JP7432846B2 - Manufacturing method of light emitting device - Google Patents

Manufacturing method of light emitting device Download PDF

Info

Publication number
JP7432846B2
JP7432846B2 JP2022094309A JP2022094309A JP7432846B2 JP 7432846 B2 JP7432846 B2 JP 7432846B2 JP 2022094309 A JP2022094309 A JP 2022094309A JP 2022094309 A JP2022094309 A JP 2022094309A JP 7432846 B2 JP7432846 B2 JP 7432846B2
Authority
JP
Japan
Prior art keywords
light emitting
emitting device
manufacturing
emitting elements
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2022094309A
Other languages
Japanese (ja)
Other versions
JP2023067723A (en
Inventor
弘明 ▲蔭▼山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichia Corp
Original Assignee
Nichia Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichia Corp filed Critical Nichia Corp
Priority to US17/967,455 priority Critical patent/US20230134799A1/en
Publication of JP2023067723A publication Critical patent/JP2023067723A/en
Application granted granted Critical
Publication of JP7432846B2 publication Critical patent/JP7432846B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

実施形態は、発光装置の製造方法に関する。 Embodiments relate to a method for manufacturing a light emitting device.

特許文献1には、支持基板に発光素子を貼り付け、発光素子の半導体層上に、蛍光体粒子等を吹き付けて蛍光体層を形成する発光装置の製造方法が開示されている。 Patent Document 1 discloses a method for manufacturing a light emitting device in which a light emitting element is attached to a support substrate and a phosphor layer is formed by spraying phosphor particles or the like onto a semiconductor layer of the light emitting element.

特開2016-149389号公報Japanese Patent Application Publication No. 2016-149389

本発明の一実施形態は、歩留まりを向上できる発光装置の製造方法を提供することを目的とする。 One embodiment of the present invention aims to provide a method for manufacturing a light emitting device that can improve yield.

本発明の一実施形態に係る発光装置の製造方法は、複数の凹部を有する第1面と、前記第1面の反対側に位置する第2面と、前記第1面と前記第2面とを接続する側面と、を有する半導体構造体を含む複数の発光素子を準備する工程と、各前記発光素子の前記第2面と、粘着性を有するシート部材とを対向させて、各前記発光素子の前記側面が前記シート部材に覆われるように、前記複数の発光素子を前記シート部材に配置する工程と、透光性を有する未硬化の樹脂部材を含む第1部材上に、波長変換物質を含み、未硬化の前記樹脂部材の硬度より高い硬度を有する第2部材が配置された状態で、前記第1部材が、前記複数の凹部内に配置され、かつ、前記シート部材と前記第2部材との間に配置されるように、前記第1部材を前記複数の発光素子の前記第1面に接触させる工程と、前記第1部材を硬化する工程と、前記シート部材を前記複数の発光素子から除去する工程と、を備える。 A method for manufacturing a light emitting device according to an embodiment of the present invention includes a first surface having a plurality of recesses, a second surface located on the opposite side of the first surface, and a first surface and the second surface. a step of preparing a plurality of light emitting elements each including a semiconductor structure having a side surface connecting the light emitting elements; arranging the plurality of light emitting elements on the sheet member so that the side surfaces of the light emitting elements are covered with the sheet member, and applying a wavelength conversion substance on a first member including an uncured resin member having translucency. the first member is disposed within the plurality of recesses, and a second member having a hardness higher than that of the uncured resin member is disposed, and the sheet member and the second member bringing the first member into contact with the first surfaces of the plurality of light emitting elements so that the sheet member is placed between the plurality of light emitting elements; curing the first member; and placing the sheet member between the plurality of light emitting elements. and a step of removing it from the container.

本発明の一実施形態によれば、歩留まりを向上できる発光装置の製造方法を提供することができる。 According to one embodiment of the present invention, it is possible to provide a method for manufacturing a light emitting device that can improve yield.

第1の実施形態に係る発光モジュールを示す断面図である。FIG. 1 is a cross-sectional view showing a light emitting module according to a first embodiment. 図1に示す半導体構造体の第1面の一部を拡大して示す上面図である。FIG. 2 is an enlarged top view of a part of the first surface of the semiconductor structure shown in FIG. 1; 第1の実施形態に係る発光モジュールを示す上面図である。It is a top view showing the light emitting module concerning a 1st embodiment. 第1の実施形態に係る発光モジュールの製造方法を示すフローチャートである。It is a flow chart showing a manufacturing method of a light emitting module concerning a 1st embodiment. 第1の実施形態に係る発光モジュールの製造方法を説明するための断面図である。FIG. 2 is a cross-sectional view for explaining a method of manufacturing a light emitting module according to the first embodiment. 第1の実施形態に係る発光モジュールの製造方法を説明するための断面図である。FIG. 2 is a cross-sectional view for explaining a method of manufacturing a light emitting module according to the first embodiment. 第1の実施形態に係る発光モジュールの製造方法を説明するための断面図である。FIG. 2 is a cross-sectional view for explaining a method of manufacturing a light emitting module according to the first embodiment. 第1の実施形態に係る発光モジュールの製造方法を説明するための断面図である。FIG. 2 is a cross-sectional view for explaining a method of manufacturing a light emitting module according to the first embodiment. 第1の実施形態に係る発光モジュールの製造方法を説明するための断面図である。FIG. 2 is a cross-sectional view for explaining a method of manufacturing a light emitting module according to the first embodiment. 第1の実施形態に係る発光モジュールの製造方法を説明するための断面図である。FIG. 2 is a cross-sectional view for explaining a method of manufacturing a light emitting module according to the first embodiment. 第1の実施形態に係る発光モジュールの製造方法を説明するための断面図である。FIG. 2 is a cross-sectional view for explaining a method of manufacturing a light emitting module according to the first embodiment. 第1の実施形態に係る発光モジュールの製造方法を説明するための断面図である。FIG. 2 is a cross-sectional view for explaining a method of manufacturing a light emitting module according to the first embodiment. 第1の実施形態に係る発光モジュールの製造方法を説明するための断面図である。FIG. 2 is a cross-sectional view for explaining a method of manufacturing a light emitting module according to the first embodiment. 第1の実施形態に係る発光モジュールの製造方法を説明するための断面図である。FIG. 2 is a cross-sectional view for explaining a method of manufacturing a light emitting module according to the first embodiment. 参考例に係る発光モジュールの製造方法を説明するための断面図である。It is a sectional view for explaining a manufacturing method of a light emitting module concerning a reference example. 第1の実施形態の変形例に係る発光モジュールの製造方法を説明するための断面図である。FIG. 7 is a cross-sectional view for explaining a method of manufacturing a light emitting module according to a modification of the first embodiment. 第2の実施形態に係る発光モジュールを示す断面図である。FIG. 3 is a cross-sectional view showing a light emitting module according to a second embodiment.

以下に、本発明の各実施形態について図面を参照しつつ説明する。
図面は模式的または概念的なものであり、各部分の厚みと幅との関係、部分間の大きさの比率などは、必ずしも現実のものと同一とは限らない。同じ部分を表す場合であっても、図面により互いの寸法や比率が異なって表される場合もある。
本願明細書と各図において、既に説明したものと同様の要素には同一の符号を付して詳細な説明は適宜省略する。
Each embodiment of the present invention will be described below with reference to the drawings.
The drawings are schematic or conceptual, and the relationship between the thickness and width of each part, the size ratio between parts, etc. are not necessarily the same as those in reality. Even when the same part is shown, the dimensions and ratios may be shown differently depending on the drawing.
In the specification of this application and each figure, elements similar to those already explained are given the same reference numerals, and detailed explanations are omitted as appropriate.

<第1の実施形態>
先ず、第1の実施形態について説明する。
図1は、本実施形態に係る発光モジュール10を示す断面図である。
図2Aは、図1に示す半導体構造体121の第1面121s1の一部を拡大して示す上面図である。
図2Bは、本実施形態に係る発光モジュール10を示す上面図である。
本実施形態に係る発光モジュール10は、配線基板11と、発光装置12と、樹脂部材13と、を備える。発光装置12は、発光素子120と、第1部材130と、第2部材140と、を備える。以下、発光モジュール10の各部について詳述する。
<First embodiment>
First, a first embodiment will be described.
FIG. 1 is a sectional view showing a light emitting module 10 according to this embodiment.
FIG. 2A is an enlarged top view of a part of the first surface 121s1 of the semiconductor structure 121 shown in FIG.
FIG. 2B is a top view showing the light emitting module 10 according to this embodiment.
The light emitting module 10 according to this embodiment includes a wiring board 11, a light emitting device 12, and a resin member 13. The light emitting device 12 includes a light emitting element 120, a first member 130, and a second member 140. Each part of the light emitting module 10 will be described in detail below.

以下では、説明をわかりやすくするために、XYZ直交座標系を用いる。以下、発光素子120、第1部材130、および第2部材140が並ぶ方向を「Z方向」とする。また、Z方向と直交する方向を「X方向」とし、Z方向およびX方向と直交する方向を「Y方向」とする。また、発光モジュール10の構造を説明する際、Z方向のうち、発光素子120から第2部材140に向かう方向を「上方向」とし、その逆方向を「下方向」とするが、これらの方向は相対的なものであり、重力方向とは無関係である。 In the following, an XYZ orthogonal coordinate system will be used to make the explanation easier to understand. Hereinafter, the direction in which the light emitting element 120, the first member 130, and the second member 140 are lined up will be referred to as the "Z direction." Further, the direction orthogonal to the Z direction is referred to as the "X direction", and the direction orthogonal to the Z direction and the X direction is referred to as the "Y direction". Furthermore, when describing the structure of the light emitting module 10, in the Z direction, the direction from the light emitting element 120 toward the second member 140 will be referred to as the "upward direction," and the opposite direction will be referred to as the "downward direction." is relative and has nothing to do with the direction of gravity.

配線基板11は、例えば、絶縁層と、絶縁層上に配置された複数の配線と、を含む。配線基板11の形状は、例えば、平板状である。配線基板11の上面および下面は、X-Y平面に概ね平行な面である。 The wiring board 11 includes, for example, an insulating layer and a plurality of wirings arranged on the insulating layer. The shape of the wiring board 11 is, for example, a flat plate. The upper and lower surfaces of the wiring board 11 are planes that are generally parallel to the XY plane.

発光素子120は、配線基板11上に配置される。発光素子120は、半導体構造体121と、光反射性電極122と、絶縁膜123と、n側電極124と、p側電極125と、を含む。 Light emitting element 120 is placed on wiring board 11 . The light emitting element 120 includes a semiconductor structure 121, a light reflective electrode 122, an insulating film 123, an n-side electrode 124, and a p-side electrode 125.

