JP2004053152A - Refrigerator - Google Patents

Refrigerator Download PDF

Info

Publication number
JP2004053152A
JP2004053152A JP2002212037A JP2002212037A JP2004053152A JP 2004053152 A JP2004053152 A JP 2004053152A JP 2002212037 A JP2002212037 A JP 2002212037A JP 2002212037 A JP2002212037 A JP 2002212037A JP 2004053152 A JP2004053152 A JP 2004053152A
Authority
JP
Japan
Prior art keywords
room
vegetable
temperature
refrigerator
cooler
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002212037A
Other languages
Japanese (ja)
Inventor
Toshikazu Sakai
境 寿和
Yoshihiro Kuwari
桑理 義博
Yasuki Hamano
浜野 泰樹
Toyoshi Kamisako
上迫 豊志
Makoto Oyamada
小山田 真
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Refrigeration Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Refrigeration Co filed Critical Matsushita Refrigeration Co
Priority to JP2002212037A priority Critical patent/JP2004053152A/en
Publication of JP2004053152A publication Critical patent/JP2004053152A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D17/00Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
    • F25D17/04Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2317/00Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass
    • F25D2317/04Treating air flowing to refrigeration compartments
    • F25D2317/041Treating air flowing to refrigeration compartments by purification
    • F25D2317/0413Treating air flowing to refrigeration compartments by purification by humidification

