JP7446477B2 - Indoor unit of ceiling-mounted air conditioner - Google Patents

Indoor unit of ceiling-mounted air conditioner Download PDF

Info

Publication number
JP7446477B2
JP7446477B2 JP2022560633A JP2022560633A JP7446477B2 JP 7446477 B2 JP7446477 B2 JP 7446477B2 JP 2022560633 A JP2022560633 A JP 2022560633A JP 2022560633 A JP2022560633 A JP 2022560633A JP 7446477 B2 JP7446477 B2 JP 7446477B2
Authority
JP
Japan
Prior art keywords
heat exchanger
center
suction port
air
ceiling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2022560633A
Other languages
Japanese (ja)
Other versions
JPWO2022097316A5 (en
JPWO2022097316A1 (en
Inventor
幸治 山口
哲央 山下
裕樹 宇賀神
尚史 池田
惇司 河野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Publication of JPWO2022097316A1 publication Critical patent/JPWO2022097316A1/ja
Publication of JPWO2022097316A5 publication Critical patent/JPWO2022097316A5/ja
Application granted granted Critical
Publication of JP7446477B2 publication Critical patent/JP7446477B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0018Indoor units, e.g. fan coil units characterised by fans
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0043Indoor units, e.g. fan coil units characterised by mounting arrangements
    • F24F1/0047Indoor units, e.g. fan coil units characterised by mounting arrangements mounted in the ceiling or at the ceiling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0059Indoor units, e.g. fan coil units characterised by heat exchangers
    • F24F1/0063Indoor units, e.g. fan coil units characterised by heat exchangers by the mounting or arrangement of the heat exchangers

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Air Filters, Heat-Exchange Apparatuses, And Housings Of Air-Conditioning Units (AREA)

Description

本開示は、天井埋込型空気調和機の室内機に関し、特に送風ファンの配置に関するものである。 The present disclosure relates to an indoor unit of a ceiling-embedded air conditioner, and particularly relates to the arrangement of a blower fan.

天井埋込型空気調和機の室内機は、天井に埋め込まれて設置されるものであるため、高性能でありながら天井内のスペースを占有しない小型サイズのものが求められている。そして、上記室内機の性能をより向上させるためには、熱交換効率を向上させることが重要となる。 Indoor units of ceiling-embedded air conditioners are installed embedded in the ceiling, so they are required to have high performance but a small size that does not occupy space in the ceiling. In order to further improve the performance of the indoor unit, it is important to improve the heat exchange efficiency.

従来、下面に吸込口および吹出口が形成された筐体と、筐体内に形成される吸込口から吹出口に空気を流通させる風路に配置された送風ファンおよび熱交換器と、を備え、吸込口が2つに分けられた天井埋込型空気調和機の室内機がある(例えば、特許文献1参照)。特許文献1に係る天井埋込型空気調和機の室内機では、熱交換器に吸込口から空気が効率的に供給されるように吸込口を2つに分けることで、熱交換効率を向上させている。 Conventionally, a housing includes a housing in which an inlet and an outlet are formed on the lower surface, and a blower fan and a heat exchanger arranged in an air path that circulates air from the inlet to the outlet formed inside the housing. There is an indoor unit of a ceiling-embedded air conditioner that has a suction port divided into two (for example, see Patent Document 1). In the indoor unit of the ceiling-embedded air conditioner according to Patent Document 1, the heat exchange efficiency is improved by dividing the suction port into two so that air is efficiently supplied from the suction port to the heat exchanger. ing.

特開2018-165592号公報JP 2018-165592 Publication

しかしながら、特許文献1に係る天井埋込型空気調和機の室内機のように、吸込口を複数形成した場合、吸込口に配置するフィルタの数あるいは面積が増え、構造が複雑化するという課題があった。 However, when a plurality of suction ports are formed as in the indoor unit of the ceiling-mounted air conditioner according to Patent Document 1, there is a problem that the number or area of filters disposed at the suction ports increases, making the structure complicated. there were.

本開示は、以上のような課題を解決するためになされたもので、吸込口を複数とせずに熱交換効率を向上させることができる天井埋込型空気調和機の室内機を提供することを目的としている。 The present disclosure has been made to solve the above problems, and aims to provide an indoor unit of a ceiling-mounted air conditioner that can improve heat exchange efficiency without having multiple suction ports. The purpose is

本開示に係る天井埋込型空気調和機の室内機は、正面視して後方の下面に形成された吸込口および前方の下面に形成された吹出口を有し、天井に埋め込まれる筐体と、前記吸込口から前記筐体の内部に吸い込んだ空気を前記吹出口から前記筐体の外部に吹き出す送風ファンと、前記送風ファンによって前記吸込口から前記筐体の内部に吸い込まれた空気と冷媒との間で熱交換を行う2つの熱交換器と、前記2つの熱交換器からのドレン水を回収するドレンパンと、を備え、上下方向において前記吸込口と対向する一方の前記熱交換器は、同じ段ピッチで配置された複数の伝熱管を有し、その中心から前記吸込口の中心までの風路距離が、他方の前記熱交換器よりも短い位置に配置され、上下方向において前記ドレンパンと対向する前記他方の熱交換器は、前記一方の熱交換器の伝熱管の段ピッチより広くした同じ段ピッチで配置された複数の伝熱管を有し、その中心から前記吸込口の中心までの風路距離が、前記一方の前記熱交換器よりも長い位置に配置され、前記送風ファンの中心は、前記一方の熱交換器より前記他方の熱交換器に近く、かつ、前記送風ファンの全体は、前後方向において、前記他方の熱交換器の前記吹出口側の端部と、前記一方の熱交換器の吸込口側の端部と、の間に配置されているものである。 The indoor unit of the ceiling-embedded air conditioner according to the present disclosure has an inlet formed on the lower surface of the rear and an outlet formed on the lower surface of the front when viewed from the front, and has a casing embedded in the ceiling. , a blower fan that blows air sucked into the interior of the casing from the suction port to the outside of the casing from the blowout port; and air and refrigerant sucked into the inside of the casing from the suction port by the blower fan. and a drain pan that collects drain water from the two heat exchangers, one of the heat exchangers facing the suction port in the vertical direction. , has a plurality of heat exchanger tubes arranged at the same step pitch , and the air path distance from the center of the tubes to the center of the suction port is arranged at a position shorter than that of the other heat exchanger, and the drain pan is arranged in the vertical direction. The other heat exchanger facing the heat exchanger has a plurality of heat exchanger tubes arranged at the same step pitch that is wider than the step pitch of the heat transfer tubes of the one heat exchanger, and from the center thereof to the center of the suction port. is arranged at a position where an air path distance is longer than that of the one heat exchanger, and the center of the blower fan is closer to the other heat exchanger than the one heat exchanger, and the center of the blower fan is closer to the other heat exchanger than the one heat exchanger; The entire heat exchanger is disposed between the end of the other heat exchanger on the outlet side and the end of the one heat exchanger on the suction port side in the front-rear direction .

本開示に係る天井埋込型空気調和機の室内機によれば、送風ファンは、熱交換器の前方の端部および後方の端部のうち、その中心から吸込口の中心までの風路距離が長い方の端部に近くなるように配置されており、かつ、前後方向において、前方の端部の最も前方となる位置と後方の端部の最も後方となる位置との間に配置されている。あるいは、送風ファンは、複数の熱交換器のうち、その中心から吸込口の中心までの風路距離が短い熱交換器よりも長い熱交換器に近くなるように配置されており、かつ、前後方向において、最も前方に位置する熱交換器の前方の端部の最も前方となる位置と、最も後方に位置する熱交換器の後方の端部の最も後方となる位置と、の間に配置されている。 According to the indoor unit of the ceiling-mounted air conditioner according to the present disclosure, the blower fan has an air path distance from the center of the front end and the rear end of the heat exchanger to the center of the suction port. is located near the longer end, and is located between the most anterior position of the front end and the most rearward position of the rear end in the front-rear direction. There is. Alternatively, the blower fan is arranged so that it is closer to a heat exchanger with a longer air path distance from the center of the heat exchanger to the center of the suction port than the heat exchanger with a short air path distance from the center of the heat exchanger to the center of the suction port, and In the direction, the heat exchanger is located between the most forward position of the front end of the heat exchanger located most forward and the most rear position of the rear end of the heat exchanger located most rearward. ing.

