JP7429846B2 - refrigerator - Google Patents

refrigerator Download PDF

Info

Publication number
JP7429846B2
JP7429846B2 JP2022066709A JP2022066709A JP7429846B2 JP 7429846 B2 JP7429846 B2 JP 7429846B2 JP 2022066709 A JP2022066709 A JP 2022066709A JP 2022066709 A JP2022066709 A JP 2022066709A JP 7429846 B2 JP7429846 B2 JP 7429846B2
Authority
JP
Japan
Prior art keywords
dew condensation
compartment
element cover
condensation sensor
refrigerator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2022066709A
Other languages
Japanese (ja)
Other versions
JP2022109257A (en
Inventor
健一 柿田
桂 南部
翔伍 河杉
剛樹 平井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2022066709A priority Critical patent/JP7429846B2/en
Publication of JP2022109257A publication Critical patent/JP2022109257A/en
Application granted granted Critical
Publication of JP7429846B2 publication Critical patent/JP7429846B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、未然に結露防止するために結露を事前に検知する結露センサーと、それを利用した冷蔵庫に関する。 The present invention relates to a dew condensation sensor that detects dew condensation in advance to prevent condensation, and a refrigerator using the same.

近年では、住宅の気密性が向上し快適な住居になってきた反面で、壁表面、天井面、押し入れなどでの結露の問題があり、結露を事前に予知することが求められている。 In recent years, houses have become more airtight and more comfortable, but there is a problem with condensation on walls, ceilings, closets, etc., and there is a need to predict condensation in advance.

また、断熱性能が向上した冷蔵庫でも、温湿度を検知してヒーター加熱で、本体表面や庫内壁面を結露防止する手段が採られている。しかしながら、野菜の保鮮性向上のため野菜収納ケースを密閉構造にして、高湿度で保存するとケース壁面が結露し、結露水の影響で野菜が水腐れするという不具合が発生する。 Refrigerators with improved insulation performance also detect temperature and humidity and heat the refrigerator with a heater to prevent condensation on the surface of the refrigerator and the walls inside the refrigerator. However, in order to improve the freshness of vegetables, if the vegetable storage case is made into a sealed structure and stored at high humidity, dew condensation will form on the case wall, causing problems such as the vegetables becoming rotten due to the influence of the condensed water.

このような結露を事前に検知するという課題に対し、検知するデバイスを周囲環境温度よりも低温化することにより、そのデバイスの露点温度を下げることで周囲よりも早く結露させて検知するものがある(例えば、特許文献1参照)。 To address the issue of detecting dew condensation in advance, there are devices that lower the dew point temperature of the device by lowering the temperature of the device being detected, thereby causing dew condensation to occur earlier than the surrounding environment. (For example, see Patent Document 1).

図11は特許文献1に記載された従来の結露センサーの側面図を示すものである。図11において、結露検出部1の櫛形電極間に水滴が付着すると抵抗値が変化することを利用するもので、検出面とは逆側に冷却パネル3が熱伝導良く密着し、さらに順に加熱パネル4、断熱材層5が密着しており、これらの部材で結露センサーを構成している。具体的な検知方法としては、結露を検知する場合には、冷却パネル3のみをペルチェ素子等のデバイスで冷却し、密着部2aを所定温度まで下げることで周囲よりも早く結露検出部1に結露させる。また結露検知を次回素早く行うために、結露後に加熱パネル4のみを面発熱ヒーター等のデバイスで加熱し、密着部2bを所定温度まで上げることで結露検知部1の乾燥を早くする。尚、この結露センサーを本体に取付ける場合に、本体側からの熱影響を排除するために、断熱材層5が設けられている。この様な構成と動作で、結露を事前に検知することになる。 FIG. 11 shows a side view of the conventional dew condensation sensor described in Patent Document 1. In FIG. 11, the method utilizes the fact that the resistance value changes when water droplets adhere between the comb-shaped electrodes of the dew condensation detection section 1.The cooling panel 3 is closely attached to the opposite side of the detection surface with good heat conduction, and then the heating panel 4. The heat insulating material layer 5 is in close contact with each other, and these members constitute a dew condensation sensor. As a specific detection method, when detecting dew condensation, only the cooling panel 3 is cooled with a device such as a Peltier element, and the contact area 2a is lowered to a predetermined temperature, so that dew condensation occurs on the dew condensation detection part 1 earlier than the surrounding area. let Further, in order to quickly detect dew condensation next time, after condensation, only the heating panel 4 is heated with a device such as a surface heating heater, and the contact portion 2b is raised to a predetermined temperature, thereby speeding up the drying of the dew condensation detection portion 1. Incidentally, when this dew condensation sensor is attached to the main body, a heat insulating material layer 5 is provided in order to eliminate the influence of heat from the main body side. With this configuration and operation, condensation can be detected in advance.

特開平4-54444号公報Japanese Patent Application Publication No. 4-54444

しかしながら、上記従来の構成では、結露検出部1が剥き出しのため結露センサーを本体に取り付ける場合に、傷付き発生の可能性がある。その対応として保護カバーを結露検知部1に取り付けることが考えられるが、気密性の良いカバーを取付けると、異常結露で検知検出部1に大きな水滴が付着すると、カバー内に水が溜まり排出できないという課題を有していた。 However, in the conventional configuration described above, since the dew condensation detection section 1 is exposed, there is a possibility of scratches when the dew condensation sensor is attached to the main body. A possible solution is to attach a protective cover to the condensation detection unit 1, but if a cover with good airtightness is attached, if large water droplets adhere to the detection unit 1 due to abnormal condensation, water will accumulate inside the cover and cannot be discharged. I had an issue.

本発明は、上記の課題を解決するもので、結露検出部の傷付き防止だけでなく、異常結露で結露検出部に水滴が過剰付着したとしても、保護カバーには水が溜まらない結露センサーを備えた冷蔵庫を提供することを目的とする。 The present invention solves the above-mentioned problems, and it not only prevents the condensation detection part from being damaged, but also provides a dew condensation sensor that does not collect water on the protective cover even if excessive water droplets adhere to the condensation detection part due to abnormal condensation. The purpose is to provide refrigerators with

上記従来の課題を解決するために、本発明の冷蔵庫は、収納室と、収納室に設けられた結露センサーとを備え、結露センサーは、配線基板上に設けた結露検知素子を少なくとも有し、結露検知素子を覆う素子カバーを設けるとともに素子カバー内に生成した結露水を通す貫通孔を素子カバーに設け、結露センサーは、収納室の背面に設けられ、貫通孔は、素子カバーの側面のうち収納室の底面と対向する側面であって、鉛直方向に設けられ、素子カバーの表面は親水処理されているものである。 In order to solve the above conventional problems, the refrigerator of the present invention includes a storage chamber and a dew condensation sensor provided in the storage chamber, and the dew condensation sensor has at least a dew condensation detection element provided on a wiring board, An element cover is provided to cover the dew condensation detection element, and a through hole is provided in the element cover to pass the condensed water generated inside the element cover. The element cover is a side surface facing the bottom surface of the storage chamber and is provided in the vertical direction , and the surface of the element cover is subjected to hydrophilic treatment .

これにより、結露検知素子の特に取付け作業時の傷付きが防止でき、素子カバー内に過剰な結露が発生してもカバー内からは排出されるので高精度な結露検知が可能となる。 This prevents the dew condensation detection element from being scratched, especially during installation work, and even if excessive condensation occurs within the element cover, it is discharged from within the cover, allowing highly accurate dew condensation detection.

本発明の冷蔵庫は、結露センサーの結露を検知する結露検知部を開口孔を設けた素子カバーで覆うので、異常な過剰結露となった場合でも、素子カバー内に水が溜まることがなく、正しい結露検知が可能になり、加水状態による素子の信頼性劣化も防止できる。 In the refrigerator of the present invention, the condensation detection part of the condensation sensor that detects condensation is covered with an element cover provided with an opening hole, so even if abnormally excessive condensation occurs, water will not accumulate inside the element cover and the correct It becomes possible to detect dew condensation and prevent deterioration in element reliability due to water addition.

