JP7433577B2 - Vehicle vibration damping control device - Google Patents

Vehicle vibration damping control device Download PDF

Info

Publication number
JP7433577B2
JP7433577B2 JP2020058939A JP2020058939A JP7433577B2 JP 7433577 B2 JP7433577 B2 JP 7433577B2 JP 2020058939 A JP2020058939 A JP 2020058939A JP 2020058939 A JP2020058939 A JP 2020058939A JP 7433577 B2 JP7433577 B2 JP 7433577B2
Authority
JP
Japan
Prior art keywords
damping control
vibration damping
vehicle
clutch
internal combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020058939A
Other languages
Japanese (ja)
Other versions
JP2021154944A (en
Inventor
良太 宮分
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzuki Motor Corp
Original Assignee
Suzuki Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzuki Motor Corp filed Critical Suzuki Motor Corp
Priority to JP2020058939A priority Critical patent/JP7433577B2/en
Priority to DE102021107081.3A priority patent/DE102021107081A1/en
Publication of JP2021154944A publication Critical patent/JP2021154944A/en
Application granted granted Critical
Publication of JP7433577B2 publication Critical patent/JP7433577B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D48/00External control of clutches
    • F16D48/06Control by electric or electronic means, e.g. of fluid pressure
    • F16D48/08Regulating clutch take-up on starting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/38Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the driveline clutches
    • B60K6/387Actuated clutches, i.e. clutches engaged or disengaged by electric, hydraulic or mechanical actuating means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/02Conjoint control of vehicle sub-units of different type or different function including control of driveline clutches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/15Control strategies specially adapted for achieving a particular effect
    • B60W20/17Control strategies specially adapted for achieving a particular effect for noise reduction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/40Controlling the engagement or disengagement of prime movers, e.g. for transition between prime movers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/192Mitigating problems related to power-up or power-down of the driveline, e.g. start-up of a cold engine
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/20Reducing vibrations in the driveline
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2270/00Problem solutions or means not otherwise provided for
    • B60L2270/10Emission reduction
    • B60L2270/14Emission reduction of noise
    • B60L2270/145Structure borne vibrations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W2050/0001Details of the control system
    • B60W2050/0043Signal treatments, identification of variables or parameters, parameter estimation or state estimation
    • B60W2050/0052Filtering, filters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W2050/0001Details of the control system
    • B60W2050/0043Signal treatments, identification of variables or parameters, parameter estimation or state estimation
    • B60W2050/0052Filtering, filters
    • B60W2050/0054Cut-off filters, retarders, delaying means, dead zones, threshold values or cut-off frequency
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/02Clutches
    • B60W2510/0208Clutch engagement state, e.g. engaged or disengaged
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/06Combustion engines, Gas turbines
    • B60W2510/0638Engine speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/10Change speed gearings
    • B60W2510/1005Transmission ratio engaged
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/08Electric propulsion units
    • B60W2710/083Torque
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/10System to be controlled
    • F16D2500/104Clutch
    • F16D2500/10406Clutch position
    • F16D2500/10412Transmission line of a vehicle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/10System to be controlled
    • F16D2500/106Engine
    • F16D2500/1066Hybrid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/30Signal inputs
    • F16D2500/304Signal inputs from the clutch
    • F16D2500/30401On-off signal indicating the engage or disengaged position of the clutch
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/30Signal inputs
    • F16D2500/306Signal inputs from the engine
    • F16D2500/3061Engine inlet air flow rate
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/30Signal inputs
    • F16D2500/306Signal inputs from the engine
    • F16D2500/3067Speed of the engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/30Signal inputs
    • F16D2500/306Signal inputs from the engine
    • F16D2500/3069Engine ignition switch
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/30Signal inputs
    • F16D2500/308Signal inputs from the transmission
    • F16D2500/30806Engaged transmission ratio
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/30Signal inputs
    • F16D2500/31Signal inputs from the vehicle
    • F16D2500/3108Vehicle speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/30Signal inputs
    • F16D2500/31Signal inputs from the vehicle
    • F16D2500/3108Vehicle speed
    • F16D2500/3109Vehicle acceleration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/30Signal inputs
    • F16D2500/316Other signal inputs not covered by the groups above
    • F16D2500/3163Using the natural frequency of a component as input for the control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/50Problem to be solved by the control system
    • F16D2500/502Relating the clutch
    • F16D2500/50236Adaptations of the clutch characteristics, e.g. curve clutch capacity torque - clutch actuator displacement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/50Problem to be solved by the control system
    • F16D2500/502Relating the clutch
    • F16D2500/50293Reduction of vibrations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/50Problem to be solved by the control system
    • F16D2500/512Relating to the driver
    • F16D2500/5122Improve passengers comfort
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/70Details about the implementation of the control system
    • F16D2500/704Output parameters from the control unit; Target parameters to be controlled
    • F16D2500/70464Transmission parameters
    • F16D2500/70476Output shaft
    • F16D2500/7048Output shaft torque
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/70Details about the implementation of the control system
    • F16D2500/706Strategy of control
    • F16D2500/70668Signal filtering
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/70Details about the implementation of the control system
    • F16D2500/71Actions
    • F16D2500/7107Others
    • F16D2500/7108Engine torque calculation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Automation & Control Theory (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Power Engineering (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Hydraulic Clutches, Magnetic Clutches, Fluid Clutches, And Fluid Joints (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)

Description

本発明は、車両用制振制御装置に関する。 The present invention relates to a vibration damping control device for a vehicle.

特許文献1には、係合装置の係合状態に応じて内燃機関に選択的に駆動連結されるとともに、動力伝達機構を介して車輪に駆動連結される回転電機の制御を行うための制御装置であって、係合装置の係合状態が直結係合状態である場合には、直結用制振制御器により制振制御を実行し、係合装置の係合状態が非直結係合状態である場合には、非直結用制振制御器により制振制御を実行して、動力伝達系の捩れ振動を抑制する制御装置が開示されている。 Patent Document 1 discloses a control device for controlling a rotating electric machine that is selectively drive-coupled to an internal combustion engine depending on the engagement state of an engagement device and that is drive-coupled to wheels via a power transmission mechanism. If the engagement state of the engagement device is a direct coupling engagement state, vibration damping control is executed by the direct coupling vibration damping controller, and the engagement state of the engagement device is a non-direct coupling engagement state. In some cases, a control device has been disclosed that executes vibration damping control using a non-directly coupled vibration damping controller to suppress torsional vibration of a power transmission system.