Abstract

<P>PROBLEM TO BE SOLVED: To cool a vegetable chamber with a simple structure by maintaining high humidity in the vegetable chamber. <P>SOLUTION: A communicating air duct 34 communicating with a storage chamber 3 from a cooler 5 is provided for circulating cold air of the cooler 5 to the storage chamber 3 except the vegetable chamber 4. The communicating air duct 34 is disposed in the back surface of the vegetable chamber 4. The heat insulating characteristics of the partition walls of the upper and lower surfaces and the right and left side surfaces of the vegetable chamber 4 are higher than the heat insulating characteristics of a back surface wall. Thus, the vegetable chamber 4 is cooled by a radiation and a natural convection from the communicating air duct 34 through the back surface wall. Accordingly, while the high humidity of the vegetable chamber 4 is maintained, water drops are formed only on the back surface wall in the chamber with the low heat insulating characteristics to avoid the water drops from directly dropping on food materials. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は強制的に冷気を流入させず内壁面からの輻射と自然対流で野菜室を冷却する冷蔵庫に関するものである。
【0002】
【従来の技術】
近年、独立の野菜室を有する冷蔵庫が主流となりつつある。この冷蔵庫は、野菜室の温度を冷蔵室と同等に設定するとともに、高湿度に維持することで野菜の乾燥を防止し、保鮮性を高めたものである。具体的には、冷却器から供給される乾燥した冷気を野菜室には直接供給せず、比較的湿度の高い冷蔵室からの帰還冷気を野菜室に供給して冷却する方法や、野菜室には全く冷気を供給せず、内壁面からの輻射と自然対流で野菜室を冷却する方法が提案されている。
【0003】
後者の冷蔵庫の一例として、特開平9−113089号公報が挙げられる。ここで、従来提案されている冷蔵庫および冷却システムの概略図を図6に示す。
【0004】
図6において、1は冷蔵室、2は冷凍室、3は自動で製氷を行うとともに氷を貯留する製氷室、4は野菜室、5は冷凍室2の背面に配設され冷蔵室1と冷凍室2、製氷室3を冷却する冷却器、6は冷蔵庫の背面下部に配置され冷媒を圧縮する圧縮機、7は冷蔵庫の背面下部あるいは冷蔵庫壁面内部に配置された凝縮器である。
【0005】
また、10は冷蔵庫の外郭を形成する箱体であり、11、12、13、14はそれぞれ冷蔵室1、冷凍室2、製氷室3、野菜室4の扉である。また、冷凍室2と野菜室4は第一の仕切り15、冷蔵室1と製氷室3は第二の仕切り16、製氷室3と冷凍室2は第三の仕切り17で隔たれており、第一の仕切り15の中にある冷却パイプ18により野菜室4が輻射冷却される。
【0006】
以上のように構成された従来例の冷蔵庫について、以下その動作を説明する。
【0007】
圧縮機6で圧縮された冷媒を凝縮器7で凝縮した後、キャピラリ8、冷却器5、冷却パイプ18の順に冷媒を流しながら減圧、蒸発させて、圧縮機6に帰還させる。
【0008】
このとき、ファン9を駆動して冷却器5で冷却された冷気を冷蔵室1と冷凍室2、製氷室3に供給するとともに、冷却器5の下部あるいは側面に配置された風路(図示せず)を介して冷蔵室1と冷凍室2、製氷室3の内部の空気を冷却器5に帰還させる。
【0009】
また同時に、冷却器5の配管の一部を第一の仕切り15の下側に配設して形成した冷却パイプ18により、第一の仕切り15の下面すなわち野菜室4の上面が冷却され、その輻射冷却で野菜室4内に貯蔵された食品が冷却されるとともに、自然対流により野菜室4内の空気が冷却される。
【0010】
この結果、冷却器5で冷却乾燥された冷気を野菜室4へ供給することなく、野菜室4の冷却が実現でき、野菜室4内を高湿度に維持することで野菜の乾燥を防止し、保鮮性を高めることができる。
【0011】
【発明が解決しようとする課題】
しかしながら、上記従来の構成では、野菜室の内壁上面の温度を低下させて冷却するので、水分蒸散の多い食材を貯蔵した場合に内壁上面に露付きが生じて、形成した水滴が食材に直接落下する問題が生じる可能性があった。
【0012】
また、冷蔵室や冷凍室を冷却するための冷却器とは別に第一の仕切り部に冷却パイプを配設するとともに、冷却パイプの冷却量を調整するための機構が必要であり、これに伴うコスト上昇や冷媒封入量の増加が懸念される。
【0013】
本発明は従来の課題を解決するもので、野菜室内を高湿度に維持しながら簡易な構成で野菜室を冷却するとともに、野菜室の内壁面への露付きを防止することを目的としている。
【0014】
【課題を解決するための手段】
本発明の請求項1に記載の発明は、強制的に冷気を流入させず壁面からの輻射と自然対流で野菜室を冷却する冷蔵庫において、冷却器を有する冷却器室を前記野菜室の背面壁を隔てて備え、前記背面壁により前記野菜室を間接的に冷却するとともに前記野菜室を構成する上下壁および左右側面壁の断熱性を前記背面壁の断熱性よりも高めたものであり、野菜室の背面に隔てて設置された冷却器室からの熱伝導で野菜室を冷却することで、簡易な構成でありながら外気温度の変化に応じて野菜室の冷却量を適正に調整することができる。
【0015】
また、野菜室背面からの輻射と自然対流で野菜室を冷却することで、野菜室内を高湿度に維持して野菜の乾燥を防止し保鮮性を高めることができるとともに、野菜室上面に水滴が付着することを防止することで、水滴が食材に直接落下する問題を回避することができる。
【0016】
請求項2に記載の発明は、強制的に冷気を流入させず壁面からの輻射と自然対流で野菜室を冷却する冷蔵庫において、冷却器の冷気を前記野菜室以外の貯蔵室に循環させる循環風路を前記野菜室の背面壁を隔てて備え、前記背面壁により前記野菜室を間接的に冷却するとともに前記野菜室を構成する上下壁および左右側面壁の断熱性を前記背面壁の断熱性よりも高めたものであり、野菜室の背面に隔てて設置された風路内の冷気からの熱伝導で野菜室を冷却することで、簡易な構成でありながら外気温度の変化に応じて野菜室の冷却量を適正に調整することができる。
【0017】
また、野菜室背面からの輻射と自然対流で野菜室を冷却することで、野菜室内を高湿度に維持して野菜の乾燥を防止し保鮮性を高めることができるとともに、野菜室上面に水滴が付着することを防止することで、水滴が食材に直接落下する問題を回避することができる。
【0018】
請求項3に記載の発明は、貯蔵室として冷蔵室、冷凍室、野菜室を上から順に設け、前記冷蔵室と前記冷凍室の間に製氷室と冷蔵から冷凍に温度調整可能な切替室を並列に設けた冷蔵庫において、前記野菜室の背面壁を隔てて冷却器を収容する冷却器室を配置し、前記冷凍室と前記製氷室と前記切替室とを前記冷却器室からの冷気の通風により直接冷却し、前記野菜室を前記背面壁を介して前記冷却器室から間接冷却するものであり、野菜室は背面に設置された冷却器と、上面に配置された冷凍室からの熱伝導により間接的に冷却されることで、簡易な構成で野菜室内を高湿度に維持しながら野菜の乾燥を防止し、保鮮性を高めることができる。
【0019】
また、製氷室あるいは冷凍室の温度設定を調整することで、野菜室の冷却能力が調整できる。
【0020】
請求項4に記載の発明は、貯蔵室として冷蔵室、野菜室、冷凍室を上から順に設け、前記冷蔵室と前記野菜室の間に製氷室と冷蔵から冷凍に温度調整可能な切替室を並列に設けた冷蔵庫において、前記冷凍室の背面壁を隔てて冷却器を収容する冷却器室と、前記野菜室の背面壁を隔てて前記冷却器室と前記製氷室あるいは前記切替室を連通する連通風路とを備えて、前記冷凍室と前記製氷室と前記切替室とを前記冷却器室からの冷気の通風により直接冷却し、前記野菜室を前記背面壁を介して前記連通風路から間接冷却するものであり、野菜室は背面に設置された製氷室あるいは切替室を冷却する風路と、上面に配置された製氷室と切替室、下面に設置された冷凍室からの熱伝導により冷却されることで、簡易な構成で野菜室内を高湿度に維持しながら野菜の乾燥を防止し、保鮮性を高めることができる。
【0021】
また、製氷室あるいは冷凍室の温度設定を調整することで、野菜室の冷却能力が調整できる。
【0022】
請求項5に記載の発明は、請求項1から請求項4のいずれか一項に記載の発明に、少なくとも野菜室の上面壁あるいは下面壁に真空断熱材を埋設したものであり、野菜室の上面あるいは下面側に冷凍室や製氷室、冷蔵から冷凍に温度調整可能な切替室を設置した場合でも、断熱性に優れた真空断熱材で隔てることにより上面壁あるいは下面壁からの熱伝導の影響を著しく抑制することができ、野菜室の温度調整の精度を向上することができる。
【0023】
請求項6に記載の発明は、請求項5に記載の発明に、野菜室の上面壁あるいは下面壁を冷蔵庫断熱箱体を形成するウレタン発泡断熱材で一体に形成したものであり、野菜室の上面あるいは下面の仕切り部に冷蔵庫の制御基板やハーネス、あるいは自動製氷機の給水パイプ等の複雑な形状の部品を埋設した場合でも、その形状に合わせてウレタン発泡して断熱材を形成できる。
【0024】
また、複雑な形状の部品を介して伝導する野菜室の上面あるいは下面側に設置された貯蔵室の冷気の影響を著しく抑制することができ、野菜室の温度調整の精度を向上することができる。
【0025】
請求項7に記載の発明は、請求項1から請求項4のいずれか一項に記載の発明に、真空断熱材をウレタン発泡断熱材に埋設した断熱ボードを野菜室の上面壁あるいは下面壁に備えたものであり、真空断熱材の外皮材による熱伝導の影響を抑制できる。
【0026】
また、外形の寸法精度が優れたウレタン発泡断熱材で外郭を形成することで、野菜室の上面あるいは下面壁に埋設する際、断熱ボードの端部を精度よくシールすることができ、シール部の熱伝導による野菜室の上面あるいは下面への水滴形成を防止することができる。
【0027】
請求項8に記載の発明は、請求項1から請求項7のいずれか一項に記載の発明において、野菜室の室温を検知する室温検知手段と、前記野菜室の背面壁に配置され前記野菜室を加温するヒータとを備え、前記室温検知手段にて測定される温度と前記野菜室の設定温度とを比較して、前記ヒータの発熱量を加減することにより前記野菜室の温度制御を行わせるものであり、冷蔵庫の負荷変動により運転率が増減して、野菜室温度が変動した場合でも、野菜室の背面に配置されたヒータの出力を調整することで、野菜室温度を適正に保つことができる。
【0028】
請求項9に記載の発明は、請求項1から請求項7のいずれか一項に記載の発明において、野菜室の室温を検知する室温検知手段と、前記野菜室の背面壁に配置され前記野菜室を加温するヒータとを備え、前記室温検知手段にて測定される温度と前記野菜室の設定温度とを比較して、前記室温検知手段にて測定される温度が前記設定温度より低い場合には前記ヒータの入力を大きくし、前記室温検知手段にて測定される温度が前記設定温度より高い場合には前記ヒータの入力を小さくするものであり、冷蔵庫の負荷の変動により運転率が増加して、野菜室背面温度が低下した場合でも、野菜室の背面に配置されたヒータの出力を調整して発熱量を増大させることで、野菜室背面の温度を適正に保つことができ、野菜室背面に大量の水滴が付くのを防止することができる。
【0029】
また、運転率が減少して、野菜室背面温度が上昇した場合には、野菜室の背面に配置されたヒータの出力を調整して発熱量を低減することで、電力消費を抑えて野菜室背面の温度を適正に保つことができる。
【0030】
請求項10に記載の発明は、請求項8または請求項9に記載の発明において、野菜室の温度が設定温度より高くなった場合に野菜室に隣接する上部または下部の貯蔵室の設定温度を引き下げるものであり、設定温度が引き下げられた貯蔵室を冷却するために運転率が増加し、野菜室の背面に隔てて設置された冷却器室あるいは風路内の冷気の平均温度が通常より低下することで、外気温の上昇に伴って吸熱量が増加した野菜室の温度を適正に低下させることができる。
【0031】
請求項11に記載の発明は、請求項3または請求項4に記載の発明において、製氷停止時は製氷室の設定温度を0〜−10℃に維持するものであり、一般に製氷が停止される冬期において野菜室の冷却能力を低下させることで、野菜室の吸熱負荷が小さい冬期において野菜室の温度を適正に保つことができる。
【0032】
【発明の実施の形態】
(実施の形態1)
本発明による実施の形態1について、図面を参照しながら説明する。なお、従来例と同一構成については、同一符号を付して詳細な説明を省略する。
【0033】
図1は本発明の実施の形態1による冷蔵庫および冷却システムの概略図、図2は本発明の実施の形態1による野菜室温度を示す図である。
【0034】
図1において、1は冷蔵室、2は冷凍室、3は冷蔵室1と冷凍室2の間に配置され自動で製氷を行うとともに氷を貯留する製氷室、4は冷凍室2の下に配置された野菜室であり、上部に野菜室4の室温を検知する室温検知手段4aを備えている。
【0035】
また、5は野菜室4の背面に隔てて配置され、製氷室3と冷凍室2を冷却する冷却器、6は冷却器で気化した冷媒を圧縮する圧縮機、7は圧縮機6で圧縮された冷媒を凝縮する凝縮器、8は凝縮器7で凝縮された冷媒を減圧して冷却器に供給するキャピラリ、9は冷却器5で生成した冷気を製氷室3と冷凍室2に供給するファンである。
【0036】
また、10は冷蔵庫の外郭を形成する箱体であり、11、12、13、14はそれぞれ冷蔵室1、冷凍室2、製氷室3、野菜室4の扉である。また、冷凍室2と野菜室4は第一の仕切り15、冷蔵室1と製氷室3は第二の仕切り16、製氷室3と冷凍室2は第三の仕切り17で隔たれており、第一の仕切り15の中に真空断熱材30が埋設されている。
【0037】
また、4aは野菜室4の室温を測定する室温検知手段であり、野菜室4の上部で第一の仕切り15に配置されている。
【0038】
箱体10は鋼板製の外箱と硬質樹脂製の内箱の間にポリウレタン原液を注入してウレタン発泡断熱材を形成したものであり、第一の仕切り15は真空断熱材30を内部に固定した状態で、箱体10と同時にウレタン発泡断熱材を形成したものである。
【0039】
一般に冷蔵庫に用いるウレタン発泡断熱材の熱伝導率は0.015〜0.020W/mK程度である。
【0040】
また、真空断熱材30は、多層ラミネート構造のガスバリアフィルムからなる袋内に、シリカ等の微粉末や繊維を挿入した後、袋内の空気を排気して真空状態としたものであり、0.002〜0.005W/mK程度の熱伝導率を示す。
【0041】
また、背面の風路を形成する第六の仕切り(背面壁)26、第七の仕切り27、第八の仕切り28は熱伝導率0.06〜0.08W/mK程度の発泡スチロールをセットした樹脂板で形成され、箱体10のウレタン発泡断熱材を形成した後に他の部品とともに組み付けるものである。
【0042】
実施の形態1による冷蔵庫は省エネルギー化を図るため、三方弁20を切り替えて、製氷室3と冷凍室2を冷却する冷却器5とは並列に独立した冷蔵室冷却器21を用いて、設定温度の高い冷蔵室1を冷却している。
【0043】
すなわち、冷蔵室1を冷却する場合、凝縮器7で液化した冷媒を三方弁20を介して冷蔵室キャピラリ22で減圧して冷蔵室冷却器21に送り、圧縮機6へ還流させるとともに、冷蔵室ファン23を駆動させて冷蔵室冷却器21で生成した冷気を冷蔵室1に送る。このとき、冷媒が冷却器5へ逆流しないように逆止弁25を冷却器5の出口に設けている。
【0044】
同様に、製氷室3と冷凍室2を冷却する場合、凝縮器7で液化した冷媒を三方弁20を介してキャピラリ8で減圧して冷却器5に送り、圧縮機6へ還流させるとともに、ファン9を駆動させて冷却器5で生成した冷気を製氷室3と冷凍室2に送る。このとき、製氷室ファン24を同時に駆動させると、製氷室3への冷気量が増大して製氷速度が向上する。
【0045】
以上のように構成された実施の形態1の冷蔵庫について、以下その動作を説明する。
【0046】
通常運転時は、三方弁20を切り替えて冷却器5と冷蔵室冷却器21に交互に冷媒を供給して、冷蔵室1、冷凍室2、製氷室3を冷却する。そして、冷却負荷が小さい場合は、圧縮機6の運転を停止する。一方、冷却負荷が大きくなった場合は、圧縮機6の回転数を増大させて冷却器5あるいは冷蔵室冷却器21の蒸発温度を低下させて冷却能力を向上させる。
【0047】
野菜室4は、発泡スチロールがセットされた第六の仕切り26により背面に隔てて設置された冷却器5と、ウレタン発泡断熱材で形成された第一の仕切り15により隔てて配置された冷凍室2からの熱伝達によって冷却されるが、第一の仕切り15に断熱性の高い真空断熱材30を埋設することで冷凍室2からの熱伝達は極めて小さくなる。
【0048】
そして、野菜室4は主として冷却器5からの熱伝達による背面壁26からの輻射と自然対流で冷却され、この結果、外気温が高く野菜室4や冷凍室2、製氷室3の冷却負荷が大きくなった場合には、冷却器5の蒸発温度が下がることで冷却器5からの熱伝達量が増大する。
【0049】
一方、外気温が低く野菜室4や冷凍室2、製氷室3の冷却負荷が小さくなった場合には、運転率が低下することで冷却器5からの熱伝達量が減少して、適正な温度調節を行う。
【0050】
図2において、Aは本発明の実施の形態1による野菜室4の通常運転時の温度を示すものであり、外気温度が変動しても所定の制御範囲で温度調整が実現できる。
【0051】
一方、Bは第一の仕切り15の断熱性を第六の仕切り26と同等に低下させたものであり、高外気温での野菜室4の冷却量が適正になるように壁厚を調整すると低外気温での冷却量が大きすぎて野菜室4の温度が著しく低下する。これは、冷凍室2からの熱伝達量が外気温度によらずほぼ一定となるためである。
【0052】
また、野菜室4の背面にある第六の仕切り26の表面には野菜室ヒータ31が貼り付けられており、低外気温時に食品投入により冷凍室2などの負荷が増大して運転率が増大して、冷却器5からの熱伝達量が増加した場合に、野菜室ヒータ31の出力を調整して野菜室4の温度変動を抑制することができる。
【0053】
しかし、野菜室ヒータ31の出力増は消費電力の増加を意味するため、図2に示したように、通常運転時には野菜室ヒータ31なしで野菜室4を所定の温度範囲に保つことが望ましい。
【0054】
なお、野菜室4内には食材を保管する上部が開放された野菜室ケース(図示せず)が設置され、冷却面である野菜室4の背面に形成した水滴が食材に直接接触することはないが、野菜室4の背面に形成した水滴を外部に排出するドレインを設けることが望ましい。
【0055】
また、夏場などにおいて多量の食材を投入して野菜室4の温度が所定の温度より高くなった場合には、冷凍室2の設定温度を引き下げて冷却器5の運転率を増加させて、野菜室4の冷却能力を向上させることが望ましい。一方、冬場などにおいて自動製氷が停止した場合には、製氷室ダンパー(図示せず)により製氷室3に供給する冷気量を制御して製氷室3の設定温度を0〜−10℃程度に引き上げることが望ましい。
【0056】
これによって、冷却器5の運転率を低下させて省エネルギー化を図るとともに、冷却負荷の低い冬場において野菜室4の温度を適正に保つことができる。
【0057】
また、本実施の形態1においては、冷蔵室1と冷凍室2の間に自動で製氷を行うとともに氷を貯留する製氷室3を配置したが、製氷室3を分割して冷蔵から冷凍に温度調整可能な切替室と製氷室3とを並列に設置しても同様の効果が得られる。
【0058】
また、本実施の形態1においては、第一の仕切り15のほぼ全面に真空断熱材30を配置したが、真空断熱材30の面積を小さくして第一の仕切り15内のウレタン発泡断熱材で形成された部分に制御基板やハーネス部を埋設することもできる。この場合、制御基板やハーネス部を埋設した部分の断熱性が低下するので、この部分のみウレタン発泡断熱材を厚くすることが望ましい。
【0059】
以上のように動作させることにより、冷却器5からの熱伝達に基づく野菜室4背面の輻射と自然対流で野菜室4を冷却することで、野菜室4内を高湿度に維持しながら簡易な構成で野菜室4を適正に温度調整するとともに、野菜室4の背面壁の温度を上下壁および左右側面壁の隔壁よりも低く保つことにより、野菜室4の背面壁にのみ水滴を形成することで、水滴が食材に直接落下する問題を回避することができる。
【0060】
(実施の形態2)
本発明による実施の形態2について、図面を参照しながら説明する。なお、実施の形態1と同一構成については、同一符号を付して詳細な説明を省略する。
【0061】
図3は本発明の実施の形態2による冷蔵庫および冷却システムの概略図、図4は本発明の実施の形態2による断熱ボードの概略図、図5は本発明の実施の形態2による野菜室温度を示す図である。
【0062】
図3において、1は冷蔵室、4は野菜室、3は冷蔵室1と野菜室4の間に配置され自動で製氷を行うとともに氷を貯留する製氷室、2は野菜室4の下に配置された冷凍室である。
【0063】
また、5は冷凍室2の背面に隔てて配置され、製氷室3と冷凍室2を冷却する冷却器、6は冷却器で気化した冷媒を圧縮する圧縮機、7は圧縮機6で圧縮された冷媒を凝縮する凝縮器、8は凝縮器7で凝縮された冷媒を減圧して冷却器に供給するキャピラリ、9は冷却器5で生成した冷気を製氷室3と冷凍室2に供給するファンである。
【0064】
また、10は冷蔵庫の外郭を形成する箱体であり、11、12、13、14はそれぞれ冷蔵室1、冷凍室2、製氷室3、野菜室4の扉である。また、冷凍室2と野菜室4は第一の仕切り15、冷蔵室1と製氷室3は第二の仕切り16、製氷室3と野菜室4は断熱ボード33で隔たれており、第一の仕切り15の中に真空断熱材30が埋設されている。
【0065】
また、4aは野菜室4内の室温を測定する室温検知手段であり、野菜室4の上部の断熱ボード33に配置されている。
【0066】
箱体10は鋼板製の外箱と硬質樹脂製の内箱の間にポリウレタン原液を注入してウレタン発泡断熱材を形成したものであり、第一の仕切り15は真空断熱材30を内部に固定した状態で、箱体10と同時にウレタン発泡断熱材を形成したものである。一般に冷蔵庫に用いるウレタン発泡断熱材の熱伝導率は0.015〜0.020W/mK程度である。
【0067】
また、真空断熱材30は、多層ラミネート構造のガスバリアフィルムからなる袋内に、シリカ等の微粉末や繊維を挿入した後、袋内の空気を排気して真空状態としたものであり、0.002〜0.005W/mK程度の熱伝導率を示す。
【0068】
また、背面の風路を形成する第六の仕切り26、第七の仕切り27、第八の仕切り28は熱伝導率0.06〜0.08W/mK程度の発泡スチロールがセットされた樹脂板で形成され、箱体10のウレタン発泡断熱材を形成した後に他の部品とともに組み付けるものである。
【0069】
また、図4において断熱ボード33は真空断熱材30と同一構成の真空断熱材33aを埋設し、外郭をウレタン発泡断熱材33bで形成したものである。断熱ボード33は第七の仕切り27を組み付けた後に、箱体10に組み付けるものである。
【0070】
実施の形態2による冷蔵庫は省エネルギー化を図るため、三方弁20を切り替えて、製氷室3と冷凍室2を冷却する冷却器5とは並列に独立した冷蔵室冷却器21を用いて、設定温度の高い冷蔵室1を冷却している。すなわち、冷蔵室1を冷却する場合、凝縮器7で液化した冷媒を三方弁20を介して冷蔵室キャピラリ22で減圧して冷蔵室冷却器21に送り、圧縮機6へ還流させるとともに、冷蔵室ファン23を駆動させて冷蔵室冷却器21で生成した冷気を冷蔵室1に送る。
【0071】
このとき、冷媒が冷却器5へ逆流しないように逆止弁25を冷却器5の出口に設けている。同様に、製氷室3と冷凍室2を冷却する場合、凝縮器7で液化した冷媒を三方弁20を介してキャピラリ8で減圧して冷却器5に送り、圧縮機6へ還流させるとともに、ファン9を駆動させて冷却器5で生成した冷気を製氷室3と冷凍室2に送る。このとき、製氷室ファン24を同時に駆動させると、製氷室3への冷気量が増大して製氷速度が向上する。
【0072】
以上のように構成された実施の形態2の冷蔵庫について、以下その動作を説明する。
【0073】
通常運転時は、三方弁20を切り替えて冷却器5と冷蔵室冷却器21に交互に冷媒を供給して、冷蔵室1、冷凍室2、製氷室3を冷却する。そして、冷却負荷が小さい場合は、圧縮機6の運転を停止する。一方、冷却負荷が大きくなった場合は、圧縮機6の回転数を増大させて冷却器5あるいは冷蔵室冷却器21の蒸発温度を低下させて冷却能力を向上させる。
【0074】
また、製氷室3の自動製氷中は製氷室3を冷凍温度設定するとともに製氷室ファン24を駆動させる。製氷室3の温度調節は製氷室ダンパ(図示せず)によって連通風路34内の冷気風量を調節して行われる。
【0075】
野菜室4は、発泡スチロールがセットされた樹脂板で形成された第七の仕切り27により背面に隔てて設置された製氷室3を冷却する連通風路34と、ウレタン発泡断熱材で形成された第一の仕切り15により隔てて配置された冷凍室2と、ウレタン発泡断熱材で形成された断熱ボード33により隔てて配置された製氷室3からの熱伝達によって冷却されるが、第一の仕切り15および断熱ボード33に断熱性の高い真空断熱材30および真空断熱材33aを埋設することで冷凍室2および製氷室3からの熱伝達は極めて小さくなる。
【0076】
そして、野菜室4は主として連通風路34からの熱伝達による背面からの輻射と自然対流で冷却され、この結果、外気温が高く野菜室4や冷凍室2、製氷室3の冷却負荷が大きくなった場合には、冷却器5の蒸発温度が下がることで連通風路34からの熱伝達量が増大する。
【0077】
一方、外気温が低く野菜室4や冷凍室2、製氷室3の冷却負荷が小さくなった場合には、運転率が低下することで連通風路34からの熱伝達量が減少して、適正な温度調節を行う。
【0078】
図5において、CおよびDは本発明の実施の形態2による野菜室4の通常運転時の温度を示すものであり、外気温度が変動してもほぼ所定の制御範囲で温度調整が実現できる。Dは製氷室3の設定温度を通常の冷凍設定−18℃としたものである。
【0079】
Cは製氷室3の自動製氷を停止し、製氷室3の設定温度を通常の冷凍設定−18℃から−5℃程度に引き上げたものであり、冷却負荷が小さく自動製氷の使用頻度が低下する低外気温条件において、製氷室3および連通風路34からの熱伝達量を減少させて野菜室4の温度を適正に上昇させることができる。
【0080】
一方、Eは断熱ボード33の断熱性を第七の仕切り27と同等で真空断熱材を埋設しないものであり、高外気温での野菜室4の冷却量が適正になるように壁厚を調整すると低外気温での冷却量が大きすぎて野菜室4の温度が著しく低下する。これは、製氷室3からの熱伝達量が外気温度によらずほぼ一定となるためである。
【0081】
また、野菜室4の背面にある第七の仕切り27および底面にある第一の仕切り15の表面には野菜室ヒータ32が貼り付けられており、低外気温時に食品投入により冷凍室2などの負荷が増大して運転率が増大して、連通風路34からの熱伝達量が増加した場合に、野菜室ヒータ32の出力を調整して野菜室4の温度変動を抑制することができる。
【0082】
野菜室ヒータ32は、図示しないサーミスタなどの室温検知手段により検出される温度と野菜室4の設定温度との比較によりヒータ入力である発熱量を調整されて、野菜室4内を適正な温度範囲に維持する。
【0083】
また、野菜室ヒータ32の発熱量制御が必ずしも野菜室4の室温の維持に利用するものでなくともよく、野菜室4の背面壁の温度が著しく低下した場合に多量の結露水が集中し、条件によっては結氷に至ることを未然に防止するため、特に野菜室4の背面壁の温度管理をするものであってもよい。この場合の室温検知手段の配置位置は背面壁近傍であった方が好ましい。
【0084】
しかし、野菜室ヒータ32の出力増は消費電力の増加を意味するため、図4に示したように、通常運転時には野菜室ヒータ32なしで野菜室4を所定の温度範囲に保つことが望ましい。
【0085】
なお、野菜室4内には食材を保管する上部が開放された野菜室ケース(図示せず)が設置されるが、冷却面である野菜室4の背面に水滴が集中するため食材に直接接触することはないが、野菜室4の背面に付着した水滴を外部に排出するドレインを設けることが望ましい。
【0086】
また、本実施の形態では上部が開放された野菜室ケースを例示したが、背面壁からの冷却量が十分であるならば、野菜室ケースの上部開口面を概ね覆う蓋体を設けた方が、収納される野菜の更なる乾燥抑制と背面壁への多量の結露発生防止の観点から望ましいことも考えられる。
【0087】
また、夏場などにおいて多量の食材を投入して野菜室4の温度が所定の温度より高くなった場合には、冷凍室2の設定温度を引き下げて冷却器5の運転率を増加させて、野菜室4の冷却能力を向上させることが望ましい。
【0088】
一方、冬場などにおいて自動製氷が停止した場合には、製氷室ダンパー(図示せず)により製氷室3に供給する冷気量を制御して製氷室3の設定温度を0〜−10℃程度に引き上げることが望ましい。これによって、冷却器5の運転率を低下させて省エネルギー化を図るとともに、冷却負荷の低い冬場において野菜室4の温度を適正に保つことができる。
【0089】
また、本実施の形態2においては、冷蔵室1と野菜室4の間に自動で製氷を行うとともに氷を貯留する製氷室3を配置したが、製氷室3を分割して冷蔵から冷凍に温度調整可能な切替室と製氷室3とを並列に設置しても同様の効果が得られる。
【0090】
また、本実施の形態2においては、第一の仕切り15のほぼ全面に真空断熱材30を配置したが、真空断熱材30の面積を小さくして第一の仕切り15内のウレタン発泡断熱材で形成された部分に制御基板やハーネス部を埋設することもできる。
【0091】
この場合、制御基板やハーネス部を埋設した部分の断熱性が低下するので、この部分のみウレタン発泡断熱材を厚くすることが望ましい。また、本実施の形態2においては、製氷室3と野菜室4の間を断熱ボード33で断熱したが、断熱ボード33をウレタン発泡断熱材33bなしに真空断熱材33aのみで形成しても同様の効果が得られる。
【0092】
この場合、ガスバリアフィルムからなる真空断熱材33aの外皮材は断熱性が低いので、外皮材を介して製氷室3から野菜室4に冷熱が伝わらないように真空断熱材33a外周部を厚い発泡スチロールで覆い、外周部の断熱とシールを確実に行うことが望ましい。
【0093】
以上のように動作させることにより、冷却器からの熱伝達に基づく野菜室背面の輻射と自然対流で野菜室を冷却することで、野菜室内を高湿度に維持しながら簡易な構成で野菜室を適正に温度調整するとともに、野菜室背面壁の温度を上下壁および左右側面壁よりも低く保つことにより、野菜室背面壁にのみ水滴を形成することで、水滴が食材に直接落下する問題を回避することができる。