半導体構造体121は、例えば、窒化物半導体からなる複数の半導体層が積層された構造体である。ここで、「窒化物半導体」とは、InAlGa1-x-yN(0≦x≦1,0≦y≦1,x+y≦1)なる化学式において組成比x及びyをそれぞれの範囲内で変化させた全ての組成の半導体を含むものとする。半導体構造体121は、上方から下方に向かって順に、n側半導体層126と、活性層127と、p側半導体層128と、を含む。 The semiconductor structure 121 is, for example, a structure in which a plurality of semiconductor layers made of nitride semiconductor are stacked. Here, "nitride semiconductor" is defined by the chemical formula In x Al y Ga 1-x-y N (0≦x≦1, 0≦y≦1, x+y≦1), where the composition ratios x and y are respectively It shall include semiconductors of all compositions varied within this range. The semiconductor structure 121 includes, in order from top to bottom, an n-side semiconductor layer 126, an active layer 127, and a p-side semiconductor layer 128.

n側半導体層126の上面は、半導体構造体121の上面に相当する。以下、半導体構造体の上面を「第1面121s1」という。第1面121s1には、複数の凹部121aが配置される。第1面121s1において、複数の凹部121aの間の領域121bは、例えば、X-Y平面に概ね平行な領域である。上面視において、複数の凹部121aは、領域121bに囲まれている。 The upper surface of the n-side semiconductor layer 126 corresponds to the upper surface of the semiconductor structure 121. Hereinafter, the upper surface of the semiconductor structure will be referred to as the "first surface 121s1." A plurality of recesses 121a are arranged on the first surface 121s1. In the first surface 121s1, the region 121b between the plurality of recesses 121a is, for example, a region generally parallel to the XY plane. In a top view, the plurality of recesses 121a are surrounded by a region 121b.

複数の凹部121aは、上面視において千鳥状に配列される。ただし、複数の凹部121aの配列パターンは上記に限定されない。例えば、複数の凹部121aは行列状に配列されてもよい。 The plurality of recesses 121a are arranged in a staggered manner when viewed from above. However, the arrangement pattern of the plurality of recesses 121a is not limited to the above. For example, the plurality of recesses 121a may be arranged in a matrix.

各凹部121aの形状は、図1および図2Aに示すように、略円錐形状である。各凹部121aの深さL1は、特に限定されない。各凹部121aの深さL1は、例えば、0.5μm以上3μm以下であることが好ましい。また、各凹部121aの直径L2は、特に限定されない。各凹部121aの直径L2は、例えば、1μm以上6μm以下であることが好ましい。ただし、各凹部121aの形状及び大きさは、上記の形状及び大きさに特に限定されない。例えば各凹部121aの形状は、錐台形状、円錐形状、多角錐形状、半球状等であってもよい。 The shape of each recess 121a is approximately conical, as shown in FIGS. 1 and 2A. The depth L1 of each recess 121a is not particularly limited. It is preferable that the depth L1 of each recess 121a is, for example, 0.5 μm or more and 3 μm or less. Further, the diameter L2 of each recess 121a is not particularly limited. It is preferable that the diameter L2 of each recess 121a is, for example, 1 μm or more and 6 μm or less. However, the shape and size of each recess 121a are not particularly limited to the above shape and size. For example, the shape of each recess 121a may be a truncated pyramid, a cone, a polygonal pyramid, a hemisphere, or the like.

n側半導体層126の下面は、図1に示すように、外周領域126aと、被覆領域126bと、複数のコンタクト領域126cと、を含む。外周領域126aは、n側半導体層126の下面の外周縁から一定の範囲である。外周領域126aは、X-Y平面に概ね平行な領域である。被覆領域126bは、外周領域126aの内側に位置する。被覆領域126bは、X-Y平面に概ね平行な領域である。Z方向における被覆領域126bの位置は、外周領域126aの位置よりも下方である。各コンタクト領域126cは、被覆領域126bの外周縁よりも内側に位置する。各コンタクト領域126cは、X-Y平面に概ね平行な領域である。Z方向における各コンタクト領域126cの位置は、被覆領域126bの位置よりも上方であって、外周領域126aの位置と概ね同じである。 As shown in FIG. 1, the lower surface of the n-side semiconductor layer 126 includes an outer peripheral region 126a, a covering region 126b, and a plurality of contact regions 126c. The outer peripheral region 126a is a certain range from the outer peripheral edge of the lower surface of the n-side semiconductor layer 126. The outer peripheral region 126a is a region approximately parallel to the XY plane. The covering region 126b is located inside the outer peripheral region 126a. The covered area 126b is an area approximately parallel to the XY plane. The position of the covering region 126b in the Z direction is lower than the position of the outer peripheral region 126a. Each contact region 126c is located inside the outer periphery of the covering region 126b. Each contact region 126c is a region generally parallel to the XY plane. The position of each contact region 126c in the Z direction is above the position of the covering region 126b, and is approximately the same as the position of the outer peripheral region 126a.

活性層127は、n側半導体層126の下面の被覆領域126bの概ね全域を覆う。p側半導体層128は、活性層127の下面の概ね全域を覆う。活性層127およびp側半導体層128は、n側半導体層126の下面の外周領域126aおよび各コンタクト領域126cを露出する。 The active layer 127 covers almost the entire area of the covering region 126b on the lower surface of the n-side semiconductor layer 126. The p-side semiconductor layer 128 covers almost the entire lower surface of the active layer 127. The active layer 127 and the p-side semiconductor layer 128 expose the outer peripheral region 126a of the lower surface of the n-side semiconductor layer 126 and each contact region 126c.

以下、半導体構造体121の表面において、n側半導体層126の下面のうち、n側半導体層126の下面の外周縁、すなわち外周領域126aの外周縁よりも内側に位置する面を「第2面121s2」という。第2面121s2は、第1面121s1の反対側に位置する。また、第1面121s1と第2面121s2の間に位置し、第1面121s1と第2面121s2に接続される面を「側面121s3」という。 Hereinafter, on the surface of the semiconductor structure 121, the surface located inside the outer peripheral edge of the lower surface of the n-side semiconductor layer 126, that is, the outer peripheral edge of the outer peripheral region 126a, will be referred to as a "second surface". 121s2”. The second surface 121s2 is located on the opposite side of the first surface 121s1. Further, a surface located between the first surface 121s1 and the second surface 121s2 and connected to the first surface 121s1 and the second surface 121s2 is referred to as a "side surface 121s3."

光反射性電極122は、p側半導体層128の下面に配置される。光反射性電極122は、p側半導体層128の下面の少なくとも一部を覆う。光反射性電極122は、p側半導体層128に接する。これにより、光反射性電極122は、p側半導体層128に電気的に接続される。光反射性電極122には、例えば、銀(Ag)、アルミニウム(Al)、ニッケル(Ni)、チタン(Ti)、白金(Pt)、またはこれらの金属を主成分とする合金等を用いることができる。 The light reflective electrode 122 is arranged on the lower surface of the p-side semiconductor layer 128. The light reflective electrode 122 covers at least a portion of the lower surface of the p-side semiconductor layer 128. The light reflective electrode 122 is in contact with the p-side semiconductor layer 128. Thereby, the light reflective electrode 122 is electrically connected to the p-side semiconductor layer 128. For example, silver (Ag), aluminum (Al), nickel (Ni), titanium (Ti), platinum (Pt), or an alloy containing these metals as main components can be used for the light-reflective electrode 122. can.

絶縁膜123は、半導体構造体121および光反射性電極122の下方に配置される。絶縁膜123は、光反射性電極122の下面および半導体構造体121の第2面121s2を部分的に覆う。絶縁膜123には、n側半導体層126の複数のコンタクト領域126cを露出する複数の貫通穴123aと、光反射性電極122の下面を露出する貫通穴123bと、が配置される。 Insulating film 123 is disposed below semiconductor structure 121 and light reflective electrode 122 . The insulating film 123 partially covers the lower surface of the light reflective electrode 122 and the second surface 121s2 of the semiconductor structure 121. A plurality of through holes 123a exposing the plurality of contact regions 126c of the n-side semiconductor layer 126 and a through hole 123b exposing the lower surface of the light reflective electrode 122 are arranged in the insulating film 123.

絶縁膜123には、酸化シリコン(SiO)または窒化シリコン(SiN)等の絶縁材料を用いることができる。絶縁膜123は、単層構造であってもよいし、多層構造であってもよい。 For the insulating film 123, an insulating material such as silicon oxide (SiO 2 ) or silicon nitride (SiN) can be used. The insulating film 123 may have a single layer structure or a multilayer structure.

n側電極124は、絶縁膜123の下方に配置される。n側電極124は、各貫通穴123aを介して、n側半導体層126の各コンタクト領域126cに接する。これにより、n側電極124は、n側半導体層126に電気的に接続される。n側電極124は、導電部材を介して配線基板11の一の配線に電気的に接続される。導電部材には、例えば、金属バンプや半田等を用いることができる。 The n-side electrode 124 is arranged below the insulating film 123. The n-side electrode 124 contacts each contact region 126c of the n-side semiconductor layer 126 via each through hole 123a. Thereby, the n-side electrode 124 is electrically connected to the n-side semiconductor layer 126. The n-side electrode 124 is electrically connected to one wiring of the wiring board 11 via a conductive member. For example, metal bumps, solder, or the like can be used as the conductive member.

p側電極125は、絶縁膜123の下方に配置され、n側電極124から離隔する。また、p側電極125は、貫通穴123bを介して、光反射性電極122に接する。これにより、p側電極125は、p側半導体層128に電気的に接続される。p側電極125は、導電部材を介して配線基板11の他の配線に電気的に接続される。 The p-side electrode 125 is arranged below the insulating film 123 and separated from the n-side electrode 124. Moreover, the p-side electrode 125 is in contact with the light reflective electrode 122 via the through hole 123b. Thereby, the p-side electrode 125 is electrically connected to the p-side semiconductor layer 128. The p-side electrode 125 is electrically connected to other wiring on the wiring board 11 via a conductive member.

n側電極124およびp側電極125には、アルミニウム(Al)ニッケル(Ni)、チタン(Ti)、白金(Pt)、またはこれらの金属を主成分とする合金等を用いることができる。 For the n-side electrode 124 and the p-side electrode 125, aluminum (Al), nickel (Ni), titanium (Ti), platinum (Pt), or an alloy containing these metals as main components can be used.

ただし、発光素子120の構成は、半導体構造体121を含み、半導体構造体121の第1面121s1に複数の凹部121aが配置されていれば、上記に限定されない。例えば、n側半導体層126とn側電極124とが接する位置、およびp側半導体層128と光反射性電極122とが接する位置は、図1に示す位置に特に限定されない。また、n側電極124とn側半導体層126は、電気的に接続されていればよく、n側電極124とn側半導体層126との間に、1以上の導電部材が介在してもよい。また、p側電極125と光反射性電極122は、電気的に接続されていればよく、p側電極125と光反射性電極122との間に、1以上の導電部材が介在してもよい。また、発光素子120に光反射性電極122が配置されておらず、p側電極125がp側半導体層128に接してもよい。 However, the configuration of the light emitting element 120 is not limited to the above as long as it includes the semiconductor structure 121 and a plurality of recesses 121a are arranged on the first surface 121s1 of the semiconductor structure 121. For example, the position where the n-side semiconductor layer 126 and the n-side electrode 124 contact and the position where the p-side semiconductor layer 128 and the light reflective electrode 122 contact are not particularly limited to the positions shown in FIG. 1. Further, the n-side electrode 124 and the n-side semiconductor layer 126 only need to be electrically connected, and one or more conductive members may be interposed between the n-side electrode 124 and the n-side semiconductor layer 126. . Further, the p-side electrode 125 and the light-reflective electrode 122 only need to be electrically connected, and one or more conductive members may be interposed between the p-side electrode 125 and the light-reflective electrode 122. . Alternatively, the light reflective electrode 122 may not be arranged in the light emitting element 120, and the p-side electrode 125 may be in contact with the p-side semiconductor layer 128.

