difference [step S8]. Then, the flow value corrected for the temperature difference is output as the final flow value measured by the flow meter [step S9]. Thereafter, by repeatedly executing the above-described processing, the flow rate measurement of the fluid flowing through the pipe 10 is continuously executed.
[0026]
Thus, according to the thermal type flow meter configured as described above, the flow rate sensor 11 caused by the temperature difference between the temperature detected by the temperature detection element Rr and the actual fluid temperature caused by the temperature applied to the heat flow sensor 11 through the pipe 10. The error in the detected output (detected flow rate) can be easily corrected. Moreover, the temperature difference between the pipe 10 and the fluid is detected by the first temperature sensor 12a attached to the pipe 10 and the second temperature sensors 12b and 12c, and a temperature difference correction based on the temperature difference is performed. An error in the detection output (detected flow rate) of the flow sensor 11 can be canceled by a simple method.
[0027]
At this time, if the average value of the temperatures measured by the two second temperature sensors 12b and 12c is detected by detecting the temperature of the pipe 10, for example, only one side of the pipe 10 is illuminated by sunlight. Even when the temperature is high, the temperature of the pipe 10 can be correctly evaluated. As described above, since the second temperature sensors 12b and 12c are provided in the vicinity of the high-speed flow rate sensors 11c and 11d, even when the flow rate is measured using the low-speed flow rate sensors 11a and 11b, the low-speed flow rate sensor 11a. , 11b, the temperature of the pipe 10 can be accurately detected without being affected by heat. Note that when the flow rate is measured using the high-speed flow rate sensors 11b and 11c, the flow rate itself is fast, so that the temperature of the pipe 10 is accurately measured without being substantially affected by the heat from the high-speed flow rate sensors 11b and 11c. Can be detected. Therefore, the above-described temperature difference correction can be effectively performed while accurately detecting the temperature of the pipe 10.
[0028]
Furthermore, since the correction amount for the temperature difference may be registered in the temperature difference correction table 24 as a correction amount per unit temperature, the configuration of the temperature difference correction table 24 can be simplified. Since the correction amount only needs to be obtained from the temperature difference correction table 24 in accordance with the detected flow rate, the temperature difference correction can be easily performed without complicated processing. Played.
[0029]
The present invention is not limited to the embodiment described above. For example, in the embodiment, a flow meter including a plurality of flow sensors 11 has been described. However, the number of flow sensors 11 is not particularly limited, and it is not always necessary to include both a low speed flow sensor and a high speed flow sensor. . Further, the number of the first and second temperature sensors 12a, 12b, 12c is not particularly limited. In addition, the present invention can be variously modified and implemented without departing from the scope of the invention.
[0030]
【The invention's effect】
As described above, according to the present invention, the flow rate sensor is provided on the wall surface of the pipe through which the fluid flows and is thermally insulated from the pipe. There are provided a first temperature sensor for detecting the temperature of the fluid flowing through the pipe and a second temperature sensor for detecting the temperature of the pipe, and the pipe detected by these temperature sensors. The flow rate of the fluid detected by the flow sensor is corrected according to the temperature difference with the fluid. Therefore, the flow rate of the fluid can be detected with high accuracy regardless of the temperature applied to the flow rate sensor through the pipe. Moreover, there are significant practical effects such as a very simple configuration.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram of a main part of a thermal flow meter according to an embodiment of the present invention.
FIG. 2 is a view showing an example of a temperature difference correction amount according to a flow velocity, which is registered in a temperature difference correction table provided in the thermal flow meter shown in FIG.
FIG. 3 is a diagram showing an improvement result of flow rate measurement accuracy by temperature difference correction.
4 is a diagram showing a schematic processing procedure in a flow rate calculation unit in the thermal type flow meter shown in FIG. 1; FIG.
FIG. 5 is a diagram showing a schematic element structure of a thermal flow sensor.
FIG. 6 is a cross-sectional view schematically showing a structure for incorporating a thermal flow sensor into a pipe.
FIG. 7 is a thermal schematic diagram for explaining deterioration in flow rate detection accuracy due to a temperature applied to a flow rate sensor incorporated in a pipe.
[Explanation of symbols]
10 Piping (fluid flow path)
11a, 11b, 11c, 11d Thermal flow sensor 12a First temperature sensor (for fluid temperature detection)
12b, 12c Second temperature sensor (for pipe temperature detection)
13 Pressure sensor 21 Flow rate calculation unit 22 Temperature correction table 23 Pressure correction table 24 Temperature difference correction table