【0094】
【発明の効果】
以上説明したように本発明の請求項1に記載の発明は、強制的に冷気を流入させず壁面からの輻射と自然対流で野菜室を冷却する冷蔵庫において、冷却器を有する冷却器室を前記野菜室の背面壁を隔てて備え、前記背面壁により前記野菜室を間接的に冷却するとともに前記野菜室を構成する上下壁および左右側面壁の断熱性を前記背面壁の断熱性よりも高めたので、野菜室の背面に隔てて設置された冷却器室からの熱伝導で、簡易な構成でありながら外気温度の変化に応じて野菜室の冷却量を適正に調整することができる。
【0095】
また、野菜室内を高湿度に維持して野菜の乾燥を防止し保鮮性を高めることができる。
【0096】
また、請求項2に記載の発明は、強制的に冷気を流入させず壁面からの輻射と自然対流で野菜室を冷却する冷蔵庫において、冷却器の冷気を前記野菜室以外の貯蔵室に循環させる循環風路を前記野菜室の背面壁を隔てて備え、前記背面壁により前記野菜室を間接的に冷却するとともに前記野菜室を構成する上下壁および左右側面壁の断熱性を前記背面壁の断熱性よりも高めたので、野菜室の背面に隔てて設置された風路内の冷気からの熱伝導で、簡易な構成でありながら外気温度の変化に応じて野菜室の冷却量を適正に調整することができる。
【0097】
また、野菜室内を高湿度に維持して野菜の乾燥を防止し保鮮性を高めることができる。
【0098】
また、請求項3に記載の発明は、貯蔵室として冷蔵室、冷凍室、野菜室を上から順に設け、前記冷蔵室と前記冷凍室の間に製氷室と冷蔵から冷凍に温度調整可能な切替室を並列に設けた冷蔵庫において、前記野菜室の背面壁を隔てて冷却器を収容する冷却器室を配置し、前記冷凍室と前記製氷室と前記切替室とを前記冷却器室からの冷気の通風により直接冷却し、前記野菜室を前記背面壁を介して前記冷却器室から間接冷却するので、野菜室は背面に設置された冷却器と、上面に配置された冷凍室からの熱伝導により間接的に冷却され、簡易な構成で野菜室内を高湿度に維持しながら野菜の乾燥を防止し、保鮮性を高めることができる。
【0099】
また、請求項4に記載の発明は、貯蔵室として冷蔵室、野菜室、冷凍室を上から順に設け、前記冷蔵室と前記野菜室の間に製氷室と冷蔵から冷凍に温度調整可能な切替室を並列に設けた冷蔵庫において、前記冷凍室の背面壁を隔てて冷却器を収容する冷却器室と、前記野菜室の背面壁を隔てて前記冷却器室と前記製氷室あるいは前記切替室を連通する連通風路とを備えて、前記冷凍室と前記製氷室と前記切替室とを前記冷却器室からの冷気の通風により直接冷却し、前記野菜室を前記背面壁を介して前記連通風路から間接冷却するので、野菜室は背面に設置された製氷室あるいは切替室を冷却する風路と、上面に配置された製氷室と切替室、下面に設置された冷凍室からの熱伝導により冷却され、簡易な構成で野菜室内を高湿度に維持しながら野菜の乾燥を防止し、保鮮性を高めることができる。
【0100】
また、請求項5に記載の発明は、請求項1から請求項4のいずれか一項に記載の発明に、少なくとも野菜室の上面壁あるいは下面壁に真空断熱材を埋設したので、野菜室の上面あるいは下面側に冷凍室や製氷室、冷蔵から冷凍に温度調整可能な切替室を設置した場合でも、上面壁あるいは下面壁からの熱伝導の影響を著しく抑制することができ、野菜室の温度調整の精度を向上することができる。
【0101】
また、請求項6に記載の発明は、請求項5に記載の発明に、野菜室の上面壁あるいは下面壁を冷蔵庫断熱箱体を形成するウレタン発泡断熱材で一体に形成したので、複雑な形状の部品を介して伝導する野菜室の上面あるいは下面側に設置された貯蔵室の冷気の影響を著しく抑制することができ、野菜室の温度調整の精度を向上することができる。
【0102】
また、請求項7に記載の発明は、請求項1から請求項4のいずれか一項に記載の発明に、真空断熱材をウレタン発泡断熱材に埋設した断熱ボードを野菜室の上面壁あるいは下面壁に備えたので、真空断熱材の外皮材による熱伝導の影響を抑制できる。
【0103】
また、断熱ボードの端部を精度よくシールすることができ、シール部の熱伝導による野菜室の上面あるいは下面への水滴形成を防止することができる。
【0104】
また、請求項8に記載の発明は、請求項1から請求項7のいずれか一項に記載の発明において、野菜室の室温を検知する室温検知手段と、前記野菜室の背面壁に配置され前記野菜室を加温するヒータとを備え、前記室温検知手段にて測定される温度と前記野菜室の設定温度とを比較して、前記ヒータの発熱量を加減することにより前記野菜室の温度制御を行わせるので、冷蔵庫の負荷変動により運転率が増減して、野菜室温度が変動した場合でも、野菜室温度を適正に保つことができる。
【0105】
また、請求項9に記載の発明は、請求項1から請求項7のいずれか一項に記載の発明において、野菜室の室温を検知する室温検知手段と、前記野菜室の背面壁に配置され前記野菜室を加温するヒータとを備え、前記室温検知手段にて測定される温度と前記野菜室の設定温度とを比較して、前記室温検知手段にて測定される温度が前記設定温度より低い場合には前記ヒータの入力を大きくし、前記室温検知手段にて測定される温度が前記設定温度より高い場合には前記ヒータの入力を小さくするので、冷蔵庫の負荷の変動により運転率が増加して、野菜室背面温度が低下した場合でも、野菜室背面の温度を適正に保つことができ、野菜室背面に大量の水滴が付くのを防止することができる。
【0106】
また、運転率が減少して、野菜室背面温度が上昇した場合には、電力消費を抑えて野菜室背面の温度を適正に保つことができる。
【0107】
また、請求項10に記載の発明は、請求項8または請求項9に記載の発明において、野菜室の温度が設定温度より高くなった場合に野菜室に隣接する上部または下部の貯蔵室の設定温度を引き下げるので、野菜室の背面に隔てて設置された冷却器室あるいは風路内の冷気の平均温度が通常より低下し野菜室の温度を適正に低下させることができる。
【0108】
また、請求項11に記載の発明は、請求項3または請求項4に記載の発明において、製氷停止時は製氷室の設定温度を0〜−10℃に維持するので、野菜室の吸熱負荷が小さい冬期において野菜室の温度を適正に保つことができる。
【図面の簡単な説明】
【図1】本発明の実施の形態1による冷蔵庫および冷却システムの概略図
【図2】本発明の実施の形態1による野菜室温度を示す図
【図3】本発明の実施の形態2による冷蔵庫および冷却システムの概略図
【図4】本発明の実施の形態2による断熱ボードの概略図
【図5】本発明の実施の形態2による野菜室温度を示す図
【図6】従来の冷蔵庫および冷却システムの概略図
【符号の説明】
1 冷蔵室
2 冷凍室
3 製氷室
4 野菜室
5 冷却器
15 第一の仕切り
26 第六の仕切り
30 真空断熱材
31 野菜室ヒータ
33 断熱ボード
34 連通風路
[0001]
TECHNICAL FIELD OF THE INVENTION
TECHNICAL FIELD The present invention relates to a refrigerator that cools a vegetable room by radiation from an inner wall surface and natural convection without forcedly flowing cool air.
[0002]
[Prior art]
In recent years, refrigerators having independent vegetable rooms have become mainstream. In this refrigerator, the temperature of the vegetable room is set to be equal to that of the refrigerator room, and the high humidity is maintained to prevent the drying of the vegetables and improve the freshness. Specifically, the dry cool air supplied from the cooler is not directly supplied to the vegetable room, but the return cool air from the relatively humid cold room is supplied to the vegetable room to cool it. No cooling air is supplied at all, and a method of cooling the vegetable compartment by radiation from the inner wall surface and natural convection has been proposed.
[0003]
An example of the latter refrigerator is disclosed in JP-A-9-113089. Here, FIG. 6 shows a schematic diagram of a refrigerator and a cooling system conventionally proposed.
[0004]
In FIG. 6, 1 is a refrigeration room, 2 is a freezing room, 3 is an ice making room for automatically making ice and storing ice, 4 is a vegetable room, 5 is arranged on the back of the freezing room 2 and the refrigeration room 1 is frozen. A cooler for cooling the chamber 2 and the ice making chamber 3, a compressor 6 disposed at the lower rear part of the refrigerator to compress the refrigerant, and a condenser 7 disposed at the lower rear part of the refrigerator or inside the refrigerator wall.
[0005]
Reference numeral 10 denotes a box forming the outer shell of the refrigerator, and reference numerals 11, 12, 13, and 14 denote doors of the refrigerator compartment 1, the freezing compartment 2, the ice making compartment 3, and the vegetable compartment 4, respectively. The freezer compartment 2 and the vegetable compartment 4 are separated by a first partition 15, the refrigerating compartment 1 and the ice making compartment 3 are separated by a second partition 16, and the ice making compartment 3 and the freezing compartment 2 are separated by a third partition 17. The vegetable room 4 is radiatively cooled by the cooling pipe 18 in the partition 15 of the first embodiment.
[0006]
The operation of the conventional refrigerator configured as described above will be described below.
[0007]
After the refrigerant compressed by the compressor 6 is condensed by the condenser 7, the refrigerant is depressurized and evaporated while flowing the refrigerant in the order of the capillary 8, the cooler 5, and the cooling pipe 18, and is returned to the compressor 6.
[0008]
At this time, the fan 9 is driven to supply the cool air cooled by the cooler 5 to the refrigerator compartment 1, the freezing compartment 2, and the ice making compartment 3, and an air passage (shown in FIG. The air inside the refrigerator compartment 1, the freezer compartment 2, and the ice making compartment 3 is returned to the cooler 5 through the cooler 5.
[0009]
At the same time, the lower surface of the first partition 15, that is, the upper surface of the vegetable compartment 4 is cooled by a cooling pipe 18 formed by disposing a part of the pipe of the cooler 5 below the first partition 15. The food stored in the vegetable compartment 4 is cooled by the radiation cooling, and the air in the vegetable compartment 4 is cooled by natural convection.
[0010]
As a result, the cooling of the vegetable room 4 can be realized without supplying the cool air cooled and dried by the cooler 5 to the vegetable room 4, and the drying of the vegetables is prevented by maintaining the inside of the vegetable room 4 at a high humidity. Freshness can be improved.
[0011]
[Problems to be solved by the invention]
However, in the above-described conventional configuration, since the temperature of the upper surface of the inner wall of the vegetable compartment is lowered and cooled, when foodstuffs with a large amount of moisture are stored, dewdrops occur on the upper surface of the inner wall, and the formed water drops directly fall on the foodstuffs. Problems could occur.
[0012]
In addition, a cooling pipe is arranged in the first partition part separately from a cooler for cooling the refrigerator compartment or the freezing compartment, and a mechanism for adjusting a cooling amount of the cooling pipe is required, which is accompanied by this. There is a concern that the cost will increase and the amount of refrigerant charged will increase.
[0013]
An object of the present invention is to solve the conventional problems, to cool the vegetable room with a simple configuration while maintaining the humidity in the vegetable room at a high humidity, and to prevent dew on the inner wall surface of the vegetable room.
[0014]
[Means for Solving the Problems]
An invention according to claim 1 of the present invention is a refrigerator that cools a vegetable room by radiation from a wall surface and natural convection without forcing cold air to flow, wherein a cooler room having a cooler is replaced by a rear wall of the vegetable room. The vegetable room is indirectly cooled by the rear wall, and the heat insulation of the upper and lower walls and the left and right side walls constituting the vegetable room is higher than the heat insulation of the rear wall. By cooling the vegetable room with heat conduction from the cooler room installed at the back of the room, it is possible to appropriately adjust the cooling amount of the vegetable room according to the change of the outside air temperature with a simple configuration. it can.
[0015]
In addition, by cooling the vegetable room with radiation from the back of the vegetable room and natural convection, the vegetable room can be maintained at a high humidity, preventing the drying of vegetables and improving freshness, and water droplets on the upper surface of the vegetable room By preventing the water droplets from adhering, it is possible to avoid the problem that water droplets directly fall on foodstuffs.
[0016]
The invention according to claim 2 is a refrigerator that cools a vegetable room by radiation from a wall surface and natural convection without forcing cool air to flow, wherein a circulating wind for circulating cool air of a cooler to a storage room other than the vegetable room. A road is provided with a back wall of the vegetable compartment separated, and the vegetable compartment is indirectly cooled by the rear wall, and the heat insulating property of the upper and lower walls and the left and right side walls constituting the vegetable compartment is determined by the heat insulating property of the rear wall. The vegetable compartment is cooled down by heat conduction from the cool air in the air passage installed at the back of the vegetable compartment. It is possible to appropriately adjust the amount of cooling of the cooling water.
[0017]
In addition, by cooling the vegetable room with radiation from the back of the vegetable room and natural convection, the vegetable room can be maintained at a high humidity, preventing the drying of vegetables and improving freshness, and water droplets on the upper surface of the vegetable room By preventing the water droplets from adhering, it is possible to avoid the problem that water droplets directly fall on foodstuffs.
[0018]
The invention according to claim 3 provides a refrigerator room, a freezer room, and a vegetable room as storage rooms in order from the top, and an ice making room and a switching room capable of adjusting the temperature from refrigeration to freezing between the refrigerator room and the freezer room. In a refrigerator provided in parallel, a cooler room accommodating a cooler is disposed across a rear wall of the vegetable room, and the freezing room, the ice making room, and the switching room are ventilated by cool air from the cooler room. And the vegetable compartment is indirectly cooled from the cooler compartment via the back wall, and the vegetable compartment is provided with a cooler installed on the back and heat conduction from a freezing compartment arranged on the upper surface. By cooling indirectly, vegetables can be prevented from drying while maintaining a high humidity in the vegetable room with a simple configuration, and freshness can be improved.
[0019]
Further, by adjusting the temperature setting of the ice making room or the freezing room, the cooling capacity of the vegetable room can be adjusted.
[0020]
In the invention according to claim 4, a refrigerator room, a vegetable room, and a freezing room are provided in order from the top as a storage room, and an ice making room and a switching room capable of adjusting the temperature from refrigeration to freezing are provided between the refrigerator room and the vegetable room. In a refrigerator provided in parallel, a cooler room accommodating a cooler across a back wall of the freezing room, and the cooler room and the ice making room or the switching room communicate with each other via a back wall of the vegetable room. A communicating air passage is provided, and the freezing room, the ice making room, and the switching room are directly cooled by ventilation of cool air from the cooler room, and the vegetable room is cooled from the communicating air passage through the rear wall. The vegetable room is cooled by an air passage that cools the ice making room or switching room installed on the back, the ice making room and switching room placed on the upper surface, and the heat conduction from the freezing room installed on the lower surface. By cooling, the vegetable room is kept at high humidity with a simple configuration. The dried vegetables to prevent, it is possible to enhance the freshness while.
[0021]
Further, by adjusting the temperature setting of the ice making room or the freezing room, the cooling capacity of the vegetable room can be adjusted.
[0022]
According to a fifth aspect of the present invention, there is provided the vegetable compartment according to any one of the first to fourth aspects, wherein a vacuum heat insulating material is embedded in at least an upper wall or a lower wall of the vegetable compartment. Even if a freezing room or ice making room or a switching room that can adjust the temperature from refrigeration to freezing is installed on the upper or lower side, the effect of heat conduction from the upper or lower wall by separating with vacuum insulating material with excellent heat insulation Can be suppressed remarkably, and the accuracy of temperature adjustment of the vegetable room can be improved.
[0023]
The invention according to claim 6 is the invention according to claim 5, wherein the upper surface wall or the lower surface wall of the vegetable room is integrally formed of urethane foam heat insulating material forming a refrigerator heat insulating box. Even when a component having a complicated shape such as a control board or a harness of a refrigerator or a water supply pipe of an automatic ice maker is buried in a partition portion on an upper surface or a lower surface, a heat insulating material can be formed by urethane foaming according to the shape.