特開2012-76537号公報Japanese Patent Application Publication No. 2012-76537

しかしながら、特許文献1に記載の制御装置にあっては、係合装置の係合状態が非直結係合状態から直結係合状態になるまでの間も非直結用制振制御器により制振制御が実行される。この直結係合状態になるまでの間は、内燃機関と回転電機とが係合装置を介して徐々に接続される状態である。 However, in the control device described in Patent Document 1, vibration damping is controlled by the vibration damping controller for non-direct coupling even during the period when the engagement state of the engagement device changes from the non-direct coupling engagement state to the direct coupling engagement state. is executed. Until this direct engagement state is reached, the internal combustion engine and the rotating electric machine are gradually connected via the engagement device.

このため、上述のように、係合装置の係合状態が非直結係合状態から直結係合状態になるまでの間も制振制御を行うと、動力伝達経路の共振周波数も変化し、制振制御が複雑となってしまう。 Therefore, as mentioned above, if damping control is performed until the engagement state of the engagement device changes from the non-directly coupled state to the directly coupled state, the resonance frequency of the power transmission path will also change, causing the damping to be suppressed. Swing control becomes complicated.

本発明は、上述のような事情に鑑みてなされたもので、制御を複雑化させることなく簡易かつ正確に制振制御を実行することができる車両用制振制御装置を提供することを目的とする。 The present invention has been made in view of the above-mentioned circumstances, and an object of the present invention is to provide a vibration damping control device for a vehicle that can easily and accurately execute vibration damping control without complicating the control. do.

本発明は、上記目的を達成するため、内燃機関及び電動機の少なくとも一方から出力された動力を駆動輪に伝達することにより走行する車両の車両用制振制御装置であって、前記内燃機関と前記駆動輪との間の動力伝達経路に設けられたクラッチと、前記電動機に対してトルク指令値を出力するトルク指令部と、前記車両の走行モードとして、前記クラッチを解放して前記電動機の動力により走行する第1の走行モードと、前記クラッチを係合して少なくとも前記内燃機関の動力により走行する第2の走行モードとを有し、前記クラッチの解放又は係合を制御する制御部と、前記車両の走行モードが前記第1の走行モードである場合に、前記電動機のトルク指令値を補正することにより前記動力伝達経路における振動を抑制する制振制御を実行する制振制御部と、を備え、前記第1の走行モードから前記第2の走行モードに切り替える条件が成立すると、前記内燃機関が完爆後であって前記クラッチの係合開始前に、前記制振制御が中止される。 In order to achieve the above object, the present invention provides a vehicle vibration damping control device for a vehicle that runs by transmitting power output from at least one of an internal combustion engine and an electric motor to drive wheels, which a clutch provided in a power transmission path between the drive wheels; a torque command section that outputs a torque command value to the electric motor; a control unit that controls disengagement or engagement of the clutch; a vibration damping control section that executes vibration damping control that suppresses vibrations in the power transmission path by correcting a torque command value of the electric motor when the vehicle is in the first driving mode. Furthermore, when the conditions for switching from the first driving mode to the second driving mode are satisfied, the vibration damping control is stopped after the internal combustion engine has completely exploded and before the clutch starts engaging.

本発明によれば、制御を複雑化させることなく簡易かつ正確に制振制御を実行することができる車両用制振制御装置を提供することができる。 According to the present invention, it is possible to provide a vibration damping control device for a vehicle that can easily and accurately perform damping control without complicating control.

図1は、本発明の一実施例に係る車両用制振制御装置を搭載した車両の概略構成図である。FIG. 1 is a schematic configuration diagram of a vehicle equipped with a vehicle vibration damping control device according to an embodiment of the present invention. 図2は、本発明の一実施例に係る車両用制振制御装置によって実行される制振制御の概要を説明する図である。FIG. 2 is a diagram illustrating an overview of vibration damping control executed by a vehicle vibration damping control device according to an embodiment of the present invention. 図3は、本発明の一実施例に係る車両用制振制御装置を搭載した車両の内燃機関の状態に応じた捩り共振周波数と振動レベルの関係を示すグラフである。FIG. 3 is a graph showing the relationship between torsional resonance frequency and vibration level depending on the state of the internal combustion engine of a vehicle equipped with a vehicle vibration damping control device according to an embodiment of the present invention. 図4は、本発明の一実施例に係る車両用制振制御装置によって実行される制振制御実行判定処理の流れを示すフローチャートである。FIG. 4 is a flowchart showing the flow of damping control execution determination processing executed by the vehicle damping control device according to an embodiment of the present invention. 図5は、本発明の一実施例に係る車両用制振制御装置によって実行される制振制御の処理の流れを示すフローチャートである。FIG. 5 is a flowchart showing the flow of vibration damping control processing executed by the vehicle vibration damping control device according to an embodiment of the present invention. 図6は、本発明の一実施例に係る車両用制振制御装置における制振制御の実行状態切替時の一例を示すタイミングチャートである。FIG. 6 is a timing chart showing an example of switching the execution state of damping control in the vehicle damping control device according to the embodiment of the present invention.

本発明の一実施の形態に係る車両用制振制御装置は、内燃機関及び電動機の少なくとも一方から出力された動力を駆動輪に伝達することにより走行する車両の車両用制振制御装置であって、内燃機関と駆動輪との間の動力伝達経路に設けられたクラッチと、電動機に対してトルク指令値を出力するトルク指令部と、車両の走行モードとして、クラッチを解放して電動機の動力により走行する第1の走行モードと、クラッチを係合して少なくとも内燃機関の動力により走行する第2の走行モードとを有し、クラッチの解放又は係合を制御する制御部と、車両の走行モードが第1の走行モードである場合に、電動機のトルク指令値を補正することにより動力伝達経路における振動を抑制する制振制御を実行する制振制御部と、を備えることを特徴とする。これにより、本発明の一実施の形態に係る車両用制振制御装置は、制御を複雑化させることなく簡易かつ正確に制振制御を実行することができる。 A vehicle vibration damping control device according to an embodiment of the present invention is a vehicle vibration damping control device for a vehicle that travels by transmitting power output from at least one of an internal combustion engine and an electric motor to drive wheels. , a clutch installed in the power transmission path between the internal combustion engine and the drive wheels, a torque command unit that outputs a torque command value to the electric motor, and a vehicle driving mode in which the clutch is released and the electric motor uses power. A control unit that controls disengagement or engagement of the clutch, and a control unit that controls disengagement or engagement of the clutch; The present invention is characterized by comprising a vibration damping control unit that executes vibration damping control that suppresses vibrations in the power transmission path by correcting the torque command value of the electric motor when the vehicle is in the first driving mode. Thereby, the vibration damping control device for a vehicle according to an embodiment of the present invention can easily and accurately execute vibration damping control without complicating control.