第2部材140は、発光素子120の上方に配置される。第2部材140の形状は、例えば、平板状である。第2部材140の表面は、上面141と、上面141の反対側に位置する下面142とを含む。上面141および下面142は、X-Y平面に概ね平行である。 The second member 140 is arranged above the light emitting element 120. The shape of the second member 140 is, for example, a flat plate. The surface of the second member 140 includes an upper surface 141 and a lower surface 142 located on the opposite side of the upper surface 141. Upper surface 141 and lower surface 142 are generally parallel to the XY plane.

Z方向に見て、第2部材140の外周縁は、本実施形態では、発光素子120の第1面121s1の外周縁よりも外側に位置する。ただし、Z方向にみて第2部材140の外周は、第1面121s1の外周縁と一致してもよい。 When viewed in the Z direction, the outer peripheral edge of the second member 140 is located on the outer side than the outer peripheral edge of the first surface 121s1 of the light emitting element 120 in this embodiment. However, the outer periphery of the second member 140 may coincide with the outer periphery of the first surface 121s1 when viewed in the Z direction.

第2部材140は、例えば、波長変換物質の焼結体である。波長変換物質は、発光素子120が発する光の一部を波長変換し、発光素子120が発する光の発光ピーク波長と異なる発光ピーク波長の光を発する。発光装置12は、半導体構造体121が発する光と、第2部材140が発する光との混色光を出射する。ただし、半導体構造体121が発する光の大部分を第2部材140が波長変換し、発光装置12からは主に第2部材140が発する光が出射してもよい。波長変換物質には、例えば、蛍光体の粒子を用いることができる。蛍光体としては、イットリウム・アルミニウム・ガーネット系蛍光体(例えば、Y(Al,Ga)12:Ce)、ルテチウム・アルミニウム・ガーネット系蛍光体(例えば、Lu(Al,Ga)12:Ce)、テルビウム・アルミニウム・ガーネット系蛍光体(例えば、Tb(Al,Ga)12:Ce)、CCA系蛍光体(例えば、Ca10(POCl:Eu)、SAE系蛍光体(例えば、SrAl1425:Eu)、クロロシリケート系蛍光体(例えば、CaMgSi16Cl:Eu)、βサイアロン系蛍光体(例えば、(Si,Al)(O,N):Eu)若しくはαサイアロン系蛍光体(例えば、Ca(Si,Al)12(O,N)16:Eu)等の酸窒化物系蛍光体、SLA系蛍光体(例えば、SrLiAl:Eu)、CASN系蛍光体(例えば、CaAlSiN:Eu)若しくはSCASN系蛍光体(例えば、(Sr,Ca)AlSiN:Eu)等の窒化物系蛍光体、KSF系蛍光体(例えば、KSiF:Mn)、KSAF系蛍光体(例えば、KSi0.99Al0.015.99:Mn)若しくはMGF系蛍光体(例えば、3.5MgO・0.5MgF・GeO:Mn)等のフッ化物系蛍光体、ペロブスカイト構造を有する蛍光体(例えば、CsPb(F,Cl,Br,I))、又は、量子ドット蛍光体(例えば、CdSe、InP、AgInS又はAgInSe)等を用いることができる。 The second member 140 is, for example, a sintered body of a wavelength conversion material. The wavelength conversion substance wavelength-converts a portion of the light emitted by the light-emitting element 120, and emits light having an emission peak wavelength different from the emission peak wavelength of the light emitted by the light-emitting element 120. The light emitting device 12 emits mixed color light of the light emitted by the semiconductor structure 121 and the light emitted by the second member 140. However, the second member 140 may convert the wavelength of most of the light emitted by the semiconductor structure 121, and the light emitted from the second member 140 may mainly be emitted from the light emitting device 12. For example, phosphor particles can be used as the wavelength conversion substance. Examples of the phosphor include yttrium-aluminum-garnet-based phosphor (e.g., Y 3 (Al, Ga) 5 O 12 :Ce), lutetium-aluminum-garnet-based phosphor (e.g., Lu 3 (Al, Ga) 5 O). 12 :Ce), terbium-aluminum-garnet-based phosphor (e.g., Tb 3 (Al, Ga) 5 O 12 :Ce), CCA-based phosphor (e.g., Ca 10 (PO 4 ) 6 Cl 2 :Eu), SAE-based phosphors (e.g., Sr 4 Al 14 O 25 :Eu), chlorosilicate-based phosphors (e.g., Ca 8 MgSi 4 O 16 Cl 2 :Eu), β-sialon-based phosphors (e.g., (Si, Al)) Oxynitride-based phosphors such as 3 (O,N) 4 :Eu) or α-sialon-based phosphors (e.g., Ca(Si,Al) 12 (O,N) 16 :Eu), SLA-based phosphors (e.g. , SrLiAl 3 N 4 :Eu), nitride-based phosphors such as CASN-based phosphors (e.g., CaAlSiN 3 :Eu) or SCASN-based phosphors (e.g., (Sr,Ca)AlSiN 3 :Eu), KSF-based phosphors (e.g., K 2 SiF 6 :Mn), KSAF-based phosphor (e.g., K 2 Si 0.99 Al 0.01 F 5.99 :Mn), or MGF-based phosphor (e.g., 3.5MgO.0. Fluoride-based phosphors such as 5MgF 2 .GeO 2 :Mn), phosphors with a perovskite structure (e.g. CsPb(F,Cl,Br,I) 3 ), or quantum dot phosphors (e.g. CdSe, InP). , AgInS 2 or AgInSe 2 ), etc. can be used.

第2部材140の厚さは、第1部材130の厚さよりも厚い。第2部材140の厚さは、例えば、30μm以上200μm以下とすることができる。 The thickness of the second member 140 is greater than the thickness of the first member 130. The thickness of the second member 140 can be, for example, 30 μm or more and 200 μm or less.

第1部材130は、半導体構造体121と第2部材140との間に配置される。第1部材130は、本実施形態では、半導体構造体121の第1面121s1および第2部材140の下面142の概ね全域を覆う。具体的には、第1部材130は、半導体構造体121の第1面121s1の各凹部121a内および複数の凹部121aの間の領域121b上に配置される。また、Z方向において、第1部材130は、第2部材140の下面142のうち、半導体構造体121の第1面121s1の外側に位置する領域を覆う。 The first member 130 is arranged between the semiconductor structure 121 and the second member 140. In this embodiment, the first member 130 covers substantially the entire first surface 121s1 of the semiconductor structure 121 and the lower surface 142 of the second member 140. Specifically, the first member 130 is arranged in each recess 121a of the first surface 121s1 of the semiconductor structure 121 and on the region 121b between the plurality of recesses 121a. Further, in the Z direction, the first member 130 covers a region of the lower surface 142 of the second member 140 located outside the first surface 121s1 of the semiconductor structure 121.

第1部材130は、透光性を有する樹脂部材131を含む。ここで、「透光性」とは、入射した光の70%以上、好ましくは80%以上を透過可能であることを意味する。また、樹脂部材131は、未硬化の樹脂を硬化させてなる。樹脂部材131には、熱硬化性樹脂、または紫外光を照射することにより硬化する樹脂等を用いることができる。第2部材140の硬度は、本実施形態では、硬化した状態の樹脂部材131の硬度よりも高い。ただし、第2部材140の硬度と、硬化した状態の樹脂部材131の硬度との大小関係は、上記に限定されない。 The first member 130 includes a resin member 131 having translucency. Here, "translucent" means that 70% or more, preferably 80% or more of incident light can be transmitted. Further, the resin member 131 is made by curing uncured resin. For the resin member 131, a thermosetting resin, a resin that hardens by irradiation with ultraviolet light, or the like can be used. In this embodiment, the hardness of the second member 140 is higher than the hardness of the resin member 131 in a hardened state. However, the magnitude relationship between the hardness of the second member 140 and the hardness of the resin member 131 in a hardened state is not limited to the above.

第1部材130は、樹脂部材131中に配置された波長変換物質132をさらに含む。第1部材130の波長変換物質132には、第2部材140に用いる波長変換物質と同じものを用いることができる。ただし、第1部材130は、波長変換物質132を含まなくてもよい。 The first member 130 further includes a wavelength converting material 132 disposed in the resin member 131 . The wavelength converting material 132 of the first member 130 can be the same as the wavelength converting material used for the second member 140. However, the first member 130 may not include the wavelength conversion substance 132.

第1部材130の厚さは、例えば、10μm以上100μm以下とすることができる。第1部材130のうち凹部121aに配置された第1部材130の厚さは、第1部材130のうち領域121b1に配置された第1部材130の厚さよりも薄い。第1部材130のうち凹部121aに配置された第1部材130の厚さは、例えば、1μm以上10μm以下である。第1部材130のうち領域121b1に配置された第1部材130の厚さは、例えば、3μm以上50μm以下である。 The thickness of the first member 130 can be, for example, 10 μm or more and 100 μm or less. The thickness of the first member 130 disposed in the recess 121a among the first members 130 is thinner than the thickness of the first member 130 disposed in the region 121b1 among the first members 130. The thickness of the first member 130 disposed in the recess 121a is, for example, 1 μm or more and 10 μm or less. The thickness of the first member 130 disposed in the region 121b1 among the first members 130 is, for example, 3 μm or more and 50 μm or less.

樹脂部材13は、配線基板11上に配置される。樹脂部材13は、Z方向に見て発光装置12を囲む。具体的には、樹脂部材13は、発光素子120における半導体構造体121の側面121s3と、第1部材130の側面および下面において発光素子120から露出する領域と、第2部材140の側面と、を覆う。また、樹脂部材13は、図2Bに示すように、Z方向に見て、発光素子120における絶縁膜123およびn側電極124を囲むように配置されている。 Resin member 13 is placed on wiring board 11 . The resin member 13 surrounds the light emitting device 12 when viewed in the Z direction. Specifically, the resin member 13 covers the side surface 121s3 of the semiconductor structure 121 in the light emitting element 120, the area exposed from the light emitting element 120 on the side surface and lower surface of the first member 130, and the side surface of the second member 140. cover. Further, as shown in FIG. 2B, the resin member 13 is arranged so as to surround the insulating film 123 and the n-side electrode 124 in the light emitting element 120 when viewed in the Z direction.

樹脂部材13は、光反射性を有する。樹脂部材13は、例えば、第2部材140が発する光を拡散反射可能な光拡散材を含む。樹脂部材13に用いられる樹脂としては、例えば、シリコーン樹脂、エポキシ樹脂またはアクリル樹脂等が挙げられる。樹脂部材13に用いられる光拡散剤としては、例えば、チタニア、シリカ、アルミナ、酸化亜鉛、酸化マグネシウム、ジルコニア、イットリア、フッ化カルシウム、フッ化マグネシウム、五酸化ニオブ、チタン酸バリウム、五酸化タンタル、硫酸バリウムまたはガラスなどの粒子が挙げられる。 The resin member 13 has light reflective properties. The resin member 13 includes, for example, a light diffusing material that can diffusely reflect the light emitted by the second member 140. Examples of the resin used for the resin member 13 include silicone resin, epoxy resin, and acrylic resin. Examples of the light diffusing agent used in the resin member 13 include titania, silica, alumina, zinc oxide, magnesium oxide, zirconia, yttria, calcium fluoride, magnesium fluoride, niobium pentoxide, barium titanate, tantalum pentoxide, Particles such as barium sulfate or glass may be mentioned.