ここで、送風ファンに近い方がより風速が速くなり、熱交換器の通過風量が増加する。そのため、送風ファンを、熱交換器の前方の端部および後方の端部のうち、その中心から吸込口の中心までの風路距離が長い方の端部に近くなるように配置する、あるいは、複数の熱交換器のうち、その中心から吸込口の中心までの風路距離が短い熱交換器よりも長い熱交換器に近くなるように配置する。そうすることで、吸込口から遠く元々通過風量が少ない方の熱交換器の端部、あるいは熱交換器の通過風量を増加させることができるので、熱交換器全体に流入する風量が均一化され、熱交換効率を向上させることができる。さらに、送風ファンを、前後方向において、前方の端部の最も前方となる位置と後方の端部の最も後方となる位置との間に配置する、あるいは、前後方向において、最も前方に位置する熱交換器の前方の端部の最も前方となる位置と、最も後方に位置する熱交換器の後方の端部の最も後方となる位置と、の間に配置する。そうすることで、送風ファンが空気を吸い込むことができる範囲が広くなるため、多くの送風量を確保することができ、送風効率が改善される。その結果、吸込口を複数とせずに熱交換効率を向上させることができる。 Here, the wind speed becomes faster closer to the blower fan, and the amount of air passing through the heat exchanger increases. Therefore, the blower fan is arranged so as to be closer to the end with the longer air path distance from the center of the heat exchanger to the center of the suction port between the front end and the rear end of the heat exchanger, or Among the plurality of heat exchangers, the heat exchanger is arranged so that the air path distance from the center of the heat exchanger to the center of the suction port is closer to the heat exchanger with a longer air path distance than the heat exchanger with a short air path distance. By doing so, it is possible to increase the amount of air passing through the end of the heat exchanger that is far from the suction port and where the amount of air passing through the heat exchanger is originally small, or the amount of air passing through the heat exchanger can be increased, thereby making the amount of air flowing into the entire heat exchanger uniform. , heat exchange efficiency can be improved. Furthermore, the blower fan is arranged between the frontmost position of the front end and the rearmost position of the rear end in the front-rear direction, or It is arranged between the most forward position of the front end of the heat exchanger and the most rearward position of the rear end of the heat exchanger. By doing so, the area in which the blower fan can suck in air becomes wider, so a large amount of air can be secured, and the blowing efficiency is improved. As a result, heat exchange efficiency can be improved without using a plurality of suction ports.

実施の形態1に係る天井埋込型空気調和機の室内機を側面から見た断面模式図である。FIG. 2 is a schematic cross-sectional view of the indoor unit of the ceiling-embedded air conditioner according to Embodiment 1, viewed from the side. 実施の形態1に係る天井埋込型空気調和機の室内機の送風ファンの配置を説明する断面模式図である。FIG. 2 is a schematic cross-sectional view illustrating the arrangement of a blower fan of the indoor unit of the ceiling-embedded air conditioner according to the first embodiment. 実施の形態1の第1変形例に係る天井埋込型空気調和機の室内機を側面から見た断面模式図である。FIG. 3 is a schematic cross-sectional view of the indoor unit of the ceiling-embedded air conditioner according to a first modification of the first embodiment when viewed from the side. 実施の形態1の第1変形例に係る天井埋込型空気調和機の送風ファンの配置を説明する断面模式図である。FIG. 2 is a schematic cross-sectional view illustrating the arrangement of a blower fan of a ceiling-embedded air conditioner according to a first modification of the first embodiment. 実施の形態1の第2変形例に係る天井埋込型空気調和機の室内機を側面から見た断面模式図である。FIG. 7 is a schematic cross-sectional view of the indoor unit of the ceiling-embedded air conditioner according to a second modification of the first embodiment when viewed from the side. 実施の形態2に係る天井埋込型空気調和機の室内機を側面から見た断面模式図である。FIG. 2 is a schematic cross-sectional view of an indoor unit of a ceiling-embedded air conditioner according to a second embodiment when viewed from the side. 実施の形態2の第1変形例に係る天井埋込型空気調和機の室内機を側面から見た断面模式図である。FIG. 7 is a schematic cross-sectional view of an indoor unit of a ceiling-embedded air conditioner according to a first modification of Embodiment 2, viewed from the side. 実施の形態2の第2変形例に係る天井埋込型空気調和機の室内機を側面から見た断面模式図である。FIG. 7 is a schematic cross-sectional view of an indoor unit of a ceiling-embedded air conditioner according to a second modification of the second embodiment when viewed from the side. 図8の熱交換器を矢印X方向に見た図である。9 is a view of the heat exchanger of FIG. 8 viewed in the direction of arrow X. FIG. 図8の熱交換器を矢印Y方向に見た図である。9 is a view of the heat exchanger of FIG. 8 viewed in the direction of arrow Y. FIG.

以下、本開示の実施の形態を図面に基づいて説明する。なお、以下に説明する実施の形態によって本開示が限定されるものではない。また、以下の図面では各構成部材の大きさの関係が実際のものとは異なる場合がある。 Embodiments of the present disclosure will be described below based on the drawings. Note that the present disclosure is not limited to the embodiments described below. Further, in the following drawings, the size relationship of each component may differ from the actual one.

実施の形態1.
図1は、実施の形態1に係る天井埋込型空気調和機の室内機100を側面から見た断面模式図である。
Embodiment 1.
FIG. 1 is a schematic cross-sectional view of an indoor unit 100 of a ceiling-embedded air conditioner according to Embodiment 1, viewed from the side.

以下、実施の形態1に係る天井埋込型空気調和機の室内機100の構成について説明する。以下の説明において、理解を容易にするために方向を表す用語、例えば「上」、「下」、「右」、「左」、「前」、「後」など、を適宜用いるが、これらは説明のためのものであって、これらの用語は実施の形態を限定するものではない。また、実施の形態1では、天井埋込型空気調和機の室内機100を正面視した(図1の矢印Aの方向から矢視した)状態において、「上」、「下」、「右」、「左」、「前」、「後」などを使用する。 The configuration of the indoor unit 100 of the ceiling-embedded air conditioner according to the first embodiment will be described below. In the following explanation, terms expressing directions, such as "top", "bottom", "right", "left", "front", "back", etc., will be used as appropriate to facilitate understanding. For purposes of explanation, these terms are not intended to limit the embodiments. Further, in the first embodiment, when the indoor unit 100 of the ceiling-embedded air conditioner is viewed from the front (viewed from the direction of arrow A in FIG. 1), "up", "down", "right" , "left," "front," "back," etc.