以下、本発明の一実施例に係る車両用制振制御装置について図面を参照して説明する。 DESCRIPTION OF THE PREFERRED EMBODIMENTS A vibration damping control device for a vehicle according to an embodiment of the present invention will be described below with reference to the drawings.

図1に示すように、本実施例に係る車両用制振制御装置を搭載した車両100は、内燃機関1と、電動機としての駆動モータ2と、変速機3と、駆動輪4と、ハイブリッドコントローラ5とを含んで構成されている。 As shown in FIG. 1, a vehicle 100 equipped with a vehicle vibration damping control device according to the present embodiment includes an internal combustion engine 1, a drive motor 2 as an electric motor, a transmission 3, drive wheels 4, and a hybrid controller. 5.

車両100は、内燃機関1及び駆動モータ2の少なくとも一方から出力された動力を、変速機3を介して駆動輪4に伝達することにより走行する、いわゆるハイブリッド車である。 Vehicle 100 is a so-called hybrid vehicle that travels by transmitting power output from at least one of internal combustion engine 1 and drive motor 2 to drive wheels 4 via transmission 3 .

内燃機関1は、吸気行程、圧縮行程、膨張行程及び排気行程からなる一連の4行程を行うとともに、圧縮行程及び膨張行程の間に図示しない点火装置によって点火を行う4サイクルのガソリンエンジンによって構成されている。内燃機関1は、ガソリンエンジンに限らず、ディーゼルエンジンで構成されてもよい。 The internal combustion engine 1 is a four-cycle gasoline engine that performs a series of four strokes consisting of an intake stroke, a compression stroke, an expansion stroke, and an exhaust stroke, and ignites with an ignition device (not shown) between the compression stroke and the expansion stroke. ing. The internal combustion engine 1 is not limited to a gasoline engine, but may be a diesel engine.

駆動モータ2は、高電圧バッテリ21から供給される電力によって機械力である駆動力を生成するとともに、変速機3側から入力される機械力によって駆動されることにより電力を生成、すなわち発電を行う。駆動モータ2で発電された電力は、高電圧バッテリ21に蓄えられる。駆動モータ2には、駆動モータ2のモータ回転数Nmを検出する回転数センサ20が設けられている。回転数センサ20は、検出したモータ回転数Nmを示す信号をインバータ22の制振制御部40に出力する。 The drive motor 2 generates mechanical driving force using electric power supplied from the high-voltage battery 21, and also generates electric power by being driven by mechanical force input from the transmission 3 side. . Electric power generated by the drive motor 2 is stored in a high voltage battery 21. The drive motor 2 is provided with a rotation speed sensor 20 that detects the motor rotation speed Nm of the drive motor 2. The rotation speed sensor 20 outputs a signal indicating the detected motor rotation speed Nm to the vibration damping control section 40 of the inverter 22.

また、駆動モータ2には、インバータ22が接続されている。インバータ22は、高電圧バッテリ21と駆動モータ2との間における電力の授受を制御する。インバータ22は、ハイブリッドコントローラ5から入力されるトルク指令値に基づき、高電圧バッテリ21から駆動モータ2に供給する駆動電力を制御する。 Furthermore, an inverter 22 is connected to the drive motor 2. The inverter 22 controls the transfer of electric power between the high voltage battery 21 and the drive motor 2 . The inverter 22 controls the drive power supplied from the high voltage battery 21 to the drive motor 2 based on the torque command value input from the hybrid controller 5 .

また、インバータ22は、車両100の振動又は騒音を抑制するためにハイブリッドコントローラ5から入力された、駆動モータ2に対するトルク指令値を補正する制振制御を実行する制振制御部40を有する。 The inverter 22 also includes a vibration damping control unit 40 that performs vibration damping control that corrects the torque command value for the drive motor 2 that is input from the hybrid controller 5 in order to suppress vibrations or noise of the vehicle 100.

制振制御部40は、CPU(Central Processing Unit)と、RAM(Random Access Memory)と、ROM(Read Only Memory)と、フラッシュメモリと、入力ポートと、出力ポートとを備えたコンピュータユニットによって構成されている。 The vibration damping control unit 40 is configured by a computer unit including a CPU (Central Processing Unit), a RAM (Random Access Memory), a ROM (Read Only Memory), a flash memory, an input port, and an output port. ing.

制振制御部40のROMには、各種制御定数や各種マップ等とともに、当該コンピュータユニットを制振制御部40として機能させるためのプログラムが記憶されている。すなわち、制振制御部40において、CPUがROMに記憶されたプログラムを実行することにより、当該コンピュータユニットは、制振制御部40として機能する。制振制御部40は、ハイブリッドコントローラ5に接続され、相互にデータのやりとりを行う。 The ROM of the vibration damping control section 40 stores various control constants, various maps, etc., as well as a program for causing the computer unit to function as the vibration damping control section 40 . That is, in the vibration damping control section 40, when the CPU executes a program stored in the ROM, the computer unit functions as the vibration damping control section 40. The vibration damping control unit 40 is connected to the hybrid controller 5 and exchanges data with each other.

変速機3は、減速機31と、変速機構32と、クラッチ33と、動力伝達機構34とを含んで構成されている。減速機31は、動力伝達機構34に常時接続されており、駆動モータ2から出力される駆動力を駆動輪4に伝達する。減速機31は、車両100の減速時等には、駆動輪4の回転を駆動モータ2に伝達可能となっている。 The transmission 3 includes a reduction gear 31, a transmission mechanism 32, a clutch 33, and a power transmission mechanism 34. The reducer 31 is always connected to the power transmission mechanism 34 and transmits the driving force output from the drive motor 2 to the drive wheels 4. The speed reducer 31 is capable of transmitting the rotation of the drive wheels 4 to the drive motor 2 when the vehicle 100 is decelerated.

変速機構32は、クラッチ33を介して内燃機関1と接続されており、クラッチ係合時には、内燃機関1から出力された回転を所定の変速比で変速した後、動力伝達機構34を介して駆動輪4に出力する。 The transmission mechanism 32 is connected to the internal combustion engine 1 via a clutch 33, and when the clutch is engaged, the rotation output from the internal combustion engine 1 is shifted at a predetermined gear ratio and then driven via the power transmission mechanism 34. Output to wheel 4.

