JP7423247B2 - Positive electrode resin composition, positive electrode and secondary battery - Google Patents

Positive electrode resin composition, positive electrode and secondary battery Download PDF

Info

Publication number
JP7423247B2
JP7423247B2 JP2019192255A JP2019192255A JP7423247B2 JP 7423247 B2 JP7423247 B2 JP 7423247B2 JP 2019192255 A JP2019192255 A JP 2019192255A JP 2019192255 A JP2019192255 A JP 2019192255A JP 7423247 B2 JP7423247 B2 JP 7423247B2
Authority
JP
Japan
Prior art keywords
positive electrode
resin composition
mass
conductive material
dispersant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019192255A
Other languages
Japanese (ja)
Other versions
JP2021068552A (en
Inventor
達也 永井
佑守 北江
晃 與田
哲哉 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denka Co Ltd
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denka Co Ltd, Denki Kagaku Kogyo KK filed Critical Denka Co Ltd
Priority to JP2019192255A priority Critical patent/JP7423247B2/en
Publication of JP2021068552A publication Critical patent/JP2021068552A/en
Application granted granted Critical
Publication of JP7423247B2 publication Critical patent/JP7423247B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

本発明は、正極樹脂組成物、正極及び二次電池に関する。 The present invention relates to a positive electrode resin composition, a positive electrode, and a secondary battery.

環境・エネルギー問題の高まりから、化石燃料への依存度を減らす低炭素社会の実現に向けた技術の開発が盛んに行われている。このような技術開発の例としては、ハイブリッド電気自動車や電気自動車等の低公害車の開発、太陽光発電や風力発電等の自然エネルギー発電・蓄電システムの開発、電力を効率よく供給し、送電ロスを減らす次世代送電網の開発等があり、多岐に渡っている。 Due to increasing environmental and energy issues, there is active development of technologies aimed at reducing dependence on fossil fuels and realizing a low-carbon society. Examples of such technological developments include the development of low-pollution vehicles such as hybrid electric vehicles and electric vehicles, the development of natural energy generation and storage systems such as solar power generation and wind power generation, and the efficient supply of electricity and reduction of transmission losses. There is a wide range of projects, including the development of next-generation power transmission networks that will reduce the amount of electricity generated.

これらの技術に共通して必要となるキーデバイスの一つが電池であり、このような電池に対しては、システムを小型化するための高いエネルギー密度が求められる。また、使用環境温度に左右されずに安定した電力の供給を可能にするための高いレート特性が求められる。さらに、長期間の使用に耐えうる良好なサイクル特性等も求められている。そのため、従来の鉛蓄電池、ニッケル-カドミウム電池、ニッケル-水素電池から、より高いエネルギー密度、レート特性およびサイクル特性を有するリチウムイオン二次電池(以下、「リチウムイオン電池」ともいう。)への置き換えが急速に進んでいる。 One of the key devices commonly required by these technologies is a battery, and such batteries are required to have high energy density in order to miniaturize the system. In addition, high rate characteristics are required to enable stable power supply regardless of the operating environment temperature. Furthermore, good cycle characteristics that can withstand long-term use are also required. Therefore, conventional lead-acid batteries, nickel-cadmium batteries, and nickel-hydrogen batteries are being replaced with lithium-ion secondary batteries (hereinafter also referred to as "lithium-ion batteries") that have higher energy density, rate characteristics, and cycle characteristics. is progressing rapidly.

従来、リチウムイオン二次電池の正極は、正極活物質、導電材及びバインダー(結着材)を含有する正極ペーストを、集電体に塗工することにより製造されている。正極活物質としては、コバルト酸リチウム、マンガン酸リチウム等のリチウム含有複合酸化物が用いられてきた。活物質自体は導電性に乏しいことから、導電性を付与する目的で、アグリゲート(一次粒子が複数融着した構造:一次凝集体)が発達したカーボンブラックや、異方性で結晶が発達した黒鉛等の導電材を添加することが行われてきた(特許文献1)。 Conventionally, a positive electrode of a lithium ion secondary battery is manufactured by applying a positive electrode paste containing a positive electrode active material, a conductive material, and a binder to a current collector. As positive electrode active materials, lithium-containing composite oxides such as lithium cobalt oxide and lithium manganate have been used. Since the active material itself has poor conductivity, carbon black with developed aggregates (a structure in which multiple primary particles are fused together: primary aggregate) and carbon black with anisotropically developed crystals are used for the purpose of imparting conductivity. Addition of a conductive material such as graphite has been practiced (Patent Document 1).