本発明の実施の形態1による結露センサーの平面図A plan view of a dew condensation sensor according to Embodiment 1 of the present invention 本発明の実施の形態1による結露センサーの側面図Side view of a dew condensation sensor according to Embodiment 1 of the present invention 本発明の実施の形態1による結露センサーの素子カバー貫通孔付の平面図A plan view of a dew condensation sensor according to Embodiment 1 of the present invention with an element cover through hole 本発明の実施の形態1による結露センサーの素子カバー貫通孔付の側面図Side view of the dew condensation sensor according to Embodiment 1 of the present invention with an element cover through hole 本発明の実施の形態1による結露センサーの温湿度による露点とセンサー出力の関係を示す図A diagram showing the relationship between the dew point and sensor output according to temperature and humidity of the dew condensation sensor according to Embodiment 1 of the present invention 本発明の実施の形態2による、結露センサーを背面に用いた冷蔵庫の縦断面図A vertical cross-sectional view of a refrigerator using a dew condensation sensor on the back according to Embodiment 2 of the present invention 本発明の実施の形態2による、結露センサーを背面に用いた冷蔵庫の野菜室の縦断面図A vertical cross-sectional view of a vegetable compartment of a refrigerator using a dew condensation sensor on the back according to Embodiment 2 of the present invention 本発明の実施の形態2による、結露センサーを背面に用いた冷蔵庫の野菜室の要部拡大縦断面図An enlarged vertical cross-sectional view of a main part of a vegetable compartment of a refrigerator using a dew condensation sensor on the back according to Embodiment 2 of the present invention 本発明の実施の形態2による、結露センサーを天面に用いた冷蔵庫の野菜室の縦断面図A vertical cross-sectional view of a vegetable compartment of a refrigerator using a dew condensation sensor on the top surface according to Embodiment 2 of the present invention 本発明の実施の形態2による、結露センサーを天面に用いた冷蔵庫の野菜室の要部拡大縦断面図An enlarged vertical cross-sectional view of a main part of a vegetable compartment of a refrigerator using a dew condensation sensor on the top surface according to Embodiment 2 of the present invention 従来の結露センサーの側面図Side view of conventional condensation sensor

以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によってこの発明が限定されるものではない。 Embodiments of the present invention will be described below with reference to the drawings. Note that the present invention is not limited to this embodiment.

(実施の形態1)
図1は本発明の実施の形態1による結露センサーの平面図、図2は同実施の形態1による結露センサーの側面図、図3は同実施の形態1による結露センサーの素子カバー貫通孔付の平面図、図4は同実施の形態1による結露センサーの素子カバー貫通孔付の側面図、図5は同実施の形態1による結露センサーの温湿度による露点とセンサー出力の関係を示す図である。
(Embodiment 1)
1 is a plan view of a dew condensation sensor according to Embodiment 1 of the present invention, FIG. 2 is a side view of a dew condensation sensor according to Embodiment 1, and FIG. 4 is a side view of the dew condensation sensor according to the first embodiment with an element cover through hole, and FIG. 5 is a diagram showing the relationship between the dew point and sensor output depending on temperature and humidity of the dew condensation sensor according to the first embodiment. .

図1~4において、結露検知素子11は配線基板12の一面に実装され、同一面に複数の電子部品13で構成される検知回路部14が実装され、導体パターン17により外部接続部15に電気的に接続されており、結露検知素子11は全体が隠れるように素子カバー16で覆われており、配線基板12と素子カバー16との間は図示しないが、通湿できる程度のわずかな隙間が設けられている。以上の部品で結露センサー18が構成されている。また、配線基板12の他面には実装部品はなく冷却面とし、冷却源からの冷却により配線基板12を介して結露検知素子11が冷やされる構造としている。配線基板12としては、紙フェーノール・コンポジット・ガラスエポキシなどの材料で板厚1.6mmが一般的であるが、冷却源からの冷却効率をあげるために薄い基材を使用しても良く、あるいは熱電率の高い絶縁性高熱伝導性樹脂材の加工品を使用しても構わない。 1 to 4, the dew condensation detection element 11 is mounted on one surface of a wiring board 12, a detection circuit section 14 made up of a plurality of electronic components 13 is mounted on the same surface, and an external connection section 15 is electrically connected to an external connection section 15 by a conductor pattern 17. The dew condensation detection element 11 is covered with an element cover 16 so as to be completely hidden, and there is a slight gap between the wiring board 12 and the element cover 16, which is not shown, to allow moisture to pass through. It is provided. The dew condensation sensor 18 is composed of the above parts. Further, the other surface of the wiring board 12 has no mounted components and is a cooling surface, and has a structure in which the dew condensation sensing element 11 is cooled through the wiring board 12 by cooling from a cooling source. The wiring board 12 is generally made of a material such as paper phenol, composite, or glass epoxy and has a thickness of 1.6 mm, but a thin base material may be used to increase the cooling efficiency from the cooling source. A processed product made of an insulating and highly thermally conductive resin material with a high thermoelectric coefficient may be used.

結露検知素子11としては、水付着なしの乾燥状態と、水が付着した結露状態との物理量の変化が大きいほど好ましく、ここではポリアミドなどの吸湿樹脂とカーボンなどの導電体粉の混合物を用いることとした。一般的に容量式の湿度センサーに使用される樹脂だけでは、90%RH以上の高湿度での精度が悪く、また高湿度と結露との判別が不可能である。そこで前記混合物を用いれば、結露時に吸湿樹脂が非常に大きく膨潤し、導電体間同士の接触率を非常に小さくするので、乾燥時と結露時の抵抗値変化を非常に大きくさせることができる。例えば、通常乾燥状態で数kΩの抵抗値が、結露すると数百kΩと高抵抗になり、100倍以上の変化量として捉えることができる。また、この混合物はペースト状の材料加工が可能で、配線基板12上の導体回路パターン17間に直接印刷成形できる。あるいは、一般の面実装抵抗器型のように両端電極のベース基材間に混合物を形成すれば、既存設備で実装できる部品としても加工できる。 For the dew condensation detection element 11, it is preferable that the change in physical quantity between a dry state without water adhesion and a dew condensation state with water adhesion is large, and a mixture of a hygroscopic resin such as polyamide and a conductive powder such as carbon is used here. And so. Generally, resin alone used in capacitive humidity sensors has poor accuracy at high humidity levels of 90% RH or higher, and it is impossible to distinguish between high humidity and dew condensation. Therefore, if the above-mentioned mixture is used, the hygroscopic resin swells to a large extent during dew condensation, and the contact ratio between the conductors becomes extremely small, making it possible to greatly increase the change in resistance value between drying and dew condensation. For example, a resistance value of several kΩ under normal dry conditions increases to several hundreds of kΩ when dew condenses, which can be interpreted as a change of more than 100 times. Further, this mixture can be processed into a paste-like material, and can be directly printed and molded between the conductive circuit patterns 17 on the wiring board 12. Alternatively, if a mixture is formed between the base materials of the electrodes at both ends as in a general surface-mount resistor type, it can be processed into a component that can be mounted using existing equipment.

次に、素子カバー16として貫通孔を設けた結露センサー18を図1~4に示している。図1では、素子カバー16の天面に貫通孔として天面開口部19が設けられ、図3、4では、素子カバー16の天面に貫通孔として天面開口部19が設けられ、加えて、側面には貫通孔として側面開口部20が設けられている。図3、4では、天面開口部19と側面開口部20の両方を素子カバー16に設けているが、結露センサー18の取付姿勢により、図1のように素子カバー16の天面のみに、もしくは側面のみに貫通孔を設けても構わない。 Next, a dew condensation sensor 18 provided with a through hole as the element cover 16 is shown in FIGS. 1 to 4. In FIG. 1, a top surface opening 19 is provided as a through hole in the top surface of the element cover 16, and in FIGS. 3 and 4, a top surface opening 19 is provided as a through hole in the top surface of the element cover 16. A side opening 20 is provided on the side as a through hole. In FIGS. 3 and 4, both the top opening 19 and the side opening 20 are provided on the element cover 16, but depending on the mounting orientation of the dew condensation sensor 18, only the top opening 19 and the side opening 20 are provided on the top surface of the element cover 16 as shown in FIG. Alternatively, the through holes may be provided only on the side surfaces.

以上のように構成された結露センサーの動作、作用について、図5を用いて説明する。 The operation and effect of the dew condensation sensor configured as above will be explained using FIG. 5.