クラッチ33は、内燃機関1と駆動輪4との間の動力伝達経路、より詳しくは内燃機関1と変速機構32との間の動力伝達経路に設けられている。クラッチ33は、図示しないクラッチアクチュエータにより、係合と解放とを切り替えるクラッチ操作を自動で行うよう構成されている。クラッチアクチュエータは、ハイブリッドコントローラ5によってその駆動状態が制御される。 The clutch 33 is provided in a power transmission path between the internal combustion engine 1 and the drive wheels 4, more specifically, in a power transmission path between the internal combustion engine 1 and the transmission mechanism 32. The clutch 33 is configured to automatically perform clutch operation for switching between engagement and release by a clutch actuator (not shown). The driving state of the clutch actuator is controlled by the hybrid controller 5.

クラッチ33は、係合された場合には、内燃機関1の駆動力を変速機構32に伝達する。クラッチ33は、解放された場合には、内燃機関1と変速機構32との間における動力の伝達を遮断する。 The clutch 33 transmits the driving force of the internal combustion engine 1 to the transmission mechanism 32 when engaged. When the clutch 33 is released, the clutch 33 interrupts the transmission of power between the internal combustion engine 1 and the transmission mechanism 32.

内燃機関1と駆動輪4との間の動力伝達経路上であって、クラッチ33よりも内燃機関1側には、内燃機関1を始動する始動装置11が設けられている。本実施例では、始動装置11は、内燃機関1にベルトやチェーンなどの動力伝達部材を介して連結されている。始動装置11としては、例えばスタータやISG(Integrated Starter Generator)を用いることができる。 A starter device 11 for starting the internal combustion engine 1 is provided on the power transmission path between the internal combustion engine 1 and the driving wheels 4 and closer to the internal combustion engine 1 than the clutch 33 . In this embodiment, the starter 11 is connected to the internal combustion engine 1 via a power transmission member such as a belt or chain. As the starting device 11, for example, a starter or an ISG (Integrated Starter Generator) can be used.

動力伝達機構34は、例えば遊星歯車機構等によって構成され、駆動モータ2から出力された駆動力と、内燃機関1から出力された駆動力とを合成して、駆動輪4に出力するものである。 The power transmission mechanism 34 is configured by, for example, a planetary gear mechanism, and combines the driving force output from the drive motor 2 and the driving force output from the internal combustion engine 1, and outputs the combined result to the drive wheels 4. .

また、変速機3は、クラッチ33が解放又は係合のいずれの状態にあるかを検出するクラッチセンサ36と、変速機構32において成立している変速段を検出する変速段検出部37とを、さらに備えている。クラッチセンサ36は、クラッチ33が解放又は係合のいずれの状態にあるかを示す信号をクラッチ係合情報としてインバータ22の制振制御部40に出力する。 The transmission 3 also includes a clutch sensor 36 that detects whether the clutch 33 is in a disengaged or engaged state, and a gear position detection section 37 that detects the gear position established in the transmission mechanism 32. It also has more. The clutch sensor 36 outputs a signal indicating whether the clutch 33 is in a disengaged or engaged state to the vibration damping control unit 40 of the inverter 22 as clutch engagement information.

変速段検出部37は、例えば車速やスロットル開度等に基づき変速マップを参照することにより現在の変速段を検出する構成であってもよいし、変速機構32の変速段を検出する変速段検出センサによって構成されていてもよい。変速段検出部37は、変速機構32の変速段を示す信号を変速段情報としてインバータ22の制振制御部40に出力する。 The gear stage detection unit 37 may be configured to detect the current gear stage by referring to a gear shift map based on the vehicle speed, throttle opening, etc., or may be configured to detect the current gear stage by referring to a gear shift map based on the vehicle speed, throttle opening, etc. It may be configured by a sensor. The gear stage detection unit 37 outputs a signal indicating the gear stage of the transmission mechanism 32 to the vibration damping control unit 40 of the inverter 22 as gear stage information.

ハイブリッドコントローラ5は、CPUと、RAMと、ROMと、フラッシュメモリと、入力ポートと、出力ポートとを備えたコンピュータユニットによって構成されている。 The hybrid controller 5 is configured by a computer unit including a CPU, a RAM, a ROM, a flash memory, an input port, and an output port.

ハイブリッドコントローラ5のROMには、各種制御定数や各種マップ等とともに、当該コンピュータユニットをハイブリッドコントローラ5として機能させるためのプログラムが記憶されている。すなわち、ハイブリッドコントローラ5において、CPUがROMに記憶されたプログラムを実行することにより、当該コンピュータユニットは、ハイブリッドコントローラ5として機能する。 The ROM of the hybrid controller 5 stores various control constants, various maps, etc., as well as a program for causing the computer unit to function as the hybrid controller 5. That is, in the hybrid controller 5, when the CPU executes a program stored in the ROM, the computer unit functions as the hybrid controller 5.

また、ハイブリッドコントローラ5は、アクセル開度やスロットル開度、車速等に基づき、車両100の要求駆動力を算出し、算出した要求駆動力を満たすように内燃機関1及び駆動モータ2を制御する。 Further, the hybrid controller 5 calculates the required driving force of the vehicle 100 based on the accelerator opening, the throttle opening, the vehicle speed, etc., and controls the internal combustion engine 1 and the drive motor 2 so as to satisfy the calculated required driving force.

具体的には、ハイブリッドコントローラ5は、要求駆動力に基づき、内燃機関1又は駆動モータ2に対してトルク指令値を出力する。また、ハイブリッドコントローラ5は、例えば駆動モータ2によるアシストが必要な場合等には、内燃機関1及び駆動モータ2の双方に対してトルク指令値を出力する。このように、ハイブリッドコントローラ5は、内燃機関1及び駆動モータ2のいずれか、又は双方にトルク指令値を出力するトルク指令部50としての機能を有する。 Specifically, the hybrid controller 5 outputs a torque command value to the internal combustion engine 1 or the drive motor 2 based on the requested driving force. Further, the hybrid controller 5 outputs a torque command value to both the internal combustion engine 1 and the drive motor 2, for example, when assistance by the drive motor 2 is required. In this way, the hybrid controller 5 has a function as the torque command section 50 that outputs a torque command value to either or both of the internal combustion engine 1 and the drive motor 2.