導電材の基本的な役割は、導電性の乏しい活物質に、充放電時に正極活物質が繰り返し膨張収縮しても、損なわれることの少ない安定した導電性を付与することである。そのため、正極作製において、導電材として使用されるカーボンブラックは、アグリゲートの大きさがある範囲内に制御されていることが重要である。制御が十分でない場合や活物質間での分散が悪い場合には、活物質とカーボンブラックの接触が十分得られず、導電パスが確保できなくなり、活物質であるリチウム含有複合酸化物の性能を十分に引き出せないという問題が生じる。結果として、正極内に導電性の劣る部分が局所的に現れ、活物質が有効に利用されずに放電容量が低下、電池の寿命が短くなる原因となっている。 The basic role of a conductive material is to provide an active material with poor conductivity with stable conductivity that is not easily impaired even if the positive electrode active material repeatedly expands and contracts during charging and discharging. Therefore, in producing a positive electrode, it is important that the aggregate size of carbon black used as a conductive material is controlled within a certain range. If the control is insufficient or the dispersion between the active materials is poor, sufficient contact between the active material and carbon black will not be obtained, making it impossible to secure a conductive path, which will affect the performance of the lithium-containing composite oxide, which is the active material. The problem arises that it is not possible to draw out enough. As a result, portions with poor conductivity appear locally within the positive electrode, and the active material is not effectively utilized, resulting in a decrease in discharge capacity and a shortened battery life.

そこで、特許文献2には、スラリー中のカーボンブラックの分散性を改善するため、分散剤であるポリビニルピロリドンの存在下でカーボンブラックを高圧ジェットミルにより溶剤にサブミクロンオーダーで分散させる方法が行われている。特許文献2によれば、分散状態が安定したカーボンブラックを正極に使用することで、高容量で、かつサイクル特性が優れたリチウムイオン二次電池を得ることができることが記載されている。 Therefore, in order to improve the dispersibility of carbon black in a slurry, Patent Document 2 discloses a method in which carbon black is dispersed in a submicron order in a solvent using a high-pressure jet mill in the presence of polyvinylpyrrolidone as a dispersant. ing. Patent Document 2 describes that a lithium ion secondary battery with high capacity and excellent cycle characteristics can be obtained by using carbon black in a stable dispersion state for the positive electrode.

特許文献3には、リチウムイオン二次電池用正極において、分散安定性と少量添加で優れた導電性を発揮する導電材について記載されている。具体的には、N-メチル-2-ピロリドンを分散媒とし、これに平均粒径0.1~1μmのカーボンブラックを3~30質量%の割合で懸濁させると共に、ビニルピロリドン系ポリマーを0.1~10質量%添加してなることを特徴とするカーボンブラックスラリーが提案されている。特許文献3の実施例には、レーザー回折・散乱分光法により求めた平均粒径が0.3μmであるカーボンブラックが記載されており、当該カーボンブラックを正極の導電材として用いて作製したリチウムイオン二次電池は放電容量が高かったことが示されている。 Patent Document 3 describes a conductive material that exhibits dispersion stability and excellent conductivity when added in a small amount in a positive electrode for a lithium ion secondary battery. Specifically, N-methyl-2-pyrrolidone is used as a dispersion medium, carbon black with an average particle size of 0.1 to 1 μm is suspended in it at a ratio of 3 to 30% by mass, and a vinylpyrrolidone polymer is suspended in a proportion of 3 to 30% by mass. A carbon black slurry characterized by adding .1 to 10% by mass has been proposed. Examples of Patent Document 3 describe carbon black with an average particle size of 0.3 μm determined by laser diffraction/scattering spectroscopy, and lithium ions produced using the carbon black as a conductive material for a positive electrode. It has been shown that the secondary battery had a high discharge capacity.

導電材の分散不良を克服する手段として、ポリビニルピロリドン系高分子とノニオン系界面活性剤を分散剤として添加する方法もある(特許文献4)。 As a means to overcome poor dispersion of the conductive material, there is also a method of adding a polyvinylpyrrolidone polymer and a nonionic surfactant as a dispersant (Patent Document 4).