[0024]
In addition, it is possible to remarkably suppress the influence of cold air in the storage room installed on the upper surface or the lower surface side of the vegetable room that conducts through components having complicated shapes, and it is possible to improve the accuracy of temperature adjustment of the vegetable room. .
[0025]
The invention according to claim 7 is the invention according to any one of claims 1 to 4, wherein the heat insulating board in which the vacuum heat insulating material is embedded in urethane foam heat insulating material is provided on the upper wall or the lower wall of the vegetable compartment. It is possible to suppress the influence of heat conduction by the outer cover material of the vacuum heat insulating material.
[0026]
In addition, by forming the outer shell with urethane foam heat insulating material with excellent dimensional accuracy of the outer shape, when embedded in the upper or lower wall of the vegetable compartment, it is possible to accurately seal the end of the heat insulating board, The formation of water droplets on the upper or lower surface of the vegetable compartment due to heat conduction can be prevented.
[0027]
The invention according to claim 8 is the invention according to any one of claims 1 to 7, wherein the room temperature detecting means for detecting the room temperature of the vegetable room, and the vegetable arranged on a back wall of the vegetable room. A heater for heating the room, comparing the temperature measured by the room temperature detecting means with the set temperature of the vegetable room, and controlling the temperature of the vegetable room by adjusting the heating value of the heater. Even if the operating rate fluctuates due to the load fluctuation of the refrigerator and the temperature of the vegetable room fluctuates, the output of the heater arranged on the back of the vegetable room is adjusted to properly adjust the temperature of the vegetable room. Can be kept.
[0028]
According to a ninth aspect of the present invention, in the invention according to any one of the first to seventh aspects, the room temperature detecting means for detecting a room temperature of the vegetable room, and the vegetable arranged on a back wall of the vegetable room. A heater for heating the room, comparing the temperature measured by the room temperature detecting means with the set temperature of the vegetable room, and when the temperature measured by the room temperature detecting means is lower than the set temperature The input of the heater is increased, and when the temperature measured by the room temperature detecting means is higher than the set temperature, the input of the heater is decreased. Then, even when the temperature of the back of the vegetable compartment is lowered, the temperature of the back of the vegetable compartment can be appropriately maintained by adjusting the output of the heater arranged on the back of the vegetable compartment and increasing the calorific value, A lot of water drops on the back of the room It is possible to prevent.
[0029]
In addition, when the operating rate decreases and the temperature at the back of the vegetable compartment increases, the output of the heater disposed at the back of the vegetable compartment is adjusted to reduce the amount of heat generated, thereby suppressing power consumption and increasing the temperature of the vegetable compartment. The temperature on the back can be kept properly.
[0030]
According to a tenth aspect of the present invention, when the temperature of the vegetable room becomes higher than the set temperature in the invention of the eighth or ninth aspect, the set temperature of the upper or lower storage room adjacent to the vegetable room is set. The operation rate increases to cool the storage room where the set temperature has been lowered, and the average temperature of the cool air in the cooler room or the air path installed behind the vegetable room is lower than normal By doing so, the temperature of the vegetable room in which the amount of heat absorbed has increased with an increase in the outside air temperature can be appropriately reduced.
[0031]
According to an eleventh aspect of the present invention, in the invention of the third or fourth aspect, when the ice making is stopped, the set temperature of the ice making room is maintained at 0 to -10 ° C, and the ice making is generally stopped. By reducing the cooling capacity of the vegetable room in winter, the temperature of the vegetable room can be appropriately maintained in winter when the endothermic load of the vegetable room is small.
[0032]
BEST MODE FOR CARRYING OUT THE INVENTION
(Embodiment 1)
Embodiment 1 of the present invention will be described with reference to the drawings. In addition, about the same structure as a prior art example, the same code | symbol is attached | subjected and detailed description is abbreviate | omitted.
[0033]
FIG. 1 is a schematic diagram of a refrigerator and a cooling system according to Embodiment 1 of the present invention, and FIG. 2 is a diagram illustrating a temperature of a vegetable compartment according to Embodiment 1 of the present invention.
[0034]
In FIG. 1, 1 is a refrigeration room, 2 is a freezing room, 3 is an ice-making room which is disposed between the refrigeration room 1 and the freezing room 2 and performs automatic ice making and stores ice, and 4 is disposed below the freezing room 2. And a room temperature detecting means 4a for detecting the room temperature of the vegetable room 4 in the upper part.
[0035]
Reference numeral 5 denotes a cooler for cooling the ice making chamber 3 and the freezing chamber 2, which is arranged at the back of the vegetable compartment 4, and a compressor 6 for compressing the refrigerant vaporized by the cooler. A condenser for condensing the refrigerant, a capillary for decompressing the refrigerant condensed in the condenser and supplying it to the cooler, and a fan for supplying cool air generated in the cooler to the ice making chamber and the freezing chamber It is.
[0036]
Reference numeral 10 denotes a box forming the outer shell of the refrigerator, and reference numerals 11, 12, 13, and 14 denote doors of the refrigerator compartment 1, the freezing compartment 2, the ice making compartment 3, and the vegetable compartment 4, respectively. The freezer compartment 2 and the vegetable compartment 4 are separated by a first partition 15, the refrigerating compartment 1 and the ice making compartment 3 are separated by a second partition 16, and the ice making compartment 3 and the freezing compartment 2 are separated by a third partition 17. A vacuum heat insulating material 30 is embedded in the partition 15.
[0037]
Reference numeral 4a denotes room temperature detecting means for measuring the room temperature of the vegetable room 4, which is disposed on the first partition 15 above the vegetable room 4.
[0038]
The box body 10 is made by injecting a polyurethane solution between a steel sheet outer box and a hard resin inner box to form a urethane foam heat insulating material. The first partition 15 fixes the vacuum heat insulating material 30 inside. In this state, a urethane foam heat insulating material is formed simultaneously with the box 10.
[0039]
Generally, the thermal conductivity of the urethane foam heat insulating material used for a refrigerator is about 0.015 to 0.020 W / mK.
[0040]
The vacuum heat insulating material 30 is obtained by inserting fine powder or fiber such as silica into a bag made of a gas barrier film having a multilayer laminate structure, and then exhausting air from the bag to make a vacuum state. It shows a thermal conductivity of about 002 to 0.005 W / mK.
[0041]
The sixth partition (rear wall) 26, the seventh partition 27, and the eighth partition 28 that form the air path on the back are made of resin in which styrene foam having a thermal conductivity of about 0.06 to 0.08 W / mK is set. After the urethane foam heat insulating material of the box body 10 is formed of a plate, it is assembled with other parts.
[0042]
In order to save energy, the refrigerator according to the first embodiment switches the three-way valve 20 and uses a refrigerator compartment cooler 21 that is independent of the cooler 5 that cools the ice making room 3 and the freezing room 2 in parallel with the set temperature. Refrigerated room 1 is cooled.
[0043]
That is, when cooling the refrigerator compartment 1, the refrigerant liquefied by the condenser 7 is depressurized by the refrigerator compartment capillary 22 through the three-way valve 20 and sent to the refrigerator compartment cooler 21, and is returned to the compressor 6 while being cooled. By driving the fan 23, the cool air generated by the refrigerator compartment cooler 21 is sent to the refrigerator compartment 1. At this time, a check valve 25 is provided at the outlet of the cooler 5 so that the refrigerant does not flow back to the cooler 5.
[0044]
Similarly, when cooling the ice making chamber 3 and the freezing chamber 2, the refrigerant liquefied by the condenser 7 is depressurized by the capillary 8 via the three-way valve 20, sent to the cooler 5, returned to the compressor 6, and cooled by a fan. 9 is driven to send cool air generated by the cooler 5 to the ice making room 3 and the freezing room 2. At this time, when the ice making chamber fan 24 is driven at the same time, the amount of cool air to the ice making chamber 3 is increased, and the ice making speed is improved.
[0045]
The operation of the refrigerator according to the first embodiment configured as described above will be described below.
[0046]
During normal operation, the three-way valve 20 is switched to supply the refrigerant alternately to the cooler 5 and the refrigerator compartment cooler 21 to cool the refrigerator compartment 1, the freezing compartment 2, and the ice making compartment 3. When the cooling load is small, the operation of the compressor 6 is stopped. On the other hand, when the cooling load increases, the number of revolutions of the compressor 6 is increased to lower the evaporation temperature of the cooler 5 or the refrigerator cooler 21 to improve the cooling capacity.
[0047]
The vegetable compartment 4 is provided with a cooler 5 disposed on the back by a sixth partition 26 on which styrofoam is set, and a freezer compartment 2 disposed on a first partition 15 formed of urethane foam insulation. However, the heat transfer from the freezing compartment 2 becomes extremely small by embedding the vacuum insulating material 30 having high heat insulating property in the first partition 15.
[0048]
And the vegetable room 4 is cooled mainly by radiation from the back wall 26 and natural convection due to heat transfer from the cooler 5, and as a result, the outside air temperature is high and the cooling load of the vegetable room 4, the freezing room 2, and the ice making room 3 is reduced. When the temperature increases, the heat transfer amount from the cooler 5 increases due to a decrease in the evaporating temperature of the cooler 5.
[0049]
On the other hand, when the outside air temperature is low and the cooling load of the vegetable compartment 4, the freezing compartment 2, and the ice making compartment 3 is reduced, the operation rate is reduced, so that the heat transfer amount from the cooler 5 is reduced. Adjust the temperature.
[0050]
In FIG. 2, A indicates the temperature during normal operation of the vegetable compartment 4 according to Embodiment 1 of the present invention, and temperature adjustment can be realized within a predetermined control range even when the outside air temperature fluctuates.
[0051]
On the other hand, B is the one in which the heat insulation of the first partition 15 is reduced to be equal to that of the sixth partition 26, and when the wall thickness is adjusted so that the cooling amount of the vegetable compartment 4 at a high outside temperature becomes appropriate. The cooling amount at a low outside air temperature is too large, and the temperature of the vegetable room 4 drops significantly. This is because the amount of heat transfer from the freezing compartment 2 is substantially constant regardless of the outside air temperature.
[0052]
A vegetable compartment heater 31 is attached to the surface of the sixth partition 26 on the back of the vegetable compartment 4, and the load on the freezing compartment 2 and the like increases due to the input of food at low outside temperatures, thereby increasing the operation rate. Then, when the heat transfer amount from the cooler 5 increases, the output of the vegetable room heater 31 can be adjusted to suppress the temperature fluctuation of the vegetable room 4.
[0053]
However, since an increase in the output of the vegetable compartment heater 31 means an increase in power consumption, it is desirable to keep the vegetable compartment 4 in a predetermined temperature range without the vegetable compartment heater 31 during normal operation, as shown in FIG.
[0054]
In addition, a vegetable room case (not shown) for storing the food is provided in the vegetable room 4 with an open upper portion, and water droplets formed on the back surface of the vegetable room 4 which is a cooling surface may not directly contact the food. However, it is desirable to provide a drain for discharging water droplets formed on the back of the vegetable compartment 4 to the outside.
[0055]