また、ハイブリッドコントローラ5は、車両100の走行モードとして、クラッチ33を解放して駆動モータ2の動力により走行する第1の走行モードと、クラッチ33を係合して少なくとも内燃機関1の動力により走行する第2の走行モードとを有する。第1の走行モードでは、第1の走行モード中に始動要求があった場合を除いて、内燃機関1を停止する。 Further, the hybrid controller 5 selects two driving modes for the vehicle 100: a first driving mode in which the clutch 33 is disengaged and the vehicle is driven by the power of the drive motor 2, and a first driving mode in which the clutch 33 is engaged and the vehicle is driven by at least the power of the internal combustion engine 1. and a second driving mode. In the first driving mode, the internal combustion engine 1 is stopped, except when a start request is made during the first driving mode.

また、ハイブリッドコントローラ5は、図示しないクラッチアクチュエータを制御することによりクラッチ33の係合又は解放を制御する制御部51としての機能を有する。 Further, the hybrid controller 5 has a function as a control unit 51 that controls engagement or release of the clutch 33 by controlling a clutch actuator (not shown).

次に、図2から図4を参照して、制振制御部40によって実行される制振制御について説明する。 Next, vibration damping control executed by the vibration damping control section 40 will be described with reference to FIGS. 2 to 4.

図2は、制振制御の概要を説明するために主要な構成をブロック図で示したものである。図2に示すように、制振制御部40は、フィルタ41と、補正トルク算出部43とを含んで構成されている。 FIG. 2 is a block diagram showing the main configuration for explaining the outline of vibration damping control. As shown in FIG. 2, the damping control section 40 includes a filter 41 and a correction torque calculation section 43.

フィルタ41は、駆動モータ2の振動又は騒音を示す信号を抽出するものであり、例えば特定の周波数成分を抽出するバンドパスフィルタによって構成されている。具体的には、フィルタ41は、駆動モータ2の回転数センサ20から入力されるモータ回転数Nmに基づく周波数成分のうち、車両100に有害な振動又は騒音を示す周波数成分を特定の周波数成分として抽出する。 The filter 41 extracts a signal indicating vibration or noise of the drive motor 2, and is configured by, for example, a bandpass filter that extracts a specific frequency component. Specifically, the filter 41 selects, as a specific frequency component, a frequency component that indicates vibration or noise harmful to the vehicle 100, among frequency components based on the motor rotation speed Nm input from the rotation speed sensor 20 of the drive motor 2. Extract.

ここで、車両100の動力伝達経路における捩り共振周波数は、クラッチ33の解放又は係合の状態に応じて変化する。ここで捩り共振周波数とは、動力伝達経路の捩り振動に基づく共振が発生する周波数を指す。動力伝達経路は内燃機関1や駆動モータ2等の駆動源からのトルクを受け、捩り振動が発生する。この動力伝達経路の捩り振動の周波数と駆動源のトルク変動の周波数とが一致すると共振が発生する。例えば、図3に示すように、クラッチ33の解放時の捩り共振周波数を「f1」とすると、クラッチ33の係合時の捩り共振周波数は「f2」へと大きく変化する。このような捩り共振周波数の変化は、クラッチ33が係合しているか、解放しているかによって動力伝達経路に対して内燃機関1が接続されるか非接続されるかにより、動力伝達経路における捩り共振周波数が変化するためと考えられる。 Here, the torsional resonance frequency in the power transmission path of vehicle 100 changes depending on the disengaged or engaged state of clutch 33. Here, the torsional resonance frequency refers to a frequency at which resonance based on torsional vibration of the power transmission path occurs. The power transmission path receives torque from a drive source such as the internal combustion engine 1 or the drive motor 2, and torsional vibration occurs. Resonance occurs when the frequency of torsional vibration of the power transmission path matches the frequency of torque fluctuation of the drive source. For example, as shown in FIG. 3, if the torsional resonance frequency when the clutch 33 is disengaged is "f1", the torsional resonance frequency when the clutch 33 is engaged changes significantly to "f2". Such a change in the torsional resonance frequency is caused by torsion in the power transmission path depending on whether the internal combustion engine 1 is connected or disconnected from the power transmission path depending on whether the clutch 33 is engaged or disengaged. This is thought to be due to a change in the resonance frequency.

また、振動レベルについても、クラッチ33の解放時と係合時とでは大きく異なり、捩り共振周波数f1のときの振動レベルに対して、捩り共振周波数f2のときの振動レベルが低い。これは、駆動源のトルク変動の周波数が低い程、その振動振幅が大きくなるためと考えられる。 Further, the vibration level also differs greatly between when the clutch 33 is disengaged and when it is engaged, and the vibration level when the torsional resonance frequency f2 is lower than the vibration level when the torsional resonance frequency f1 is applied. This is considered to be because the lower the frequency of the torque fluctuation of the drive source, the larger the vibration amplitude.

このように、クラッチ33が係合している第2の走行モードよりもクラッチ33が解放している第1の走行モードの方が、車両100の動力伝達経路における捩り共振周波数が低く、かつ振動レベルが大きい。 In this way, the torsional resonance frequency in the power transmission path of the vehicle 100 is lower and the vibration is lower in the first driving mode in which the clutch 33 is disengaged than in the second driving mode in which the clutch 33 is engaged. The level is big.

そこで、本実施例では、車両100の走行モードが第1の走行モードである場合に、駆動モータ2のトルク指令値を補正することにより車両100の動力伝達経路における振動を抑制する制振制御を実行するものとした。 Therefore, in this embodiment, when the driving mode of the vehicle 100 is the first driving mode, vibration damping control is performed to suppress vibrations in the power transmission path of the vehicle 100 by correcting the torque command value of the drive motor 2. It was decided that it would be implemented.

図2に示すように、補正トルク算出部43は、フィルタ41で抽出された特定の周波数成分に補正ゲインを乗算することにより、車両100に有害な振動又は騒音を示す周波数成分を打ち消すための補正トルクを算出する。 As shown in FIG. 2, the correction torque calculation unit 43 performs correction for canceling frequency components indicating harmful vibrations or noise to the vehicle 100 by multiplying a specific frequency component extracted by the filter 41 by a correction gain. Calculate torque.