まず、結露センサー18が結露を事前検知することができる動作を説明する。図5では分かりやすくするために、結露センサー18が設置される周囲環境温度t2を10℃としている。この時は冷却源から冷却がないので、結露検知素子11の温度t1も点線で示す10℃となり、相対湿度が上昇してきて100%RHになった時(時間T2)に結露が始まる。すなわち露点温度は10℃である。この時間T2になった時に結露センサー18は結露したと判断し、出力電圧を乾燥時のV1からV2へ点線の様に変化させる。 First, the operation by which the dew condensation sensor 18 can detect dew condensation in advance will be explained. In FIG. 5, for the sake of clarity, the ambient environment temperature t2 where the dew condensation sensor 18 is installed is set to 10°C. At this time, since there is no cooling from the cooling source, the temperature t1 of the dew condensation detection element 11 also becomes 10° C. as indicated by the dotted line, and when the relative humidity increases and reaches 100% RH (time T2), dew condensation begins. That is, the dew point temperature is 10°C. When this time T2 comes, the dew condensation sensor 18 determines that dew condensation has occurred, and changes the output voltage from V1 during drying to V2 as shown by the dotted line.

次に、冷却源で配線基板12を冷却し、例えば結露検知素子11の温度t1を周囲環境温度10℃から2℃下げた8℃とした場合、結露検知素子11の温度t1は実線のようになる。そして相対湿度が上昇してきて90%RHになった時に(時間T1)結露が始まる。すなわち露点温度は8℃で、相対湿度が90%RHになると結露する。この時間T1になった時に結露センサー18は結露したと判断し、出力電圧を乾燥時のV1からV2へ実線の様に変化させる。 Next, if the wiring board 12 is cooled with a cooling source and the temperature t1 of the dew condensation sensing element 11 is set to 8°C, which is 2°C lower than the ambient environment temperature of 10°C, the temperature t1 of the dew condensation sensing element 11 will be as shown by the solid line. Become. Then, when the relative humidity increases and reaches 90% RH (time T1), dew condensation begins. That is, the dew point temperature is 8° C., and dew condensation occurs when the relative humidity reaches 90% RH. When this time T1 comes, the dew condensation sensor 18 determines that dew condensation has occurred, and changes the output voltage from V1 during drying to V2 as shown by the solid line.

ここまでを整理すると、周囲環境温度10℃の環境に結露センサー18を設置して、結露検知素子11を8℃に冷却すると、周囲が結露していない相対湿度が90%RHでも結露センサー18は結露を判断することになる。すなわち、図5に示す時間T2よりも早いタイミングの時間T1で、結露の検知が可能になる。尚、説明では相対湿度90%RHでの判定のため結露検知素子11の温度を8℃としたが、もう少し高湿側の場合は8℃よりも高めの冷却設定にすれば良く、低湿側の場合は逆に低めの設定にすれば良い。 To summarize the above, if the dew condensation sensor 18 is installed in an environment where the ambient temperature is 10 degrees Celsius and the dew condensation detection element 11 is cooled to 8 degrees Celsius, the dew condensation sensor 18 will be Condensation will be determined. That is, dew condensation can be detected at time T1, which is earlier than time T2 shown in FIG. In addition, in the explanation, the temperature of the dew condensation detection element 11 was set at 8°C to make a judgment at a relative humidity of 90% RH, but if the humidity is a little higher, the cooling setting should be set higher than 8°C. In that case, you can set it to a lower setting.

次に、結露を事前検知したが結露防止制御が正しく動作しなかった時などに発生する異常結露状態について説明する。この場合、結露検知素子11は周囲より低温に冷却されているので、素子カバー16内は過剰な結露水が溜まってしまう。しかしながら、結露センサー18がZ軸方向下向きに取付けられている場合には(図3)、天面開口部19から結露水は自然落下で排水されて、素子カバー16内に留まることはない。また、Y軸下向き方向の場合には(図4)、側面開口部20から排水される。ここで、開口部の大きさとしては、結露水が表面張力により素子カバー16内に留まろうとする力よりも、結露水の自重による重力が勝るサイズ以上とする。さらに、素子カバー16には結露検知素子11に素手が触れる、または、工具が当たるなどによる傷を付けさせない役割もあり、その不具合が発生しないサイズ以下とする。実験で確認した結果、その開口孔サイズは3~5mm程度が好ましい。 Next, an explanation will be given of an abnormal condensation state that occurs when condensation is detected in advance but the condensation prevention control does not operate correctly. In this case, since the dew condensation detection element 11 is cooled to a lower temperature than the surroundings, excessive dew condensation water accumulates inside the element cover 16. However, when the dew condensation sensor 18 is mounted facing downward in the Z-axis direction (FIG. 3), the condensed water is drained by gravity from the top opening 19 and does not stay inside the element cover 16. Further, in the case of the downward direction of the Y axis (FIG. 4), water is drained from the side opening 20. Here, the size of the opening is set to be at least a size at which the gravity due to the weight of the condensed water outweighs the force of the condensed water to stay within the element cover 16 due to surface tension. Furthermore, the element cover 16 also has the role of preventing the dew condensation detection element 11 from being scratched by touching it with bare hands or being hit by a tool, and is designed to have a size smaller than that which will not cause such problems. As a result of experimental confirmation, the opening hole size is preferably about 3 to 5 mm.

尚、結露検知素子11を冷却する内容を説明したが、本体側適用範囲において周囲環境に分布差があるならば、最も湿度の高い、あるいは温度の低い部分に結露センサー18を設置すれば、その箇所が時間的に早く結露を開始するので、冷却することなく結露の事前検知は可能である。 Although we have explained the contents of cooling the dew condensation detection element 11, if there is a distribution difference in the surrounding environment within the application range of the main body, installing the dew condensation sensor 18 in the area with the highest humidity or lowest temperature will help Since dew condensation starts earlier in the area, advance detection of dew condensation is possible without cooling.

以上のように、本実施の形態においては、配線基板12上に設けた結露検知素子11を少なくとも有し、前記結露検知素子11を覆う素子カバー16を設けるとともにこの素子カバー16内に生成した結露水を通す貫通孔を前記素子カバー16に設けたことにより、結露センサー18の運搬や搬送、本体側への取付け作業等での結露検知素子11への素手や工具の接触による傷が防げ、更に異常な結露状態が長時間続き、素子カバー16内に水滴が溜まった場合でも、貫通孔から水滴は排水されるので、結露継続判定の異常な本体側制御は回避でき、結露センサー18の加水状態による信頼性劣化も防ぐことができる。 As described above, this embodiment has at least the dew condensation detection element 11 provided on the wiring board 12, and the element cover 16 that covers the dew condensation detection element 11 is provided, and the dew condensation generated in the element cover 16 is provided. By providing a through hole in the element cover 16 to allow water to pass through, it is possible to prevent damage to the dew condensation detection element 11 caused by contact with bare hands or tools during transportation, transportation, and installation of the dew condensation sensor 18 on the main body side. Even if the abnormal dew condensation state continues for a long time and water droplets accumulate inside the element cover 16, the water droplets are drained from the through hole, so abnormal main body control for determining the continuation of dew condensation can be avoided, and the water addition state of the dew condensation sensor 18 can be avoided. It is also possible to prevent reliability deterioration due to

また、貫通孔として、天面開口部19、側面開口部20等を複数設けることにより、素子カバー16内の結露水はより排水されやすくなるので、結露センサーの取付け姿勢の制約条件は緩和される、すなわち、取付けの自由度が向上する。更に信頼性が高い状態で結露センサー18を使用することができる。 Furthermore, by providing a plurality of through holes such as the top opening 19 and the side openings 20, the condensed water inside the element cover 16 can be drained more easily, so the constraints on the mounting orientation of the dew condensation sensor are relaxed. In other words, the degree of freedom in attachment is improved. Furthermore, the dew condensation sensor 18 can be used with high reliability.

また、貫通孔は、鉛直方向に設けたことにより、素子カバー16内で異常結露した水滴は、重力による自身の重さで貫通孔から落下する方向に働くので、水の排水性を高めることができるので、誤検知のない結露の事前検知が行え、収納室を高湿度状態に維持することができる。 In addition, since the through-hole is provided in the vertical direction, water droplets that have abnormally condensed inside the element cover 16 will fall from the through-hole due to their own weight due to gravity, so water drainage can be improved. As a result, condensation can be detected in advance without false detection, and the storage room can be maintained in a high humidity state.

