JP7441050B2 - 超音波診断システム及び超音波診断装置 - Google Patents

超音波診断システム及び超音波診断装置 Download PDF

Info

Publication number
JP7441050B2
JP7441050B2 JP2020004831A JP2020004831A JP7441050B2 JP 7441050 B2 JP7441050 B2 JP 7441050B2 JP 2020004831 A JP2020004831 A JP 2020004831A JP 2020004831 A JP2020004831 A JP 2020004831A JP 7441050 B2 JP7441050 B2 JP 7441050B2
Authority
JP
Japan
Prior art keywords
image
illuminance
color doppler
ultrasonic diagnostic
display
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020004831A
Other languages
English (en)
Other versions
JP2021109060A (ja
Inventor
晃央 郷田
康彦 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Medical Systems Corp
Original Assignee
Canon Medical Systems Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Medical Systems Corp filed Critical Canon Medical Systems Corp
Priority to JP2020004831A priority Critical patent/JP7441050B2/ja
Publication of JP2021109060A publication Critical patent/JP2021109060A/ja
Application granted granted Critical
Publication of JP7441050B2 publication Critical patent/JP7441050B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Ultra Sonic Daignosis Equipment (AREA)

Description

本明細書及び図面に開示の実施形態は、超音波診断システム及び超音波診断装置に関する。
超音波診断装置は、先端に振動子(圧電振動子)を備えた超音波プローブを被検体の体表面に接触させ、体内に超音波を送信し、被検体内部で生じる反射波を超音波プローブの振動子で受信する。このようにして得られた受信信号に基づいて超音波画像を生成する。
医師等のユーザは、超音波画像に基づいて生体内を観察し、診断を行う。したがって、超音波画像の画質は診断を左右する重要な要素である。超音波診断装置の画質は、例えば、受信信号のゲインやダイナミックレンジなどの表示パラメータによって調整される。
しかしながら、超音波画像の表示パラメータが同一であっても、超音波画像が表示された表示装置の周囲の環境によって超音波画像の見え方は変化してしまう。
特開2006-20777号公報
本明細書及び図面に開示の実施形態が解決しようとする課題の一つは、超音波画像が表示される装置の周囲の環境が変化した場合でも、超音波画像の見え方の変化を低減することである。
ただし、本明細書及び図面に開示の実施形態により解決しようとする課題は上記課題に限られない。後述する実施形態に示す各構成による各効果に対応する課題を他の課題として位置付けることもできる。
実施形態に係る超音波診断システムは、第1の照度センサと、第2の照度センサと、補正部と、を有する。第1の照度センサは、超音波診断装置の周辺の照度を測定する。第2の照度センサは、表示装置の周辺の照度を測定する。補正部は、第1の照度センサで検出された第1の照度と、第2の照度センサで検出された第2の照度とに基づいて、表示装置に表示させる超音波画像の表示パラメータを補正する。
図1は、第1の実施形態に係る超音波診断システムの一例を示す概念的な構成図。 図2は、第1の実施形態に係る超音波診断システムの機能構成例を示す機能ブロック図。 図3は、第1の実施形態に係る超音波診断システムの動作の一例を示すフローチャート。 図4は、超音波画像のゲインと照度との関係を説明するグラフ。 図5(a)は、超音波診断装置において、第1の照度に基づいて表示パラメータを調整した後の表示例を模式的に示す図、図5(b)は、画素P1の画素値を説明するグラフ、図5(c)は、表示装置において、第2の照度に基づいて表示パラメータを調整した後の表示例を模式的に示す図、図5(d)は、画素P1の画素値を説明するグラフ。 図6は、カラーモノクロバランスの調整方法を説明するテーブル。 図7(a)は、カラーモノクロバランスの調整後の重畳画像を説明する模式図、図7(b)は、カラーモノクロバランスの調整後の信号値を説明するグラフ。 図8は、第2の実施形態に係る超音波診断装置の一例を示す概念的な構成図。
以下、図面を参照しながら、超音波診断システム及び超音波診断装置の実施形態について詳細に説明する。
[第1の実施形態]
(1)構成
図1は、第1の実施形態に係る超音波診断システム100の一例を示す概念的な構成図である。
図1に示すように、超音波診断システム100は、超音波診断装置200、表示装置300、外部記憶装置500を有する。超音波診断システム100では、例えば、超音波診断装置200で取得された超音波画像が外部記憶装置500を介して表示装置300に送信され、表示される。
外部記憶装置500は、例えば、画像保管サーバである。画像保管サーバは、超音波診断装置200などのモダリティにより得られた医用画像を保存する。また、画像保管サーバは、画像保管通信システム(PACS:Picture Archiving and Communication Systems)の一部であってもよい。その場合、表示装置300の要求に応じて画像保管サーバに保管された超音波画像をPACSが呼び出し、表示装置300に送信する。
超音波診断装置200は、超音波プローブ1、第1の照度センサ2、入力インターフェース3、ディスプレイ4、本体装置10を有する。
超音波プローブ1は、アレイ状に配列される複数の超音波振動子(圧電振動子)を有する。振動子は、本体装置10から出力される電気信号としての送信波を超音波の送信波に変換して、この超音波送信波を被検体に印加する。また、振動子は、被検体から反射されてくる超音波信号(エコー信号)を電気信号としての受信信号に変換して、本体装置10に送信する。超音波プローブ1は、本体装置10と互いにデータ送受信可能に有線または無線で接続されている。