In addition, when a large amount of food is introduced in summer or the like and the temperature of the vegetable compartment 4 becomes higher than a predetermined temperature, the set temperature of the freezing compartment 2 is reduced to increase the operation rate of the cooler 5 and increase the vegetable production rate. It is desirable to improve the cooling capacity of the chamber 4. On the other hand, when the automatic ice making is stopped in winter or the like, the amount of cold air supplied to the ice making room 3 is controlled by an ice making room damper (not shown) to raise the set temperature of the ice making room 3 to about 0 to -10 ° C. It is desirable.
[0056]
As a result, the operation rate of the cooler 5 can be reduced to save energy, and the temperature of the vegetable room 4 can be appropriately maintained in winter when the cooling load is low.
[0057]
Further, in the first embodiment, the ice making chamber 3 for automatically making ice and storing the ice is arranged between the refrigerator compartment 1 and the freezing compartment 2, but the ice making compartment 3 is divided so that the temperature is changed from refrigeration to freezing. The same effect can be obtained by installing the adjustable switching room and the ice making room 3 in parallel.
[0058]
Further, in the first embodiment, the vacuum heat insulating material 30 is arranged on almost the entire surface of the first partition 15, but the area of the vacuum heat insulating material 30 is reduced so that the urethane foam heat insulating material in the first partition 15 can be used. A control board and a harness part can be embedded in the formed part. In this case, since the heat insulating property of the portion where the control board and the harness portion are buried is deteriorated, it is desirable to increase the thickness of the urethane foam heat insulating material only in this portion.
[0059]
By operating as described above, the vegetable room 4 is cooled by radiation and natural convection on the back surface of the vegetable room 4 based on heat transfer from the cooler 5, so that the inside of the vegetable room 4 can be easily maintained at a high humidity. By properly adjusting the temperature of the vegetable compartment 4 with the configuration and keeping the temperature of the rear wall of the vegetable compartment 4 lower than the partition walls of the upper and lower walls and the left and right side walls, water droplets are formed only on the rear wall of the vegetable compartment 4. Thus, it is possible to avoid the problem that water droplets directly fall on foodstuffs.
[0060]
(Embodiment 2)
Embodiment 2 of the present invention will be described with reference to the drawings. The same components as those in the first embodiment are denoted by the same reference numerals, and detailed description is omitted.
[0061]
3 is a schematic diagram of a refrigerator and a cooling system according to the second embodiment of the present invention, FIG. 4 is a schematic diagram of a heat insulating board according to the second embodiment of the present invention, and FIG. 5 is a vegetable compartment temperature according to the second embodiment of the present invention. FIG.
[0062]
In FIG. 3, 1 is a refrigeration room, 4 is a vegetable room, 3 is an ice making room which is arranged between the refrigeration room 1 and the vegetable room 4 to automatically make ice and store ice, and 2 is arranged below the vegetable room 4. It is a frozen room.
[0063]
Reference numeral 5 denotes a cooler for cooling the ice making chamber 3 and the freezing chamber 2, which is disposed at the back of the freezing chamber 2, a compressor for compressing the refrigerant vaporized by the cooler, and a compressor 7 for compressing the refrigerant vaporized by the cooler. A condenser for condensing the refrigerant, a capillary for decompressing the refrigerant condensed in the condenser and supplying it to the cooler, and a fan for supplying cool air generated in the cooler to the ice making chamber and the freezing chamber It is.
[0064]
Reference numeral 10 denotes a box forming the outer shell of the refrigerator, and reference numerals 11, 12, 13, and 14 denote doors of the refrigerator compartment 1, the freezing compartment 2, the ice making compartment 3, and the vegetable compartment 4, respectively. The freezer compartment 2 and the vegetable compartment 4 are separated from each other by a first partition 15, the refrigerator compartment 1 and the ice compartment 3 are separated by a second partition 16, and the ice compartment 3 and the vegetable compartment 4 are separated by a heat insulating board 33. A vacuum heat insulating material 30 is embedded in 15.
[0065]
Reference numeral 4a denotes room temperature detecting means for measuring the room temperature in the vegetable compartment 4, which is disposed on the heat insulating board 33 above the vegetable compartment 4.
[0066]
The box body 10 is made by injecting a polyurethane solution between a steel sheet outer box and a hard resin inner box to form a urethane foam heat insulating material. The first partition 15 fixes the vacuum heat insulating material 30 inside. In this state, a urethane foam heat insulating material is formed simultaneously with the box 10. Generally, the thermal conductivity of the urethane foam heat insulating material used for a refrigerator is about 0.015 to 0.020 W / mK.
[0067]
The vacuum heat insulating material 30 is obtained by inserting fine powder or fiber such as silica into a bag made of a gas barrier film having a multilayer laminate structure, and then exhausting air from the bag to make a vacuum state. It shows a thermal conductivity of about 002 to 0.005 W / mK.
[0068]
The sixth partition 26, the seventh partition 27, and the eighth partition 28 that form the air path on the back are formed of a resin plate on which styrene foam having a thermal conductivity of about 0.06 to 0.08 W / mK is set. After the urethane foam heat insulating material of the box 10 is formed, it is assembled with other parts.
[0069]
In FIG. 4, the heat insulating board 33 is formed by embedding a vacuum heat insulating material 33a having the same configuration as the vacuum heat insulating material 30 and forming the outer shell with a urethane foam heat insulating material 33b. The heat insulation board 33 is to be assembled to the box 10 after the seventh partition 27 is assembled.
[0070]
In order to save energy, the refrigerator according to the second embodiment switches the three-way valve 20 and uses a refrigerator compartment cooler 21 that is independent of the cooler 5 that cools the ice making room 3 and the freezing room 2 in parallel with the set temperature. Refrigerated room 1 is cooled. That is, when cooling the refrigerator compartment 1, the refrigerant liquefied by the condenser 7 is depressurized by the refrigerator compartment capillary 22 through the three-way valve 20 and sent to the refrigerator compartment cooler 21, and is returned to the compressor 6 while being cooled. By driving the fan 23, the cool air generated by the refrigerator compartment cooler 21 is sent to the refrigerator compartment 1.
[0071]
At this time, a check valve 25 is provided at the outlet of the cooler 5 so that the refrigerant does not flow back to the cooler 5. Similarly, when cooling the ice making chamber 3 and the freezing chamber 2, the refrigerant liquefied by the condenser 7 is depressurized by the capillary 8 via the three-way valve 20, sent to the cooler 5, returned to the compressor 6, and cooled by a fan. 9 is driven to send cool air generated by the cooler 5 to the ice making room 3 and the freezing room 2. At this time, when the ice making chamber fan 24 is driven at the same time, the amount of cool air to the ice making chamber 3 is increased, and the ice making speed is improved.
[0072]
The operation of the refrigerator according to the second embodiment configured as described above will be described below.
[0073]
During normal operation, the three-way valve 20 is switched to supply the refrigerant alternately to the cooler 5 and the refrigerator compartment cooler 21 to cool the refrigerator compartment 1, the freezing compartment 2, and the ice making compartment 3. When the cooling load is small, the operation of the compressor 6 is stopped. On the other hand, when the cooling load increases, the number of revolutions of the compressor 6 is increased to lower the evaporation temperature of the cooler 5 or the refrigerator cooler 21 to improve the cooling capacity.
[0074]
During the automatic ice making in the ice making room 3, the ice making room 3 is set to a freezing temperature and the ice making room fan 24 is driven. The temperature of the ice making room 3 is adjusted by adjusting the amount of cool air in the communication air passage 34 by an ice making room damper (not shown).
[0075]
The vegetable compartment 4 is provided with a communicating air passage 34 for cooling the ice making compartment 3 installed on the rear side by a seventh partition 27 formed of a resin plate on which styrofoam is set, and a urethane foam insulating material. The first compartment 15 is cooled by heat transfer from the freezer compartment 2 arranged by one partition 15 and the ice making compartment 3 arranged by the heat insulation board 33 formed of urethane foam insulation. By burying the vacuum heat insulating material 30 and the vacuum heat insulating material 33a having a high heat insulating property in the heat insulating board 33, heat transfer from the freezing room 2 and the ice making room 3 becomes extremely small.
[0076]
Then, the vegetable room 4 is cooled mainly by radiation from the back due to heat transfer from the communicating air passage 34 and natural convection, and as a result, the outside air temperature is high and the cooling load of the vegetable room 4, the freezing room 2, and the ice making room 3 is large. If this happens, the amount of heat transferred from the communicating air passage 34 increases due to a decrease in the evaporation temperature of the cooler 5.
[0077]
On the other hand, when the outside air temperature is low and the cooling load of the vegetable compartment 4, the freezing compartment 2, and the ice making compartment 3 is reduced, the operation rate is reduced, so that the amount of heat transfer from the communicating air passage 34 is reduced. Temperature control.
[0078]
In FIG. 5, C and D indicate the temperatures during the normal operation of the vegetable compartment 4 according to the second embodiment of the present invention, and the temperature can be adjusted within a substantially predetermined control range even if the outside air temperature fluctuates. D is the one in which the set temperature of the ice making chamber 3 is set to the normal freezing setting of −18 ° C.
[0079]
C stops automatic ice making in the ice making room 3 and raises the set temperature of the ice making room 3 from the normal freezing setting of −18 ° C. to about −5 ° C., so that the cooling load is small and the frequency of use of the automatic ice making is reduced. Under low outside air temperature conditions, the amount of heat transferred from the ice making room 3 and the communication air passage 34 can be reduced, and the temperature of the vegetable room 4 can be appropriately raised.
[0080]
On the other hand, E is equivalent to the seventh partition 27 in that the heat insulating property of the heat insulating board 33 is equal to that of the seventh partition 27, and does not bury a vacuum heat insulating material. The wall thickness is adjusted so that the cooling amount of the vegetable compartment 4 at a high outside temperature is appropriate. Then, the cooling amount at a low outside air temperature is too large, and the temperature of the vegetable room 4 drops significantly. This is because the amount of heat transfer from the ice making chamber 3 becomes substantially constant regardless of the outside air temperature.
[0081]
A vegetable compartment heater 32 is attached to the surface of the seventh partition 27 on the back surface of the vegetable compartment 4 and the surface of the first partition 15 on the bottom surface. When the load increases and the operation rate increases, and the amount of heat transferred from the communication air passage 34 increases, the output of the vegetable room heater 32 can be adjusted to suppress the temperature fluctuation of the vegetable room 4.
[0082]
The vegetable room heater 32 adjusts the heating value, which is a heater input, by comparing a temperature detected by a room temperature detecting means such as a thermistor (not shown) with a set temperature of the vegetable room 4, so that the inside of the vegetable room 4 has an appropriate temperature range. To maintain.
[0083]
Further, the control of the calorific value of the vegetable room heater 32 does not necessarily have to be used for maintaining the room temperature of the vegetable room 4, and when the temperature of the rear wall of the vegetable room 4 drops significantly, a large amount of dew water concentrates, Depending on the conditions, in order to prevent icing beforehand, the temperature of the back wall of the vegetable compartment 4 may be particularly controlled. In this case, it is preferable that the room temperature detecting means be disposed near the rear wall.
[0084]
However, since an increase in the output of the vegetable room heater 32 means an increase in power consumption, it is desirable to keep the vegetable room 4 in a predetermined temperature range without the vegetable room heater 32 during normal operation, as shown in FIG.
[0085]
A vegetable compartment case (not shown) for storing ingredients is installed in the vegetable compartment 4 with an open top, but water drops concentrate on the back of the vegetable compartment 4, which is a cooling surface, so that it comes into direct contact with the ingredients. However, it is desirable to provide a drain for discharging water droplets attached to the back of the vegetable compartment 4 to the outside.