また、貫通孔の面積は、素子カバー16内に溜まった結露水の表面張力よりも自重による重力の方が大きくなるようにしたことにより、素子カバー16内に水滴として水が溜まることは物理的に不可能になるので、異常結露に対する信頼性が更に向上し、結露センサー16の本体側への適用が容易にできる。 In addition, the area of the through hole is set so that the gravity due to its own weight is larger than the surface tension of the condensed water accumulated inside the element cover 16, so that it is physically impossible for water to accumulate as water droplets inside the element cover 16. Therefore, the reliability against abnormal dew condensation is further improved, and the dew condensation sensor 16 can be easily applied to the main body side.

また、詳細には説明しないが、素子カバー16の表面を親水処理することで、結露水が水滴となる確率は低くなり、表面を流動して貫通孔から排出されるので、更に信頼性を高めることが可能になる。 Also, although not explained in detail, by hydrophilizing the surface of the element cover 16, the probability that condensed water becomes water droplets is reduced, and the water flows on the surface and is discharged from the through hole, further increasing reliability. becomes possible.

(実施の形態2)
図6は本発明の実施の形態2による、結露センサーを背面に用いた冷蔵庫の縦断面図、図7は同冷蔵庫の野菜室の縦断面図、図8は同冷蔵庫の野菜室の要部拡大縦断面図、図9は同実施の形態2による、結露センサーを天面に用いた冷蔵庫の野菜室の縦断面図、図10は同冷蔵庫の野菜室の要部拡大縦断面図である。
(Embodiment 2)
FIG. 6 is a longitudinal sectional view of a refrigerator using a dew condensation sensor on the back according to Embodiment 2 of the present invention, FIG. 7 is a longitudinal sectional view of the vegetable compartment of the same refrigerator, and FIG. 8 is an enlarged view of essential parts of the vegetable compartment of the same refrigerator. FIG. 9 is a vertical cross-sectional view of a vegetable compartment of a refrigerator using a dew condensation sensor on the top according to the second embodiment, and FIG. 10 is an enlarged vertical cross-sectional view of a main part of the vegetable compartment of the same refrigerator.

まず、図6~8において、冷蔵庫100の断熱箱体101は、主に鋼板を用いた外箱102と、ABSなどの樹脂で成型された内箱103と、外箱102と内箱103との間の空間に充填発泡される例えば硬質発泡ウレタンなどの発泡断熱材とからなり、周囲と断熱し、複数の貯蔵室に区分されている。 First, in FIGS. 6 to 8, the insulating box body 101 of the refrigerator 100 consists of an outer box 102 mainly made of steel plate, an inner box 103 made of resin such as ABS, and an outer box 102 and an inner box 103. It is made of a foamed heat insulating material, such as hard foamed urethane, which is filled into the space between the storage compartments to insulate it from the surroundings, and is divided into a plurality of storage compartments.

最上部には第一の貯蔵室としての冷蔵室104が設けられ、その冷蔵室104の下部に左右に並んで第四の貯蔵室としての切換室105と第五の貯蔵室としての製氷室106が横並びに設けられ、その切換室105と製氷室106の下部に第二の貯蔵室としての野菜室107が設けられ、そして最下部に第三の貯蔵室としての冷凍室108が配置される構成となっている。 A refrigerating compartment 104 as a first storage compartment is provided at the top, and a switching compartment 105 as a fourth storage compartment and an ice making compartment 106 as a fifth storage compartment are arranged side by side at the bottom of the refrigerating compartment 104. are arranged side by side, a vegetable compartment 107 as a second storage compartment is provided below the switching compartment 105 and the ice making compartment 106, and a freezing compartment 108 as a third storage compartment is located at the bottom. It becomes.

冷蔵室104は、冷蔵保存のために凍らない温度を下限に通常1℃~5℃とし、野菜室107は、冷蔵室104と同等もしくは若干高い温度設定の2℃~7℃としている。冷凍室108は、冷凍温度帯に設定されており、冷凍保存のために通常-22℃~-15℃で設定されているが、冷凍保存状態の向上のために、例えば-30℃や-25℃の低温で設定されることもある。切換室105は、1℃~5℃で設定される冷蔵温度帯、2℃~7℃で設定される野菜用温度帯、通常-22℃~-15℃で設定される冷凍温度帯以外に、冷蔵温度帯から冷凍温度帯の間で予め設定された温度帯に切換えることができる。切換室105は製氷室106に並設された独立扉を備えた貯蔵室であり、引出し式の扉を備えることが多い。 The refrigerator compartment 104 has a lower limit of temperature that does not freeze, usually 1°C to 5°C, for refrigerated storage, and the vegetable compartment 107 has a temperature set at 2°C to 7°C, which is equal to or slightly higher than the refrigerator compartment 104. The freezer compartment 108 is set in a freezing temperature range, and is normally set at -22°C to -15°C for frozen storage, but for example, it may be set at -30°C or -25°C to improve frozen storage conditions. It may also be set at a low temperature of ℃. In addition to the refrigeration temperature range set at 1°C to 5°C, the vegetable temperature range set at 2°C to 7°C, and the freezing temperature range normally set at -22°C to -15°C, the switching chamber 105 has It is possible to switch to a preset temperature zone between the refrigeration temperature zone and the freezing temperature zone. The switching room 105 is a storage room provided with an independent door that is arranged in parallel with the ice making room 106, and is often provided with a pull-out door.

尚、本実施の形態では、切換室105を、冷蔵、冷凍の温度帯までを含めた貯蔵室としているが、冷蔵は、冷蔵室104、野菜室107、冷凍は、冷凍室108に委ねて、冷蔵と冷凍の中間の上記温度帯のみの切換えに特化した貯蔵室としても構わない。また、特定の温度帯に固定された貯蔵室でもかまわない。 In this embodiment, the switching room 105 is used as a storage room that includes temperature ranges for refrigeration and freezing, but refrigeration is left to the refrigerator compartment 104 and vegetable compartment 107, and freezing is left to the freezer compartment 108. It is also possible to use a storage room specialized for switching only between the above temperature ranges between refrigeration and freezing. Alternatively, a storage room fixed at a specific temperature range may be used.

製氷室106は、冷蔵室104内の貯水タンク(図示せず)から送られた水で室内上部に設けられた自動製氷機(図示せず)で氷を作り、室内下部に配置した貯氷容器(図示せず)に貯蔵する。 The ice-making compartment 106 uses water sent from a water storage tank (not shown) in the refrigerator compartment 104 to make ice using an automatic ice-making machine (not shown) installed in the upper part of the room, and makes ice in an ice storage container (not shown) located in the lower part of the room. (not shown).

断熱箱体101の天面部は、冷蔵庫100の背面方向に向かって階段状に凹みを設けた形状であり、この階段状の凹部に機械室101aを形成して圧縮機109、水分除去を行うドライヤ(図示せず)等の冷凍サイクルの高圧側構成部品が収容されている。すなわち、圧縮機109を配設する機械室101aは、冷蔵室104内の最上部の後方領域に食い込んで形成されることになる。 The top surface of the heat insulating box 101 has a step-like recess toward the back of the refrigerator 100, and a machine room 101a is formed in this step-like recess to accommodate a compressor 109 and a dryer for removing moisture. (not shown) and other high-pressure side components of the refrigeration cycle are housed therein. That is, the machine room 101a in which the compressor 109 is disposed is formed by cutting into the uppermost rear region of the refrigerator compartment 104.

尚、本実施の形態における、以下に述べる発明の要部に関する事項は、従来一般的であった断熱箱体101の最下部の貯蔵室後方領域に機械室を設けて、そこに圧縮機109を配置するタイプの冷蔵庫に適用しても構わない。また、冷凍室108と野菜室107の配置を入れ替えた、いわゆるミッドフリーザーの構成の冷蔵庫100であっても構わない。 In this embodiment, the main parts of the invention described below are as follows: A machine room is provided in the rear region of the storage chamber at the bottom of the insulation box 101, which is conventionally common, and the compressor 109 is installed there. It may be applied to any type of refrigerator that is placed. Alternatively, the refrigerator 100 may have a so-called mid-freezer configuration in which the locations of the freezer compartment 108 and the vegetable compartment 107 are swapped.