第1の照度センサ2は、超音波診断装置200の周辺の照度を測定する。第1の照度センサ2は、例えば、超音波診断装置200で取得された画像が表示されるディスプレイ4の周辺照度を測定してもよい。以下の説明では、第1の照度センサ2で測定された照度を「第1の照度」と呼ぶこととする。第1の照度センサ2は、第1の照度を本体装置10に送信する。また、第1の照度センサ2は、汎用の照度センサであってもよく、有線または無線で本体装置10に第1の照度を送信してもよい。
また、本体装置10は、入力インターフェース3、ディスプレイ4とも接続する。なお、本体装置10は、ディスプレイ4と入力インターフェース3とが一体となったタブレット型やスマートフォン型であってもよい。
入力インターフェース3は、たとえばトラックボール、スイッチ、ボタン、マウス、キーボード、操作面へ触れることで入力操作を行なうタッチパッド、光学センサを用いた非接触入力回路、および音声入力回路等などの一般的な入力装置により実現され、ユーザの操作に対応した操作入力信号を処理回路14に出力する。また、本体装置10がタブレット型やスマートフォン型である場合は、ディスプレイ4と入力インターフェース3とは一体としてタッチパネルを構成してもよい。
ディスプレイ4は、たとえば液晶ディスプレイやOLED(Organic Light Emitting Diode)ディスプレイなどの一般的な表示出力装置により構成され、処理回路14の制御に従って各種情報を表示する。
本体装置10は、送受信回路11、信号処理回路12、記憶回路13、処理回路14、通信制御回路15、画像生成回路16を有する。本体装置10を構成する送受信回路11、信号処理回路12、記憶回路13、処理回路14、通信制御回路15、画像生成回路16は、共通信号伝送路としてのバス19を介して相互に接続する。
送受信回路11は、送信回路および受信回路を有する。送受信回路11は、処理回路14に制御されて、超音波の送受信における送信指向性と受信指向性とを制御する。なお、図1には送受信回路11が超音波診断装置200に設けられる場合の例について示したが、送受信回路11は超音波プローブ1に設けられてもよいし、超音波診断装置200と超音波プローブ1との両方に設けられてもよい。
送信回路は、パルス発生器、送信遅延回路およびパルサ回路などを有し、超音波振動子に駆動信号を供給する。パルス発生器は、所定のレート周波数で、送信超音波を形成するためのレートパルスを繰り返し発生する。送信遅延回路は、超音波振動子から発生される超音波をビーム状に集束して送信指向性を決定するために必要な圧電振動子ごとの遅延時間を、パルス発生器が発生する各レートパルスに対し与える。また、パルサ回路は、遅延された各レートパルスに基づいて駆動パルスを生成し、生成した駆動パルスを超音波振動子の夫々に印加する。
受信回路は、アンプ回路、A/D変換器、加算器などを有し、超音波振動子が受信したエコー信号を受け、このエコー信号に対して各種処理を行なってエコーデータ(Raw Data)を生成する。アンプ回路は、エコー信号をチャンネルごとに増幅してゲイン補正処理を行なう。A/D変換器は、ゲイン補正されたエコー信号をA/D変換し、デジタルデータに受信指向性を決定するのに必要な遅延時間を与える。加算器は、A/D変換器によって処理されたエコー信号の加算処理を行なってエコーデータを生成する。加算器の加算処理により、エコー信号の受信指向性に応じた方向からの反射成分が強調される。
信号処理回路12は、受信回路からエコーデータを受信し、対数増幅、包絡線検波処理などを行なって、信号強度が輝度の明るさで表現されるBモードデータを生成する。また、信号処理回路12は、受信回路から受信したエコーデータから速度情報を周波数解析し、ドプラ効果による血流や組織、造影剤エコー成分を抽出し、平均速度、分散、パワーなどの移動態情報を多点について抽出したカラードプラデータを生成する。
記憶回路13は、磁気的もしくは光学的記録媒体または半導体メモリなどの、プロセッサにより読み取り可能な記録媒体を含んだ構成を有する。記憶回路13の記憶媒体内のプログラムおよびデータの一部または全部は電子ネットワークを介した通信によりダウンロードされてもよいし、光ディスクなどの可搬型記憶媒体を介して記憶回路13に与えられてもよい。なお、記憶回路13に記憶される情報の一部または全部は、外部の記憶回路や図示しない記憶回路などの記憶媒体の少なくとも1つに分散されて記憶され、あるいは複製されて記憶されてもよい。
処理回路14は、プロセッサを有する。処理回路14のプロセッサは、記憶回路13に記憶されたプログラムを読み出して実行することにより、超音波診断装置200を統括制御する。また、処理回路14のプロセッサは、第1の照度センサから第1の照度を受信し、第1の照度と超音波画像とを関連付けて外部記憶装置500記憶する。
通信制御回路15は、ネットワーク形態に応じた種々の通信プロトコルを実装する。ここで、電子ネットワークとは、電気通信技術を利用した情報通信網全体を意味し、病院基幹LAN、無線/有線LANやインターネット網のほか、電話通信回線網、光ファイバー通信ネットワーク、ケーブル通信ネットワークおよび衛星通信ネットワークなどを含む。超音波診断装置200は、電子ネットワーク経由で、超音波画像や第1の照度などの本体装置10で生成されたデータを外部記憶装置500や表示装置300に送信する。
画像生成回路16は、プロセッサを有する。画像生成回路16のプロセッサは、信号処理回路12で生成されたBモードデータやカラードプラデータにもとづいて超音波画像を生成する。例えば、Bモードデータに対してスキャンコンバートを行うことでBモード画像を生成する。また、画像生成回路16のプロセッサは、カラードプラデータに基づいてカラードプラ画像を生成し、Bモード画像にカラードプラ画像を重畳した重畳画像を生成する。以下の説明では、Bモード画像、カラードプラ画像、重畳画像をまとめて超音波画像と呼ぶこととする。さらに、画像生成回路16のプロセッサは、超音波画像及び超音波画像に関連するデータをディスプレイ4に表示させる。
表示装置300は、例えば、ワークステーションである。ワークステーションは、例えば、医用画像の画像処理や表示のための専門的な処理を実行するコンピュータである。医師等のユーザは、取得した超音波画像をワークステーションなどの表示装置300に表示させ、例えば、診断やカルテの作成を行う。
図1に示すように、表示装置300は、処理回路51、記憶回路52、入力インターフェース53、ディスプレイ54、通信制御回路55を有する。表示装置300を構成する処理回路51、記憶回路52、入力インターフェース53、ディスプレイ54、通信制御回路55は、共通信号伝送路としてのバス59を介して相互に接続する。表示装置300は、タブレット型やスマートフォン型でもよい。表示装置300の入力インターフェース53、ディスプレイ54、通信制御回路55は、それぞれ本体装置10の入力インターフェース3、ディスプレイ4、通信制御回路15と同じハードウェア構成を有するので説明を省略する。
また、表示装置300は、第2の照度センサ5を有する。第2の照度センサ5は、表示装置300の周辺の照度を測定する。第2の照度センサ5は、超音波画像が表示されるディスプレイ54の周辺の照度を測定してもよい。以下の説明では、第2の照度センサ5で測定された照度を「第2の照度」と呼ぶこととする。第2の照度センサ5は、第2の照度を表示装置300に送信する。なお、第2の照度センサ5は、第1の照度センサ2と同じハードウェア構成を有するので説明を省略する。