制振制御部40は、補正トルク算出部43によって算出された補正トルクをトルク指令値にフィードバックする。これにより、駆動モータ2に対するトルク指令値が補正される。このように、制振制御部40は、フィルタ41によって抽出された特定の周波数成分に基づき、ハイブリッドコントローラ5から出力されるトルク指令値を補正する。インバータ22は、補正後のトルク指令値に基づき駆動モータ2に対する駆動電力を制御する。 The damping control section 40 feeds back the correction torque calculated by the correction torque calculation section 43 to the torque command value. As a result, the torque command value for the drive motor 2 is corrected. In this way, the damping control unit 40 corrects the torque command value output from the hybrid controller 5 based on the specific frequency component extracted by the filter 41. The inverter 22 controls the drive power to the drive motor 2 based on the corrected torque command value.

次に、図4を参照して、制振制御部40によって実行される制振制御実行判定処理の流れについて説明する。この制振制御実行判定処理は、所定の時間間隔で繰り返し実行される。 Next, with reference to FIG. 4, the flow of the damping control execution determination process executed by the damping control unit 40 will be described. This damping control execution determination process is repeatedly executed at predetermined time intervals.

図4に示すように、制振制御部40は、ハイブリッドコントローラ5から得られる情報に基づき、内燃機関1が停止しているか否かを判定する(ステップS1)。制振制御部40は、ステップS1において内燃機関1が停止していないと判定した場合には、今回の本制振制御実行判定処理を終了する。 As shown in FIG. 4, the damping control unit 40 determines whether the internal combustion engine 1 is stopped based on information obtained from the hybrid controller 5 (step S1). If the damping control unit 40 determines in step S1 that the internal combustion engine 1 is not stopped, it ends the current main damping control execution determination process.

制振制御部40は、ステップS1において内燃機関1が停止していると判定した場合には、ハイブリッドコントローラ5から得られる情報に基づき、クラッチ33が解放されているか否かを判定する(ステップS2)。制振制御部40は、ステップS2においてクラッチ33が解放されていないと判定した場合には、今回の本制振制御実行判定処理を終了する。 If it is determined in step S1 that the internal combustion engine 1 is stopped, the damping control section 40 determines whether the clutch 33 is released based on information obtained from the hybrid controller 5 (step S2). ). If the damping control unit 40 determines in step S2 that the clutch 33 is not released, it ends the current main damping control execution determination process.

制振制御部40は、ステップS2においてクラッチ33が解放されていると判定した場合には、制振制御を実行して(ステップS3)、今回の本制振制御実行判定処理を終了する。なお、ステップS3移行時に既に制振制御が実行されている場合には、ステップS3においては制振制御の実行が維持される。 If the damping control unit 40 determines in step S2 that the clutch 33 is released, it executes damping control (step S3), and ends the current main damping control execution determination process. Note that if the damping control is already being executed at the time of transition to step S3, the execution of the damping control is maintained in step S3.

ここで、車両100の走行モードが第1の走行モードから第2の走行モードに移行する場合には、クラッチ33の係合開始前に、制御部51によって始動装置11を介して内燃機関1が始動される。さらに、クラッチ33は、内燃機関1の始動後、内燃機関1が完爆に至った場合に、係合が開始される。これにより、クラッチ33は、内燃機関1の完爆後に係合することとなる。なお、内燃機関1の完爆とは、始動装置11による内燃機関1の始動後であって、始動装置11の補助なく内燃機関1の自立回転が可能となった状態を指す。 Here, when the driving mode of the vehicle 100 shifts from the first driving mode to the second driving mode, the internal combustion engine 1 is activated by the control unit 51 via the starter 11 before the engagement of the clutch 33 is started. is started. Further, the clutch 33 starts to be engaged when the internal combustion engine 1 reaches a complete explosion after the internal combustion engine 1 is started. Thereby, the clutch 33 will be engaged after the internal combustion engine 1 has completely exploded. Note that a complete explosion of the internal combustion engine 1 refers to a state in which the internal combustion engine 1 is able to rotate independently without assistance from the starter 11 after the internal combustion engine 1 has been started by the starter 11.

制振制御は、車両100の走行モードが第1の走行モードから第2の走行モードに移行する場合には中止される。より詳細には、車両100の走行モードが第1の走行モードから第2の走行モードに移行する場合には上述の通り内燃機関1の完爆に至った場合にクラッチ33の係合が開始されるが、制振制御は内燃機関1の完爆に至った場合であってクラッチ33の係合開始前に中止される。 The damping control is stopped when the driving mode of the vehicle 100 shifts from the first driving mode to the second driving mode. More specifically, when the driving mode of the vehicle 100 shifts from the first driving mode to the second driving mode, engagement of the clutch 33 is started when the internal combustion engine 1 reaches a complete explosion as described above. However, the damping control is stopped when the internal combustion engine 1 reaches complete explosion and before the clutch 33 starts engaging.

次に、図5を参照して、図4のステップS3にて実行される制振制御部40による制振制御の処理の流れについて説明する。 Next, with reference to FIG. 5, the flow of the vibration damping control process performed by the vibration damping control unit 40 in step S3 of FIG. 4 will be described.

図5に示すように、制振制御部40は、回転数センサ20からモータ回転数Nmを取得する(ステップS11)。その後、制振制御部40は、フィルタ41を介して、モータ回転数Nmに基づく周波数成分のうち、車両100に有害な振動又は騒音を示す周波数成分を特定の周波数成分として抽出する(ステップS12)。 As shown in FIG. 5, the vibration damping control unit 40 acquires the motor rotation speed Nm from the rotation speed sensor 20 (step S11). Thereafter, the vibration damping control unit 40 extracts, as a specific frequency component, a frequency component that indicates vibration or noise harmful to the vehicle 100 from among the frequency components based on the motor rotation speed Nm via the filter 41 (step S12). .

次いで、制振制御部40は、ステップS12で抽出した特定の周波数成分に対して補正ゲインを乗算することによって補正トルクを算出する(ステップS13)。その後、制振制御部40は、ステップS13で算出した補正トルクに基づき、ハイブリッドコントローラ5から出力される、駆動モータ2のトルク指令値を補正して(ステップS14)、制振制御を終了する。 Next, the damping control unit 40 calculates a correction torque by multiplying the specific frequency component extracted in step S12 by a correction gain (step S13). Thereafter, the damping control unit 40 corrects the torque command value of the drive motor 2 output from the hybrid controller 5 based on the corrected torque calculated in step S13 (step S14), and ends the damping control.