天井埋込型空気調和機の室内機100は、天井200に埋め込まれて設置されるものであり、図1に示すように、天井200に埋め込まれる箱体形状の筐体1を備えている。筐体1の後方の下面には、内部に室内空気を吸い込む吸込口5が形成されており、筐体1の前方の下面には、外部に空調空気を吹き出す吹出口8が形成されている。吸込口5には、開口を有し意匠面となる平板状の吸込グリル6と、吸込グリル6の開口を覆うフィルタ7とが設けられている。そのため、吸込口5から吸い込まれた室内空気は、吸込グリル6の開口およびフィルタ7を通過して筐体1の内部に取り込まれる。吹出口8には、風向を上下方向の所定範囲で変更する上下ベーン9が設けられている。 The indoor unit 100 of the ceiling-embedded air conditioner is installed embedded in a ceiling 200, and includes a box-shaped housing 1 embedded in the ceiling 200, as shown in FIG. A suction port 5 for sucking indoor air into the interior is formed on the rear lower surface of the casing 1, and an outlet 8 for blowing out conditioned air to the outside is formed on the front lower surface of the casing 1. The suction port 5 is provided with a flat suction grille 6 having an opening and serving as a design surface, and a filter 7 that covers the opening of the suction grille 6. Therefore, indoor air sucked in from the suction port 5 passes through the opening of the suction grill 6 and the filter 7 and is taken into the housing 1 . The air outlet 8 is provided with upper and lower vanes 9 that change the wind direction within a predetermined range in the vertical direction.

筐体1の内部には、回転自在に配置され、空気の流れを生じさせる送風ファン2と、送風ファン2に連結され回転駆動するモータ(図示せず)と、水平面に対して傾斜した状態で配置され、送風ファン2によって吸込口5から筐体1の内部に吸い込まれた室内空気と冷媒との間で熱交換させ、空調空気を作り出す複数の熱交換器3a、3bと、熱交換器3a、3bの下方に配置され、熱交換器3a、3bからのドレン水を回収するドレンパン4と、が設けられている。また、筐体1の内部には、吸込口5から熱交換器3a、3bを通過して吹出口8に空気が流れるように風路20が形成されており、送風ファン2および熱交換器3a、3bは風路20上に配置されている。なお、実施の形態1では、熱交換器3a、3bは全部で2つ設けられているが、それに限定されず、3つ以上設けられていてもよい。 Inside the housing 1, there are a blower fan 2 which is rotatably arranged and generates air flow, a motor (not shown) connected to the blower fan 2 and driven to rotate, and a motor (not shown) which is tilted with respect to the horizontal plane. A plurality of heat exchangers 3a and 3b are arranged to exchange heat between the indoor air sucked into the housing 1 from the suction port 5 by the blower fan 2 and the refrigerant to produce conditioned air, and the heat exchanger 3a. , 3b, and is provided with a drain pan 4 for collecting drain water from the heat exchangers 3a, 3b. Furthermore, an air passage 20 is formed inside the housing 1 so that air flows from the suction port 5 to the air outlet 8 through the heat exchangers 3a and 3b, and includes the blower fan 2 and the heat exchanger 3a. , 3b are arranged on the air path 20. In addition, in Embodiment 1, although two heat exchangers 3a and 3b are provided in total, it is not limited to this, and three or more may be provided.

次に、実施の形態1に係る天井埋込型空気調和機の室内機100の動作について説明する。
モータが回転駆動すると、モータに連結している送風ファン2が回転し、吸込口5から室内空気を吸い込み、室内空気はフィルタ7を通過して、筐体1の内部に吸い込まれる。送風ファン2によって吸い込まれた室内空気は熱交換器3a、3bに向けて吹き出され、熱交換器3a、3bを通過する際にそこで熱交換され、空調空気となって吹出口8から室内に向けて吹き出される。このとき、上下ベーン9の向きによって吹出口8から吹き出される空調空気の向きが変わる。
Next, the operation of the indoor unit 100 of the ceiling-embedded air conditioner according to the first embodiment will be described.
When the motor is driven to rotate, the blower fan 2 connected to the motor rotates and sucks indoor air through the suction port 5. The indoor air passes through the filter 7 and is sucked into the housing 1. The indoor air sucked in by the blower fan 2 is blown out toward the heat exchangers 3a and 3b, where heat is exchanged as it passes through the heat exchangers 3a and 3b, and the air is turned into conditioned air and directed indoors through the outlet 8. It is blown out. At this time, the direction of the conditioned air blown out from the outlet 8 changes depending on the direction of the upper and lower vanes 9.

次に、実施の形態1に係る送風ファン2の配置について説明する。
図2は、実施の形態1に係る天井埋込型空気調和機の室内機100の送風ファン2の配置を説明する断面模式図である。なお、図2において、矢印A1は、吸込口5の中心から熱交換器3aの中心までの空気の流れを示しており、矢印B1は、吸込口5の中心から熱交換器3bの中心までの空気の流れを示している。
Next, the arrangement of the ventilation fan 2 according to the first embodiment will be explained.
FIG. 2 is a schematic cross-sectional view illustrating the arrangement of the blower fan 2 of the indoor unit 100 of the ceiling-embedded air conditioner according to the first embodiment. In addition, in FIG. 2, arrow A1 indicates the flow of air from the center of the suction port 5 to the center of the heat exchanger 3a, and arrow B1 indicates the flow of air from the center of the suction port 5 to the center of the heat exchanger 3b. It shows the flow of air.

図2に示すように、送風ファン2は、複数の熱交換器3a、3bのうち、その中心から吸込口5の中心までの風路20の距離(以下、風路距離と称する)が短い熱交換器3aよりも長い熱交換器3bに近くなるように配置されている。 As shown in FIG. 2, the blower fan 2 is configured to heat the heat exchangers 3a, 3b, which have a shorter air path 20 distance (hereinafter referred to as air path distance) from the center of the heat exchangers 3a, 3b to the center of the suction port 5. It is arranged closer to heat exchanger 3b, which is longer than exchanger 3a.

ここで、送風ファン2に近い方がより風速が速くなり、熱交換器3a、3bの通過風量が増加する。そのため、送風ファン2を、複数の熱交換器3a、3bのうち、その中心から吸込口5の中心までの風路距離(図2の矢印A1の長さ)が短い熱交換器3aよりも、その中心から吸込口5の中心までの風路距離(図2の矢印B1の長さ)が長い熱交換器3bに近くなるように配置する。そうすることで、熱交換器全体に流入する風量が均一化され、熱交換効率を向上させることができる。なお、上記の送風ファン2が近くなるように配置されているとは、送風ファン2の吸込口(図示せず)が近くになるように配置されていることであり、以下においても同様である。 Here, the wind speed becomes faster closer to the blower fan 2, and the amount of air passing through the heat exchangers 3a and 3b increases. Therefore, among the plurality of heat exchangers 3a and 3b, the blower fan 2 has a shorter air path distance from its center to the center of the suction port 5 (the length of the arrow A1 in FIG. 2) than the heat exchanger 3a. The air passage distance from the center to the center of the suction port 5 (the length of the arrow B1 in FIG. 2) is arranged close to the heat exchanger 3b. By doing so, the amount of air flowing into the entire heat exchanger is made uniform, and heat exchange efficiency can be improved. Note that the above description of the blower fan 2 being arranged close to each other means that the blower fan 2 is placed close to the suction port (not shown) of the blower fan 2, and the same applies to the following. .

また、送風ファン2は、前後方向において、最も前方に位置する熱交換器3bの前方の端部3b1の最も前方となる位置B2と、最も後方に位置する熱交換器3aの後方の端部3a1の最も後方となる位置A2との間に配置されている。 Further, in the front-rear direction, the blower fan 2 is located at the most forward position B2 of the front end 3b1 of the heat exchanger 3b located at the frontmost position, and at the rear end 3a1 of the heat exchanger 3a located at the rearmost position. and the rearmost position A2.

このように、送風ファン2を、前後方向において、最も前方に位置する熱交換器3bの前方の端部3b1の最も前方となる位置B2と、最も後方に位置する熱交換器3aの後方の端部3a1の最も後方となる位置A2との間に配置する。そうすることで、送風ファン2が空気を吸い込むことができる範囲Cが広くなるため、多くの送風量を確保することができ、送風効率が改善される。その結果、吸込口5を複数とせずに熱交換効率を向上させることができる。 In this way, the blower fan 2 is placed between the frontmost position B2 of the front end 3b1 of the heat exchanger 3b located at the frontmost position and the rear end of the heat exchanger 3a located at the rearmost position in the front-rear direction. It is arranged between the rearmost position A2 of the portion three a1. By doing so, the range C in which the air blowing fan 2 can suck air becomes wider, so a large amount of air can be secured, and the air blowing efficiency is improved. As a result, heat exchange efficiency can be improved without using a plurality of suction ports 5.