特許文献5には、カーボンブラックと、分散剤としてのポリビニルアルコールと、溶剤としてのN-メチル-2-ピロリドンとを含んでなるカーボンブラック分散液を用い、電池正極合材層の表面抵抗および50サイクル後の放電容量維持率が良好になることが記されている。 Patent Document 5 discloses that a carbon black dispersion containing carbon black, polyvinyl alcohol as a dispersant, and N-methyl-2-pyrrolidone as a solvent is used to improve the surface resistance of a battery positive electrode composite layer and It is noted that the discharge capacity retention rate after cycling is improved.

特開2008-227481号公報JP2008-227481A 特開2004-281096号公報Japanese Patent Application Publication No. 2004-281096 特開2003-157846号公報Japanese Patent Application Publication No. 2003-157846 国際公開2012/014616号公報International Publication No. 2012/014616 国際公開2014/132809号公報International Publication No. 2014/132809

このように、分散剤として高分子を用いる方法が従来提案されてきたが、未だ十分な分散性を有しているとは言えない。例えば特許文献4に記載の分散剤により、導電材の分散不良を改善できるものの、この分散剤を含有した正極をリチウムイオン電池として使用した際に4.35Vのフロート充電後に放電容量が極端に低下するといった問題があった。しかしながら、現在のリチウムイオン二次電池市場では、同電池の耐電圧性が望まれており、分散性と耐電圧性を両立した正極用導電性樹脂組成物が必要不可欠である。 As described above, methods using polymers as dispersants have been proposed in the past, but it cannot be said that they have sufficient dispersibility yet. For example, the dispersant described in Patent Document 4 can improve poor dispersion of the conductive material, but when a positive electrode containing this dispersant is used as a lithium ion battery, the discharge capacity is extremely reduced after float charging at 4.35V. There was a problem with doing so. However, in the current lithium ion secondary battery market, the voltage resistance of the battery is desired, and a conductive resin composition for a positive electrode that has both dispersibility and voltage resistance is essential.

本発明は、上記問題と実情に鑑み、分散性及び耐電圧性に優れた正極樹脂組成物を提供することを目的とする。加えて、この正極樹脂組成物を用いて製造される極板抵抗が低い正極、更にこの正極を用いて製造される耐電圧性、放電レート特性及びサイクル特性に優れた二次電池を提供することを目的とする。 In view of the above problems and actual circumstances, the present invention aims to provide a positive electrode resin composition having excellent dispersibility and voltage resistance. In addition, to provide a positive electrode with low plate resistance manufactured using this positive electrode resin composition, and a secondary battery manufactured using this positive electrode with excellent voltage resistance, discharge rate characteristics, and cycle characteristics. With the goal.

本発明者等は、上記目的を達成するために鋭意研究した結果、特定の鹸化度を有するポリビニルアルコールを分散剤として含有し、且つ、特定の平均一次粒子径を有するカーボンブラックを含有する正極樹脂組成物を用いることにより、上記課題が解決できることを見出した。
具体的には、本発明者は、導電材としてカーボンブラック、結着材、及び分散剤として特定の鹸化度を有するポリビニルアルコールを含有する正極樹脂組成物を用いて製造した正極は、極板抵抗が低く、加えて、この正極を用いて製造した二次電池は、耐電圧性、放電レート特性及びサイクル特性に優れることを見出した。本発明者当該知見に基づき、完成されたものである。
As a result of intensive research to achieve the above object, the present inventors have developed a positive electrode resin containing polyvinyl alcohol having a specific degree of saponification as a dispersant and carbon black having a specific average primary particle diameter. It has been found that the above problems can be solved by using the composition.
Specifically, the present inventor has discovered that a positive electrode manufactured using a positive electrode resin composition containing carbon black as a conductive material, a binder, and polyvinyl alcohol having a specific degree of saponification as a dispersant has a high plate resistance. In addition, the secondary battery manufactured using this positive electrode was found to have excellent voltage resistance, discharge rate characteristics, and cycle characteristics. This invention was completed based on the knowledge of the present inventor.