処理回路51は、第2の照度センサ5で測定された第2の照度を取得する。なお、処理回路51は、本体装置10の処理回路14と同じハードウェア構成を有するので説明を省略する。
記憶回路52は、表示装置300で実行されるアプリケーションのプログラムや表示装置300が取得した画像データなどの各種データを記憶する。なお、記憶回路52は本体装置10の記憶回路13と同じハードウェア構成を有するので説明を省略する。
図2は、第1の実施形態に係る超音波診断システム100の機能構成例を示す機能ブロック図である。
図2に示すように、超音波診断装置200の本体装置10の信号処理回路12は、Bモード処理機能121、ドプラモード処理機能122を実現する。これらの機能は、信号処理回路12のプロセッサが記憶回路13に保存されたプログラムを実行することによって実現される。
Bモード処理機能121は、エコーデータからBモードデータを生成する。生成されたBモードデータは、画像生成回路16に送信される。
ドプラモード処理機能122は、エコーデータからカラードプラデータを生成する。生成されたカラードプラデータは、画像生成回路16に送信される。
なお、Bモードデータ及びドプラデータを生成する過程でエコーデータのゲイン、ダイナミックレンジ、コントラストなどを含む表示パラメータのうちいずれか1つが調整された場合、Bモード処理機能121及びドプラモード処理機能122は、生成されたBモードデータ及びカラードプラデータに表示パラメータを付帯させてもよい。
本体装置10の画像生成回路16は、画像生成処理機能161、重畳機能162、表示制御機能163を実現する。これらの機能は、画像生成回路16のプロセッサが記憶回路13に保存されたプログラムを実行することによって実現される。
画像生成処理機能161は、BモードデータからBモード画像、ドプラデータからカラードプラ画像をそれぞれ生成する。また、画像生成処理機能161は、Bモードデータ及びカラードプラデータのゲイン、ダイナミックレンジ、コントラスト、ガンマカーブなどの表示パラメータを調整する。画像生成処理機能161は、第1の照度に適した表示パラメータをドプラデータに設定し、Bモード画像やカラードプラ画像を生成する。
重畳機能162は、Bモード画像とカラードプラ画像とを重畳した重畳画像を生成する。重畳機能162は、Bモード画像とカラードプラ画像とを重畳する際、Bモード画像データの信号とカラードプラ画像の信号とのバランスを調整する。以下の説明では、Bモード画像の信号とカラードプラ画像の信号とのバランスのことを、カラーモノクロバランスと呼ぶこととする。
表示制御機能163は、超音波画像や超音波画像に関連するデータの表示を制御する。表示制御機能163は、画像生成処理機能161で生成されたBモード画像や重畳機能162で生成された重畳画像の映像信号をスキャンコンバートしてディスプレイ4に表示する。
本体装置10の処理回路14は、表示パラメータ取得機能141を実現する。表示パラメータ取得機能141は、処理回路14のプロセッサが記憶回路13に保存されたプログラムを実行することによって実現される。
表示パラメータ取得機能141は、第1の照度センサ2で測定した照度(第1の照度)を第1の照度センサ2から取得する他、画像生成回路16から、Bモード画像、カラードプラ画像、重畳画像の各画像にそれぞれ付帯されている、ゲイン、ダイナミックレンジ、コントラスト、ガンマカーブなどの表示パラメータを取得する。そして、表示パラメータ取得機能141は、それぞれの超音波画像に表示パラメータと第1の照度とを関連付けて外部記憶装置500に送信する。表示パラメータ取得機能141は、表示パラメータと第1の照度とを超音波画像の付帯情報として超音波画像に含ませてもよい。さらに、表示パラメータ取得機能141は、重畳機能162からカラーモノクロバランスを取得し、カラーモノクロバランスを超音波画像に関連付け、又は、付帯させる。
一方、前述したように、表示装置300は、例えば、ワークステーション等のコンピュータである。表示装置300の処理回路51は、表示パラメータ取得機能151、表示パラメータ補正機能152、表示制御機能153を実現する。これらの機能は、処理回路51のプロセッサが記憶回路52に保存されたプログラムを実行することによって実現される。
表示パラメータ取得機能151は、外部記憶装置500から超音波画像を取得するとともに、この超音波画像に関連付けされている、又は、付帯されている表示パラメータと第1の照度とを外部記憶装置500から取得する。また、表示パラメータ取得機能151は、表示装置300が具備している第2の照度センサ5から第2の照度を取得する。
表示パラメータ補正機能152は、第1の照度と第2の照度とに基づいて、表示装置300に表示させる超音波画像の表示パラメータを補正する。表示パラメータ補正機能152は、例えば、第1の照度と第2の照度との差に基づいて表示パラメータを補正する。また、表示パラメータ補正機能152は、第1の照度と第2の照度との比に基づいて表示パラメータを補正してもよい。例えば、表示パラメータ補正機能152は、第1の照度と第2の照度との差の分だけ表示パラメータを上昇させてもよいし、第1の照度と第2の照度との比を表示パラメータに乗算してもよい。このように、表示パラメータ補正機能152は、第1の照度と第2の照度との相関に基づいて、超音波画像の表示パラメータを補正する。
なお、表示パラメータ補正機能152は、超音波画像の補正後の画素値で所定の閾値に達する画素がある場合、それ以上の補正を行わないようにしてもよい。さらに、表示パラメータ補正機能152は、超音波画像の補正後の画素値で所定の閾値に達する画素があることをユーザに報知してもよい。
また、表示パラメータ補正機能152は、Bモード画像の表示パラメータであるゲイン、コントラスト、ダイナミックレンジ、ガンマカーブの少なくともいずれか1つを補正する。また、超音波画像がカラードプラ画像である場合、ゲイン、コントラスト、ダイナミックレンジ、ガンマカーブに加えて、RGBを補正する。さらに、超音波画像が重畳画像である場合、表示パラメータ補正機能152は、Bモード画像及びカラードプラ画像夫々の表示パラメータを補正し、Bモード画像及びカラードプラ画像夫々の表示パラメータに応じて、Bモード画像とカラードプラ画像とのカラーモノクロバランスを調整する。
表示制御機能153は、表示パラメータ補正後の超音波画像や超音波画像に関連するデータの表示を制御する。表示制御機能153は、超音波画像の映像信号をスキャンコンバートしてディスプレイ54に表示する。
(2)動作
図3は、第1の実施形態に係る超音波診断システム100の動作の一例を示すフローチャートである。Sに数字を付した符号はフローチャートの各ステップを示す。図3のフローチャートでは、超音波診断装置200において第1の照度で取得された超音波画像を、照度が異なる第2の照度の環境下に置かれた表示装置300に表示させる場合を例として説明する。
ステップS101において、超音波診断装置200の送受信回路11は、超音波信号(エコー信号)を収集する。