図3は、実施の形態1の第1変形例に係る天井埋込型空気調和機の室内機100を側面から見た断面模式図である。 FIG. 3 is a schematic cross-sectional view of the indoor unit 100 of the ceiling-embedded air conditioner according to the first modification of the first embodiment, viewed from the side.

実施の形態1の第1変形例では、図3に示すように、熱交換器30が複数ではなく1つのみ設けられている。その他に関しては、実施の形態1と同様である。 In the first modification of the first embodiment, as shown in FIG. 3, only one heat exchanger 30 is provided instead of a plurality of heat exchangers 30. Other aspects are the same as in the first embodiment.

次に、第1変形例に係る送風ファン2の配置について説明する。
図4は、実施の形態1の第1変形例に係る天井埋込型空気調和機の室内機100の送風ファン2の配置を説明する断面模式図である。なお、図4において、矢印A1は、吸込口5の中心から熱交換器30の後方の端部31の中心までの空気の流れを示しており、矢印B1は、吸込口5の中心から熱交換器30の前方の端部32の中心までの空気の流れを示している。
Next, the arrangement of the blower fan 2 according to the first modification will be explained.
FIG. 4 is a schematic cross-sectional view illustrating the arrangement of the ventilation fan 2 of the indoor unit 100 of the ceiling-embedded air conditioner according to the first modification of the first embodiment. In FIG. 4, arrow A1 indicates the flow of air from the center of the suction port 5 to the center of the rear end 31 of the heat exchanger 30, and arrow B1 indicates the flow of air from the center of the suction port 5 to the center of the rear end 31 of the heat exchanger 30. Air flow is shown to the center of the front end 32 of the vessel 30.

図4に示すように、送風ファン2は、熱交換器30の前方の端部32および後方の端部31のうち、その中心から吸込口5の中心までの風路距離が長い方の端部32に近くなるように配置されている。 As shown in FIG. 4, the blower fan 2 is arranged at the end of the front end 32 and the rear end 31 of the heat exchanger 30, which has a longer air path distance from its center to the center of the suction port 5. It is arranged so that it is close to 32.

ここで、送風ファン2に近い方がより風速が速くなり、熱交換器30の通過風量が増加する。そのため、送風ファン2を、熱交換器30の前方の端部32および後方の端部31のうち、その中心から吸込口5の中心までの風路距離(図4の矢印A1の長さ)が短い端部31よりも、その中心から吸込口5の中心までの風路距離(図4の矢印B1の長さ)が長い端部32に近くなるように配置する。そうすることで、熱交換器全体に流入する風量が均一化され、熱交換効率を向上させることができる。 Here, the wind speed becomes faster closer to the blower fan 2, and the amount of air passing through the heat exchanger 30 increases. Therefore, the air path distance from the center of the front end 32 and rear end 31 of the heat exchanger 30 to the center of the suction port 5 (the length of the arrow A1 in FIG. 4) is It is arranged so that the air path distance from its center to the center of the suction port 5 (the length of arrow B1 in FIG. 4) is closer to the long end 32 than to the short end 31. By doing so, the amount of air flowing into the entire heat exchanger is made uniform, and heat exchange efficiency can be improved.

また、送風ファン2は、前後方向において、熱交換器30の前方の端部32の最も前方となる位置B2と後方の端部31の最も後方となる位置A2との間に配置されている。 Further, the blower fan 2 is disposed between the most forward position B2 of the front end 32 of the heat exchanger 30 and the most rearward position A2 of the rear end 31 of the heat exchanger 30 in the front-rear direction.

このように、送風ファン2を、前後方向において熱交換器30の前方の端部32の最も前方となる位置B2と後方の端部31の最も後方となる位置A2との間に配置する。そうすることで、送風ファン2が空気を吸い込むことができる範囲Cが広くなるため、多くの送風量を確保することができ、送風効率が改善される。その結果、吸込口5を複数とせずに熱交換効率を向上させることができる。 In this way, the blower fan 2 is arranged between the most forward position B2 of the front end 32 of the heat exchanger 30 and the most rearward position A2 of the rear end 31 of the heat exchanger 30 in the front-rear direction. By doing so, the range C in which the air blowing fan 2 can suck air becomes wider, so a large amount of air can be secured, and the air blowing efficiency is improved. As a result, heat exchange efficiency can be improved without using a plurality of suction ports 5.

図5は、実施の形態1の第2変形例に係る天井埋込型空気調和機の室内機100を側面から見た断面模式図である。 FIG. 5 is a schematic cross-sectional view of the indoor unit 100 of the ceiling-embedded air conditioner according to the second modification of the first embodiment, viewed from the side.

実施の形態1の第2変形例では、図5に示すように、筐体1の後面には、内部に室内空気を吸い込む吸込口5が形成されており、筐体1の前面には、外部に空調空気を吹き出す吹出口8が形成されている。その他に関しては、実施の形態1と同様である。 In the second modification of the first embodiment, as shown in FIG. An air outlet 8 for blowing out conditioned air is formed in the air conditioner. Other aspects are the same as in the first embodiment.

以上、実施の形態1に係る天井埋込型空気調和機の室内機100は、正面視して後方に形成された吸込口5および前方に形成された吹出口8を有し、天井200に埋め込まれる筐体1と、吸込口5から筐体1の内部に吸い込んだ空気を吹出口8から筐体1の外部に吹き出す送風ファン2と、送風ファン2によって吸込口5から筐体1の内部に吸い込まれた空気と冷媒との間で熱交換を行う熱交換器30と、を備えている。そして、送風ファン2は、熱交換器30の前方の端部32および後方の端部31のうち、その中心から吸込口5の中心までの風路距離が長い方の端部32に近くなるように配置されており、かつ、前後方向において、前方の端部32の最も前方となる位置B2と後方の端部31の最も後方となる位置A2との間に配置されているものである。 As described above, the indoor unit 100 of the ceiling-embedded air conditioner according to the first embodiment has the suction port 5 formed at the rear and the air outlet 8 formed at the front when viewed from the front, and is embedded in the ceiling 200. a casing 1 that is drawn into the casing 1 from the suction port 5, a blower fan 2 that blows air out of the casing 1 from the air outlet 8, It includes a heat exchanger 30 that exchanges heat between the sucked air and the refrigerant. The blower fan 2 is positioned close to the end 32 of the front end 32 and the rear end 31 of the heat exchanger 30, which has a longer air path distance from its center to the center of the suction port 5. and is located between the most forward position B2 of the front end 32 and the most rearward position A2 of the rear end 31 in the front-rear direction.