Claims (5)

ヒータ素子を間にして流体の通流方向にそれぞれ設けられた第1および第2の温度検出素子と、周囲温度を検出する温度検出素子とを備えたセンサチップからなり、流体を通流する配管の壁面に該配管から熱的に絶縁して設けられて、前記ヒータ素子を前記周囲温度を検出する温度検出素子により検出される流体の温度よりも一定温度だけ高く発熱駆動して前記第1および第2の温度検出素子によりそれぞれ検出される温度の差から流体の流量を検出する熱式流量センサと、
この熱式流量センサとは別のセンサであって、前記熱式流量センサが組み込まれた配管を通流する流体の温度を検出する第1の温度センサおよび前記配管の温度を検出する第2の温度センサと、
これらの第1および第2の温度センサにより検出される前記配管の温度と該配管を通流する流体の温度との温度差に従って前記熱式流量センサにより検出される前記流体の流量を補正する温度差補正手段と
を具備したことを特徴とする熱式流量計。
A pipe comprising a sensor chip having first and second temperature detection elements provided in the direction of fluid flow with a heater element in between, and a temperature detection element for detecting the ambient temperature, and through which the fluid flows The heater element is provided on the wall surface of the first and second pipes so as to generate heat higher than the temperature of the fluid detected by the temperature detecting element for detecting the ambient temperature, and the first and second heaters are heated. A thermal flow sensor for detecting the flow rate of the fluid from the difference in temperature detected by each of the second temperature detection elements;
A first temperature sensor that detects the temperature of a fluid flowing through a pipe in which the thermal flow sensor is incorporated, and a second temperature sensor that detects the temperature of the pipe. A temperature sensor;
A temperature for correcting the flow rate of the fluid detected by the thermal flow sensor according to the temperature difference between the temperature of the piping detected by the first and second temperature sensors and the temperature of the fluid flowing through the piping. A thermal flow meter comprising a difference correcting means.
前記第1の温度センサは、前記配管内の略中央部における流体の温度を検出するものであって、前記第2の温度センサは、前記配管の壁面温度を検出するものである請求項1に記載の熱式流量計。The first temperature sensor detects a temperature of a fluid at a substantially central portion in the pipe, and the second temperature sensor detects a wall surface temperature of the pipe. The described thermal flow meter. 前記第2の温度センサは、前記配管の周方向に離れた複数箇所にそれぞれ設けられて、その平均値として前記配管の壁面温度を検出するものである請求項1に記載の熱式流量計。2. The thermal flow meter according to claim 1, wherein the second temperature sensor is provided at each of a plurality of locations separated in a circumferential direction of the pipe and detects a wall surface temperature of the pipe as an average value thereof. 前記温度差補正手段は、前記第1および第2の温度センサにより検出された温度差と前記流体の流速とに応じて温度差補正テーブルを参照し、該温度差補正テーブルから補正量を求めて前記流体の流量を補正するものである請求項1に記載の熱式流量計。The temperature difference correction means refers to a temperature difference correction table according to the temperature difference detected by the first and second temperature sensors and the flow velocity of the fluid, and obtains a correction amount from the temperature difference correction table. The thermal flow meter according to claim 1, wherein the flow rate of the fluid is corrected. 前記温度差補正テーブルは、前記配管の温度と該配管を通流する流体の温度との差に応じた前記熱式流量センサの出力変動量を、流速の異なりに応じて登録したものである請求項4に記載の熱式流量計。The temperature difference correction table is a table in which an output fluctuation amount of the thermal flow sensor according to a difference between a temperature of the pipe and a temperature of a fluid flowing through the pipe is registered according to a difference in flow velocity. Item 5. The thermal flow meter according to Item 4.
JP2002251050A 2002-08-29 2002-08-29 Thermal flow meter Expired - Lifetime JP4355792B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2002251050A JP4355792B2 (en) 2002-08-29 2002-08-29 Thermal flow meter
PCT/JP2003/011096 WO2004020958A1 (en) 2002-08-29 2003-08-29 Thermal flowmeter
CNB038204169A CN100350223C (en) 2002-08-29 2003-08-29 Thermal flowmeter
AU2003257603A AU2003257603A1 (en) 2002-08-29 2003-08-29 Thermal flowmeter
DE10393185T DE10393185B4 (en) 2002-08-29 2003-08-29 Calorimetric flowmeter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002251050A JP4355792B2 (en) 2002-08-29 2002-08-29 Thermal flow meter