ただし、発光モジュール10の構成は、上記に限定されない。例えば、発光モジュール10には、発光装置12が複数配置されてもよい。この場合、樹脂部材13は、各発光装置12を囲むように配置されてもよい。また、発光モジュール10は、発光装置12と樹脂部材13を備え、配線基板11を備えなくてもよい。 However, the configuration of the light emitting module 10 is not limited to the above. For example, a plurality of light emitting devices 12 may be arranged in the light emitting module 10. In this case, the resin member 13 may be arranged so as to surround each light emitting device 12. Further, the light emitting module 10 includes the light emitting device 12 and the resin member 13, and does not need to include the wiring board 11.

次に、本実施形態に係る発光装置12を含む発光モジュール10の製造方法の一例を説明する。
図3は、本実施形態に係る発光モジュール10の製造方法を示すフローチャートである。
図4A~図7Cは、本実施形態に係る発光モジュール10の製造方法を説明するための断面図である。
Next, an example of a method for manufacturing the light emitting module 10 including the light emitting device 12 according to this embodiment will be described.
FIG. 3 is a flowchart showing a method for manufacturing the light emitting module 10 according to this embodiment.
4A to 7C are cross-sectional views for explaining the method of manufacturing the light emitting module 10 according to this embodiment.

図3に示すように、本実施形態に係る発光装置12の製造方法は、複数の発光素子120を準備する工程S11と、複数の発光素子120をシート部材920に配置する工程S12と、基板910を半導体構造体121から除去する工程S13と、第1部材130および第2部材140を準備する工程S14と、第1部材130を複数の発光素子120の第1面121s1に接触させる工程S15と、第1部材を硬化する工程S16と、シート部材920を複数の発光素子120から除去する工程S17と、複数の発光装置12に分離する工程S18と、を備える。以下、各工程S11~S18について詳述する。 As shown in FIG. 3, the method for manufacturing the light emitting device 12 according to the present embodiment includes a step S11 of preparing a plurality of light emitting elements 120, a step S12 of arranging the plurality of light emitting elements 120 on a sheet member 920, and a step S12 of preparing a plurality of light emitting elements 120 on a sheet member 920. a step S13 of removing from the semiconductor structure 121, a step S14 of preparing the first member 130 and the second member 140, and a step S15 of bringing the first member 130 into contact with the first surface 121s1 of the plurality of light emitting elements 120, The method includes a step S16 of curing the first member, a step S17 of removing the sheet member 920 from the plurality of light emitting elements 120, and a step S18 of separating the sheet member 920 into a plurality of light emitting devices 12. Each step S11 to S18 will be described in detail below.

先ず、複数の発光素子120を準備する工程S11を行う。
具体的には、図4Aに示すように、表面に複数の凸部911を有する基板910上に半導体構造体121をエピタキシャル成長させる。この際、n側半導体層126、活性層127、およびp側半導体層128が、この順で形成される。半導体構造体121において、基板910と対向する面が第1面121s1である。
First, step S11 of preparing a plurality of light emitting elements 120 is performed.
Specifically, as shown in FIG. 4A, a semiconductor structure 121 is epitaxially grown on a substrate 910 having a plurality of convex portions 911 on the surface. At this time, the n-side semiconductor layer 126, the active layer 127, and the p-side semiconductor layer 128 are formed in this order. In the semiconductor structure 121, the surface facing the substrate 910 is the first surface 121s1.

基板910は、例えばサファイア基板等の透光性を有する基板である。複数の凸部911は、千鳥状に配列される。また、各凸部911の形状は、略円錐形状である。また、基板910の表面において複数の凸部911の間の領域912は、X-Y平面に概ね平行な領域である。そのため、第1面121s1は、複数の凸部911に対応して複数の凹部121aを有する。また、第1面121s1の複数の凹部121aの間の領域121bは、基板910の複数の凸部911の間の領域912に対応してX-Y平面に概ね平行な領域となる。ただし、複数の凸部の配列パターンは上記に限定されない。例えば、複数の凸部は行列状に配列されてもよい。また、各凸部の形状は、上記の形状に特に限定されない。例えば各凸部の形状は、錐台形状、円錐形状、多角錐形状、半球状等であってもよい。 The substrate 910 is a light-transmitting substrate such as a sapphire substrate, for example. The plurality of convex portions 911 are arranged in a staggered manner. Further, each convex portion 911 has a substantially conical shape. Further, a region 912 between the plurality of convex portions 911 on the surface of the substrate 910 is a region approximately parallel to the XY plane. Therefore, the first surface 121s1 has a plurality of recesses 121a corresponding to the plurality of convex parts 911. Further, the region 121b between the plurality of concave portions 121a on the first surface 121s1 corresponds to the region 912 between the plurality of convex portions 911 on the substrate 910, and is a region generally parallel to the XY plane. However, the arrangement pattern of the plurality of convex portions is not limited to the above. For example, the plurality of convex portions may be arranged in a matrix. Further, the shape of each convex portion is not particularly limited to the above shape. For example, the shape of each convex portion may be a truncated pyramid, a cone, a polygonal pyramid, a hemisphere, or the like.

次に、半導体構造体121の一部をエッチングし、活性層127およびp側半導体層128から、n側半導体層126の外周領域126aおよび複数のコンタクト領域126cを露出させる。 Next, a portion of the semiconductor structure 121 is etched to expose the outer peripheral region 126a of the n-side semiconductor layer 126 and the plurality of contact regions 126c from the active layer 127 and the p-side semiconductor layer 128.

次に、光反射性電極122をp側半導体層128上に形成する。次に、絶縁膜123を半導体構造体121を覆うように形成する。次に、絶縁膜123上に位置しn側半導体層126と電気的に接続されるn側電極124および絶縁膜123上に位置しp側半導体層128と電気的に接続されるp側電極125を形成する。次に、発光素子120となる領域の間に位置する半導体構造体121を除去し、基板910を露出させることで複数の発光素子120に分離する。以上により、複数の発光素子120が得られる。なお、複数の発光素子120を準備する工程の順序は、上記に特に限定されない。 Next, a light reflective electrode 122 is formed on the p-side semiconductor layer 128. Next, an insulating film 123 is formed to cover the semiconductor structure 121. Next, an n-side electrode 124 located on the insulating film 123 and electrically connected to the n-side semiconductor layer 126 and a p-side electrode 125 located on the insulating film 123 and electrically connected to the p-side semiconductor layer 128. form. Next, the semiconductor structure 121 located between the regions that will become the light emitting elements 120 is removed to expose the substrate 910, thereby separating into a plurality of light emitting elements 120. Through the above steps, a plurality of light emitting elements 120 are obtained. Note that the order of the steps for preparing the plurality of light emitting elements 120 is not particularly limited to the above.

次に、複数の発光素子120をシート部材920に配置する工程S12を行う。
具体的には、図4Bに示すように、各発光素子120の第2面121s2と、粘着性を有するシート部材920とを対向させて、各発光素子120の側面121s3がシート部材920に覆われるように、複数の発光素子120をシート部材920に配置する。この際、複数の発光素子120は、シート部材920中に埋没し、基板910は、シート部材920に接触してもよい。
Next, step S12 of arranging a plurality of light emitting elements 120 on the sheet member 920 is performed.
Specifically, as shown in FIG. 4B, the second surface 121s2 of each light emitting element 120 and the adhesive sheet member 920 are made to face each other, and the side surface 121s3 of each light emitting element 120 is covered with the sheet member 920. A plurality of light emitting elements 120 are arranged on the sheet member 920 as shown in FIG. At this time, the plurality of light emitting elements 120 may be buried in the sheet member 920, and the substrate 910 may be in contact with the sheet member 920.

シート部材920には、ポリイミド等の耐熱性および粘着性を有する材料を用いることができる。 For the sheet member 920, a material having heat resistance and adhesiveness such as polyimide can be used.

次に、図4Cに示すように、基板910を半導体構造体121から除去する工程S13を行う。半導体構造体121から基板910を除去する方法としては、例えば、基板910側から半導体構造体121と基板910との界面の近傍において集光するようにレーザを照射して、半導体構造体121から基板910を除去するレーザーリフトオフ(LLO)等の方法が挙げられる。これにより、半導体構造体121の第1面121s1が露出する。このように、基板910から露出された半導体構造体121の表面が第1面121s1である。なお、第1面121s1を塩酸等により洗浄してもよい。また、第1面121s1をウェットエッチングにより粗面化してもよい。第1面121s1を粗面化することで光取り出し効率を向上することできる。 Next, as shown in FIG. 4C, step S13 of removing the substrate 910 from the semiconductor structure 121 is performed. As a method for removing the substrate 910 from the semiconductor structure 121, for example, a laser beam is irradiated from the substrate 910 side so as to be focused near the interface between the semiconductor structure 121 and the substrate 910, and the substrate 910 is removed from the semiconductor structure 121. Examples of methods include laser lift-off (LLO) for removing 910. This exposes the first surface 121s1 of the semiconductor structure 121. In this way, the surface of the semiconductor structure 121 exposed from the substrate 910 is the first surface 121s1. Note that the first surface 121s1 may be cleaned with hydrochloric acid or the like. Further, the first surface 121s1 may be roughened by wet etching. Light extraction efficiency can be improved by roughening the first surface 121s1.

次に、第1部材130および第2部材140を準備する工程S14を行う。具体的には、図5Aに示すように、透光性を有する未硬化の樹脂部材131を含む第1部材130上に、波長変換物質を含み、未硬化の樹脂部材131の硬度より高い硬度を有する第2部材140を配置する。本実施形態では、未硬化の樹脂部材131中に、波長変換物質132が配置される。第2部材140の硬度は、例えば、ビッカース硬さにおいて、10GPa以上20GPa以下である。ここで、「未硬化」とは、硬化反応が進行する前の状態、即ち、硬化反応を進行させるための操作を行う前の状態をいう。硬化反応を進行させるための操作とは、加熱または光照射等が挙げられる。なお、硬化反応を進行させるための操作前に、硬化反応はわずかに進行する場合があるが、未硬化の状態は、そのような状態も包含する。 Next, step S14 of preparing the first member 130 and the second member 140 is performed. Specifically, as shown in FIG. 5A, a first member 130 including an uncured resin member 131 having translucency is coated with a wavelength converting substance and having a hardness higher than that of the uncured resin member 131. A second member 140 having the following structure is disposed. In this embodiment, a wavelength conversion substance 132 is placed in an uncured resin member 131 . The hardness of the second member 140 is, for example, 10 GPa or more and 20 GPa or less in terms of Vickers hardness. Here, "uncured" refers to a state before a curing reaction proceeds, that is, a state before an operation for advancing a curing reaction is performed. Operations for advancing the curing reaction include heating, light irradiation, and the like. In addition, although the curing reaction may progress slightly before the operation for advancing the curing reaction, the uncured state also includes such a state.