または、実施の形態1に係る天井埋込型空気調和機の室内機100は、正面視して後方に形成された吸込口5および前方に形成された吹出口8を有し、天井200に埋め込まれる筐体1と、吸込口5から筐体1の内部に吸い込んだ空気を吹出口8から筐体1の外部に吹き出す送風ファン2と、送風ファン2によって吸込口5から筐体1の内部に吸い込まれた空気と冷媒との間で熱交換を行う複数の熱交換器3a、3bと、を備えている。そして、送風ファン2は、複数の熱交換器3a、3bのうち、その中心から吸込口5の中心までの風路距離が短い熱交換器3aよりも長い熱交換器3bに近くなるように配置されており、かつ、前後方向において、最も前方に位置する熱交換器3bの前方の端部3b1の最も前方となる位置B2と、最も後方に位置する熱交換器3aの後方の端部3a1の最も後方となる位置A2と、の間に配置されているものである。 Alternatively, the indoor unit 100 of the ceiling-embedded air conditioner according to the first embodiment has the suction port 5 formed at the rear and the air outlet 8 formed at the front when viewed from the front, and is embedded in the ceiling 200. a casing 1 that is drawn into the casing 1 from the suction port 5, a blower fan 2 that blows air out of the casing 1 from the air outlet 8, It includes a plurality of heat exchangers 3a and 3b that exchange heat between the sucked air and the refrigerant. The blower fan 2 is arranged so as to be closer to the heat exchanger 3b, which has a longer air path distance from the center of the heat exchanger 3a to the center of the suction port 5 than the heat exchanger 3a, among the plurality of heat exchangers 3a and 3b. and, in the front-rear direction, the most forward position B2 of the front end 3b1 of the heat exchanger 3b located most forward and the rear end 3a1 of the heat exchanger 3a located most rearward. This is located between the rearmost position A2 and the rearmost position A2.

実施の形態1に係る天井埋込型空気調和機の室内機100によれば、送風ファン2は、熱交換器30の前方の端部32および後方の端部31のうち、その中心から吸込口5の中心までの風路距離が長い方の端部32に近くなるように配置されており、かつ、前後方向において、前方の端部32の最も前方となる位置B2と後方の端部31の最も後方となる位置A2との間に配置されている。あるいは、送風ファン2は、複数の熱交換器3a、3bのうち、その中心から吸込口5の中心までの風路距離が短い熱交換器3aよりも長い熱交換器3bに近くなるように配置されており、かつ、前後方向において、最も前方に位置する熱交換器3bの前方の端部3b1の最も前方となる位置B2と、最も後方に位置する熱交換器3aの後方の端部3a1の最も後方となる位置A2と、の間に配置されている。 According to the indoor unit 100 of the ceiling-embedded air conditioner according to Embodiment 1, the blower fan 2 connects the air inlet from the center of the front end 32 and the rear end 31 of the heat exchanger 30. 5, the air path distance to the center of the airflow path is closer to the longer end 32, and in the front-rear direction, the most forward position B2 of the front end 32 and the rear end 31 are located. It is arranged between the rearmost position A2 and the rearmost position A2. Alternatively, the blower fan 2 is arranged so as to be closer to the heat exchanger 3b, which has a longer air path distance from the center of the heat exchanger 3a to the center of the suction port 5 than the heat exchanger 3a, among the plurality of heat exchangers 3a and 3b. and, in the front-rear direction, the most forward position B2 of the front end 3b1 of the heat exchanger 3b located most forward and the rear end 3a1 of the heat exchanger 3a located most rearward. It is arranged between the rearmost position A2 and the rearmost position A2.

ここで、送風ファン2に近い方がより風速が速くなり、熱交換器30、3a、3bの通過風量が増加する。そのため、送風ファン2を、熱交換器30の前方の端部32および後方の端部31のうち、その中心から吸込口5の中心までの風路距離が長い方の端部32に近くなるように配置する、あるいは、複数の熱交換器3a、3bのうち、その中心から吸込口5の中心までの風路距離が短い熱交換器3aよりも長い熱交換器3bに近くなるように配置する。そうすることで、吸込口5から遠く元々通過風量が少ない方の熱交換器30の端部32、あるいは熱交換器3bの通過風量を増加させることができるので、熱交換器全体に流入する風量が均一化され、熱交換効率を向上させることができる。さらに、送風ファン2を、前後方向において、前方の端部32の最も前方となる位置B2と後方の端部31の最も後方となる位置A2との間に配置する、あるいは、前後方向において、最も前方に位置する熱交換器3bの前方の端部3b1の最も前方となる位置B2と、最も後方に位置する熱交換器3aの後方の端部3a1の最も後方となる位置A2と、の間に配置する。そうすることで、送風ファン2が空気を吸い込むことができる範囲Cが広くなるため、多くの送風量を確保することができ、送風効率が改善される。その結果、吸込口5を複数とせずに熱交換効率を向上させることができる。 Here, the wind speed becomes faster closer to the blower fan 2, and the amount of air passing through the heat exchangers 30, 3a, and 3b increases. Therefore, the blower fan 2 is placed close to the end 32 of the front end 32 and the rear end 31 of the heat exchanger 30, which has a longer air path distance from its center to the center of the suction port 5. or, among the plurality of heat exchangers 3a and 3b, the air path distance from the center of the heat exchanger 3a to the center of the suction port 5 is closer to the heat exchanger 3b, which has a longer air path distance than the heat exchanger 3a. . By doing so, it is possible to increase the amount of air passing through the end 32 of the heat exchanger 30, which is far from the suction port 5 and has a smaller amount of air passing through it, or the heat exchanger 3b, so the amount of air flowing into the entire heat exchanger is increased. is made uniform, and heat exchange efficiency can be improved. Furthermore, the blower fan 2 is arranged between the most forward position B2 of the front end 32 and the most rearward position A2 of the rear end 31 in the front-rear direction, or Between the most forward position B2 of the front end 3b1 of the heat exchanger 3b located at the front and the most rearward position A2 of the rear end 3a1 of the heat exchanger 3a located most rearward. Deploy. By doing so, the range C in which the air blowing fan 2 can suck air becomes wider, so a large amount of air can be secured, and the air blowing efficiency is improved. As a result, heat exchange efficiency can be improved without using a plurality of suction ports 5.

実施の形態2.
以下、実施の形態2について説明するが、実施の形態1と重複するものについては説明を省略し、実施の形態1と同じ部分または相当する部分には同じ符号を付す。
Embodiment 2.
Embodiment 2 will be described below, but the description of parts that overlap with Embodiment 1 will be omitted, and the same or corresponding parts as in Embodiment 1 will be given the same reference numerals.

図6は、実施の形態2に係る天井埋込型空気調和機の室内機100を側面から見た断面模式図である。図7は、実施の形態2の第1変形例に係る天井埋込型空気調和機の室内機100を側面から見た断面模式図である。図8は、実施の形態2の第2変形例に係る天井埋込型空気調和機の室内機100を側面から見た断面模式図である。図9は、図8の熱交換器3aを矢印X方向に見た図である。図10は、図8の熱交換器3bを矢印Y方向に見た図である。なお、図6~図8において、矢印A1は、吸込口5の中心から熱交換器3aの中心までの空気の流れを示しており、矢印B1は、吸込口5の中心から熱交換器3bの中心までの空気の流れを示している。 FIG. 6 is a schematic cross-sectional view of the indoor unit 100 of the ceiling-embedded air conditioner according to the second embodiment, viewed from the side. FIG. 7 is a schematic cross-sectional view of the indoor unit 100 of the ceiling-embedded air conditioner according to the first modification of the second embodiment, viewed from the side. FIG. 8 is a schematic cross-sectional view of the indoor unit 100 of the ceiling-embedded air conditioner according to the second modification of the second embodiment, viewed from the side. FIG. 9 is a diagram of the heat exchanger 3a of FIG. 8 viewed in the direction of arrow X. FIG. 10 is a diagram of the heat exchanger 3b of FIG. 8 viewed in the direction of arrow Y. In addition, in FIGS. 6 to 8, arrow A1 indicates the flow of air from the center of the suction port 5 to the center of the heat exchanger 3a, and arrow B1 indicates the flow of air from the center of the suction port 5 to the center of the heat exchanger 3b. It shows the flow of air to the center.