[0086]
In addition, in the present embodiment, the vegetable compartment case with the upper part opened is illustrated, but if the cooling amount from the rear wall is sufficient, it is better to provide a lid that generally covers the upper opening surface of the vegetable compartment case. It may be desirable from the viewpoints of further suppressing drying of stored vegetables and preventing the occurrence of a large amount of dew condensation on the rear wall.
[0087]
In addition, when a large amount of food is introduced in summer or the like and the temperature of the vegetable compartment 4 becomes higher than a predetermined temperature, the set temperature of the freezing compartment 2 is reduced to increase the operation rate of the cooler 5 and increase the vegetable production rate. It is desirable to improve the cooling capacity of the chamber 4.
[0088]
On the other hand, when the automatic ice making is stopped in winter or the like, the amount of cold air supplied to the ice making room 3 is controlled by an ice making room damper (not shown) to raise the set temperature of the ice making room 3 to about 0 to -10 ° C. It is desirable. As a result, the operation rate of the cooler 5 can be reduced to save energy, and the temperature of the vegetable room 4 can be appropriately maintained in winter when the cooling load is low.
[0089]
In the second embodiment, the ice making chamber 3 for automatically making ice and storing the ice is arranged between the refrigerator compartment 1 and the vegetable compartment 4, but the ice making compartment 3 is divided and the temperature is changed from refrigeration to freezing. The same effect can be obtained by installing the adjustable switching room and the ice making room 3 in parallel.
[0090]
Further, in the second embodiment, the vacuum heat insulating material 30 is arranged on almost the entire surface of the first partition 15, but the area of the vacuum heat insulating material 30 is reduced so that the urethane foam heat insulating material in the first partition 15 can be used. A control board and a harness part can be embedded in the formed part.
[0091]
In this case, since the heat insulating property of the portion where the control board and the harness portion are buried is deteriorated, it is desirable to increase the thickness of the urethane foam heat insulating material only in this portion. Further, in the second embodiment, the space between the ice making room 3 and the vegetable room 4 is insulated by the heat insulating board 33. However, the same applies when the heat insulating board 33 is formed only of the vacuum heat insulating material 33a without the urethane foam heat insulating material 33b. The effect of is obtained.
[0092]
In this case, since the outer shell material of the vacuum heat insulating material 33a made of a gas barrier film has low heat insulating property, the outer peripheral portion of the vacuum heat insulating material 33a is made of thick styrofoam so that cold heat is not transmitted from the ice making room 3 to the vegetable room 4 via the outer material. It is desirable that the cover and the outer peripheral portion be reliably insulated and sealed.
[0093]
By operating as described above, the vegetable room is cooled by radiation and natural convection on the back of the vegetable room based on heat transfer from the cooler. By properly adjusting the temperature and keeping the temperature of the back wall of the vegetable room lower than the upper and lower walls and the left and right side walls, water drops are formed only on the back wall of the vegetable room, thereby avoiding the problem of water drops falling directly on foodstuffs can do.
[0094]
【The invention's effect】
As described above, the invention according to claim 1 of the present invention is a refrigerator that cools a vegetable room with radiation from a wall surface and natural convection without forcing cold air to flow, wherein the cooler room having a cooler is provided. The vegetable room is provided with a rear wall separated therefrom, the vegetable wall is indirectly cooled by the rear wall, and the heat insulation of the upper and lower walls and the left and right side walls constituting the vegetable room is higher than the heat insulation of the rear wall. Therefore, the cooling amount of the vegetable compartment can be appropriately adjusted according to the change of the outside air temperature with a simple configuration by heat conduction from the cooler room installed at the back of the vegetable compartment.
[0095]
In addition, it is possible to prevent the drying of the vegetables and maintain freshness by maintaining the interior of the vegetables at a high humidity.
[0096]
According to the second aspect of the present invention, in a refrigerator that cools a vegetable room by radiation from a wall surface and natural convection without forcedly flowing cool air, cool air of a cooler is circulated to a storage room other than the vegetable room. A circulating air path is provided with a back wall of the vegetable compartment separated by the rear wall, the vegetable wall is indirectly cooled by the rear wall, and the heat insulation of the upper and lower walls and the left and right side walls constituting the vegetable compartment is insulated by the rear wall. The temperature of the vegetable compartment is adjusted appropriately according to changes in the outside air temperature with a simple configuration, thanks to the heat conduction from the cold air in the air duct installed at the back of the vegetable compartment. can do.
[0097]
In addition, it is possible to prevent the drying of the vegetables and maintain freshness by maintaining the interior of the vegetables at a high humidity.
[0098]
According to a third aspect of the present invention, a refrigerator compartment, a freezing compartment, and a vegetable compartment are provided in order from the top as a storage compartment, and an ice-making compartment and a temperature-controllable switching from refrigeration to freezing are provided between the refrigerator compartment and the freezer compartment. In the refrigerator provided with the chambers in parallel, a cooler room for accommodating a cooler is arranged across the back wall of the vegetable room, and the freezing room, the ice making room, and the switching room are cooled by the cool air from the cooler room. The vegetable room is directly cooled by the ventilation, and the vegetable room is indirectly cooled from the cooler room via the rear wall, so that the vegetable room has a cooler installed on the back and a heat transfer from a freezing room arranged on the upper surface. Thus, it is possible to prevent the drying of the vegetables while maintaining the interior of the vegetable room at a high humidity with a simple configuration, and enhance the freshness.
[0099]
In the invention according to claim 4, a refrigerator room, a vegetable room, and a freezing room are provided in order from the top as a storage room, and an ice-making room and a temperature-controllable switching from refrigeration to freezing are provided between the refrigerator room and the vegetable room. In a refrigerator provided with rooms in parallel, a cooler room that houses a cooler across a back wall of the freezing room, and a cooler room and the ice making room or the switching room across a back wall of the vegetable room. A free-flow passage communicating with the freezer compartment, the ice making compartment, and the switching compartment are directly cooled by ventilation of cool air from the cooler compartment, and the vegetable compartment is connected to the communicating ventilator via the rear wall. Because of the indirect cooling from the road, the vegetable room is cooled by the air passage that cools the ice making room or switching room installed on the back, the ice making room and switching room placed on the upper surface, and the heat conduction from the freezing room installed on the lower surface. It is cooled and maintains a high humidity in the vegetable room with a simple configuration. To prevent drying of vegetables, it is possible to enhance the freshness.
[0100]
According to a fifth aspect of the present invention, a vacuum heat insulating material is buried in at least an upper wall or a lower wall of the vegetable room in the invention according to any one of the first to fourth aspects. Even if a freezing room, an ice making room, or a switching room that can adjust the temperature from refrigeration to freezing is installed on the upper or lower side, the effect of heat conduction from the upper or lower wall can be significantly suppressed, and the temperature of the vegetable room can be reduced. The accuracy of the adjustment can be improved.
[0101]
According to a sixth aspect of the present invention, since the upper surface wall or the lower surface wall of the vegetable room is formed integrally with the urethane foam heat insulating material forming the refrigerator heat insulating box, a complicated shape is obtained. The effect of the cool air in the storage room installed on the upper or lower surface side of the vegetable room that conducts through the above components can be significantly suppressed, and the temperature adjustment accuracy of the vegetable room can be improved.
[0102]
The invention according to claim 7 is the invention according to any one of claims 1 to 4, wherein the heat insulating board in which the vacuum heat insulating material is embedded in urethane foam heat insulating material is an upper wall or a lower surface of a vegetable room. Since it is provided on the wall, it is possible to suppress the effect of heat conduction by the outer cover material of the vacuum heat insulating material.
[0103]
In addition, the end of the heat insulating board can be accurately sealed, and the formation of water droplets on the upper surface or the lower surface of the vegetable compartment due to the heat conduction of the sealing portion can be prevented.
[0104]
According to an eighth aspect of the present invention, in the invention according to any one of the first to seventh aspects, a room temperature detecting means for detecting a room temperature of the vegetable room and a rear surface wall of the vegetable room are arranged. A heater for heating the vegetable compartment, comparing the temperature measured by the room temperature detecting means with the set temperature of the vegetable compartment, and adjusting the heating value of the heater to adjust the temperature of the vegetable compartment. Since the control is performed, even if the operation rate increases or decreases due to the load fluctuation of the refrigerator and the vegetable room temperature fluctuates, the vegetable room temperature can be appropriately maintained.
[0105]
According to a ninth aspect of the present invention, in the invention according to any one of the first to seventh aspects, a room temperature detecting means for detecting a room temperature of the vegetable room and a rear surface wall of the vegetable room are provided. A heater for heating the vegetable room, comparing the temperature measured by the room temperature detecting means with the set temperature of the vegetable room, the temperature measured by the room temperature detecting means is higher than the set temperature. When the temperature is low, the input of the heater is increased, and when the temperature measured by the room temperature detecting means is higher than the set temperature, the input of the heater is decreased. Then, even when the temperature of the back of the vegetable compartment decreases, the temperature of the back of the vegetable compartment can be appropriately maintained, and a large amount of water droplets can be prevented from adhering to the back of the vegetable compartment.
[0106]
In addition, when the operation rate decreases and the temperature of the vegetable room rear rises, the power consumption can be suppressed and the temperature of the vegetable room rear can be appropriately maintained.
[0107]
The invention according to claim 10 is the invention according to claim 8 or 9, wherein the setting of the upper or lower storage room adjacent to the vegetable room when the temperature of the vegetable room becomes higher than the set temperature. Since the temperature is lowered, the average temperature of the cool air in the cooler room or the air passage installed at the back of the vegetable room is lower than usual, and the temperature of the vegetable room can be appropriately reduced.
[0108]
According to the eleventh aspect of the invention, in the invention of the third or fourth aspect, when the ice making is stopped, the set temperature of the ice making room is maintained at 0 to -10 ° C. The temperature of the vegetable room can be maintained properly in a small winter season.
[Brief description of the drawings]
FIG. 1 is a schematic diagram of a refrigerator and a cooling system according to a first embodiment of the present invention.
FIG. 2 is a diagram showing a temperature of a vegetable room according to the first embodiment of the present invention.
FIG. 3 is a schematic diagram of a refrigerator and a cooling system according to a second embodiment of the present invention.
FIG. 4 is a schematic diagram of a heat insulating board according to a second embodiment of the present invention.
FIG. 5 is a diagram showing a temperature of a vegetable room according to the second embodiment of the present invention.
FIG. 6 is a schematic diagram of a conventional refrigerator and cooling system.
[Explanation of symbols]
1 refrigerator room
2 Freezer compartment
3 ice making room
4 Vegetable room
5 Cooler
15 First partition
26 Sixth Partition
30 Vacuum insulation
31 Vegetable room heater
33 Insulation board
34 open air path