次に、野菜室107と冷凍室108の背面には冷気を生成する冷却室110が設けられ、野菜室107と冷却室110の間もしくは冷凍室108と冷却室110との間には、断熱性を有する各室への冷気の搬送風路141と、各室と断熱区画するために構成された奥面仕切壁111が構成されている。 Next, a cooling chamber 110 that generates cold air is provided on the back side of the vegetable compartment 107 and the freezing compartment 108, and between the vegetable compartment 107 and the cooling compartment 110 or between the freezing compartment 108 and the cooling compartment 110, a heat insulating A conveyance air passage 141 for conveying cold air to each room having a 140-degree space, and a rear partition wall 111 configured to provide thermal insulation from each room are constructed.

冷却室110内には、冷却器112が配設されており、冷却器112の上部空間には強制対流方式により冷却器112で冷却した冷気を冷蔵室104、切換室105、製氷室106、野菜室107、冷凍室108に送風する冷却ファン113が配置され、冷却器112の下部空間には、冷却時に冷却器112やその周辺に付着する霜や氷を除霜するためのガラス管製のラジアントヒータ114が設けられ、さらにその下部には除霜時に生じる除霜水を受けるためのドレンパン115、その最深部から庫外に貫通したドレンチューブ116が構成され、その下流側の庫外に蒸発皿117が構成されている。 A cooler 112 is disposed in the cooling chamber 110, and the cold air cooled by the cooler 112 is sent to the upper space of the cooler 112 using a forced convection method to the refrigerator chamber 104, switching chamber 105, ice making chamber 106, and vegetables. A cooling fan 113 is arranged to blow air into the chamber 107 and the freezing chamber 108, and a glass tube radiant is installed in the space below the cooler 112 to defrost frost and ice that adheres to the cooler 112 and its surroundings during cooling. A heater 114 is provided, and a drain pan 115 for receiving defrosting water generated during defrosting is provided below the heater 114, and a drain tube 116 penetrates from the deepest part of the drain pan to the outside of the refrigerator. 117 are configured.

野菜室107には、野菜室107の引出し扉118に取り付けられたフレームに載置された下段収納容器119と、下段収納容器119の上に載置された上段収納容器120が配置されている。引出し扉118が閉ざされた状態で主に上段収納容器120を略密閉するための蓋体122が、野菜室107の上部に備えられた第一の仕切壁123及び内箱103に保持されている。引出し扉118が閉ざされた状態で蓋体122と上段収納容器120の上面の左右辺、奥辺が密接し、上面の前辺は略密接している。さらに、上段収納容器120の背面の左右下辺と下段収納容器119の境界部は、上段収納容器120が稼働する上で接触しない範囲で食品収納部の湿気が逃げないよう隙を詰めている。 In the vegetable compartment 107, a lower storage container 119 placed on a frame attached to a drawer door 118 of the vegetable compartment 107 and an upper storage container 120 placed on the lower storage container 119 are arranged. A lid body 122 mainly for substantially sealing the upper storage container 120 when the drawer door 118 is closed is held on a first partition wall 123 provided at the upper part of the vegetable compartment 107 and on the inner box 103. . When the drawer door 118 is closed, the left and right sides and the back side of the top surface of the lid body 122 and the upper storage container 120 are in close contact with each other, and the front side of the top surface is in substantially close contact with each other. Furthermore, the boundaries between the left and right lower sides of the back surface of the upper storage container 120 and the lower storage container 119 are filled with gaps to prevent moisture from escaping from the food storage portion within a range where the upper storage container 120 does not come into contact with each other during operation.

蓋体122と第一の仕切壁123の間には、奥面仕切壁111に構成された野菜室107用の吐出口124から吐出された冷気の風路が設けられている。また、野菜室107付近の奥面仕切壁111には冷却部材200が貫通して埋設されており、一端を搬送風路141内に露出させ、他端には結露センサー18が装着されている。 An air path for cold air discharged from a discharge port 124 for the vegetable compartment 107 formed in the rear partition wall 111 is provided between the lid body 122 and the first partition wall 123. Further, a cooling member 200 is penetrated and embedded in the back partition wall 111 near the vegetable compartment 107, with one end exposed in the conveying air passage 141, and a dew condensation sensor 18 attached to the other end.

さらに、下段収納容器119と下段収納容器119の下の第二の仕切壁125との間にも空間が設けられ冷気風路を構成している。野菜室107の背面側に備えられた奥面仕切壁111の下部には、野菜室107内を冷却し熱交換された冷気が冷却器112に戻るための野菜室107用の吸込口126が設けられている。 Further, a space is also provided between the lower storage container 119 and the second partition wall 125 below the lower storage container 119, forming a cold air passage. A suction port 126 for the vegetable compartment 107 is provided at the lower part of the back partition wall 111 provided on the rear side of the vegetable compartment 107 for cooling the interior of the vegetable compartment 107 and returning the cooled air that has undergone heat exchange to the cooler 112. It is being

奥面仕切壁111は、ABSなどの樹脂で構成された表面と、搬送風路141や冷却室110を隔離、断熱性を確保するための発泡スチロールなどで構成された断熱材で構成されている。 The rear partition wall 111 is composed of a surface made of resin such as ABS, and a heat insulating material made of polystyrene foam or the like for isolating the conveying air passage 141 and the cooling chamber 110 and ensuring heat insulation properties.

次に、結露センサー18付近の構成について、もう少し詳細に説明する。搬送風路141内に一端を露出させた冷却部材200は、断熱性のある奥面仕切壁111を貫通し、他端には実施の形態1で説明した結露センサー18が熱的に密着固定されている。具体的には結露センサー18の部品が実装されていない配線基板12の裏面側に、例えば、放熱シリコンシートや衝撃吸収する高熱伝導樹脂材料を介して冷却部材200を固定する。合わせてネジ止め等で物理的に固定すれば更に良い。尚、冷却部材200としては極めて高熱伝導の材料が良く、アルミ等の金属や高熱伝導樹脂成型品等が好ましい。この時、結露センサー18の取付け方向は、実施の形態1の図4で示すY軸下向きであり、側面開口部20が鉛直下方向に開放されている状態である。 Next, the configuration near the dew condensation sensor 18 will be explained in more detail. The cooling member 200 with one end exposed in the conveyance air passage 141 passes through the inner partition wall 111 having heat insulation properties, and the dew condensation sensor 18 described in Embodiment 1 is thermally tightly fixed to the other end. ing. Specifically, the cooling member 200 is fixed to the back side of the wiring board 12 on which the components of the dew condensation sensor 18 are not mounted, for example, via a heat dissipating silicone sheet or a high heat conductive resin material that absorbs shock. It would be even better if they were physically fixed together using screws, etc. Note that the cooling member 200 is preferably made of a material with extremely high thermal conductivity, such as a metal such as aluminum or a molded product of high thermal conductivity resin. At this time, the mounting direction of the dew condensation sensor 18 is downward on the Y axis shown in FIG. 4 of the first embodiment, and the side opening 20 is opened vertically downward.

また、下段収納容器119の結露センサー18と当接する部分には、結露センサー18外形よりも大きな寸法Rを持つセンサー挿入口部材202が装着されており、引出し扉118を閉扉した時に、結露センサー18が下段収納容器119の内部に設置されるようになっている。センサー挿入口部材202としては、放射状スリットがあるゴム製グロメット等を用いれば、挿入する時の結露センサー18との衝撃緩和や、挿入後の気密性確保が実現できる。 Further, a sensor insertion opening member 202 having a dimension R larger than the outer diameter of the condensation sensor 18 is attached to a portion of the lower storage container 119 that comes into contact with the condensation sensor 18. When the drawer door 118 is closed, the condensation sensor 18 is installed inside the lower storage container 119. If a rubber grommet or the like with radial slits is used as the sensor insertion port member 202, it is possible to reduce the impact with the dew condensation sensor 18 when it is inserted and to ensure airtightness after insertion.