図8~図10に示すように、複数の熱交換器3a、3bは、それぞれ伝熱管10a、10b(図9および図10では図示省略)とフィン40a、40bとを有している。また、図6に示すように、複数の熱交換器3a、3bのうち、その中心から吸込口5の中心までの風路距離が短い熱交換器3aと長い熱交換器3bとで、仕様が異なっている。具体的には、複数の熱交換器3a、3bのうち、その中心から吸込口5の中心までの風路距離(図6の矢印B1の長さ)が長い熱交換器3bが、その中心から吸込口5の中心までの風路距離(図6の矢印A1の長さ)が短い熱交換器3aよりも通風抵抗が低くなる仕様となっている。そして、熱交換器3aの伝熱管10aの列数が2列に対して熱交換器3bの伝熱管10bの列数が1列となっている。つまり、熱交換器3aの伝熱管10aの列数よりも熱交換器3bの伝熱管10bの列数の方が少なくなっている。 As shown in FIGS. 8 to 10, the plurality of heat exchangers 3a and 3b each include heat exchanger tubes 10a and 10b (not shown in FIGS. 9 and 10) and fins 40a and 40b. Moreover, as shown in FIG. 6, among the plurality of heat exchangers 3a and 3b, the heat exchanger 3a having a short air path distance from the center to the center of the suction port 5 and the heat exchanger 3b having a long air path distance have different specifications. It's different. Specifically, among the plurality of heat exchangers 3a and 3b, the heat exchanger 3b with the longer air path distance (the length of the arrow B1 in FIG. 6) from its center to the center of the suction port 5 is The heat exchanger 3a is designed to have lower ventilation resistance than the heat exchanger 3a, which has a shorter air path distance to the center of the suction port 5 (the length of the arrow A1 in FIG. 6). The number of rows of heat exchanger tubes 10a of heat exchanger 3a is two, while the number of rows of heat exchanger tubes 10b of heat exchanger 3b is one. That is, the number of rows of heat exchanger tubes 10b of heat exchanger 3b is smaller than the number of rows of heat exchanger tubes 10a of heat exchanger 3a.

なお、中心から吸込口5の中心までの風路距離が長い熱交換器3bは、中心から吸込口5の中心までの風路距離が短い熱交換器3aよりも通風抵抗が低い仕様として、図7に示すように、熱交換器3aの伝熱管10aの段ピッチDpaよりも熱交換器3bの伝熱管10bの段ピッチDpbを広くした構成としてもよい。また、図8に示すように、熱交換器3aの伝熱管10aの直径Tφaよりも熱交換器3bの伝熱管10bの直径Tφbを小さくした構成としてもよい。また、熱交換器3aの伝熱管10aの列ピッチLPaよりも熱交換器3bの伝熱管10bの列ピッチLPbを狭くした構成としてもよい。また、図9および図10に示すように、熱交換器3aのフィン40aのフィンピッチFPaよりも熱交換器3bのフィン40bのフィンピッチFPbを広くした構成としてもよい。また、熱交換器3aのフィン40aのスリット42aよりも熱交換器3bのフィン40bのスリット42bを粗くした構成としてもよい。このとき、熱交換器3aの方が熱交換器3bよりもフィン40aのスリット42aが細かく形成されている。なお、スリット42a、42bは、フィン40a、40bの面積を広くするためにフィン40a、40bを切り起すことで、切り起こし部41a、41bとともに形成される。また、熱交換器3aのフィン40aの切り起こし部41aよりも熱交換器3bのフィン40bの切り起こし部41bの方が粗く形成されている。そして、熱交換器3bの方が、熱交換器3aよりも、フィン40b間の空気流れ方向(図9および図10の上下方向)において、切り起こし部41bが長くなるように形成されている。また、熱交換器3aのフィン40aの厚みLTaよりも熱交換器3bのフィン40bの厚みLTbを薄くした構成としてもよい。また、中心から吸込口5の中心までの風路距離が長い熱交換器3bが、中心から吸込口5の中心までの風路距離が短い熱交換器3aよりも通風抵抗が低くなる仕様であれば、その他の構成でもよい。 Note that the heat exchanger 3b, which has a long air path distance from the center to the center of the suction port 5, has a specification that has lower ventilation resistance than the heat exchanger 3a, which has a shorter air path distance from the center to the center of the suction port 5. As shown in 7, a structure may be adopted in which the stage pitch Dpb of the heat exchanger tubes 10b of the heat exchanger 3b is wider than the stage pitch Dpa of the heat exchanger tubes 10a of the heat exchanger 3a. Further, as shown in FIG. 8, a configuration may be adopted in which the diameter Tφb of the heat exchanger tube 10b of the heat exchanger 3b is smaller than the diameter Tφa of the heat exchanger tube 10a of the heat exchanger 3a. Alternatively, the row pitch LPb of the heat exchanger tubes 10b of the heat exchanger 3b may be narrower than the row pitch LPa of the heat exchanger tubes 10a of the heat exchanger 3a. Further, as shown in FIGS. 9 and 10, the fin pitch FPb of the fins 40b of the heat exchanger 3b may be wider than the fin pitch FPa of the fins 40a of the heat exchanger 3a. Alternatively, the slits 42b of the fins 40b of the heat exchanger 3b may be made coarser than the slits 42a of the fins 40a of the heat exchanger 3a. At this time, the slits 42a of the fins 40a are formed finer in the heat exchanger 3a than in the heat exchanger 3b. The slits 42a, 42b are formed together with the cut and raised portions 41a, 41b by cutting and raising the fins 40a, 40b in order to increase the area of the fins 40a, 40b. Furthermore, the cut and raised portions 41b of the fins 40b of the heat exchanger 3b are formed more roughly than the cut and raised portions 41a of the fins 40a of the heat exchanger 3a. The heat exchanger 3b is formed so that the cut-and-raised portion 41b is longer in the air flow direction between the fins 40b (vertical direction in FIGS. 9 and 10) than the heat exchanger 3a. Further, a configuration may be adopted in which the thickness LTb of the fins 40b of the heat exchanger 3b is thinner than the thickness LTa of the fins 40a of the heat exchanger 3a. Also, if the heat exchanger 3b having a long air path distance from the center to the center of the suction port 5 is designed to have lower ventilation resistance than the heat exchanger 3a having a short air path distance from the center to the center of the suction port 5. Alternatively, other configurations may be used.

なお、熱交換器30が複数ではなく1つのみ設けられている場合、熱交換器30の前方の端部32および後方の端部31のうち、その中心から吸込口5の中心までの風路距離が短い端部31側の部分と長い端部32側の部分とで、仕様が異なっている。具体的には、熱交換器30の前方の端部32および後方の端部31のうち、その中心から吸込口5の中心までの風路距離が長い端部32側の部分が、その中心から吸込口5の中心までの風路距離が短い端部31側の部分よりも通風抵抗が低くなる仕様となっている。 Note that when only one heat exchanger 30 is provided instead of a plurality of heat exchangers 30, the air path from the center of the front end 32 and rear end 31 of the heat exchanger 30 to the center of the suction port 5 The specifications are different between the shorter end 31 side and the longer end 32 side. Specifically, of the front end 32 and the rear end 31 of the heat exchanger 30, the part on the end 32 side where the air path distance from the center to the center of the suction port 5 is longer is from the center. The ventilation resistance is designed to be lower than that on the end 31 side where the air path distance to the center of the suction port 5 is shorter.

以上のように、中心から吸込口5の中心までの風路距離が長い熱交換器3bが、中心から吸込口5の中心までの風路距離が短い熱交換器3aよりも通風抵抗が低くなる仕様とする。そうすることで、吸込口5から遠く元々通過風量が少ない方の熱交換器3bの通過風量を増加させることができるので、熱交換器全体に流入する風量が均一化され、熱交換効率を向上させることができる。 As described above, the heat exchanger 3b, which has a long air path distance from the center to the center of the suction port 5, has lower ventilation resistance than the heat exchanger 3a, which has a short air path distance from the center to the center of the suction port 5. Specification. By doing so, it is possible to increase the amount of air passing through the heat exchanger 3b which is far from the suction port 5 and has a small amount of air passing through it, so the amount of air flowing into the entire heat exchanger is made uniform and the heat exchange efficiency is improved. can be done.