次に、図5Aおよび図5Bに示すように、第1部材130を複数の発光素子120の第1面121s1に接触させる工程S15を行う。具体的には、第1部材130が、複数の凹部121a内に配置され、かつ、シート部材920と第2部材140との間に配置されるように、第1部材130を複数の発光素子120の第1面121s1に接触させる。この際、複数の凹部121aの間の領域121bと第2部材140との間には、第1部材130を介在させる。 Next, as shown in FIGS. 5A and 5B, step S15 of bringing the first member 130 into contact with the first surface 121s1 of the plurality of light emitting elements 120 is performed. Specifically, the first member 130 is placed between the plurality of light emitting elements 120 such that the first member 130 is disposed within the plurality of recesses 121a and between the sheet member 920 and the second member 140. is brought into contact with the first surface 121s1 of. At this time, the first member 130 is interposed between the second member 140 and the region 121b between the plurality of recesses 121a.

また、この際、第1部材130を加熱した状態で第1面121s1に接触させる。例えば、第1部材130を第1面121s1に接触させて第1部材130を第1面121s1に押し付ける。これにより、第1部材130が流動し易くなり、各凹部121a内に第1部材130を配置し易くなる。例えば、各部材をホットプレート上に配置し加熱することで第1部材130を加熱した状態とし荷重を印加する。加熱時の温度は、例えば、150℃以上200℃以下とすることできる。印加する荷重は、例えば、70N以上150N以下とすることできる。なお、第1部材130および第2部材140を準備する工程S14は、接触させる工程S15よりも前に行えばよく、基板910を半導体構造体121から除去する工程S13の後に行う必要はない。 Moreover, at this time, the first member 130 is brought into contact with the first surface 121s1 in a heated state. For example, the first member 130 is brought into contact with the first surface 121s1 and the first member 130 is pressed against the first surface 121s1. This makes it easier for the first member 130 to flow, making it easier to arrange the first member 130 in each recess 121a. For example, by placing each member on a hot plate and heating it, the first member 130 is brought into a heated state and a load is applied. The temperature during heating can be, for example, 150°C or more and 200°C or less. The applied load can be, for example, 70N or more and 150N or less. Note that the step S14 of preparing the first member 130 and the second member 140 may be performed before the contacting step S15, and does not need to be performed after the step S13 of removing the substrate 910 from the semiconductor structure 121.

次に、第1部材130を硬化する工程S16を行う。硬化後の第1部材130の硬度は、例えば、ビッカース硬さにおいて、0.5GPa以上2GPa以下である。
次に、図6Aに示すように、シート部材920を複数の発光素子120から除去する工程S17を行う。
Next, step S16 of curing the first member 130 is performed. The hardness of the first member 130 after curing is, for example, 0.5 GPa or more and 2 GPa or less in terms of Vickers hardness.
Next, as shown in FIG. 6A, step S17 of removing the sheet member 920 from the plurality of light emitting elements 120 is performed.

ここで、参考例の製造方法について図8を参照して説明する。
図8は、参考例に係る発光モジュールの製造方法を説明するための断面図である。参考例では、複数の発光素子120がシート部材920ではなく、支持基板930上に配置された複数の発光素子120に第1部材130を接触させる。
Here, a manufacturing method of a reference example will be described with reference to FIG. 8.
FIG. 8 is a cross-sectional view for explaining a method of manufacturing a light emitting module according to a reference example. In the reference example, the first member 130 is brought into contact with a plurality of light emitting elements 120 arranged on a support substrate 930 instead of a sheet member 920 .

図8に示すように、複数の発光素子120がシート部材920ではなく支持基板930上に配置される場合、各発光素子120の側面121s3は、支持基板930から露出する。この状態で第2部材140を複数の発光素子120に接触させた場合、各発光素子120と第2部材140との間から第1部材130の一部が押し出され、側面121s3に接触する。このような場合、押し出された第1部材130が、発光素子120の側面121s3を流れて支持基板930に付着する可能性がある。第1部材130が支持基板930に付着した状態で第1部材130が硬化した場合、第1部材130が支持基板930に固着され、複数の発光素子120から支持基板930を剥離等により除去することが難しくなる。また、支持基板930を複数の発光素子120から無理に除去させようとした場合、複数の発光素子120および第2部材140が破損する可能性がある。 As shown in FIG. 8, when the plurality of light emitting elements 120 are arranged on the support substrate 930 instead of the sheet member 920, the side surface 121s3 of each light emitting element 120 is exposed from the support substrate 930. When the second member 140 is brought into contact with the plurality of light emitting elements 120 in this state, a part of the first member 130 is pushed out from between each light emitting element 120 and the second member 140 and comes into contact with the side surface 121s3. In such a case, the extruded first member 130 may flow along the side surface 121s3 of the light emitting element 120 and adhere to the support substrate 930. When the first member 130 is cured with the first member 130 attached to the support substrate 930, the first member 130 is fixed to the support substrate 930, and the support substrate 930 can be removed from the plurality of light emitting elements 120 by peeling or the like. becomes difficult. Further, if the supporting substrate 930 is forcibly removed from the plurality of light emitting elements 120, the plurality of light emitting elements 120 and the second member 140 may be damaged.

これに対して、本実施形態では、図5Bに示すように、シート部材920に複数の発光素子120が配置され、シート部材920は、複数の発光素子120の側面121s3を覆う。そのため、第2部材140を複数の発光素子120に接触させた際に押し出された第1部材130の一部は、半導体構造体121の側面121s3を流れずに、第2部材140の側面に回り込む。すなわち、第1部材130において押し出された部分は、第2部材140の側面の少なくとも一部を覆う。このように、第1部材130が半導体構造体121の側面121s3に付着することを低減できる。これにより、シート部材920を複数の発光素子120から剥離等により容易に除去できる。その結果、シート部材920を除去する際に複数の発光素子120および第2部材140が破損することを低減できる。また、シート部材920は、可撓性を有することが好ましい。これにより、シート部材920を複数の発光素子120から容易に除去できる。 In contrast, in this embodiment, as shown in FIG. 5B, a plurality of light emitting elements 120 are arranged on a sheet member 920, and the sheet member 920 covers side surfaces 121s3 of the plurality of light emitting elements 120. Therefore, a part of the first member 130 pushed out when the second member 140 is brought into contact with the plurality of light emitting elements 120 does not flow through the side surface 121s3 of the semiconductor structure 121, but instead wraps around the side surface of the second member 140. . That is, the extruded portion of the first member 130 covers at least a portion of the side surface of the second member 140. In this way, the first member 130 can be prevented from adhering to the side surface 121s3 of the semiconductor structure 121. Thereby, the sheet member 920 can be easily removed from the plurality of light emitting elements 120 by peeling or the like. As a result, damage to the plurality of light emitting elements 120 and the second member 140 when removing the sheet member 920 can be reduced. Moreover, it is preferable that the sheet member 920 has flexibility. Thereby, the sheet member 920 can be easily removed from the plurality of light emitting elements 120.

次に、図6Bに示すように、複数の発光装置12に分離する工程S18を行う。具体的には、ダイシングソー等の切削機を用いて、上面視において複数の発光素子120の間に位置する第1部材130および第2部材140を除去する。これにより、発光素子120と、第1部材130と、第2部材140と、を含む複数の発光装置12が得られる。 Next, as shown in FIG. 6B, step S18 of separating into a plurality of light emitting devices 12 is performed. Specifically, the first member 130 and the second member 140 located between the plurality of light emitting elements 120 when viewed from above are removed using a cutting machine such as a dicing saw. Thereby, a plurality of light emitting devices 12 including the light emitting element 120, the first member 130, and the second member 140 are obtained.

工程S18の後、図3に示すように、複数の発光装置12を配線基板11上に配置する工程S21、樹脂部材13を形成する工程S22、および複数の発光モジュール10に分離する工程S23と、をさらに行ってもよい。以下各工程S21~S23について詳述する。 After step S18, as shown in FIG. 3, step S21 of arranging the plurality of light emitting devices 12 on the wiring board 11, step S22 of forming the resin member 13, and step S23 of separating into the plurality of light emitting modules 10, You may further do this. Each step S21 to S23 will be explained in detail below.

図7Aに示すように、複数の発光装置12を配線基板11上に配置する工程S21では、配線基板11と各発光素子120の第2面121s2が対向するように各発光装置12を配置する。配線基板11の一の配線と各発光素子120のn側電極124とを導電部材により接続する。また、配線基板11の他の配線と各発光素子120のp側電極125とを導電部材により接続する。これにより、各発光素子120が配線基板11にフリップチップ実装される。 As shown in FIG. 7A, in step S21 of arranging a plurality of light emitting devices 12 on the wiring board 11, each light emitting device 12 is arranged so that the wiring board 11 and the second surface 121s2 of each light emitting element 120 face each other. One wiring of the wiring board 11 and the n-side electrode 124 of each light emitting element 120 are connected by a conductive member. Further, other wiring on the wiring board 11 and the p-side electrode 125 of each light emitting element 120 are connected using a conductive member. As a result, each light emitting element 120 is flip-chip mounted on the wiring board 11.

なお、図9に示すように、第1部材130の側面と、第2部材140の側面とに反射部材150を形成してもよい。図9は、本実施形態の変形例に係る発光モジュールの製造方法を説明するための断面図である。反射部材150は、第1部材130及び第2部材140からの光を反射させるための部材である。反射部材150には、例えば、アルミニウム、ニッケル、チタン、もしくは白金、またはこれらの金属を主成分とする合金等を用いることができる。また、反射部材150には、複数の誘電体層を含む誘電体多層膜を用いてもよい。このような反射部材150を形成する場合、樹脂部材13を形成する工程は行わなくてもよい。 Note that, as shown in FIG. 9, a reflective member 150 may be formed on the side surface of the first member 130 and the side surface of the second member 140. FIG. 9 is a cross-sectional view for explaining a method of manufacturing a light emitting module according to a modification of this embodiment. The reflecting member 150 is a member for reflecting light from the first member 130 and the second member 140. The reflective member 150 can be made of, for example, aluminum, nickel, titanium, platinum, or an alloy containing these metals as main components. Moreover, a dielectric multilayer film including a plurality of dielectric layers may be used for the reflective member 150. When forming such a reflective member 150, the step of forming the resin member 13 may not be performed.

次に、図7Bに示すように、樹脂部材13を形成する工程S22を行う。具体的には、発光素子120の側面121s3と、第1部材130の側面および下面において発光素子120から露出する領域と、第2部材140の側面と、を覆う光反射性を有する樹脂部材13を形成する。例えば、樹脂部材13を形成する工程S22において、第2部材140の上面を覆うように樹脂材料を形成した後、樹脂材料の一部を除去し第2部材140の上面を樹脂材料から露出させることで樹脂部材13を形成する。接触させる工程S15において、第1部材130が発光素子120の側面121s3に付着することを低減することで、樹脂部材13を発光素子120の側面121s3を覆うように形成できる。また、樹脂部材13は、波長変換物質の焼結体である第2部材140だけでなく樹脂部材131を含む第1部材130にも接続される。そのため、樹脂部材13と発光装置12の接合強度を高めることができる。 Next, as shown in FIG. 7B, step S22 of forming the resin member 13 is performed. Specifically, a resin member 13 having light reflectivity is used to cover the side surface 121s3 of the light emitting element 120, the regions exposed from the light emitting element 120 on the side and lower surfaces of the first member 130, and the side surface of the second member 140. Form. For example, in step S22 of forming the resin member 13, a resin material is formed to cover the upper surface of the second member 140, and then a portion of the resin material is removed to expose the upper surface of the second member 140 from the resin material. The resin member 13 is formed. In the contacting step S15, by reducing adhesion of the first member 130 to the side surface 121s3 of the light emitting element 120, the resin member 13 can be formed to cover the side surface 121s3 of the light emitting element 120. Further, the resin member 13 is connected not only to the second member 140 which is a sintered body of a wavelength conversion substance but also to the first member 130 including the resin member 131. Therefore, the bonding strength between the resin member 13 and the light emitting device 12 can be increased.