Publications (2)

Publication Number Publication Date
JP2004093180A JP2004093180A (en) 2004-03-25
JP4355792B2 true JP4355792B2 (en) 2009-11-04

Family

ID=31972661

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002251050A Expired - Lifetime JP4355792B2 (en) 2002-08-29 2002-08-29 Thermal flow meter

Country Status (5)

Country Link
JP (1) JP4355792B2 (en)
CN (1) CN100350223C (en)
AU (1) AU2003257603A1 (en)
DE (1) DE10393185B4 (en)
WO (1) WO2004020958A1 (en)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005057688A1 (en) * 2005-12-01 2007-06-14 Endress + Hauser Flowtec Ag Device for determining and / or monitoring the mass flow rate of a gaseous medium
CN101430216B (en) * 2007-11-05 2015-11-25 北京七星华创电子股份有限公司 Mass flow sensor and control system and realize the method that mass rate controls
DE102007062908A1 (en) 2007-12-21 2009-06-25 Endress + Hauser Flowtec Ag Process variable e.g. concentration, determining method for biogas, involves measuring volume flow rate of flowing medium by using measuring principles, and determining process variable from measured values of measuring principles
US8438936B2 (en) * 2011-06-03 2013-05-14 General Electric Company Sensor assembly including a collar for mounting sensors to a pipeline
DE102012102094A1 (en) * 2012-03-13 2013-09-19 Pierburg Gmbh Device for determining a gas mass flow and method for recalibrating such a device
JP5336640B1 (en) * 2012-09-17 2013-11-06 東京計装株式会社 Thermal flow meter
JP6010440B2 (en) * 2012-12-03 2016-10-19 アズビル株式会社 Flow sensor
US9612146B2 (en) 2014-02-07 2017-04-04 Honeywell International, Inc. Airflow sensor with dust reduction
GB2553681B (en) 2015-01-07 2019-06-26 Homeserve Plc Flow detection device
GB201501935D0 (en) 2015-02-05 2015-03-25 Tooms Moore Consulting Ltd And Trow Consulting Ltd Water flow analysis
CN107421858A (en) * 2017-06-15 2017-12-01 中国科学技术大学 Portable type electronic product and its microparticle thing sensing device
JP2019035640A (en) * 2017-08-14 2019-03-07 アズビル株式会社 Thermal flow meter
DE102018105046B4 (en) 2018-03-06 2023-05-04 Endress+Hauser Flowtec Ag Thermal flow meter
JP7067789B2 (en) * 2018-07-02 2022-05-16 サーパス工業株式会社 How to determine the thermal flowmeter and its weighting factor
EP3637218A1 (en) * 2018-10-10 2020-04-15 Gambro Lundia AB Fluid warming device for an extracorporeal blood treatment apparatus and method for detecting a fluid temperature at an outlet of a fluid warming device for an extracorporeal blood treatment apparatus
CN110763278A (en) * 2019-11-14 2020-02-07 上海权宥环保科技有限公司 Measuring method for measuring fluid medium parameters in pipeline
US20220372968A1 (en) * 2021-05-18 2022-11-24 Hamilton Sundstrand Corporation Variable displacement metering pump system with multivariate feedback