以上、実施の形態2に係る天井埋込型空気調和機の室内機100は、複数の熱交換器3a、3bはフィン40a、40bと伝熱管10a、10bとを有し、複数の熱交換器3a、3bのうち少なくとも一つは、他の熱交換器3a、3bと通風抵抗に影響がある仕様が異なっており、中心から吸込口5の中心までの風路距離が短い熱交換器3aよりも長い熱交換器3bの方が、通風抵抗が低いものである。 As described above, in the indoor unit 100 of the ceiling-embedded air conditioner according to the second embodiment, the plurality of heat exchangers 3a, 3b have fins 40a, 40b and heat exchanger tubes 10a, 10b, At least one of the heat exchangers 3a and 3b has a different specification that affects ventilation resistance from the other heat exchangers 3a and 3b, and has a shorter air path distance from the center to the center of the suction port 5 than the heat exchanger 3a. The longer heat exchanger 3b has lower ventilation resistance.

実施の形態2に係る天井埋込型空気調和機の室内機100によれば、複数の熱交換器3a、3bのうち少なくとも一つは、他の熱交換器3a、3bと通風抵抗に影響がある仕様が異なっており、中心から吸込口5の中心までの風路距離が短い熱交換器3aよりも長い熱交換器3bの方が、通風抵抗が低い。そのため、吸込口5から遠く元々通過風量が少ない方の熱交換器3bの通過風量を増加させることができるので、熱交換器全体に流入する風量が均一化され、熱交換効率を向上させることができる。 According to the indoor unit 100 of the ceiling-embedded air conditioner according to the second embodiment, at least one of the plurality of heat exchangers 3a, 3b has no influence on ventilation resistance compared to the other heat exchangers 3a, 3b. The heat exchanger 3b has a different specification, and the airflow resistance is lower in the heat exchanger 3b, which has a longer air path distance from the center to the center of the suction port 5 than the heat exchanger 3a, which has a shorter air path distance. Therefore, it is possible to increase the amount of air passing through the heat exchanger 3b which is far from the suction port 5 and has a smaller amount of air passing through it, so the amount of air flowing into the entire heat exchanger is made uniform and the heat exchange efficiency can be improved. can.

また、実施の形態2に係る天井埋込型空気調和機の室内機100は、熱交換器30の前方の端部32側の部分と後方の端部31側の部分とで通風抵抗に影響がある仕様が異なっており、中心から吸込口5の中心までの風路距離が短い端部31側の部分よりも長い端部32側の部分の方が、通風抵抗が低いものである。 In addition, in the indoor unit 100 of the ceiling-embedded air conditioner according to the second embodiment, the ventilation resistance is affected by the portion on the front end 32 side and the portion on the rear end 31 side of the heat exchanger 30. A certain specification is different, and the ventilation resistance is lower at the end 32 side where the air path distance from the center to the center of the suction port 5 is longer than at the end 31 side where the air path distance is shorter.

実施の形態2に係る天井埋込型空気調和機の室内機100によれば、熱交換器30の前方の端部32側の部分と後方の端部31側の部分とで通風抵抗に影響がある仕様が異なっており、中心から吸込口5の中心までの風路距離が短い端部31側の部分よりも長い端部32側の部分の方が、通風抵抗が低い。そのため、吸込口5から遠く元々通過風量が少ない方の熱交換器30の前方の端部32側の部分の通過風量を増加させることができるので、熱交換器全体に流入する風量が均一化され、熱交換効率を向上させることができる。 According to the indoor unit 100 of the ceiling-embedded air conditioner according to the second embodiment, the portion on the front end 32 side and the portion on the rear end 31 side of the heat exchanger 30 have an influence on ventilation resistance. A certain specification is different, and the ventilation resistance is lower at the end 32 side where the air path distance from the center to the center of the suction port 5 is longer than at the end 31 side where the air path distance is short. Therefore, it is possible to increase the amount of air passing through the front end 32 side of the heat exchanger 30, which is far from the suction port 5 and has a smaller amount of air passing through it, so that the amount of air flowing into the entire heat exchanger is made uniform. , heat exchange efficiency can be improved.

1 筐体、2 送風ファン、3a 熱交換器、3a1 端部、3b 熱交換器、3b1 端部、4 ドレンパン、5 吸込口、6 吸込グリル、7 フィルタ、8 吹出口、9 上下ベーン、10a 伝熱管、10b 伝熱管、20 風路、30 熱交換器、31 端部、32 端部、40a フィン、40b フィン、41a 切り起こし部、41b 切り起こし部、42a スリット、42b スリット、100 室内機、200 天井。 1 Housing, 2 Blow fan, 3a Heat exchanger, 3a1 End, 3b Heat exchanger, 3b1 End, 4 Drain pan, 5 Suction port, 6 Suction grill, 7 Filter, 8 Air outlet, 9 Upper and lower vanes, 10a Transmission heat tube, 10b heat exchanger tube, 20 air path, 30 heat exchanger, 31 end, 32 end, 40a fin, 40b fin, 41a cut-and-raised part, 41b cut-and-raised part, 42a slit, 42b slit, 100 indoor unit, 200 ceiling.

Claims (5)