すなわち、上記課題を解決する本発明は、下記に例示される。
[1]
導電材、結着材及び分散剤を含有する正極樹脂組成物であって、前記分散剤が少なくともポリビニルアルコールを含み、前記導電材が少なくともカーボンブラックを含み、前記ポリビニルアルコールの鹸化度が85.5~96.5モル%であり、前記カーボンブラックの平均一次粒子径が18nm~40nmであることを特徴とする正極樹脂組成物。
[2]
前記ポリビニルアルコールの平均重合度が500~1500であることを特徴とする[1]に記載の正極樹脂組成物。
[3]
前記カーボンブラックのDBP吸収量が250~310ml/100gであることを特徴とする[1]又は[2]に記載の正極樹脂組成物。
[4]
前記分散剤と導電材の質量比{分散剤の質量/導電材の質量}が0.03~0.15であることを特徴とする[1]~[3]のいずれか1項に記載の正極樹脂組成物。
[5]
前記結着材がポリフッ化ビニリデンであることを特徴とする[1]~[4]のいずれか1項に記載の正極樹脂組成物。
[6]
[1]~[5]のいずれか1項に記載の正極樹脂組成物を含む正極。
[7]
[6]に記載の正極を備えた二次電池。
なお、本明細書において、特にことわりがない限り、「~」という記号は両端の値「以上」および「以下」の範囲を意味する。例えば、「A~B」というのは、A以上、B以下であるという意味である。
That is, the present invention that solves the above problems is illustrated below.
[1]
A positive electrode resin composition containing a conductive material, a binder, and a dispersant, wherein the dispersant contains at least polyvinyl alcohol, the conductive material contains at least carbon black, and the saponification degree of the polyvinyl alcohol is 85.5. 96.5 mol %, and the carbon black has an average primary particle size of 18 nm to 40 nm.
[2]
The positive electrode resin composition according to item [1], wherein the polyvinyl alcohol has an average degree of polymerization of 500 to 1,500.
[3]
The positive electrode resin composition according to [1] or [2], wherein the carbon black has a DBP absorption amount of 250 to 310 ml/100 g.
[4]
The method according to any one of [1] to [3], wherein the mass ratio of the dispersant to the conductive material {mass of the dispersant/mass of the conductive material} is 0.03 to 0.15. Positive electrode resin composition.
[5]
The positive electrode resin composition according to any one of [1] to [4], wherein the binder is polyvinylidene fluoride.
[6]
A positive electrode comprising the positive electrode resin composition according to any one of [1] to [5].
[7]
A secondary battery comprising the positive electrode according to [6].
In this specification, unless otherwise specified, the symbol "~" means a range of "more than" and "less than" the values at both ends. For example, "A to B" means that the number is greater than or equal to A and less than or equal to B.

本発明の一実施形態によれば、分散性及び耐電圧性に優れた正極樹脂組成物を提供することができる。
本発明の一実施形態によれば、極板抵抗が低い正極を提供することができる。
本発明の一実施形態によれば、耐電圧性、レート特性及びサイクル特性に優れた二次電池を提供することができる。
また、本発明の好適な実施態様によれば、エネルギー密度が高く、耐電圧性、レート特性、サイクル特性に優れた二次電池を簡便に得ることができる正極を提供することができる。
According to one embodiment of the present invention, a positive electrode resin composition having excellent dispersibility and voltage resistance can be provided.
According to one embodiment of the present invention, a positive electrode with low plate resistance can be provided.
According to one embodiment of the present invention, it is possible to provide a secondary battery with excellent voltage resistance, rate characteristics, and cycle characteristics.
Further, according to a preferred embodiment of the present invention, it is possible to provide a positive electrode from which a secondary battery with high energy density and excellent voltage resistance, rate characteristics, and cycle characteristics can be easily obtained.

本発明に用いられるリチウムイオン電池の模式図である。FIG. 1 is a schematic diagram of a lithium ion battery used in the present invention.

以下、本発明を詳細に説明する。なお、本発明は、以下に説明する実施形態に限定されるものではない。 The present invention will be explained in detail below. Note that the present invention is not limited to the embodiments described below.

以下、本発明の構成材料について詳細に説明する。 Hereinafter, the constituent materials of the present invention will be explained in detail.

<導電材>
本発明における導電材は、少なくともカーボンブラックを含有する。導電材中のカーボンブラックの含有濃度は例えば50質量%以上とすることができ、好ましくは70質量%以上とすることができ、より好ましくは90質量%以上とすることができる。導電材としてカーボンブラックのみを使用することもできる。カーボンブラックは、一般の電池用導電材としてのカーボンブラック同様、アセチレンブラック、ファーネスブラック、チャンネルブラックなどの中から選ばれるものである。中でも、結晶性及び純度に優れるアセチレンブラックが好ましい。
<Conductive material>
The conductive material in the present invention contains at least carbon black. The concentration of carbon black in the conductive material can be, for example, 50% by mass or more, preferably 70% by mass or more, and more preferably 90% by mass or more. Carbon black alone can also be used as the conductive material. Carbon black is selected from acetylene black, furnace black, channel black, etc., like carbon black used as a general conductive material for batteries. Among these, acetylene black is preferred because of its excellent crystallinity and purity.