ステップS102において、第1の照度センサ2は、超音波診断装置200の周辺の照度を測定し、第1の照度を取得する。第1の照度は、表示パラメータ取得機能141に送信される。
ステップS103において、信号処理回路12のBモード処理機能121は、エコー信号を処理してBモードデータを生成する。また、ドプラモード処理機能122は、カラードプラデータを生成する。
ステップS104において、画像生成回路16の画像生成処理機能161は、Bモードデータ、カラードプラデータを処理してBモード画像及びカラードプラ画像を生成する。画像生成処理機能161は、Bモードデータ及びカラードプラデータの処理において、例えば、第1の照度に応じた表示パラメータを設定する。また、画像生成処理機能161は、例えば、入力インターフェース3を介してユーザが入力した表示パラメータに基づいて、Bモードデータ及びドプラデータを処理してBモード画像及びカラードプラ画像を生成する。
さらに、画像生成回路16の重畳機能162は、Bモード画像にカラードプラ画像を重畳した重畳画像を生成する。この際、重畳機能162は、重畳画像の生成においてカラーモノクロバランスを設定する。
ステップS105において、表示パラメータ取得機能151は、第1の照度と表示パラメータとを超音波画像に付帯させて外部記憶装置500に転送する。超音波画像が重畳画像の場合は、第1の照度と表示パラメータとカラーモノクロバランスとを重畳画像に付帯させて外部記憶装置500に転送する。
なお、信号処理回路12において、Bモードデータやカラードプラデータを生成する際に表示パラメータが設定される場合がある。また、エコーデータ(Raw Data)を外部記憶装置500に記憶することがある。この場合、表示パラメータ取得機能151は、Bモードデータやカラードプラデータを生成する際に設定された表示パラメータを第1の照度と共にエコーデータに付帯させてもよい。
ステップS106において、表示装置300の処理回路51は、外部記憶装置500から超音波画像を取得する。
ステップS107において、表示装置300の第2の照度センサ5は、表示装置300の周辺の照度を測定し、第2の照度を取得する。第2の照度は、表示装置300の表示パラメータ取得機能141に送信される。
ステップS108において、表示装置300の表示パラメータ取得機能151は、外部記憶装置500から取得された超音波画像に付帯された第1の照度と表示パラメータとを取得する。さらに、表示パラメータ補正機能152は、超音波画像に付帯された第1の照度と表示装置300の周辺の照度である第2の照度とに応じて超音波画像に付帯された表示パラメータを補正する。
例えば、表示パラメータ補正機能152は、第1の照度と第2の照度との差の分だけ表示パラメータを補正する。具体的には、第1の照度と第2の照度との差が(-α)の場合(第1の照度<第2の照度)、超音波画像に付帯された表示パラメータからαを差し引いた値を表示装置300に表示される超音波画像の表示パラメータとして設定する。一方、第1の照度と第2の照度との差が(+α)の場合(第1の照度>第2の照度)、超音波画像に付帯された表示パラメータにαを加算した値を表示装置300に表示される超音波画像の表示パラメータとして設定する。なお、第1の照度と第2の照度との差の分だけ表示パラメータを補正する方法は一例であり、この例に限定されるものではない。
例えば、ユーザはあらかじめ表示パラメータの補正値を調整する調整係数(>0)を設定しておいてもよい。具体的には、第1の照度と第2の照度との差や比に調整係数を乗算することで、表示パラメータをユーザの望む設定にすることができる。
図4は、超音波画像のゲインと照度との関係を説明するグラフである。図4に示すグラフの縦軸は、超音波画像のゲインであり、横軸は、照度である。
超音波画像の見え方は、照度が高くなるにしたがってゲインを上昇させることで見え方の変化を低減できる。例えば、照度が低い環境でその環境に適した表示パラメータが設定された超音波画像を、照度が高い環境で観察した場合、超音波画像の見え方は変化する。図4に示すように、超音波画像のゲインG1は、超音波診断装置200の周辺の照度である第1の照度(L1)に適した設定である。一方、ゲインG2は、表示装置300の周辺の照度である第2の照度(L2)の環境に適した設定である。ゲインG1における見え方とゲインG2における見え方とは同じである。
しかしながら、超音波診断装置200の周辺の照度である第1の照度(L1)に適したゲインG1に設定された超音波画像を、表示装置300にそのまま表示した場合、超音波画像の見え方が変わってしまう。その理由は、超音波画像に設定されたゲインG1は、表示装置300の周辺の照度である第2の照度(L2)に適したゲインG2よりも低いからである。したがって、第2の照度(L2)で超音波画像を観察する場合、超音波画像に設定されたゲインG1をゲインG2に変更して超音波画像の輝度を上げることで、超音波画像の見え方の変化を低減することができる。
なお、限界ゲインGmaxを超えると超音波画像のゲインはそれ以上高くすることができない。したがって、表示パラメータ補正機能152は、超音波画像のいずれかの画素のゲインが最大値に達した場合、それ以上ゲインを上げないようにしてもよい。また、その場合、表示パラメータ補正機能152は、それ以上ゲインを上げられない(環境光が明るすぎる)旨の警告をディスプレイ54に表示してもよい。また、ユーザが所定の閾値を設定し、表示パラメータ補正機能152は、設定された閾値を超えないよう表示パラメータを補正してもよい。
図4では、表示パラメータの1つであるゲインを例として照度との関係を説明したが、他の表示パラメータである、コントラスト、ガンマカーブ、ダイナミックレンジについてもゲインと同様に照度の高さに応じて設定値が変化する。
図3に戻ってフローチャートの説明を続ける。
ステップS109において、表示装置300は、表示される超音波画像について、カラードプラ画像が重畳された画像か否かを判定する。例えば、表示装置300は超音波画像に対してカラーモノクロバランスが付帯されている場合には超音波画像がカラードプラ画像を含むと判定してよい。また、超音波画像に対して重畳画像であること又はドプラ画像であることを示す情報が付帯されている場合には超音波画像がカラードプラ画像を含むと判定しても良い。重畳画像でない場合、すなわち、Bモード画像のみを表示する場合、ステップS109のNOの方向に分岐し、ステップS111に進む。ステップS111において、表示制御機能153は、表示パラメータが補正されたBモード画像をディスプレイ54に表示する。
一方、表示される超音波画像が重畳画像の場合、ステップS109のYESの方向に分岐し、ステップS110に進む。
ステップS110において、表示パラメータ補正機能152は、Bモード画像にカラードプラ画像を重ね合わせた重畳画像のカラーモノクロバランスを調整する。カラーモノクロバランスの調整方法については後述の図5から図7を参照して詳細に説明する。
ステップS111において、表示制御機能153は、第1の照度と第2の照度とに応じて表示パラメータが補正された超音波画像をディスプレイ54に表示する。