正面視して後方の下面に形成された吸込口および前方の下面に形成された吹出口を有し、天井に埋め込まれる筐体と、
前記吸込口から前記筐体の内部に吸い込んだ空気を前記吹出口から前記筐体の外部に吹き出す送風ファンと、
前記送風ファンによって前記吸込口から前記筐体の内部に吸い込まれた空気と冷媒との間で熱交換を行う2つの熱交換器と、
前記2つの熱交換器からのドレン水を回収するドレンパンと、を備え、
上下方向において前記吸込口と対向する一方の前記熱交換器は、同じ段ピッチで配置された複数の伝熱管を有し、その中心から前記吸込口の中心までの風路距離が、他方の前記熱交換器よりも短い位置に配置され、
上下方向において前記ドレンパンと対向する前記他方の熱交換器は、前記一方の熱交換器の伝熱管の段ピッチより広くした同じ段ピッチで配置された複数の伝熱管を有し、その中心から前記吸込口の中心までの風路距離が、前記一方の前記熱交換器よりも長い位置に配置され、
前記送風ファンの中心は、前記一方の熱交換器より前記他方の熱交換器に近く、かつ、前記送風ファンの全体は、前後方向において、前記他方の熱交換器の前記吹出口側の端部と、前記一方の熱交換器の吸込口側の端部と、の間に配置されている
天井埋込型空気調和機の室内機。
A casing that is embedded in a ceiling and has an inlet formed on the lower surface of the rear and an outlet formed on the lower surface of the front when viewed from the front;
a blower fan that blows air sucked into the interior of the casing from the suction port to the outside of the casing from the air outlet;
two heat exchangers that exchange heat between the air sucked into the housing from the suction port by the blower fan and a refrigerant;
A drain pan that collects drain water from the two heat exchangers,
One of the heat exchangers facing the suction port in the vertical direction has a plurality of heat exchanger tubes arranged at the same stage pitch , and the air path distance from the center of the tubes to the center of the suction port is equal to that of the other heat exchanger. placed at a position shorter than the heat exchanger,
The other heat exchanger facing the drain pan in the vertical direction has a plurality of heat exchanger tubes arranged at the same step pitch that is wider than the step pitch of the heat transfer tubes of the one heat exchanger, and the The air path distance to the center of the suction port is arranged at a position longer than that of the one of the heat exchangers,
The center of the blower fan is closer to the other heat exchanger than the one heat exchanger, and the entire blower fan is located at the end of the blower outlet side of the other heat exchanger in the front-rear direction. and an end on the suction port side of the one heat exchanger, an indoor unit of a ceiling-embedded air conditioner.
前記2つの熱交換器はそれぞれフィンを有し、
中心から前記吸込口の中心までの風路距離が短い前記一方の熱交換器よりも長い前記他方の熱交換器の方が、フィンピッチが広い
請求項1に記載の天井埋込型空気調和機の室内機。
The two heat exchangers each have fins,
The ceiling-embedded air conditioner according to claim 1, wherein the other heat exchanger, which has a longer air path distance from the center to the center of the suction port than the one heat exchanger, has a wider fin pitch. indoor unit.
前記2つの熱交換器のそれぞれの前記フィンに切り起こし部が設けられており、
中心から前記吸込口の中心までの風路距離が短い前記一方の熱交換器よりも長い前記他方の熱交換器の方が前記フィン間の空気流れ方向に前記切り起こし部が長い
請求項2に記載の天井埋込型空気調和機の室内機。
A cut-and-raised portion is provided on each of the fins of the two heat exchangers,
According to claim 2, the cut-and-raised portion is longer in the air flow direction between the fins in the other heat exchanger, which has a shorter air path distance from the center to the center of the suction port than in the one heat exchanger. Indoor unit of the ceiling-mounted air conditioner described.
中心から前記吸込口の中心までの風路距離が短い前記一方の熱交換器よりも長い前記他方の熱交換器の方が、前記伝熱管の直径が小さい
請求項1~3のいずれか一項に記載の天井埋込型空気調和機の室内機。
Any one of claims 1 to 3, wherein the other heat exchanger has a shorter air path distance from the center to the center of the suction port than the one heat exchanger, and the diameter of the heat transfer tube is smaller. The indoor unit of the ceiling-mounted air conditioner described in .
中心から前記吸込口の中心までの風路距離が短い前記一方の熱交換器よりも長い前記他方の熱交換器の方が、前記伝熱管の列数が少ない
請求項1~4のいずれか一項に記載の天井埋込型空気調和機の室内機。
Any one of claims 1 to 4, wherein the other heat exchanger has a shorter air path distance from the center to the center of the suction port than the one heat exchanger, and the number of rows of the heat transfer tubes is smaller than that of the one heat exchanger. The indoor unit of the ceiling-mounted air conditioner described in Section 1.
JP2022560633A 2020-11-05 2021-04-09 Indoor unit of ceiling-mounted air conditioner Active JP7446477B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JPPCT/JP2020/041329 2020-11-05
PCT/JP2020/041329 WO2022097223A1 (en) 2020-11-05 2020-11-05 Indoor unit of ceiling-embedded air conditioner
PCT/JP2021/014976 WO2022097316A1 (en) 2020-11-05 2021-04-09 Ceiling-embedded air conditioner indoor unit

Publications (3)

Publication Number Publication Date
JPWO2022097316A1 JPWO2022097316A1 (en) 2022-05-12
JPWO2022097316A5 JPWO2022097316A5 (en) 2023-01-30
JP7446477B2 true JP7446477B2 (en) 2024-03-08

Family

ID=81457014

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022560633A Active JP7446477B2 (en) 2020-11-05 2021-04-09 Indoor unit of ceiling-mounted air conditioner

Country Status (3)

Country Link
JP (1) JP7446477B2 (en)
CN (1) CN116529535A (en)
WO (2) WO2022097223A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001304605A (en) 2000-04-21 2001-10-31 Hitachi Ltd Air conditioner
JP2005337571A (en) 2004-05-26 2005-12-08 Daikin Ind Ltd High-place installed air-conditioner
JP2006003001A (en) 2004-06-17 2006-01-05 Rinnai Corp Air temperature adjusting machine
JP2008275231A (en) 2007-04-27 2008-11-13 Daikin Ind Ltd Air conditioner
JP2018059506A (en) 2016-09-30 2018-04-12 ダイキン工業株式会社 Cross flow type blower and indoor unit of air conditioning device including the same
JP2018165592A (en) 2017-03-28 2018-10-25 株式会社富士通ゼネラル Indoor unit of ceiling embedded type air conditioner
JP2019143907A (en) 2018-02-22 2019-08-29 パナソニックIpマネジメント株式会社 Indoor unit for air conditioner
JP2020060362A (en) 2019-03-08 2020-04-16 日立ジョンソンコントロールズ空調株式会社 Air conditioner

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07190477A (en) * 1993-12-24 1995-07-28 Matsushita Electric Ind Co Ltd Indoor unit for air conditioner
JPH08327083A (en) * 1995-06-06 1996-12-10 Mitsubishi Heavy Ind Ltd Ceiling suspended type air conditioner
JP3757680B2 (en) * 1999-05-27 2006-03-22 松下電器産業株式会社 Air conditioner
JP2008275230A (en) * 2007-04-27 2008-11-13 Daikin Ind Ltd Air conditioner
JP6369522B2 (en) * 2016-11-21 2018-08-08 ダイキン工業株式会社 Indoor unit of air conditioner

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001304605A (en) 2000-04-21 2001-10-31 Hitachi Ltd Air conditioner
JP2005337571A (en) 2004-05-26 2005-12-08 Daikin Ind Ltd High-place installed air-conditioner
JP2006003001A (en) 2004-06-17 2006-01-05 Rinnai Corp Air temperature adjusting machine
JP2008275231A (en) 2007-04-27 2008-11-13 Daikin Ind Ltd Air conditioner
JP2018059506A (en) 2016-09-30 2018-04-12 ダイキン工業株式会社 Cross flow type blower and indoor unit of air conditioning device including the same
JP2018165592A (en) 2017-03-28 2018-10-25 株式会社富士通ゼネラル Indoor unit of ceiling embedded type air conditioner
JP2019143907A (en) 2018-02-22 2019-08-29 パナソニックIpマネジメント株式会社 Indoor unit for air conditioner
JP2020060362A (en) 2019-03-08 2020-04-16 日立ジョンソンコントロールズ空調株式会社 Air conditioner

Also Published As

Publication number Publication date
CN116529535A (en) 2023-08-01
WO2022097223A1 (en) 2022-05-12
WO2022097316A1 (en) 2022-05-12
JPWO2022097316A1 (en) 2022-05-12

Similar Documents

Publication Publication Date Title
KR102445160B1 (en) Air conditioner and method for controlling the same
US20070256816A1 (en) Air Conditioner
JP4678327B2 (en) Air conditioner
JP4544364B1 (en) Air conditioner
JP5837235B2 (en) Air conditioner outdoor unit
KR101608981B1 (en) Air conditioner
US9618216B2 (en) Air conditioning apparatus
JP6429204B2 (en) Air conditioner
JPWO2019016982A1 (en) Air conditioner
JP2010038400A (en) Finned heat exchanger
WO2017068725A1 (en) Indoor unit for air conditioner
WO2018092783A1 (en) Indoor unit for air conditioning device
JP7446477B2 (en) Indoor unit of ceiling-mounted air conditioner
JP2005024225A (en) Air conditioner
JP5591355B2 (en) Blower and outdoor unit of air conditioner
JP2017044405A (en) Air conditioner and its indoor unit
JP2007120789A (en) Indoor unit for air conditioner
JP4922817B2 (en) Air conditioner
KR20090069400A (en) Outdoor unit of air conditioner and a grille thereof
JP5517633B2 (en) Air conditioner
WO2021044466A1 (en) Outdoor unit
JP2008157514A (en) Air conditioner
JPWO2019123743A1 (en) Indoor unit of air conditioner
JP7392111B2 (en) Air conditioner indoor unit
CN111207532B (en) Heat exchanger and air conditioner

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221109

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230926

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240130

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240227

R150 Certificate of patent or registration of utility model

Ref document number: 7446477

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150