次に、図7Cに示すように、複数の発光モジュールに分離する工程S23を行う。具体的には、ダイシングソー等の切削機を用いて、上面視において複数の発光装置12の間に位置する樹脂部材13および配線基板11を除去する。これにより、配線基板11と、発光装置12と、樹脂部材13と、を含む複数の発光モジュール10が得られる。ただし、工程S23を行わずに、図7Bに示す配線基板11と、複数の発光装置12と、樹脂部材13とを含むモジュールを発光モジュール10としてもよい。また、工程S21において、配線基板11ではなく配線が配置されていない支持基板上に複数の発光装置12を配置し、樹脂部材13を形成する工程S22の後に、この支持基板を複数の発光装置12から除去してもよい。 Next, as shown in FIG. 7C, a step S23 of separating into a plurality of light emitting modules is performed. Specifically, using a cutting machine such as a dicing saw, the resin member 13 and the wiring board 11 located between the plurality of light emitting devices 12 when viewed from above are removed. Thereby, a plurality of light emitting modules 10 including the wiring board 11, the light emitting device 12, and the resin member 13 are obtained. However, the module including the wiring board 11, the plurality of light emitting devices 12, and the resin member 13 shown in FIG. 7B may be used as the light emitting module 10 without performing step S23. Further, in step S21, a plurality of light emitting devices 12 are arranged on a support substrate on which no wiring is arranged instead of the wiring board 11, and after step S22 of forming a resin member 13, this support substrate is placed on a support substrate on which a plurality of light emitting devices 12 are arranged. It may be removed from

次に、発光モジュール10の使用例を説明する。
配線基板11を介して発光素子120のn側電極124とp側電極125との間に電圧を印加することにより、活性層127が発光する。活性層127が発する光の大部分は、第2部材140に入射する。これにより、第2部材140が発光する。本実施形態では、第1部材130が波長変換物質132を含むため、第1部材130の波長変換物質132も発光する。
Next, an example of how the light emitting module 10 is used will be described.
By applying a voltage between the n-side electrode 124 and the p-side electrode 125 of the light emitting element 120 via the wiring board 11, the active layer 127 emits light. Most of the light emitted by the active layer 127 is incident on the second member 140. This causes the second member 140 to emit light. In this embodiment, since the first member 130 includes the wavelength converting material 132, the wavelength converting material 132 of the first member 130 also emits light.

次に、本実施形態の効果について説明する。
本実施形態に係る発光装置12の製造方法は、複数の発光素子120を準備する工程S11と、複数の発光素子120をシート部材920に配置する工程S12と、第1部材130を複数の発光素子120の第1面121s1に接触させる工程S15と、第1部材130を硬化する工程S16と、シート部材920を複数の発光素子120から除去する工程S17と、を備える。工程S1では、複数の凹部121aを有する第1面121s1と、第1面121s1の反対側に位置する第2面121s2と、第1面121s1と第2面121s2とを接続する側面121s3と、を有する半導体構造体121を含む複数の発光素子120を準備する。工程S12では、各発光素子120の第2面121s2と、粘着性を有するシート部材920とを対向させて、各発光素子120の側面121s3がシート部材920に覆われるように、複数の発光素子120をシート部材920に配置する。工程S15では、透光性を有する未硬化の樹脂部材131を含む第1部材130上に、波長変換物質を含み、未硬化の樹脂部材131の硬度より高い硬度を有する第2部材140が配置された状態で、第1部材130が、複数の凹部121a内に配置され、かつ、シート部材920と第2部材140との間に配置されるように、第1部材130を複数の発光素子120の第1面121s1に接触させる。
Next, the effects of this embodiment will be explained.
The method for manufacturing the light emitting device 12 according to the present embodiment includes a step S11 of preparing a plurality of light emitting elements 120, a step S12 of arranging the plurality of light emitting elements 120 on a sheet member 920, and a step S12 of preparing a plurality of light emitting elements 120, and a step S12 of disposing a plurality of light emitting elements 120 on a sheet member 920. 120, a step S16 of curing the first member 130, and a step S17 of removing the sheet member 920 from the plurality of light emitting elements 120. In step S1, a first surface 121s1 having a plurality of recesses 121a, a second surface 121s2 located on the opposite side of the first surface 121s1, and a side surface 121s3 connecting the first surface 121s1 and the second surface 121s2 are formed. A plurality of light emitting elements 120 including semiconductor structures 121 having the same structure as shown in FIG. In step S12, the plurality of light emitting elements 120 are arranged such that the second surface 121s2 of each light emitting element 120 faces the adhesive sheet member 920, and the side surface 121s3 of each light emitting element 120 is covered with the sheet member 920. are arranged on the sheet member 920. In step S15, a second member 140 containing a wavelength conversion substance and having a hardness higher than that of the uncured resin member 131 is placed on the first member 130 containing the uncured resin member 131 having translucency. In this state, the first member 130 is placed between the plurality of light emitting elements 120 such that the first member 130 is placed in the plurality of recesses 121a and between the sheet member 920 and the second member 140. It is brought into contact with the first surface 121s1.

このように本実施形態に係る発光装置12の製造方法においては、発光素子120と第2部材140との間に、半導体構造体121のエピタキシャル成長に用いる基板910が配置されておらず、発光素子120の半導体構造体121と第2部材140を第1部材130により接続する。そのため、発光装置12の光の取り出し効率を向上できる。 As described above, in the method for manufacturing the light emitting device 12 according to the present embodiment, the substrate 910 used for epitaxial growth of the semiconductor structure 121 is not disposed between the light emitting element 120 and the second member 140, and the light emitting element 120 The semiconductor structure 121 and the second member 140 are connected by the first member 130. Therefore, the light extraction efficiency of the light emitting device 12 can be improved.

また、第1面121s1に複数の凹部121aを配置される。そのため、活性層127が発する光が第1面121s1において全反射することを低減できる。これにより、活性層127が発する光が第2部材140に入射し易くなり、発光装置12の光の取り出し効率を向上できる。 Further, a plurality of recesses 121a are arranged on the first surface 121s1. Therefore, total reflection of the light emitted by the active layer 127 at the first surface 121s1 can be reduced. Thereby, the light emitted by the active layer 127 can easily enter the second member 140, and the light extraction efficiency of the light emitting device 12 can be improved.

また、シート部材920により各発光素子120の側面121s3を覆った状態で、第1部材130を複数の発光素子120に接触させる。そのため、各発光素子120の側面121s3に第1部材130が付着することを低減できる。これにより、シート部材920を容易に除去できる。その結果、シート部材920を除去する際に第2部材140が破損することを低減し、歩留まりを向上できる。 Further, the first member 130 is brought into contact with the plurality of light emitting elements 120 while the side surface 121s3 of each light emitting element 120 is covered with the sheet member 920. Therefore, attachment of the first member 130 to the side surface 121s3 of each light emitting element 120 can be reduced. Thereby, the sheet member 920 can be easily removed. As a result, damage to the second member 140 when removing the sheet member 920 can be reduced, and yield can be improved.

また、準備する工程S11において、表面に複数の凸部911を有する基板910上に、半導体構造体121をエピタキシャル成長させる。接触させる工程S15の前に、基板910を半導体構造体121から除去する工程S13をさらに備える。基板910を半導体構造体121から除去する工程S13において、基板910から露出された半導体構造体121の表面が第1面121s1であり、第1面121s1の複数の凹部121aの形状は、複数の凸部911に対応した形状である。そのため、基板910の除去後に、半導体構造体121の表面に複数の凹部121aを形成するための加工を行う必要がなく、工程を簡略化することができる。 Further, in the preparation step S11, the semiconductor structure 121 is epitaxially grown on the substrate 910 having a plurality of convex portions 911 on the surface. The method further includes a step S13 of removing the substrate 910 from the semiconductor structure 121 before the contacting step S15. In step S13 of removing the substrate 910 from the semiconductor structure 121, the surface of the semiconductor structure 121 exposed from the substrate 910 is the first surface 121s1, and the shape of the plurality of recesses 121a of the first surface 121s1 is a plurality of convex portions. The shape corresponds to the portion 911. Therefore, after removing the substrate 910, there is no need to perform processing to form a plurality of recesses 121a on the surface of the semiconductor structure 121, and the process can be simplified.

また、第1面121s1は、複数の凹部121aの間に位置する領域121bを含む。接触させる工程S15において、第2部材140と領域121bとの間に第1部材130が介在するように、第1部材130を第1面121s1に接触させる。そのため、第1部材130を介して発光素子120を第2部材140に強固に固着できる。 Further, the first surface 121s1 includes a region 121b located between the plurality of recesses 121a. In the contacting step S15, the first member 130 is brought into contact with the first surface 121s1 so that the first member 130 is interposed between the second member 140 and the region 121b. Therefore, the light emitting element 120 can be firmly fixed to the second member 140 via the first member 130.

また、第2部材140は、波長変換物質の焼結体である。そのため、第2部材140が樹脂部材と、樹脂部材中に配置される波長変換物質と、により構成される場合と比較して、第2部材140の硬度を高くできる。これにより、接触させる工程S15やシート部材920を複数の発光素子120から除去する工程S17において第2部材140が変形することを低減できる。 Further, the second member 140 is a sintered body of a wavelength conversion material. Therefore, the hardness of the second member 140 can be increased compared to the case where the second member 140 is composed of a resin member and a wavelength conversion substance disposed in the resin member. This can reduce deformation of the second member 140 in the contacting step S15 and the step S17 of removing the sheet member 920 from the plurality of light emitting elements 120.

また、接触させる工程S15において、第1部材130を加熱した状態で第1面121s1に接触させる。これにより、第1部材130の流動性を高め、第1部材130を半導体構造体121の各凹部121a内に配置し易くなる。 Further, in the contacting step S15, the first member 130 is brought into contact with the first surface 121s1 in a heated state. This increases the fluidity of the first member 130 and makes it easier to arrange the first member 130 in each recess 121a of the semiconductor structure 121.

また、第1部材130は、波長変換物質132を含む。これにより、第2部材140のみに波長変換物質が含まれている場合と比較して、波長変換物質による光変換効率を向上できる。 Further, the first member 130 includes a wavelength conversion material 132. Thereby, compared to the case where only the second member 140 contains the wavelength conversion substance, the light conversion efficiency by the wavelength conversion substance can be improved.

また、第1部材130を硬化する工程S16の後に、上面視において複数の発光素子120の間に位置する第1部材130および第2部材140を除去することで複数の発光装置12に分離する工程S18をさらに備える。このように、複数の発光素子120を第1部材130を介して第2部材140に接続した後に、複数の発光装置12に分離することで、発光装置12を歩留まり良く製造することができる。 Further, after the step S16 of curing the first member 130, a step of separating into a plurality of light emitting devices 12 by removing the first member 130 and the second member 140 located between the plurality of light emitting elements 120 in a top view It further includes S18. In this way, by connecting the plurality of light emitting elements 120 to the second member 140 via the first member 130 and then separating them into the plurality of light emitting devices 12, the light emitting devices 12 can be manufactured with a high yield.