ここで、制振制御部40は、例えば車両100の要求駆動力が小さくなって車両100の走行モードを第2の走行モードから第1の走行モードに移行するような場合には、係合中のクラッチ33が解放されたら制振制御を再開する。 Here, the vibration damping control unit 40 is configured to control the vibration damping control unit 40 during engagement when, for example, the required driving force of the vehicle 100 becomes small and the driving mode of the vehicle 100 is shifted from the second driving mode to the first driving mode. When the clutch 33 is released, vibration damping control is restarted.

次に、図6のタイミングチャートを参照して、制振制御の実行状態切替時の一例について説明する。 Next, an example of switching the execution state of damping control will be described with reference to the timing chart of FIG. 6.

図6に示すように、時刻t0においては、車両100の走行モードが第1の走行モードであり、クラッチ33が解放され、かつ内燃機関1が停止した状態である。このとき、制振制御は、ON、すなわち実行されている。 As shown in FIG. 6, at time t0, the driving mode of vehicle 100 is the first driving mode, clutch 33 is released, and internal combustion engine 1 is stopped. At this time, the damping control is ON, that is, is being executed.

その後、車両100の走行モードを第1の走行モードから第2の走行モードに切り替える条件が成立すると、内燃機関1が始動され、これに伴い内燃機関1の回転数が徐々に上昇する。 Thereafter, when the conditions for switching the driving mode of the vehicle 100 from the first driving mode to the second driving mode are satisfied, the internal combustion engine 1 is started, and the rotational speed of the internal combustion engine 1 is gradually increased accordingly.

次いで、時刻t1において、内燃機関1の回転数が完爆と判定する回転数まで達すると、その直後に制振制御がOFF、すなわち制振制御が中止される。 Next, at time t1, when the rotational speed of the internal combustion engine 1 reaches a rotational speed at which a complete explosion is determined, the damping control is immediately turned off, that is, the damping control is stopped.

その後、時刻t2において、クラッチ33が解放から半係合に移行し、クラッチ33の係合が開始される。このように、制振制御は内燃機関1の完爆後(図6中、時刻t1後)であってクラッチ33の係合開始前(図6中、時刻t2前)に中止される。クラッチ33の半係合とは、フライホイールに対してクラッチ板がスリップした状態で係合している状態をいう。その後、時刻t3において、クラッチ33が係合する。 Thereafter, at time t2, the clutch 33 shifts from disengaged to half-engaged, and engagement of the clutch 33 is started. In this way, the damping control is stopped after the complete explosion of the internal combustion engine 1 (after time t1 in FIG. 6) and before engagement of the clutch 33 starts (before time t2 in FIG. 6). Half-engagement of the clutch 33 refers to a state in which the clutch plate is engaged with the flywheel in a slipping state. Thereafter, at time t3, the clutch 33 is engaged.

以上のように、本実施例に係る車両用制振制御装置は、車両100の走行モードが第1の走行モードである場合に、駆動モータ2のトルク指令値を補正することにより動力伝達経路における振動を抑制する制振制御を実行するので、駆動モータ2の振動に起因した動力伝達経路における共振を抑制することができる。 As described above, the vehicle vibration damping control device according to the present embodiment corrects the torque command value of the drive motor 2 when the vehicle 100 is in the first driving mode. Since vibration damping control is executed to suppress vibrations, resonance in the power transmission path caused by vibrations of the drive motor 2 can be suppressed.

このように、本実施例に係る車両用制振制御装置は、駆動モータ2の振動に起因した動力伝達経路における共振を抑制するだけでよいので、制御を複雑化させることなく簡易かつ正確に制振制御を実行することができる。 In this way, the vehicle vibration damping control device according to this embodiment only needs to suppress the resonance in the power transmission path caused by the vibration of the drive motor 2, so it can be easily and accurately controlled without complicating the control. It is possible to perform vibration control.

また、本実施例に係る車両用制振制御装置は、第1の走行モードから第2の走行モードに移行する場合には、クラッチ33の係合開始前に、内燃機関1を始動させ、かつ制振制御を中止するよう構成されている。 Further, in the case of transitioning from the first driving mode to the second driving mode, the vehicle vibration damping control device according to the present embodiment starts the internal combustion engine 1 before starting engagement of the clutch 33, and The vibration damping control is configured to be canceled.

このため、本実施例に係る車両用制振制御装置は、クラッチ33の係合開始に伴い動力伝達経路の捩り共振周波数が変化する前に制振制御を中止できる。例えば、内燃機関1の振動が影響して動力伝達経路の捩り共振周波数が変化するような場合に制振制御を行うと、制振制御を行うことで内燃機関1の振動等の駆動モータ2以外に起因した外乱によってかえって振動が発生するおそれがある。本実施例の車両用制振制御装置によれば、上述のように動力伝達経路の捩り共振周波数が変化する前に制振制御を中止できるので、制振制御による不要な振動が発生することを抑制することができる。 Therefore, the vehicle vibration damping control device according to the present embodiment can stop vibration damping control before the torsional resonance frequency of the power transmission path changes with the start of engagement of the clutch 33. For example, if vibration damping control is performed when the torsional resonance frequency of the power transmission path changes due to the vibrations of the internal combustion engine 1, vibrations of the internal combustion engine 1, etc. There is a risk that vibrations may be generated due to disturbances caused by this. According to the vehicle vibration damping control device of this embodiment, as described above, vibration damping control can be stopped before the torsional resonance frequency of the power transmission path changes, thereby preventing unnecessary vibrations from occurring due to vibration damping control. Can be suppressed.

また、本実施例に係る車両用制振制御装置は、内燃機関1の完爆に至った場合にクラッチ33を係合するので、上述の通りクラッチ33の係合開始に伴い動力伝達経路の捩り共振周波数が変化する前に制振制御を中止できる。 In addition, since the vehicle vibration damping control device according to the present embodiment engages the clutch 33 when the internal combustion engine 1 reaches a complete explosion, the power transmission path is torsioned as the clutch 33 starts to engage as described above. Damping control can be stopped before the resonance frequency changes.

また、本実施例に係る車両用制振制御装置は、係合中のクラッチ33が解放されたら制振制御を実行する、すなわち再開するので、不要な制振制御の実行を抑制しつつ、制振制御が有効な場合に制振制御を実行することができる。 In addition, the vehicle vibration damping control device according to the present embodiment executes the damping control, that is, restarts it, when the engaged clutch 33 is released, so that the vibration damping control device according to the present embodiment can suppress the vibration damping control while suppressing the execution of unnecessary vibration damping control. Vibration damping control can be executed when vibration control is effective.