Claims (11)

強制的に冷気を流入させず壁面からの輻射と自然対流で野菜室を冷却する冷蔵庫において、冷却器を有する冷却器室を前記野菜室の背面壁を隔てて備え、前記背面壁により前記野菜室を間接的に冷却するとともに前記野菜室を構成する上下壁および左右側面壁の断熱性を前記背面壁の断熱性よりも高めたことを特徴とする冷蔵庫。In a refrigerator that cools a vegetable room with radiation from the wall surface and natural convection without forcing cold air to flow, a refrigerator room having a cooler is provided with a rear wall of the vegetable room separated, and the vegetable wall is formed by the rear wall. A refrigerator wherein the heat insulation of the upper and lower walls and the left and right side walls constituting the vegetable compartment is higher than the heat insulation of the rear wall. 強制的に冷気を流入させず壁面からの輻射と自然対流で野菜室を冷却する冷蔵庫において、冷却器の冷気を前記野菜室以外の貯蔵室に循環させる循環風路を前記野菜室の背面壁を隔てて備え、前記背面壁により前記野菜室を間接的に冷却するとともに前記野菜室を構成する上下壁および左右側面壁の断熱性を前記背面壁の断熱性よりも高めたことを特徴とする冷蔵庫。In a refrigerator that cools the vegetable room by radiation and natural convection from the wall surface without forcing cool air to flow in, a circulation air path that circulates cool air of the cooler to a storage room other than the vegetable room is formed on the rear wall of the vegetable room. A refrigerator provided with a space therebetween, wherein the vegetable wall is indirectly cooled by the rear wall, and the heat insulation of the upper and lower walls and the left and right side walls constituting the vegetable chamber is higher than the heat insulation of the rear wall. . 貯蔵室として冷蔵室、冷凍室、野菜室を上から順に設け、前記冷蔵室と前記冷凍室の間に製氷室と冷蔵から冷凍に温度調整可能な切替室を並列に設けた冷蔵庫において、前記野菜室の背面壁を隔てて冷却器を収容する冷却器室を配置し、前記冷凍室と前記製氷室と前記切替室とを前記冷却器室からの冷気の通風により直接冷却し、前記野菜室を前記背面壁を介して前記冷却器室から間接冷却することを特徴とする冷蔵庫。In a refrigerator, a refrigerator room, a freezer room, and a vegetable room are provided in order from the top as a storage room, and an ice-making room and a switching room capable of adjusting the temperature from refrigeration to freezing are provided in parallel between the refrigerator room and the freezer room. A cooler room accommodating a cooler is arranged across the rear wall of the room, and the freezing room, the ice making room, and the switching room are directly cooled by ventilation of cool air from the cooler room, and the vegetable room is cooled. The refrigerator is indirectly cooled from the cooler room via the rear wall. 貯蔵室として冷蔵室、野菜室、冷凍室を上から順に設け、前記冷蔵室と前記野菜室の間に製氷室と冷蔵から冷凍に温度調整可能な切替室を並列に設けた冷蔵庫において、前記冷凍室の背面壁を隔てて冷却器を収容する冷却器室と、前記野菜室の背面壁を隔てて前記冷却器室と前記製氷室あるいは前記切替室を連通する連通風路とを備えて、前記冷凍室と前記製氷室と前記切替室とを前記冷却器室からの冷気の通風により直接冷却し、前記野菜室を前記背面壁を介して前記連通風路から間接冷却することを特徴とする冷蔵庫。In a refrigerator, a refrigeration room, a vegetable room, and a freezing room are provided in order from the top as a storage room, and an ice making room and a switching room capable of adjusting the temperature from refrigeration to freezing are provided in parallel between the refrigeration room and the vegetable room. A cooler room accommodating a cooler across a back wall of the room, and a communicating air passage communicating the cooler room and the ice making room or the switching room through a back wall of the vegetable room, A refrigerator that directly cools the freezing room, the ice making room, and the switching room by ventilation of cool air from the cooler room, and indirectly cools the vegetable room from the communication air passage through the back wall. . 少なくとも野菜室の上面壁あるいは下面壁に真空断熱材を埋設したことを特徴とする請求項1から請求項4のいずれか一項に記載の冷蔵庫。The refrigerator according to any one of claims 1 to 4, wherein a vacuum heat insulating material is embedded in at least an upper wall or a lower wall of the vegetable compartment. 野菜室の上面壁あるいは下面壁を冷蔵庫断熱箱体を形成するウレタン発泡断熱材で一体に形成したことを特徴とする請求項5に記載の冷蔵庫。The refrigerator according to claim 5, wherein an upper surface wall or a lower surface wall of the vegetable room is integrally formed of urethane foam heat insulating material forming a refrigerator heat insulating box. 真空断熱材をウレタン発泡断熱材に埋設した断熱ボードを野菜室の上面壁あるいは下面壁に備えたことを特徴とする請求項1から請求項4のいずれか一項に記載の冷蔵庫。The refrigerator according to any one of claims 1 to 4, wherein a heat insulating board in which a vacuum heat insulating material is embedded in urethane foam heat insulating material is provided on an upper wall or a lower wall of the vegetable compartment. 野菜室の室温を検知する室温検知手段と、前記野菜室の背面壁に配置され前記野菜室を加温するヒータとを備え、前記室温検知手段にて測定される温度と前記野菜室の設定温度とを比較して、前記ヒータの発熱量を加減することにより前記野菜室の温度制御を行わせることを特徴とする請求項1から請求項7のいずれか一項に記載の冷蔵庫。Room temperature detecting means for detecting the room temperature of the vegetable room, and a heater disposed on the back wall of the vegetable room and heating the vegetable room, the temperature measured by the room temperature detecting means and the set temperature of the vegetable room The refrigerator according to any one of claims 1 to 7, wherein the temperature of the vegetable compartment is controlled by adjusting the amount of heat generated by the heater by comparing the temperature of the refrigerator. 野菜室の室温を検知する室温検知手段と、前記野菜室の背面壁に配置され前記野菜室を加温するヒータとを備え、前記室温検知手段にて測定される温度と前記野菜室の設定温度とを比較して、前記室温検知手段にて測定される温度が前記設定温度より低い場合には前記ヒータの入力を大きくし、前記室温検知手段にて測定される温度が前記設定温度より高い場合には前記ヒータの入力を小さくすることを特徴とする請求項8に記載の冷蔵庫。Room temperature detecting means for detecting the room temperature of the vegetable room, and a heater disposed on the back wall of the vegetable room and heating the vegetable room, the temperature measured by the room temperature detecting means and the set temperature of the vegetable room When the temperature measured by the room temperature detecting means is lower than the set temperature, the input of the heater is increased, and when the temperature measured by the room temperature detecting means is higher than the set temperature. The refrigerator according to claim 8, wherein the input of the heater is reduced. 野菜室の温度が設定温度より高くなった場合に野菜室に隣接する上部または下部の貯蔵室の設定温度を引き下げることを特徴とする請求項8または請求項9に記載の冷蔵庫。10. The refrigerator according to claim 8, wherein when the temperature of the vegetable room becomes higher than the set temperature, the set temperature of the upper or lower storage room adjacent to the vegetable room is reduced. 製氷停止時は製氷室の設定温度を0〜−10℃に維持することを特徴とする請求項3または請求項4に記載の冷蔵庫。The refrigerator according to claim 3 or 4, wherein when ice making is stopped, the set temperature of the ice making room is maintained at 0 to -10 ° C.
JP2002212037A 2002-07-22 2002-07-22 Refrigerator Pending JP2004053152A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002212037A JP2004053152A (en) 2002-07-22 2002-07-22 Refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002212037A JP2004053152A (en) 2002-07-22 2002-07-22 Refrigerator