以上がフローチャートの説明である。なお、フローチャートの各ステップの順序は、図4の例には限定されない。例えば、ステップS109において表示される超音波画像が重畳画像か否かを判定した後に、ステップS108の処理が実行されてもよい。
次に、図5から図7を参照してカラーモノクロバランスの調整について説明する。
図5は、カラーモノクロバランス調整の必要性を説明する図である。図5(a)は、超音波診断装置200において、第1の照度に基づいて表示パラメータを調整した後の表示例を模式的に示す図である。図5(a)に示すように、重畳画像は、例えば、Bモード画像B1に血管領域を示すカラードプラ画像D1が重畳された画像である。画素P1は、Bモード画像B1とカラードプラ画像D1とが重畳された領域の画素である。
一方、図5(b)は、画素P1の画素値を示すグラフである。図5(b)に示すように、Bモード画像B1の信号値BS1よりも、カラードプラ画像D1の信号値DS1のほうが高くなるように調整されている。この場合、図5(a)に含まれる血管領域では、カラードプラ画像D1の信号がBモード画像B1の信号よりも優位に表示される。すなわち、Bモード画像B1にカラードプラ画像D1が重畳される場合、画素P1においてカラードプラ画像D1の信号がBモード画像B1の信号よりも前に表示される。
このように、図3のステップS103、ステップS104では、血管領域においてカラードプラ画像D1の信号がBモード画像B1の信号よりも優位になるように、表示パラメータの最初の設定が第1の照度に基づいて行われる。
一方、表示装置300は、超音波診断装置200の周囲とは異なる照度環境下において、超音波診断装置200で生成された重畳画像を表示する。この際、表示装置300の表示パラメータ補正機能152は、第1の照度と第2の照度とに応じてBモード画像B1とカラードプラ画像D1の表示パラメータをそれぞれ補正する(ステップS108)。例えば、第1の照度より第2の照度が高い場合、Bモード画像のゲインとカラードプラ画像のゲインはそれぞれ増加する方向に補正される。
図5(c)は、表示装置300において、第2の照度に基づいて表示パラメータを調整した後(ステップS108の処理後)の表示例を模式的に示す図である。図5(d)は、画素P1の画素値を説明するグラフである。図5(d)に示すように、Bモード画像B1の画素P1におけるゲインが表示パラメータ補正機能152により補正された結果、Bモード画像B1の信号値は、信号値BS1から信号値BS2に増加する。同様に、カラードプラ画像D1の信号値DS1もゲインが補正され信号値DS2に増加する。しかしながら、表示パラメータを補正した結果、Bモード画像B1の信号値BS2のほうがカラードプラ画像D1の信号値DS2よりも高くなる場合がある。例えば、Bモード画像とカラードプラ画像とで、それぞれ表示パラメータを補正する際の調整係数が異なる場合である。その場合、第1の照度と第2の照度とに応じた補正値はBモード画像とカラードプラ画像とでそれぞれ異なる。また、Bモード画像の表示パラメータのみ第2の照度に合わせて調整された場合、重畳画像においてBモード画像とカラードプラ画像とのカラーモノクロバランスが変わってしまう。
この結果、図5(c)に示すように、画素P1においてBモード画像B1の信号がカラードプラ画像D1の信号よりも優位に表示されることが起こり得る。このように、重畳画像では、第2の照度において表示パラメータの設定が補正されると、図5(a)に示した第1の照度における超音波画像の表示と表示態様が変わってしまう。
そこで、カラーモノクロバランス調整により、第1の照度と第2の照度とで重畳画像の表示態様が同じになるように、Bモード画像の信号とカラードプラ画像の信号との表示バランス(表示の優位性)を調整する必要がある。
図6は、カラーモノクロバランスの調整方法を説明するテーブルT1である。テーブルT1の第1列目は、表示パラメータ補正後のBモード画像に対するカラードプラ画像の信号値比を示しており、第2列目は、カラーモノクロバランスの調整値を示している。テーブルT1の第2行目において、Bモード画像に対するカラードプラ画像の信号値比はWであり、カラーモノクロバランスの調整値はXである。この場合、カラードプラ画像のゲインをX倍することでカラーモノクロバランスを調整することを示している。同様に、テーブルT1の第3行目において、Bモード画像に対するカラードプラ画像の信号値比はYであり、カラーモノクロバランスの調整値はZである。この場合、カラードプラ画像のゲインをZ倍することでカラーモノクロバランスを調整することを示している。なお、カラーモノクロバランスの調整する方法は図6のテーブルの例に限定されるものではなく、表示パラメータ補正前のBモード画像に対するカラードプラ画像の信号値比と表示パラメータ補正後のBモード画像に対するカラードプラ画像の信号値比とから、カラードプラ画像のゲインの倍率が決定されることとしても良い。
カラーモノクロバランスの調整値により、第1の照度におけるBモード画像とカラードプラ画像との信号値比と第2の照度におけるBモード画像とカラードプラ画像との信号値比とが同じになるように、第2の照度におけるカラードプラ画像のゲインが補正される。これにより、第1の照度と第2の照度とで重畳画像の見た目が同じになるように補正できる。
例えば、図5(d)において、表示パラメータ補正後のBモード画像に対するカラードプラ画像の信号値比がYであるとする。この場合、テーブルT1に基づいて、カラードプラ画像のゲインをZ倍することでカラーモノクロバランスが調整できる。以下、図7では、カラードプラ画像のゲインをZ倍することでカラーモノクロバランスを調整する場合を例として説明する。
図7は、カラーモノクロバランスの調整を説明する図である。図7(a)は、カラーモノクロバランスの調整後の表示を説明する模式図である。また、図7(b)は、カラーモノクロバランスの調整後の信号値を説明するグラフである。
図7(b)に示すように、ゲインをY倍した後のカラードプラ画像の画素P1の信号値DS3は、Bモード画像の信号値BS2よりも高い。また、カラーモノクロバランス調整後のBモード画像とカラードプラ画像との信号値比は、図5(a)に示したBモード画像とカラードプラ画像との信号値比と同じになる。これにより、第2の照度における重畳画像を示す図7(a)と、第1の照度における重畳画像を示す図5(b)とは同じ表示になる。
このように、カラーモノクロバランスが維持されたまま、第1の照度と第2の照度とに応じてBモード画像及びカラードプラ画像の表示パラメータがそれぞれ補正される。これにより、第1の実施形態にかかる超音波診断システム100は、第1の照度と第2の照度とが異なる場合でも、超音波診断装置200で取得された超音波画像と同じ見た目の超音波画像を表示装置300に表示することができる。
なお、図7では、Bモード画像とカラードプラ画像との信号値比に応じてカラードブラ画像のゲインを変更する方法を説明したが、カラーモノクロバランスの調整方法は図7の例には限定されない。例えば、図7(b)に示すように、カラードプラ画像の画素P1の信号値DS3が、Bモード画像の信号値BS2よりも高い場合、Bモード画像の信号値BS2をカラードプラ画像の信号値DS3よりも低くすることで、カラーモノクロバランスが調整されてもよい。