また、複数の発光装置12に分離する工程S18の後に、発光素子120の側面121s3、第1部材130の側面、および第2部材140の側面を覆う光反射性を有する樹脂部材13を形成する工程S19をさらに備える。そのため、各発光素子120の側面121s3に向かう光は、樹脂部材13によって反射され、第2部材140に向かう。これにより、発光装置12の光の取り出し効率を向上できる。また、樹脂部材13は、波長変換物質の焼結体である第2部材140だけでなく樹脂部材131を含む第1部材130にも接続される。そのため、樹脂部材13と発光装置12との接合強度を高めることができる。 Further, after the step S18 of separating into a plurality of light emitting devices 12, a step of forming a resin member 13 having light reflectivity that covers the side surface 121s3 of the light emitting element 120, the side surface of the first member 130, and the side surface of the second member 140. It further includes S19. Therefore, the light directed toward the side surface 121s3 of each light emitting element 120 is reflected by the resin member 13 and directed toward the second member 140. Thereby, the light extraction efficiency of the light emitting device 12 can be improved. Further, the resin member 13 is connected not only to the second member 140 which is a sintered body of a wavelength conversion substance but also to the first member 130 including the resin member 131. Therefore, the bonding strength between the resin member 13 and the light emitting device 12 can be increased.

また、接触させる工程S15において、第1部材130を第2部材140の側面に接触させる。具体的には、接触させる工程S15においては、発光素子120の側面121s3がシート部材920によって覆われた状態で第2部材140を複数の発光素子120に接触させる。これにより、第1部材130を複数の凹部121a内に配置しつつ、発光素子120と第2部材140の間から第1部材130の一部が第2部材140の側面に接触するように押し出される。これにより、押し出された第1部材130の一部が、発光素子120の側面121s3に付着することを低減しつつ、第1部材130と第2部材140との接合強度を高めることができる。 Further, in the contacting step S15, the first member 130 is brought into contact with the side surface of the second member 140. Specifically, in the contacting step S15, the second member 140 is brought into contact with the plurality of light emitting elements 120 while the side surface 121s3 of the light emitting element 120 is covered with the sheet member 920. As a result, a part of the first member 130 is pushed out from between the light emitting element 120 and the second member 140 so as to come into contact with the side surface of the second member 140 while the first member 130 is placed in the plurality of recesses 121a. . Thereby, the bonding strength between the first member 130 and the second member 140 can be increased while reducing the adhesion of a part of the extruded first member 130 to the side surface 121s3 of the light emitting element 120.

<第2の実施形態>
次に、第2の実施形態について説明する。
図10は、本実施形態に係る発光モジュール20を示す断面図である。
なお、以下の説明においては、原則として、第1の実施形態との相違点のみを説明する。以下に説明する事項以外は、第1の実施形態と同様である。
<Second embodiment>
Next, a second embodiment will be described.
FIG. 10 is a sectional view showing the light emitting module 20 according to this embodiment.
Note that in the following description, in principle, only the differences from the first embodiment will be described. Other than the matters described below, this embodiment is the same as the first embodiment.

本実施形態に係る発光モジュール20は、発光装置22における第2部材140が、第1面121s1において複数の凹部121aの間の領域121bに接する点で、第1の実施形態に係る発光装置12と相違する。このような発光装置22は、第1の実施形態における接触させる工程S15において、第2部材140を第1面121s1に接するまで複数の発光素子120に接近させることで得ることができる。 The light emitting module 20 according to the present embodiment is different from the light emitting device 12 according to the first embodiment in that the second member 140 of the light emitting device 22 contacts the region 121b between the plurality of recesses 121a on the first surface 121s1. differ. Such a light emitting device 22 can be obtained by bringing the second member 140 close to the plurality of light emitting elements 120 until it contacts the first surface 121s1 in the contacting step S15 in the first embodiment.

次に、本実施形態の効果を説明する。
第1面121s1は、複数の凹部121aの間に位置する領域121bを含み、接触させる工程S15において、第2部材140が領域121bに接するように、第1部材130を第1面121s1に接触させる。そのため、X-Y平面上の位置によって第2部材140と発光素子120との距離がばらつくことを低減できる。また、第2部材140が領域121bに接することで、第2部材140と領域121bとの間に第1部材130が配置されている場合と比較して、第2部材140から半導体構造体121への放熱経路を確保し、放熱性を向上することができる。
Next, the effects of this embodiment will be explained.
The first surface 121s1 includes a region 121b located between the plurality of recesses 121a, and in the contacting step S15, the first member 130 is brought into contact with the first surface 121s1 so that the second member 140 is in contact with the region 121b. . Therefore, it is possible to reduce variations in the distance between the second member 140 and the light emitting element 120 depending on the position on the XY plane. Furthermore, since the second member 140 is in contact with the region 121b, the distance from the second member 140 to the semiconductor structure 121 is greater than in the case where the first member 130 is disposed between the second member 140 and the region 121b. It is possible to secure a heat dissipation path and improve heat dissipation performance.

実施形態は、以下の態様を含む。 Embodiments include the following aspects.

(付記1)
複数の凹部を有する第1面と、前記第1面の反対側に位置する第2面と、前記第1面と前記第2面とを接続する側面と、を有する半導体構造体を含む複数の発光素子を準備する工程と、
各前記発光素子の前記第2面と、粘着性を有するシート部材とを対向させて、各前記発光素子の前記側面が前記シート部材に覆われるように、前記複数の発光素子を前記シート部材に配置する工程と、
透光性を有する未硬化の樹脂部材を含む第1部材上に、波長変換物質を含み、未硬化の前記樹脂部材の硬度より高い硬度を有する第2部材が配置された状態で、前記第1部材が、前記複数の凹部内に配置され、かつ、前記シート部材と前記第2部材との間に配置されるように、前記第1部材を前記複数の発光素子の前記第1面に接触させる工程と、
前記第1部材を硬化する工程と、
前記シート部材を前記複数の発光素子から除去する工程と、
を備える、発光装置の製造方法。
(Additional note 1)
A plurality of semiconductor structures including a first surface having a plurality of recesses, a second surface located on the opposite side of the first surface, and a side surface connecting the first surface and the second surface. a step of preparing a light emitting element;
The plurality of light emitting elements are attached to the sheet member such that the second surface of each light emitting element faces the adhesive sheet member, and the side surface of each light emitting element is covered with the sheet member. The process of placing
A second member containing a wavelength conversion substance and having a hardness higher than that of the uncured resin member is disposed on the first member including an uncured resin member having translucency, and the first member Bringing the first member into contact with the first surface of the plurality of light emitting elements such that the member is disposed within the plurality of recesses and between the sheet member and the second member. process and
curing the first member;
removing the sheet member from the plurality of light emitting elements;
A method for manufacturing a light emitting device, comprising:

(付記2)
前記準備する工程において、表面に複数の凸部を有する基板上に、前記半導体構造体をエピタキシャル成長させ、
前記接触させる工程の前に、前記基板を前記半導体構造体から除去する工程をさらに備え、
前記基板を前記半導体構造体から除去する工程において、前記基板から露出された前記半導体構造体の表面が前記第1面であり、前記第1面の前記複数の凹部の形状は、前記複数の凸部に対応した形状である、付記1に記載の発光装置の製造方法。
(Additional note 2)
In the preparing step, epitaxially growing the semiconductor structure on a substrate having a plurality of convex portions on the surface;
Further comprising the step of removing the substrate from the semiconductor structure before the contacting step,
In the step of removing the substrate from the semiconductor structure, the surface of the semiconductor structure exposed from the substrate is the first surface, and the shape of the plurality of recesses on the first surface is the same as the shape of the plurality of convexities. The method for manufacturing the light emitting device according to Supplementary Note 1, wherein the light emitting device has a shape corresponding to the part.

(付記3)
前記第1面は、前記複数の凹部の間に位置する領域を含み、
前記接触させる工程において、前記第2部材と前記領域との間に前記第1部材が介在するように、前記第1部材を前記第1面に接触させる、付記1または2に記載の発光装置の製造方法。
(Additional note 3)
The first surface includes a region located between the plurality of recesses,
In the light emitting device according to Supplementary Note 1 or 2, in the contacting step, the first member is brought into contact with the first surface such that the first member is interposed between the second member and the region. Production method.

(付記4)
前記第1面は、前記複数の凹部の間に位置する領域を含み、
前記接触させる工程において、前記第2部材が前記領域に接するように、前記第1部材を前記第1面に接触させる、付記1または2に記載の発光装置の製造方法。
(Additional note 4)
The first surface includes a region located between the plurality of recesses,
The method for manufacturing a light emitting device according to appendix 1 or 2, wherein in the contacting step, the first member is brought into contact with the first surface so that the second member comes into contact with the region.

(付記5)
前記第2部材は、前記波長変換物質の焼結体である、付記1~4のいずれか1つに記載の発光装置の製造方法。
(Appendix 5)
The method for manufacturing a light emitting device according to any one of appendices 1 to 4, wherein the second member is a sintered body of the wavelength conversion substance.

(付記6)
前記接触させる工程において、前記第1部材を加熱した状態で前記第1面に押し付けて接触させる、付記1~5のいずれか1つに記載の発光装置の製造方法。
(Appendix 6)
The method for manufacturing a light emitting device according to any one of appendices 1 to 5, wherein in the contacting step, the first member is pressed against the first surface in a heated state and brought into contact.

(付記7)
前記第1部材は、波長変換物質を含む、付記1~6のいずれか1つに記載の発光装置の製造方法。
(Appendix 7)
The method for manufacturing a light emitting device according to any one of Supplementary Notes 1 to 6, wherein the first member includes a wavelength conversion substance.

(付記8)
前記第1部材を硬化する工程の後に、
上面視において前記複数の発光素子の間に位置する前記第1部材および前記第2部材を除去することで複数の発光装置に分離する工程をさらに備える、付記1~7のいずれか1つに記載の発光装置の製造方法。
(Appendix 8)
After the step of curing the first member,
According to any one of Supplementary Notes 1 to 7, further comprising the step of separating the first member and the second member located between the plurality of light emitting elements in a top view into a plurality of light emitting devices. A method for manufacturing a light emitting device.

(付記9)
前記複数の発光装置に分離する工程の後に、
前記発光素子の前記側面、前記第1部材の側面、および前記第2部材の側面を覆う光反射性を有する樹脂部材を形成する工程をさらに備える、付記8に記載の発光装置の製造方法。
(Appendix 9)
After the step of separating into the plurality of light emitting devices,
The method for manufacturing a light emitting device according to appendix 8, further comprising the step of forming a resin member having light reflectivity that covers the side surface of the light emitting element, the side surface of the first member, and the side surface of the second member.

(付記10)
前記接触させる工程において、前記第1部材を前記第2部材の側面に接触させる、付記1~9のいずれか1つに記載の発光装置の製造方法。
(Appendix 10)
The method for manufacturing a light emitting device according to any one of Supplementary Notes 1 to 9, wherein in the contacting step, the first member is brought into contact with a side surface of the second member.