さらに、下段収納容器119の奥側背面には調湿機構201が装着されており、野菜室内の結露センサー18の情報によって、空間の密閉や開放を行う。調湿機構201としては、電磁石によるフラップ開閉(本体側に電磁石、容器側に磁性体フラップ)、非接触給電による電動ダンパー駆動(本体側に1次側給電、容器側に2次側受電とモーター)、本体側フラップ機構への容器側挿入等を用いることで、引出し扉118の開閉がハーネスレスで操作できる。 Further, a humidity control mechanism 201 is attached to the rear side of the lower storage container 119, and the space is sealed or opened based on information from the dew condensation sensor 18 in the vegetable compartment. The humidity control mechanism 201 includes a flap opening and closing using an electromagnet (an electromagnet on the main body side and a magnetic flap on the container side), and an electric damper drive using non-contact power supply (primary side power supply on the main body side, secondary power receiving and motor on the container side). ), by inserting the container side into the main body side flap mechanism, etc., the drawer door 118 can be opened and closed without a harness.

以上のように構成された冷蔵庫について、以下その動作、作用を説明する。 The operation and effect of the refrigerator configured as above will be explained below.

まず、冷凍サイクルの動作について説明する。庫内の設定された温度に応じて制御基板(図示せず)からの信号により冷凍サイクルが動作して冷却運転が行われる。圧縮機109の動作により吐出された高温高圧の冷媒は、凝縮器(図示せず)である程度凝縮液化し、さらに冷蔵庫100の側面や背面、また冷蔵庫100の前面間口に配設された冷媒配管(図示せず)などを経由し冷蔵庫100の結露を防止しながら凝縮液化し、キャピラリーチューブ(図示せず)に至る。その後、キャピラリーチューブでは圧縮機109への吸入管(図示せず)と熱交換しながら減圧されて低温低圧の液冷媒となって冷却器112に至る。 First, the operation of the refrigeration cycle will be explained. The refrigeration cycle operates in response to a signal from a control board (not shown) in response to a set temperature in the refrigerator, and cooling operation is performed. The high-temperature, high-pressure refrigerant discharged by the operation of the compressor 109 is condensed and liquefied to some extent in a condenser (not shown), and then refrigerant pipes ( It is condensed and liquefied through a capillary tube (not shown) while preventing dew condensation in the refrigerator 100, and reaches a capillary tube (not shown). Thereafter, in the capillary tube, the pressure is reduced while exchanging heat with a suction pipe (not shown) to the compressor 109, and the refrigerant becomes a low-temperature, low-pressure liquid refrigerant, which reaches the cooler 112.

ここで、低温低圧の液冷媒は、冷却ファン113の動作により搬送する冷凍室108の搬送風路141などの各貯蔵室内の空気と熱交換され、冷却器112内の冷媒は蒸発気化する。この時、冷却室110内で各貯蔵室を冷却するための冷気を生成する。 Here, the low-temperature, low-pressure liquid refrigerant exchanges heat with the air in each storage room, such as the transport air passage 141 of the freezer compartment 108, which is transported by the operation of the cooling fan 113, and the refrigerant in the cooler 112 evaporates. At this time, cold air is generated in the cooling chamber 110 to cool each storage chamber.

冷却室110内で生成された低温の冷気は、冷却ファン113から冷蔵室104、切換室105、製氷室106、野菜室107、冷凍室108に冷気を風路やダンパー145を用いて分流させ、それぞれの目的温度帯に冷却する。 The low-temperature cold air generated in the cooling compartment 110 is diverted from the cooling fan 113 to the refrigerator compartment 104, the switching compartment 105, the ice making compartment 106, the vegetable compartment 107, and the freezing compartment 108 using air channels and dampers 145. Cool to each target temperature range.

冷蔵室104は、冷蔵室104に設けた温度センサ(図示せず)により、冷気量をダンパー145により調整され、目的温度に冷却されている。特に、野菜室107は、冷気の配分や加熱手段(図示せず)などのON/OFF運転により、2℃から7℃になるように調整される。 The amount of cold air in the refrigerator compartment 104 is adjusted by a damper 145 using a temperature sensor (not shown) provided in the refrigerator compartment 104, and the refrigerator compartment 104 is cooled to a target temperature. In particular, the temperature in the vegetable compartment 107 is adjusted from 2°C to 7°C by distributing cold air and turning on/off a heating means (not shown).

野菜室107は、冷蔵室104を冷却した後、その空気を冷却器112に循環させるための冷蔵室戻り風路の途中に構成された野菜室107用の吐出口124から野菜室107に吐出し、上段収納容器120や下段収納容器119の外周に流し間接的に冷却し、その後、野菜室107用の吸込口126から再び冷却器112に戻る。 The vegetable compartment 107 cools the refrigerator compartment 104 and then discharges the air to the vegetable compartment 107 from a discharge port 124 for the vegetable compartment 107 configured in the middle of the refrigerator compartment return air path for circulating the air to the cooler 112. , it flows around the outer periphery of the upper storage container 120 and the lower storage container 119 to indirectly cool it, and then returns to the cooler 112 through the suction port 126 for the vegetable compartment 107.

このようにして野菜室107は、野菜にとって最適な温度に設定されるわけであるが、逆に冷却することは除湿作用もあるため、時間が経過するとどうしても野菜からの水分蒸散が加速され、野菜重量が減少し、特に葉野菜は萎びてきて商品価値が劣化してしまうので、下段収納容器119、上段収納容器120を略密閉構造にすることで容器内を高湿保持している。しかしながら、密閉状態を継続すると野菜からの水分蒸散により、容器内が結露し底面に溜まると野菜が水腐れする可能性がある。そのために、本実施の形態では結露センサー18と調湿機構201を用いて、特に野菜収納が多い下段収納容器119内を適度に調湿することで、結露がない高湿状態を維持させるようにしている。 In this way, the vegetable compartment 107 is set at the optimal temperature for vegetables, but conversely, cooling also has a dehumidifying effect, so as time passes, the evaporation of water from the vegetables is accelerated, and the vegetables Since weight decreases, leaf vegetables in particular wither and their commercial value deteriorates, the lower storage container 119 and upper storage container 120 are made into a substantially airtight structure to maintain high humidity inside the container. However, if the container is kept in a sealed state, water evaporates from the vegetables, causing condensation inside the container and collecting on the bottom, which may cause the vegetables to rot. To this end, in this embodiment, the dew condensation sensor 18 and the humidity control mechanism 201 are used to appropriately control the humidity inside the lower storage container 119, where vegetables are often stored, thereby maintaining a high humidity state without condensation. ing.

次に、結露を事前検知する動作について説明する。搬送風路141内に一端が露出された冷却部材200は、冷気により冷却され熱伝導により結露センサー18の配線基板12の裏面を冷却する。冷却されると結露センサー18内の結露検知素子11も冷却され、下段収納容器119の周囲環境温度よりも低温になる。従って、下段収納容器119が高湿に推移して行くと、容器内壁よりも結露検知素子11の方が低温で露点温度も低いので、容器内壁よりも早く(事前)に結露が検知できる。具体的な例として、野菜室107内が5℃に設定されている場合で、相対湿度90%RHを検知するには、結露検知素子11の温度を3℃に設定にすれば良い。冷却部材200の体積や搬送風路141内露出長さ、冷却部材200と結露センサー18との接触熱伝導率などの構造的なハード調整や、冷却部材200の冷却時間(冷却ファン113運転時間)、冷却開始からの結露センサー18の検知タイミング等の制御的なソフト調整で、希望の露点温度に対応すれば良い。 Next, the operation of detecting dew condensation in advance will be explained. The cooling member 200, one end of which is exposed within the conveyance air path 141, is cooled by the cold air and cools the back surface of the wiring board 12 of the dew condensation sensor 18 by heat conduction. When cooled, the dew condensation detection element 11 in the dew condensation sensor 18 is also cooled, and the temperature becomes lower than the ambient environment temperature of the lower storage container 119. Therefore, when the lower storage container 119 becomes highly humid, the dew condensation detection element 11 is lower in temperature and has a lower dew point temperature than the inner wall of the container, so dew condensation can be detected earlier (in advance) than the inner wall of the container. As a specific example, in a case where the inside of the vegetable compartment 107 is set to 5°C, in order to detect relative humidity of 90% RH, the temperature of the dew condensation detection element 11 may be set to 3°C. Structural hardware adjustments such as the volume of the cooling member 200, the exposed length in the conveying air passage 141, the contact thermal conductivity between the cooling member 200 and the dew condensation sensor 18, and the cooling time of the cooling member 200 (operating time of the cooling fan 113) The desired dew point temperature can be achieved by controlling software such as the detection timing of the dew condensation sensor 18 from the start of cooling.