なお、図5から図7では、表示パラメータのうちゲインを例として説明したが、他の表示パラメータについても同様である。また、カラードプラ画像の場合、Bモード画像よりも表示パラメータ補正機能152による補正対象となる表示パラメータが多くなる。例えば、カラードプラ画像は、表示パラメータとしてRGBを有する。表示パラメータ補正機能152は、第1の照度と第2照度とに応じてRGBを補正して、超音波画像のカラーバランスを調整してもよい。
また、図5から図7では、カラードプラ画像がBモード画像に非透過で重畳される場合を例として説明したが、カラードプラ画像がBモード画像に透過して重畳される場合も同じである。カラードプラ画像がBモード画像に重畳される場合、カラードプラ画像は、画素ごとにRGBとは別に透過度の数値を有し、この透過度を画像合成時に利用して、透過、非透過の画像を生成する。透過、非透過の画像生成方法については、従来の方法と同じでよいので説明を省略する。
第1の実施形態に係る超音波診断システム100によれば、超音波画像が生成される超音波診断装置200とは照度が異なる環境にある表示装置300でも、超音波診断装置200で取得されたときと同じ見え方の超音波画像を表示することができる。これにより、例えば、超音波診断装置200で観察や診断を行ったときと同じ見え方の超音波画像を観察しながらカルテを作成することができる。超音波画像が表示される装置の環境が異なっていても見え方が同じであるため、ユーザは、取得時に観察したことや診断したことを超音波診断装置200とは異なる表示装置300で観察した時でも容易に思い出すことができる。
また、超音波診断装置200と表示装置300はそれぞれの環境の照度を測定する照度センサを有し、照度の違いに応じた超音波画像の見え方の変化が自動的に低減されるため、ユーザは、手動でパラメータを設定する手間が省ける。
[第2の実施形態]
第1の実施形態は、超音波診断装置200で取得された超音波画像を異なる照度環境にある表示装置300に表示する場合を説明した。第2の実施形態では、照度が異なる環境を移動可能な超音波診断装置400に関する。
図8は、第2の実施形態に係る超音波診断装置400の一例を示す概念的な構成図である。なお、第1の実施形態を説明した図2と同一の構成については同一の符号を付し、説明を省略する。
超音波診断装置400は、図示しない移動手段を有し、照度の異なる複数の環境間を移動する。移動手段は、例えば、キャスタや台車などである。また、超音波診断装置400は、ユーザが容易に持ち運び可能な軽量の超音波診断装置であってもよい。
また、超音波診断装置400の本体装置10がタブレット型やスマートフォン型である場合、本体装置10はディスプレイ4および入力インターフェース3と一体となって照度の異なる複数の環境を移動する。
図8に示すように、超音波診断装置400は、照度センサ6を有する。照度センサ6は、超音波診断装置400が使用される複数の環境において、超音波診断装置400の周辺の照度を夫々測定する。照度センサ6は、汎用の照度センサであってもよく、有線または無線で本体装置10に測定した照度を送信してもよい。
超音波診断装置400の本体装置10の処理回路14は、第1の実施形態で説明した表示パラメータ取得機能141に加えて、表示パラメータ補正機能142を実現する。表示パラメータ補正機能142は、処理回路14のプロセッサが記憶回路13に保存されたプログラムを実行することによって実現される。
表示パラメータ補正機能142は、照度センサ6で検出されたそれぞれ異なる環境における第1の照度と第2の照度とに基づいて、超音波画像の表示パラメータを補正する。また、表示パラメータ補正機能142は、超音波診断装置400の本体装置10が有する照度を取得してもよい。例えば、本体装置10の記憶回路13に照度が記憶されていており、表示パラメータ補正機能142は、記憶回路13からそれぞれの環境における照度を取得してもよい。なお、表示パラメータ補正機能142における超音波画像の補正方法は第1の実施形態と同じであるため、説明を省略する。
第2の実施形態は、第1の実施形態と同等の効果を有する。第2の実施形態では、超音波診断装置400が存在する環境の照度の変化を検出し、前の照度と現在の照度とに基づいて前の照度で設定された表示パラメータを自動的に補正する。これにより、超音波診断装置400が照度の異なる環境間を移動すると、超音波画像の表示パラメータが自動的に補正される。
なお、第2の実施形態では、照度の異なる環境をもつ場所間を超音波診断装置400が移動する場合を説明したが、超音波診断装置400が設置された環境の照度が変わってもよい。例えば、被検体の検査は照度の低い環境で行い、超音波画像が取得される。同じ部屋で照度を変えて(例えば、明るくして)、取得された超音波画像に基づいてカルテへの記入や被検体への説明を行う場合がある。このように第2の実施形態にかかる超音波診断装置400では、部屋の明るさが超音波画像の取得時と表示時とで変わっても、超音波画像の見え方が変化せず、同じ見え方で超音波画像を表示できる。
以上説明した少なくともひとつの実施形態によれば、超音波画像が表示される装置の周囲の環境が変わっても超音波画像の見え方の変化を低減することができる。
上記実施形態における表示パラメータ補正機能は、特許請求の範囲における補正部の一例である。
上記説明において用いた「プロセッサ」という文言は、例えば、CPU(central processing unit)、GPU (Graphics Processing Unit)、或いは、特定用途向け集積回路(Application Specific Integrated Circuit:ASIC))、プログラマブル論理デバイス(例えば、単純プログラマブル論理デバイス(Simple Programmable Logic Device:SPLD)、複合プログラマブル論理デバイス(Complex Programmable Logic Device:CPLD)、及びフィールドプログラマブルゲートアレイ(Field Programmable Gate Array:FPGA))等の回路を意味する。プロセッサが例えばCPUである場合、プロセッサは記憶回路に保存されたプログラムを読み出し実行することで機能を実現する。一方、プロセッサがASICである場合、記憶回路にプログラムを保存する代わりに、当該機能がプロセッサの回路内に論理回路として直接組み込まれる。
なお、実施形態の各プロセッサは、プロセッサごとに単一の回路として構成される場合に限らず、複数の独立した回路を組合せによって1つのプロセッサを構成し、その機能を実現するようにしてもよい。さらに、複数の構成要素を1つのプロセッサへ統合してその機能を実現するようにしてもよい。
いくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更、実施形態同士の組合せを行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。
2 第1の照度センサ
5 第2の照度センサ
6 照度センサ
10 本体装置
100 超音波診断システム
141、151 表示パラメータ取得機能
142、152 表示パラメータ補正機能
200、400 超音波診断装置
300 表示装置