10、20 :発光モジュール
11 :配線基板
12、22 :発光装置
13 :樹脂部材
120 :発光素子
121 :半導体構造体
121a :凹部
121b :領域
121s1 :第1面
121s2 :第2面
121s3 :側面
122 :光反射性電極
123 :絶縁膜
123a、123b:貫通穴
124 :n側電極
125 :p側電極
126 :n側半導体層
126a :外周領域
126b :被覆領域
126c :コンタクト領域
127 :活性層
128 :p側半導体層
130 :第1部材
131 :樹脂部材
132 :波長変換物質
140 :第2部材
141 :上面
142 :下面
150 :反射部材
910 :基板
911 :凸部
912 :領域
920 :シート部材
930 :支持基板
L1 :深さ
L2 :直径
10, 20: Light emitting module 11: Wiring board 12, 22: Light emitting device 13: Resin member 120: Light emitting element 121: Semiconductor structure 121a: Recess 121b: Region 121s1: First surface 121s2: Second surface 121s3: Side surface 122: Light reflective electrode 123: Insulating films 123a, 123b: Through hole 124: N-side electrode 125: P-side electrode 126: N-side semiconductor layer 126a: Peripheral region 126b: Covering region 126c: Contact region 127: Active layer 128: P-side Semiconductor layer 130: First member 131: Resin member 132: Wavelength conversion substance 140: Second member 141: Upper surface 142: Lower surface 150: Reflective member 910: Substrate 911: Convex portion 912: Region 920: Sheet member 930: Support substrate L1 :Depth L2 :Diameter

Claims (9)

基板上に位置し、複数の凹部を有する第1面と、前記第1面の反対側に位置する第2面と、前記第1面と前記第2面とを接続する側面と、を有する半導体構造体を含み、相互に離隔した複数の発光素子を準備する工程と、
前記複数の発光素子を準備する工程の後で、各前記発光素子の前記第2面と、粘着性を有するシート部材とを対向させて、各前記発光素子の前記側面が前記シート部材に覆われるように、前記複数の発光素子を前記シート部材に配置する工程と、
前記複数の発光素子を前記シート部材に配置する工程の後で、前記基板を前記半導体構造体から除去する工程と、
透光性を有する未硬化の樹脂部材を含む第1部材上に、波長変換物質を含み、前記波長変換物質の焼結体であり、未硬化の前記樹脂部材の硬度より高い硬度を有する第2部材が配置された状態で、前記第1部材が、前記複数の凹部内に配置され、かつ、前記シート部材と前記第2部材との間に配置されるように、前記第1部材を前記複数の発光素子の前記第1面に接触させる工程と、
前記第1部材を硬化する工程と、
前記シート部材を前記複数の発光素子から除去する工程と、
を備え、
前記複数の発光素子を前記シート部材に配置する工程において、前記シート部材は、前記複数の発光素子間において前記基板に接する、発光装置の製造方法。
A semiconductor having a first surface located on a substrate and having a plurality of recesses, a second surface located on the opposite side of the first surface, and a side surface connecting the first surface and the second surface. preparing a plurality of mutually spaced light emitting elements including a structure;
After the step of preparing the plurality of light emitting elements, the second surface of each light emitting element and a sheet member having adhesiveness are opposed to each other, and the side surface of each light emitting element is covered with the sheet member. , arranging the plurality of light emitting elements on the sheet member;
After the step of arranging the plurality of light emitting elements on the sheet member, removing the substrate from the semiconductor structure;
A second member containing a wavelength converting substance, which is a sintered body of the wavelength converting substance and has a hardness higher than the hardness of the uncured resin member, is placed on a first member including an uncured resin member having translucency. In the state where the members are arranged, the first member is placed in the plurality of recesses and between the sheet member and the second member. contacting the first surface of the light emitting element;
curing the first member;
removing the sheet member from the plurality of light emitting elements;
Equipped with
In the step of arranging the plurality of light emitting elements on the sheet member, the sheet member is in contact with the substrate between the plurality of light emitting elements.
前記準備する工程において、表面に複数の凸部を有する前記基板上に、前記半導体構造体をエピタキシャル成長させ、
前記基板を前記半導体構造体から除去する工程において、前記基板から露出された前記半導体構造体の表面が前記第1面であり、前記第1面の前記複数の凹部の形状は、前記複数の凸部に対応した形状である、請求項1に記載の発光装置の製造方法。
In the preparing step, epitaxially growing the semiconductor structure on the substrate having a plurality of convex portions on the surface;
In the step of removing the substrate from the semiconductor structure, the surface of the semiconductor structure exposed from the substrate is the first surface, and the shape of the plurality of recesses on the first surface is the same as the shape of the plurality of convexities. The method for manufacturing a light emitting device according to claim 1, wherein the light emitting device has a shape corresponding to the portion.
前記第1面は、前記複数の凹部の間に位置する領域を含み、
前記接触させる工程において、前記第2部材と前記領域との間に前記第1部材が介在するように、前記第1部材を前記第1面に接触させる、請求項1または2に記載の発光装置の製造方法。
The first surface includes a region located between the plurality of recesses,
The light emitting device according to claim 1 or 2, wherein in the contacting step, the first member is brought into contact with the first surface such that the first member is interposed between the second member and the region. manufacturing method.
前記第1面は、前記複数の凹部の間に位置する領域を含み、
前記接触させる工程において、前記第2部材が前記領域に接するように、前記第1部材を前記第1面に接触させる、請求項1または2に記載の発光装置の製造方法。
The first surface includes a region located between the plurality of recesses,
3. The method for manufacturing a light emitting device according to claim 1, wherein in the contacting step, the first member is brought into contact with the first surface so that the second member comes into contact with the region.
前記接触させる工程において、前記第1部材を加熱した状態で前記第1面に押し付けて接触させる、請求項1または2に記載の発光装置の製造方法。 3. The method for manufacturing a light emitting device according to claim 1, wherein in the contacting step, the first member is heated and pressed against the first surface. 前記第1部材は、波長変換物質を含む、請求項1または2に記載の発光装置の製造方法。 The method for manufacturing a light emitting device according to claim 1 or 2, wherein the first member includes a wavelength conversion substance. 前記第1部材を硬化する工程の後に、
上面視において前記複数の発光素子の間に位置する前記第1部材および前記第2部材を除去することで複数の発光装置に分離する工程をさらに備える、請求項1または2に記載の発光装置の製造方法。
After the step of curing the first member,
3. The light emitting device according to claim 1, further comprising the step of separating the plurality of light emitting devices by removing the first member and the second member located between the plurality of light emitting elements in a top view. Production method.
前記複数の発光装置に分離する工程の後に、
前記発光素子の前記側面、前記第1部材の側面、および前記第2部材の側面を覆う光反射性を有する樹脂部材を形成する工程をさらに備える、請求項に記載の発光装置の製造方法。
After the step of separating into the plurality of light emitting devices,
8. The method for manufacturing a light emitting device according to claim 7 , further comprising the step of forming a resin member having light reflectivity that covers the side surface of the light emitting element, the side surface of the first member, and the side surface of the second member.
前記接触させる工程において、前記第1部材を前記第2部材の側面に接触させる、請求項1または2に記載の発光装置の製造方法。 The method for manufacturing a light emitting device according to claim 1 or 2, wherein in the contacting step, the first member is brought into contact with a side surface of the second member.
JP2022094309A 2021-10-29 2022-06-10 Manufacturing method of light emitting device Active JP7432846B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/967,455 US20230134799A1 (en) 2021-10-29 2022-10-17 Method for manufacturing light-emitting device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021177467 2021-10-29
JP2021177467 2021-10-29

Publications (2)

Publication Number Publication Date
JP2023067723A JP2023067723A (en) 2023-05-16
JP7432846B2 true JP7432846B2 (en) 2024-02-19

Family

ID=86326108

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022094309A Active JP7432846B2 (en) 2021-10-29 2022-06-10 Manufacturing method of light emitting device

Country Status (1)

Country Link
JP (1) JP7432846B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003332184A (en) 2002-05-13 2003-11-21 Sony Corp Element transferring method
JP2012227470A (en) 2011-04-22 2012-11-15 Citizen Holdings Co Ltd Semiconductor light emitting device and manufacturing method of the same
JP2013232478A (en) 2012-04-27 2013-11-14 Toshiba Corp Semiconductor light-emitting device and method of manufacturing the same
JP2014139998A (en) 2013-01-21 2014-07-31 Toshiba Corp Semiconductor light-emitting device
US20160351764A1 (en) 2015-05-27 2016-12-01 Samsung Electronics Co., Ltd. Semiconductor light emitting device
JP2016207924A (en) 2015-04-27 2016-12-08 日亜化学工業株式会社 Light-emitting device and manufacturing method thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003332184A (en) 2002-05-13 2003-11-21 Sony Corp Element transferring method
JP2012227470A (en) 2011-04-22 2012-11-15 Citizen Holdings Co Ltd Semiconductor light emitting device and manufacturing method of the same
JP2013232478A (en) 2012-04-27 2013-11-14 Toshiba Corp Semiconductor light-emitting device and method of manufacturing the same
JP2014139998A (en) 2013-01-21 2014-07-31 Toshiba Corp Semiconductor light-emitting device
JP2016207924A (en) 2015-04-27 2016-12-08 日亜化学工業株式会社 Light-emitting device and manufacturing method thereof
US20160351764A1 (en) 2015-05-27 2016-12-01 Samsung Electronics Co., Ltd. Semiconductor light emitting device

Also Published As

Publication number Publication date
JP2023067723A (en) 2023-05-16

Similar Documents

Publication Publication Date Title
US9478722B2 (en) Light emitting device and method for manufacturing same
WO2013137356A1 (en) Semiconductor light emitting device and method for manufacturing same
US9041020B2 (en) Electrolytically coated optoelectronic semiconductor component and method for producing an optoelectronic semiconductor component
US10283685B2 (en) Light emitting device and method of fabricating the same
TWI517455B (en) Light emitting device
US9660148B2 (en) Method for manufacturing light emitting device, and light emitting device
JP2006245032A (en) Light emitting device and led lamp
US10886430B2 (en) Light-emitting device and method of manufacturing the same
JP6068175B2 (en) WIRING BOARD, LIGHT EMITTING DEVICE, WIRING BOARD MANUFACTURING METHOD, AND LIGHT EMITTING DEVICE MANUFACTURING METHOD
JP4590994B2 (en) Light emitting device and manufacturing method thereof
JP5893633B2 (en) Highly reflective coating on LED submount
US20240063348A1 (en) Method of manufacturing wavelength converting member and method of manufacturing light emitting device
US10651336B2 (en) Light-emitting device
KR20140123851A (en) Electronic device package and packaging substrate for the same
KR20130051206A (en) Light emitting module
JP7432846B2 (en) Manufacturing method of light emitting device
US20200127177A1 (en) Method for Producing an Optoelectronic Component, and Optoelectronic Component
JP7317831B2 (en) Method of manufacturing conversion element and conversion element
KR100856233B1 (en) High power light emitting device and fabrication method of the same
US20230134799A1 (en) Method for manufacturing light-emitting device
TWI565101B (en) Light emitting diode package and method for forming the same
US20160013375A1 (en) Light emitting device
JP5995579B2 (en) Semiconductor light emitting device and manufacturing method thereof
US20210265545A1 (en) Optoelectronic Component and Method for Producing an Optoelectronic Component
JP4987632B2 (en) Semiconductor device manufacturing method, submount manufacturing method, and electronic component

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230719

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230824

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231005

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240118

R151 Written notification of patent or utility model registration

Ref document number: 7432846

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151