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4502325A (en) * 1983-09-08 1985-03-05 General Motors Corporation Measurement of mass airflow into an engine
JPS61239119A (en) * 1985-04-17 1986-10-24 Hitachi Ltd Air flow rate detector
JPH0593639A (en) * 1991-10-01 1993-04-16 Japan Electron Control Syst Co Ltd Flow-rate/flow-speed measuring apparatus
JPH06160139A (en) * 1992-11-20 1994-06-07 Hitachi Metals Ltd Mass flow meter
DE4342481C2 (en) * 1993-12-13 1996-09-05 Siemens Ag Method of measuring the intake air mass
CN2243068Y (en) * 1996-05-10 1996-12-18 北京圣业科技发展有限公司 Gas mass flow meter
JP3333712B2 (en) * 1997-06-19 2002-10-15 三菱電機株式会社 Flow rate detecting element and flow rate sensor using the same
JP3848754B2 (en) * 1997-09-11 2006-11-22 株式会社ガスター Fluid flow detection device
JP3848755B2 (en) * 1997-09-12 2006-11-22 株式会社ガスター Fluid flow rate detection device and combustion device
CN1135366C (en) * 1997-12-15 2004-01-21 东京瓦斯株式会社 Flowmeter
JPH11281418A (en) * 1998-03-26 1999-10-15 Ricoh Elemex Corp Fluidic flow meter
CH695166A5 (en) * 2000-04-25 2005-12-30 Sensirion Ag Method and apparatus for measuring the flow of a liquid.

Also Published As

Publication number Publication date
WO2004020958A1 (en) 2004-03-11
DE10393185T5 (en) 2005-10-20
CN100350223C (en) 2007-11-21
DE10393185B4 (en) 2013-01-31
JP2004093180A (en) 2004-03-25
AU2003257603A8 (en) 2004-03-19
CN1678889A (en) 2005-10-05
AU2003257603A1 (en) 2004-03-19

Similar Documents

Publication Publication Date Title
JP4355792B2 (en) Thermal flow meter
US7278309B2 (en) Interdigitated, full wheatstone bridge flow sensor transducer
KR100485944B1 (en) Thermal flow sensor, method and apparatus for identifying fluid, flow sensor, and method and apparatus for flow measurement
JP5450204B2 (en) Flowmeter
CN105008870B (en) Heat type fluid measuring device
KR20070049246A (en) Attitude error self-correction for thermal sensors of mass flow meters and controllers
JP4150756B2 (en) Thermal flow meter
WO2018230478A1 (en) Flow measuring device
JP3583136B2 (en) Air flow meter output signal correction method
US7096723B2 (en) Method and device for determining the throughput of a flowing medium
WO2003029759A1 (en) Flow rate measuring instrument
KR101434808B1 (en) Method for determining a resulting total mass flow to an exhaust gas mass flow sensor
JP7104502B2 (en) Flow measuring device
JP6460911B2 (en) Thermal mass flow controller and tilt error improving method thereof
JP2004093174A (en) Flowmeter
CN205593561U (en) Mems sensor
JP2964186B2 (en) Thermal flow meter
JP3912704B2 (en) Thermal flow meter
JP5522826B2 (en) Thermal flow meter
JP2004093161A (en) Flowmeter
JPH1123335A (en) Detecting apparatus for flow rate
JP2003090751A (en) Flow sensor type flowmeter and calibration method thereof
JPS61170619A (en) Correlation flowmeter
JP3766601B2 (en) Flow sensor and flow measurement device
JPH0629748B2 (en) How to measure fluid temperature of thermal flow meter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050810

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080702

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080818

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090408

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090521

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090617

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7426

Effective date: 20090703

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090703

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090703

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120814

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4355792

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120814

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130814

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term