Claims (13)

  1. 互いに直接または外部の記憶装置を介してデータ送受信可能に接続された超音波診断装置と表示装置とを備える超音波診断システムであって、
    前記超音波診断装置に設けられ、前記超音波診断装置が有するディスプレイの周辺の照度を測定する第1の照度センサと、
    前記表示装置に設けられ、前記表示装置が有するディスプレイの周辺の照度を測定する第2の照度センサと、
    前記表示装置に設けられ、前記第1の照度センサで検出されて前記超音波診断装置から直接取得した又は前記超音波診断装置から外部の記憶装置を介して取得した第1の照度と、前記第2の照度センサで検出され前記第2の照度センサから取得した第2の照度とに基づいて、前記表示装置が有するディスプレイに表示させる超音波画像の表示パラメータを補正する補正部と、
    を有する超音波診断システム。
  2. 前記補正部は、前記第1の照度と前記第2の照度との差に基づいて、前記表示パラメータを補正する、
    請求項1に記載の超音波診断システム。
  3. 前記補正部は、前記第1の照度と前記第2の照度との比に基づいて、前記表示パラメータを補正する、
    請求項1に記載の超音波診断システム。
  4. 前記補正部は、前記超音波画像のゲイン、コントラスト、ダイナミックレンジ及びガンマカーブの少なくともいずれか1つの表示パラメータを補正する、
    請求項1乃至3のいずれか1項に記載の超音波診断システム。
  5. 前記超音波画像は、Bモード画像とカラードプラ画像とを有し、前記補正部は、前記第1の照度と前記第2の照度とに応じて前記Bモード画像及び前記カラードプラ画像夫々の表示パラメータを補正する、
    請求項1乃至4のいずれか1項に記載の超音波診断システム。
  6. 前記補正部は、前記Bモード画像と前記カラードプラ画像とを重畳して表示する場合、前記Bモード画像及び前記カラードプラ画像夫々の表示パラメータに応じて、前記Bモード画像と前記カラードプラ画像とのカラーモノクロバランスを調整する、
    請求項5に記載の超音波診断システム。
  7. 前記補正部は、前記カラーモノクロバランスの調整として、前記第1の照度における前記Bモード画像と前記カラードプラ画像との信号値比と、前記第2の照度における前記Bモード画像と前記カラードプラ画像との信号値比とが同じになるように、前記第2の照度における前記カラードプラ画像のゲインを補正する、
    請求項6に記載の超音波診断システム。
  8. 前記補正部は、前記カラーモノクロバランスの調整として、補正前のカラードプラ画像の信号値が補正前のBモード画像の信号値よりも高い場合、補正後のカラードプラ画像の信号値が前記補正後のBモード画像の信号値よりも高くなるように前記カラードプラ画像の信号値を補正する、
    請求項6に記載の超音波診断システム。
  9. 前記補正部は、前記超音波画像の補正後の画素値で所定の閾値に達する画素がある場合、それ以上の補正を行わない、
    請求項1乃至8のいずれか1項に記載の超音波診断システム。
  10. 前記補正部は、前記超音波画像の補正後の画素値で所定の閾値に達する画素がある場合、その旨を報知する、
    請求項1乃至8のいずれか1項に記載の超音波診断システム。
  11. 互いに直接または外部の記憶装置を介してデータ送受信可能に接続された超音波診断装置と表示装置とを備える超音波診断システムであって、
    前記超音波診断装置に設けられ、前記超音波診断装置の周辺の照度を測定する第1の照度センサと、
    前記表示装置に設けられ、前記表示装置の周辺の照度を測定する第2の照度センサと、
    前記表示装置に設けられ、前記第1の照度センサで検出されて前記超音波診断装置から直接取得した又は前記超音波診断装置から外部の記憶装置を介して取得した第1の照度と、前記第2の照度センサで検出され前記第2の照度センサから取得した第2の照度とに基づいて、前記表示装置に表示させる超音波画像の表示パラメータを補正する補正部と、
    を有し、
    前記超音波画像は、Bモード画像とカラードプラ画像とを有し、前記補正部は、前記第1の照度と前記第2の照度とに応じて前記Bモード画像及び前記カラードプラ画像夫々の表示パラメータを補正し、
    前記補正部は、前記Bモード画像と前記カラードプラ画像とを重畳して表示する場合、前記Bモード画像及び前記カラードプラ画像夫々の表示パラメータに応じて、前記Bモード画像と前記カラードプラ画像とのカラーモノクロバランスを調整する、
    超音波診断システム。
  12. 前記補正部は、前記カラーモノクロバランスの調整として、前記第1の照度における前記Bモード画像と前記カラードプラ画像との信号値比と、前記第2の照度における前記Bモード画像と前記カラードプラ画像との信号値比とが同じになるように、前記第2の照度における前記カラードプラ画像のゲインを補正する、
    請求項11に記載の超音波診断システム。
  13. 前記補正部は、前記カラーモノクロバランスの調整として、補正前のカラードプラ画像の信号値が補正前のBモード画像の信号値よりも高い場合、補正後のカラードプラ画像の信号値が前記補正後のBモード画像の信号値よりも高くなるように前記カラードプラ画像の信号値を補正する、
    請求項11に記載の超音波診断システム。
JP2020004831A 2020-01-16 2020-01-16 超音波診断システム及び超音波診断装置 Active JP7441050B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020004831A JP7441050B2 (ja) 2020-01-16 2020-01-16 超音波診断システム及び超音波診断装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020004831A JP7441050B2 (ja) 2020-01-16 2020-01-16 超音波診断システム及び超音波診断装置