そして、結露を事前検知した場合に、調湿機構201の動作を開始させ、開閉フラップによる開放や、あるいは固体高分子電解質膜のような電気分解式除湿素子による除湿により、下段収納容器119内を低湿化する。その後、結露センサー18が復帰(乾燥)となった時に、動作を停止させ容器内を略密閉構造に戻して高湿状態へ戻す。 When dew condensation is detected in advance, the humidity control mechanism 201 is started to operate, and the interior of the lower storage container 119 is dehumidified by opening with an opening/closing flap or by dehumidifying with an electrolytic dehumidifying element such as a solid polymer electrolyte membrane. Reduce humidity. Thereafter, when the dew condensation sensor 18 returns to normal (dry), the operation is stopped and the inside of the container is returned to a substantially sealed structure to return to a high humidity state.

ここで、調湿機構201の動作停止や、多大な野菜投入等があった場合、特に結露事前検知のため容器内壁よりも結露センサー18は冷却されているので、素子カバー16内も多量な水滴が付着するが、鉛直下方向に側面開口部20を設けているので、素子カバー16内に長時間水滴が溜まることはない。 Here, if the operation of the humidity control mechanism 201 is stopped or a large amount of vegetables are added, etc., the condensation sensor 18 is cooler than the inner wall of the container to detect dew condensation in advance, so a large amount of water droplets may also occur inside the element cover 16. However, since the side opening 20 is provided in the vertically downward direction, water droplets will not accumulate inside the element cover 16 for a long time.

以上で下段収納容器119について説明したが、次に、本発明の結露センサーを上段収納容器120へ適用した形態について、図9、10を用いて特に構造面について説明する。 The lower storage container 119 has been described above, but next, a structure in which the dew condensation sensor of the present invention is applied to the upper storage container 120 will be described with particular reference to FIGS. 9 and 10.

野菜室107の上には野菜室107よりも低温に設定されている切替室105あるいは製氷室106が設置され、その間を断熱性のある第一の仕切り壁123で区分している。第一の仕切り壁123には仕切り壁凹部203があり、実施の形態1で説明した結露センサー18が図3で示すZ軸下向き方向に、すなわち天面開口部19を鉛直下方向に開放され、熱的に密着固定されている。具体的には結露センサー18の部品が実装されていない配線基板12の裏面側に、熱伝導部材204を介してネジ止め等で固定されている。熱伝導部材204としては、放熱シリコンシートや衝撃吸収する高熱伝導樹脂材料が好ましく、絶縁性や安全性が確保できるのであればアルミ等の金属を用いることもできる。 Above the vegetable compartment 107, a switching compartment 105 or an ice making compartment 106, which is set at a lower temperature than the vegetable compartment 107, is installed, and a first partition wall 123 having heat insulation properties divides the compartment. The first partition wall 123 has a partition wall recess 203, and the condensation sensor 18 described in Embodiment 1 is opened in the downward direction of the Z-axis shown in FIG. 3, that is, the top opening 19 is opened vertically downward. It is thermally fixed. Specifically, it is fixed to the back side of the wiring board 12 on which the components of the dew condensation sensor 18 are not mounted, via a heat conductive member 204 by screws or the like. As the heat conductive member 204, a heat dissipating silicone sheet or a high heat conductive resin material that absorbs impact is preferable, and metal such as aluminum can also be used as long as insulation and safety can be ensured.

また、上段収納容器120が第一の仕切り壁123と当接する部分には、調湿部材205が設けられ上段収納容器120の気密性を確保し、結露センサー18はこの空間内に配置させている。調湿部材205としては、電動式開閉フラップ機能を有する手段であれば確実だが高コストのため、柔軟性のあるフォーム部材で上段収納容器120外周を覆い、第一の仕切り壁123との隙間を最適化することでの対応も可能である。 Further, a humidity control member 205 is provided at a portion where the upper storage container 120 contacts the first partition wall 123 to ensure airtightness of the upper storage container 120, and the condensation sensor 18 is disposed within this space. . As the humidity control member 205, a means having an electric opening/closing flap function is reliable, but since it is expensive, a flexible foam member is used to cover the outer periphery of the upper storage container 120 and fill the gap with the first partition wall 123. It is also possible to deal with this through optimization.

この構成での動作、作用については、結露センサー18を背面に設置し、下収納容器119に適用した場合と同様なので説明は省略し、異常結露時について説明する。 The operation and effect of this configuration are the same as those in the case where the dew condensation sensor 18 is installed on the back and applied to the lower storage container 119, so the explanation will be omitted, and the case of abnormal dew condensation will be explained.

結露センサー18は第一の仕切り壁123の仕切り壁凹部203すなわち壁厚みの薄い部分に設置されているので、特に結露事前検知のため上段収納容器120内壁よりも結露センサー18は冷却されている。従って、素子カバー16内も多量な水滴が付着しやすくなるが、鉛直下方向に天面開口部19を設けているので、素子カバー16内に長時間水滴が溜まることはない。 Since the dew condensation sensor 18 is installed in the partition wall recess 203 of the first partition wall 123, that is, in the thinner wall thickness, the dew condensation sensor 18 is cooler than the inner wall of the upper storage container 120, especially for detecting dew condensation in advance. Therefore, a large amount of water droplets tend to adhere to the inside of the element cover 16, but since the top opening 19 is provided in the vertically downward direction, water droplets do not accumulate inside the element cover 16 for a long time.

以上のように、本実施の形態においては、結露センサー18設置する冷蔵庫100の収納室内の最冷部分に、結露センサー18の結露検知素子11が実装された配線基板12の反対面を当接させ、素子カバー16内の空間に対して鉛直下方向が貫通孔としたことにより、異常結露時の素子カバー16内からの水滴の排水性が向上されるので、調湿機構201や調湿部材205との連携で結露限界まで高湿度状態の保持が安全に行え、野菜の鮮度保持を向上することができる。 As described above, in this embodiment, the opposite surface of the wiring board 12 on which the condensation detection element 11 of the dew condensation sensor 18 is mounted is brought into contact with the coldest part of the storage chamber of the refrigerator 100 where the dew condensation sensor 18 is installed. By making the through hole vertically downward relative to the space inside the element cover 16, drainage of water droplets from inside the element cover 16 in the event of abnormal condensation is improved, so that the humidity control mechanism 201 and the humidity control member 205 In conjunction with this, high humidity conditions can be safely maintained to the limit of condensation, improving the freshness of vegetables.

以上のように、本発明にかかる結露センサーは、結露検知素子の保護用の素子カバー内に異常な水滴が溜まることがなく結露を事前に検知できるので、家庭用又は業務用冷蔵庫もしくは野菜専用庫に対して適用可能であることはもちろん、野菜以外の食品も含めた高湿保存が必要な流通、倉庫などの用途にも適用できる。 As described above, the dew condensation sensor according to the present invention can prevent abnormal water droplets from accumulating in the protective element cover of the dew condensation detection element and can detect dew condensation in advance. It can of course be applied to distribution, warehousing, and other applications that require high-humidity storage of foods other than vegetables.