なお、本実施の形態では、フィルタ41としてバンドパスフィルタを用いたが、これに限らず、フィルタ41としてハイパスフィルタを用いてもよい。 Note that in this embodiment, a bandpass filter is used as the filter 41, but the present invention is not limited to this, and a high-pass filter may be used as the filter 41.

上述の通り、本発明の実施の形態を開示したが、当業者によっては本発明の範囲を逸脱することなく変更が加えられうることは明白である。すべてのこのような修正及び等価物が次の請求項に含まれることが意図されている。 Although embodiments of the present invention have been disclosed as described above, it is apparent that modifications can be made by those skilled in the art without departing from the scope of the present invention. All such modifications and equivalents are intended to be included in the following claims.

1 内燃機関
2 駆動モータ(電動機)
3 変速機
4 駆動輪
5 ハイブリッドコントローラ
11 始動装置
20 回転数センサ
33 クラッチ
36 クラッチセンサ
40 制振制御部
41 フィルタ
43 補正トルク算出部
50 トルク指令部
51 制御部
100 車両
1 Internal combustion engine 2 Drive motor (electric motor)
3 Transmission 4 Drive wheel 5 Hybrid controller 11 Starting device 20 Rotation speed sensor 33 Clutch 36 Clutch sensor 40 Damping control section 41 Filter 43 Correction torque calculation section 50 Torque command section 51 Control section 100 Vehicle

Claims (1)

内燃機関及び電動機の少なくとも一方から出力された動力を駆動輪に伝達することにより走行する車両の車両用制振制御装置であって、
前記内燃機関と前記駆動輪との間の動力伝達経路に設けられたクラッチと、
前記電動機に対してトルク指令値を出力するトルク指令部と、
前記車両の走行モードとして、前記クラッチを解放して前記電動機の動力により走行する第1の走行モードと、前記クラッチを係合して少なくとも前記内燃機関の動力により走行する第2の走行モードとを有し、前記クラッチの解放又は係合を制御する制御部と、
前記車両の走行モードが前記第1の走行モードである場合に、前記電動機のトルク指令値を補正することにより前記動力伝達経路における振動を抑制する制振制御を実行する制振制御部と、を備え、
前記第1の走行モードから前記第2の走行モードに切り替える条件が成立すると、前記内燃機関が完爆後であって前記クラッチの係合開始前に、前記制振制御が中止されることを特徴とする車両用制振制御装置。
A vehicle vibration damping control device for a vehicle that runs by transmitting power output from at least one of an internal combustion engine and an electric motor to drive wheels,
a clutch provided in a power transmission path between the internal combustion engine and the drive wheels;
a torque command unit that outputs a torque command value to the electric motor;
The driving modes of the vehicle include a first driving mode in which the clutch is disengaged and the vehicle is driven by the power of the electric motor, and a second driving mode in which the vehicle is driven by at least the power of the internal combustion engine with the clutch engaged. and a control unit that controls release or engagement of the clutch;
a vibration damping control unit that executes vibration damping control that suppresses vibrations in the power transmission path by correcting a torque command value of the electric motor when the driving mode of the vehicle is the first driving mode; Prepare,
When a condition for switching from the first driving mode to the second driving mode is satisfied, the vibration damping control is stopped after the internal combustion engine has completely exploded and before the clutch starts to engage. A vibration damping control device for vehicles.
JP2020058939A 2020-03-27 2020-03-27 Vehicle vibration damping control device Active JP7433577B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020058939A JP7433577B2 (en) 2020-03-27 2020-03-27 Vehicle vibration damping control device
DE102021107081.3A DE102021107081A1 (en) 2020-03-27 2021-03-22 VIBRATION SUPPRESSION CONTROL SYSTEM FOR VEHICLE

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020058939A JP7433577B2 (en) 2020-03-27 2020-03-27 Vehicle vibration damping control device

Publications (2)

Publication Number Publication Date
JP2021154944A JP2021154944A (en) 2021-10-07
JP7433577B2 true JP7433577B2 (en) 2024-02-20

Family

ID=77659118

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020058939A Active JP7433577B2 (en) 2020-03-27 2020-03-27 Vehicle vibration damping control device

Country Status (2)

Country Link
JP (1) JP7433577B2 (en)
DE (1) DE102021107081A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012076537A (en) 2010-09-30 2012-04-19 Aisin Aw Co Ltd Control device
JP2018058453A (en) 2016-10-04 2018-04-12 スズキ株式会社 Control device of hybrid vehicle

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012076537A (en) 2010-09-30 2012-04-19 Aisin Aw Co Ltd Control device
JP2018058453A (en) 2016-10-04 2018-04-12 スズキ株式会社 Control device of hybrid vehicle

Also Published As

Publication number Publication date
JP2021154944A (en) 2021-10-07
DE102021107081A1 (en) 2021-09-30

Similar Documents

Publication Publication Date Title
JP3952884B2 (en) Automotive control device
JP2009154801A (en) System and method for controlling driving force of hybrid vehicle
JP5747991B2 (en) vehicle
US10000198B2 (en) Control system and control method
CN110103935B (en) Control device for hybrid vehicle
JP7211190B2 (en) Hybrid vehicle control device
JP2019124143A (en) Control device for vehicle
JP3541875B2 (en) Hybrid car engine starter
KR100974752B1 (en) Method for controlling power train of hybrid vehicle
US10023197B2 (en) Control device for four-wheel drive vehicle
JP7433577B2 (en) Vehicle vibration damping control device
JP3859922B2 (en) Control device for vehicle engine
US20150166053A1 (en) Controller for hybrid vehicle
JP4577260B2 (en) Engine starter
KR102370924B1 (en) Hybrid Electric Vehicle for Sequential Start type Engine Cold Start
JP2000257656A (en) Start controller of vehicle
JP2001304005A (en) Automatic operation stop control for internal compustion engine
CN116601040A (en) Vehicle control method and vehicle control device
JP6409559B2 (en) Vehicle control device
JP2000287306A (en) Motor drive controller for vehicle
US11859588B2 (en) Method for controlling internal combustion engine, and device for controlling internal combustion engine
JP7468323B2 (en) Fuel injection control device for internal combustion engine
KR102397933B1 (en) Ssc control method for mild hybrid vehicle
JP2013071674A (en) Hybrid vehicle
JP5609758B2 (en) Hybrid car

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230106

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230824

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230829

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231013

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231225

R151 Written notification of patent or utility model registration

Ref document number: 7433577

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151