Publications (2)

Publication Number Publication Date
JP2021109060A JP2021109060A (ja) 2021-08-02
JP7441050B2 true JP7441050B2 (ja) 2024-02-29

Family

ID=77058541

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020004831A Active JP7441050B2 (ja) 2020-01-16 2020-01-16 超音波診断システム及び超音波診断装置

Country Status (1)

Country Link
JP (1) JP7441050B2 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006020777A (ja) 2004-07-07 2006-01-26 Aloka Co Ltd 超音波診断装置
JP2008272473A (ja) 2007-04-30 2008-11-13 General Electric Co <Ge> 診断用撮像ディスプレイの自動調整のための方法及びシステム
JP2009542398A (ja) 2006-07-10 2009-12-03 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 様々な周辺光において、超音波画像をdicom準拠して表示するシステム及び方法
US20150265242A1 (en) 2007-11-15 2015-09-24 General Electric Company Portable imaging system having a seamless form factor
JP2016179142A (ja) 2015-03-25 2016-10-13 株式会社日立製作所 超音波診断システム

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3816600B2 (ja) * 1996-10-31 2006-08-30 富士写真フイルム株式会社 診断用画像情報の保管方法および装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006020777A (ja) 2004-07-07 2006-01-26 Aloka Co Ltd 超音波診断装置
JP2009542398A (ja) 2006-07-10 2009-12-03 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 様々な周辺光において、超音波画像をdicom準拠して表示するシステム及び方法
JP2008272473A (ja) 2007-04-30 2008-11-13 General Electric Co <Ge> 診断用撮像ディスプレイの自動調整のための方法及びシステム
US20150265242A1 (en) 2007-11-15 2015-09-24 General Electric Company Portable imaging system having a seamless form factor
JP2016179142A (ja) 2015-03-25 2016-10-13 株式会社日立製作所 超音波診断システム

Also Published As

Publication number Publication date
JP2021109060A (ja) 2021-08-02

Similar Documents

Publication Publication Date Title
KR20070092407A (ko) 영상 처리 시스템 및 방법
US20150289839A1 (en) Ultrasound imaging apparatus and ultrasound image display method
US9398899B2 (en) Ultrasonic diagnostic apparatus and medical image processing apparatus
US20190175142A1 (en) Ultrasonic diagnostic apparatus, medical image processing apparatus, and method for calculating plaque score
US11272906B2 (en) Ultrasonic imaging device and method for controlling same
KR20150066814A (ko) 초음파 영상에 대한 설정치 조정 방법 및 장치
JP6364942B2 (ja) 超音波画像処理方法及びそれを用いた超音波診断装置
WO2017135500A1 (ko) 대상체의 속도를 출력하는 방법 및 이를 위한 초음파 진단 장치
JP7441050B2 (ja) 超音波診断システム及び超音波診断装置
US11896435B2 (en) Ultrasound diagnostic apparatus and examination method
US10188367B2 (en) Ultrasound diagnostic device, ultrasound image processing method, and non-transitory computer-readable recording medium
KR102374945B1 (ko) 영상 처리 방법 및 영상 처리 시스템
US20210085281A1 (en) Ultrasonic diagnostic apparatus and image processing apparatus
JP6488771B2 (ja) 超音波診断装置
KR20040069378A (ko) 송신집속점 선택 기능을 구비한 초음파 영상 획득 장치 및방법
US20240148365A1 (en) Ultrasound reception apparatus and ultrasound reception method
KR20190136819A (ko) 초음파 영상 장치
WO2017142134A1 (ko) 빔포밍을 수행하는 방법 및 빔포머
JP7297485B2 (ja) 超音波診断装置、医用画像処理装置および医用画像処理プログラム
US20200268350A1 (en) Ultrasonic diagnostic apparatus
JP4665771B2 (ja) 超音波診断装置
JP6724414B2 (ja) 超音波診断装置、超音波診断装置の制御方法及びプログラム
WO2011001867A1 (ja) 超音波診断装置及び音速補正処理方法
KR20190116744A (ko) 휴대용 초음파 진단 장치 및 그와 연동하는 휴대 단말의 파라미터 설정 방법
JP6645778B2 (ja) 超音波プローブ及び超音波診断装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221207

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230626

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230704

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230901

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240123

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240216

R150 Certificate of patent or registration of utility model

Ref document number: 7441050

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150