Publications (1)

Publication Number Publication Date
JP2004053152A true JP2004053152A (en) 2004-02-19

Family

ID=31935076

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002212037A Pending JP2004053152A (en) 2002-07-22 2002-07-22 Refrigerator

Country Status (1)

Country Link
JP (1) JP2004053152A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007120854A (en) * 2005-10-27 2007-05-17 Toshiba Corp Refrigerator
KR100725494B1 (en) 2006-01-18 2007-06-08 삼성전자주식회사 Refrigerator having supplement storage
JP2010038483A (en) * 2008-08-07 2010-02-18 Panasonic Corp Refrigerator
KR20140051566A (en) * 2012-10-23 2014-05-02 엘지전자 주식회사 A refrigerator
JP2015121384A (en) * 2013-12-25 2015-07-02 パナソニックIpマネジメント株式会社 Refrigerator
JP2017161122A (en) * 2016-03-08 2017-09-14 日立アプライアンス株式会社 refrigerator
CN110285632A (en) * 2019-05-29 2019-09-27 青岛海尔电冰箱有限公司 Refrigerator

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05164449A (en) * 1991-12-12 1993-06-29 Matsushita Refrig Co Ltd Refrigerator
JPH10332244A (en) * 1997-05-29 1998-12-15 Toshiba Corp Refrigerator
JP2000320943A (en) * 1999-05-11 2000-11-24 Matsushita Refrig Co Ltd Refrigerator

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05164449A (en) * 1991-12-12 1993-06-29 Matsushita Refrig Co Ltd Refrigerator
JPH10332244A (en) * 1997-05-29 1998-12-15 Toshiba Corp Refrigerator
JP2000320943A (en) * 1999-05-11 2000-11-24 Matsushita Refrig Co Ltd Refrigerator

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007120854A (en) * 2005-10-27 2007-05-17 Toshiba Corp Refrigerator
KR100725494B1 (en) 2006-01-18 2007-06-08 삼성전자주식회사 Refrigerator having supplement storage
JP2010038483A (en) * 2008-08-07 2010-02-18 Panasonic Corp Refrigerator
KR20140051566A (en) * 2012-10-23 2014-05-02 엘지전자 주식회사 A refrigerator
JP2015121384A (en) * 2013-12-25 2015-07-02 パナソニックIpマネジメント株式会社 Refrigerator
JP2017161122A (en) * 2016-03-08 2017-09-14 日立アプライアンス株式会社 refrigerator
CN110285632A (en) * 2019-05-29 2019-09-27 青岛海尔电冰箱有限公司 Refrigerator

Similar Documents

Publication Publication Date Title
CN202393126U (en) Refrigerator
JP5847626B2 (en) Refrigerator and operation method thereof
JP5017340B2 (en) refrigerator
US8726688B2 (en) Refrigerator for fresh products with temperature leveling means
CN102967103B (en) Refrigerator and refrigerating plant
KR101721108B1 (en) Refrigerator having variable capacity heater
KR101544452B1 (en) Refrigerator with heat conduction sheet
JP2009121803A (en) Refrigerator
JP2012037073A (en) Refrigerator
JP2006266585A (en) Refrigerator
JP2008249292A (en) Refrigerator
JP2001082850A (en) Refrigerator
CN101446465B (en) Refrigerator
JP2011099645A (en) Refrigerator
JP4982537B2 (en) refrigerator
KR20160001389A (en) Refrigerator and method for controlling the same
JP2004053152A (en) Refrigerator
JP5363247B2 (en) refrigerator
JP2004037042A (en) Refrigerator
JP2004101028A (en) Refrigerator
CN100504258C (en) Refrigerator
JPH11211325A (en) Refrigerator
JP2008070052A (en) Refrigerator
JP3549358B2 (en) refrigerator
KR100678777B1 (en) Refrigerator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050715

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050816

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071031

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071106

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080304