11 結露検知素子
12 配線基板
13 電子部品
14 検知回路部
15 外部接続部
16 素子カバー
17 導体パターン
18 結露センサー
19 天面開口部(貫通孔)
20 側面開口部(貫通孔)
100 冷蔵庫
101 断熱箱体
102 外箱
103 内箱
104 冷蔵室
105 切換室
106 製氷室
107 野菜室(貯蔵室)
108 冷凍室
109 圧縮機
110 冷却室
111 奥面仕切壁
112 冷却器
113 冷却ファン
114 ラジアントヒータ
115 ドレンパン
116 ドレンチューブ
117 蒸発皿
118 引出し扉
119 下段収納容器
120 上段収納容器
122 蓋体
123 第一の仕切壁
124 吐出口
125 第二の仕切壁
126 吸込口
141 搬送風路
200 冷却部材
201 調湿機構
202 センサー挿入口部材
203 仕切り壁凹部
204 熱伝導部材
205 調湿部材
11 Condensation detection element 12 Wiring board 13 Electronic component 14 Detection circuit section 15 External connection section 16 Element cover 17 Conductor pattern 18 Condensation sensor 19 Top opening (through hole)
20 Side opening (through hole)
100 Refrigerator 101 Insulated box body 102 Outer box 103 Inner box 104 Refrigerator compartment 105 Switching compartment 106 Ice making compartment 107 Vegetable compartment (storage compartment)
108 Freezer room 109 Compressor 110 Cooling room 111 Rear partition wall 112 Cooler 113 Cooling fan 114 Radiant heater 115 Drain pan 116 Drain tube 117 Evaporation dish 118 Drawer door 119 Lower storage container 120 Upper storage container 122 Lid 123 First partition Wall 124 Discharge port 125 Second partition wall 126 Suction port 141 Conveying air path 200 Cooling member 201 Humidity control mechanism 202 Sensor insertion port member 203 Partition wall recess 204 Heat conduction member 205 Humidity control member

Claims (7)

収納室と、
前記収納室に設けられた結露センサーとを備え、
前記結露センサーは、配線基板上に設けた結露検知素子を少なくとも有し、
前記結露検知素子を覆う素子カバーを設けるとともに前記素子カバー内に生成した結露水を通す貫通孔を前記素子カバーに設け、
前記結露センサーは、前記収納室の背面に設けられ、
前記貫通孔は、前記素子カバーの側面のうち前記収納室の底面と対向する側面であって、鉛直方向に設けられ
前記素子カバーの表面は親水処理されている冷蔵庫。
storage room and
and a dew condensation sensor provided in the storage chamber,
The dew condensation sensor has at least a dew condensation detection element provided on a wiring board,
An element cover is provided to cover the dew condensation detection element, and a through hole is provided in the element cover through which dew condensation water generated within the element cover passes;
The dew condensation sensor is provided on the back side of the storage chamber,
The through hole is provided in a vertical direction on a side surface of the element cover that faces the bottom surface of the storage chamber ,
A refrigerator in which the surface of the element cover is subjected to hydrophilic treatment .
前記収納室の背面には冷気を生成する冷却室が設けられ、
前記結露センサーは、冷却部材を介して設けられている請求項に記載の冷蔵庫。
A cooling chamber that generates cold air is provided at the back of the storage chamber,
The refrigerator according to claim 1 , wherein the dew condensation sensor is provided via a cooling member.
前記収納室には収納容器が設けられ、
前記収納容器の背面には調湿機構が設けられ、
前記結露センサーの検知結果に基づいて、前記調湿機構を制御する請求項1または2に記載の冷蔵庫。
A storage container is provided in the storage chamber,
A humidity control mechanism is provided on the back side of the storage container,
The refrigerator according to claim 1 or 2 , wherein the humidity control mechanism is controlled based on the detection result of the dew condensation sensor.
前記貫通孔は、前記素子カバーの側面のうち前記収納室の底面と対向する側面とは別の側面に更に設けられている請求項1~のいずれか一つに記載の冷蔵庫。 The refrigerator according to any one of claims 1 to 3 , wherein the through hole is further provided on a side surface of the element cover that is different from the side surface facing the bottom surface of the storage chamber. 前記貫通孔の面積は、前記素子カバー内に溜まった結露水の表面張力よりも自重による重力の方が大きくなるようにした請求項1~のいずれか一つに記載の冷蔵庫。 The refrigerator according to any one of claims 1 to 4 , wherein the area of the through hole is such that the gravity due to its own weight is larger than the surface tension of the condensed water accumulated in the element cover. 前記貫通孔は、3mm以上5mm以下である請求項1~のいずれか一つに記載の冷蔵庫。 The refrigerator according to any one of claims 1 to 5, wherein the through hole is 3 mm or more and 5 mm or less. 前記収納室は、野菜室である請求項1~のいずれか一つに記載の冷蔵庫。
The refrigerator according to any one of claims 1 to 6 , wherein the storage compartment is a vegetable compartment.
JP2022066709A 2018-09-21 2022-04-14 refrigerator Active JP7429846B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022066709A JP7429846B2 (en) 2018-09-21 2022-04-14 refrigerator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018177667A JP7108810B2 (en) 2018-09-21 2018-09-21 Dew condensation sensor and refrigerator using the same
JP2022066709A JP7429846B2 (en) 2018-09-21 2022-04-14 refrigerator

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2018177667A Division JP7108810B2 (en) 2018-09-21 2018-09-21 Dew condensation sensor and refrigerator using the same

Publications (2)

Publication Number Publication Date
JP2022109257A JP2022109257A (en) 2022-07-27
JP7429846B2 true JP7429846B2 (en) 2024-02-09

Family

ID=69901173

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2018177667A Active JP7108810B2 (en) 2018-09-21 2018-09-21 Dew condensation sensor and refrigerator using the same
JP2022066709A Active JP7429846B2 (en) 2018-09-21 2022-04-14 refrigerator

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2018177667A Active JP7108810B2 (en) 2018-09-21 2018-09-21 Dew condensation sensor and refrigerator using the same

Country Status (1)

Country Link
JP (2) JP7108810B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006138523A (en) 2004-11-11 2006-06-01 Matsushita Electric Ind Co Ltd Dew condensation sensor, and heat pump system using it
JP2011042277A (en) 2009-08-21 2011-03-03 Toyoda Gosei Co Ltd Weather strip
WO2018147358A1 (en) 2017-02-09 2018-08-16 パナソニックIpマネジメント株式会社 Dew condensation sensor, dew condensation sensing system and refrigerator

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5221953Y1 (en) * 1970-06-15 1977-05-20
JPS63208751A (en) * 1987-02-25 1988-08-30 Matsushita Electronics Corp Condensation sensor
JPH0274855A (en) * 1988-09-09 1990-03-14 Matsushita Electric Ind Co Ltd Dew condensation device
JPH08122290A (en) * 1994-10-24 1996-05-17 Matsushita Electric Ind Co Ltd Dew condensation sensor
JP2007278569A (en) 2006-04-05 2007-10-25 Matsushita Electric Ind Co Ltd Refrigerator
WO2018147253A1 (en) 2017-02-09 2018-08-16 パナソニックIpマネジメント株式会社 Refrigerator

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006138523A (en) 2004-11-11 2006-06-01 Matsushita Electric Ind Co Ltd Dew condensation sensor, and heat pump system using it
JP2011042277A (en) 2009-08-21 2011-03-03 Toyoda Gosei Co Ltd Weather strip
WO2018147358A1 (en) 2017-02-09 2018-08-16 パナソニックIpマネジメント株式会社 Dew condensation sensor, dew condensation sensing system and refrigerator

Also Published As

Publication number Publication date
JP7108810B2 (en) 2022-07-29
JP2022109257A (en) 2022-07-27
JP2020046409A (en) 2020-03-26

Similar Documents

Publication Publication Date Title
WO2017029782A1 (en) Refrigerator
EP2267388B1 (en) Refrigerator
JP5402779B2 (en) refrigerator
EP2578970B1 (en) Refrigerator
JP4367570B1 (en) refrigerator
JP5078829B2 (en) refrigerator
JP7016002B2 (en) refrigerator
JP6799760B2 (en) Condensation sensor, condensation detection system, and refrigerator
KR20160001389A (en) Refrigerator and method for controlling the same
JP7429846B2 (en) refrigerator
US11549740B2 (en) Refrigerator and controlling method for the same
JP7170165B2 (en) refrigerator
JP2016161231A (en) Refrigerator
JP5008440B2 (en) Cooling storage
JP6794507B2 (en) refrigerator
JP6694538B2 (en) refrigerator
JP2004053152A (en) Refrigerator
JP2005172306A (en) Refrigerator
JP2007147100A (en) Refrigerator
JP2020079670A (en) refrigerator
WO2023030185A1 (en) Refrigerator
JP2006071163A (en) Refrigerator
JP2008095985A (en) Refrigerator
JP6862094B2 (en) refrigerator
JP6768311B2 (en) refrigerator

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220511

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220511

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20221024

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230322

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230328

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230523

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230829

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231121

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20231130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240101

R151 Written notification of patent or utility model registration

Ref document number: 7429846

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151