本発明におけるカーボンブラックの平均一次粒子径は18~40nmである。平均一次粒子径を40nm以下とすることで、活物質及び集電体との電気的接点が多くなり、良好な導電性付与効果が得られる。平均一次粒子径を18nm以上とすることで、粒子間の相互作用が抑制されるため、正極活物質の間に均一に分散され、良好な導電経路が得られる。この観点から、カーボンブラックの平均一次粒子径は20~35nmであることがより好ましい。なお、本発明において、カーボンブラックの平均一次粒子径は、透過型電子顕微鏡などで撮影した写真をもとに測定した粒子径を平均した値である。具体的には、透過電子顕微鏡JEM-2000FX(日本電子社製)を用いて10万倍の画像5枚を撮影し、無作為に抽出した200個以上の1次粒子について画像解析により粒子径を求め、それらの個数平均を算出することによって測定した。なお、粒子径とは、一次粒子の円相当径のことである。 The average primary particle size of carbon black in the present invention is 18 to 40 nm. By setting the average primary particle diameter to 40 nm or less, the number of electrical contacts between the active material and the current collector increases, and a good conductivity imparting effect can be obtained. By setting the average primary particle diameter to 18 nm or more, interaction between particles is suppressed, so that the particles are uniformly dispersed between the positive electrode active materials and a good conductive path is obtained. From this point of view, the average primary particle diameter of carbon black is more preferably 20 to 35 nm. In the present invention, the average primary particle diameter of carbon black is the average value of particle diameters measured based on photographs taken with a transmission electron microscope or the like. Specifically, five images were taken at a magnification of 100,000 times using a transmission electron microscope JEM-2000FX (manufactured by JEOL Ltd.), and the particle diameters of more than 200 randomly selected primary particles were determined by image analysis. It was measured by calculating the number average. Note that the particle diameter refers to the equivalent circular diameter of the primary particle.

本発明におけるカーボンブラックのDBP吸収量は250~310ml/100gであることが好ましい。DBP吸収量を250ml/100g以上とすることで、導電材として使用される際のアグリゲートが十分な長さと広がりを持ち、良好な導電経路と非水電解液の保液性が得られる。また、310ml/100g以下とすることで、アグリゲート同士の絡み合いによる凝集が抑えられるため、正極活物質の間に均一に分散され、良好な導電経路の形成と十分な非水電解液の保液性を両立することができる。なお、本発明において、DBP吸収量は、JIS K6217-4:2008に準拠して測定した値である。 The DBP absorption amount of carbon black in the present invention is preferably 250 to 310 ml/100 g. By setting the DBP absorption amount to 250 ml/100 g or more, the aggregate has sufficient length and spread when used as a conductive material, and a good conductive path and non-aqueous electrolyte retention property are obtained. In addition, by setting the amount to 310 ml/100 g or less, aggregation due to entanglement between aggregates is suppressed, so that the positive electrode active material is uniformly dispersed, forming a good conductive path and retaining sufficient non-aqueous electrolyte. You can balance your sexuality. In the present invention, the DBP absorption amount is a value measured in accordance with JIS K6217-4:2008.

本発明におけるカーボンブラックの体積抵抗率はとくに限定されるものではないが、導電性の観点から低いほど好ましい。具体的には、7.5MPa圧縮下で測定した体積抵抗率は0.30Ω・cm以下が好ましく、0.25Ω・cm以下がより好ましい。 Although the volume resistivity of carbon black in the present invention is not particularly limited, it is preferably as low as possible from the viewpoint of electrical conductivity. Specifically, the volume resistivity measured under 7.5 MPa compression is preferably 0.30 Ω·cm or less, more preferably 0.25 Ω·cm or less.

本発明におけるカーボンブラックの灰分及び水分は特に限定されるものではないが、副反応の抑制の観点から、どちらも少ないほど好ましい。具体的には、灰分は0.04質量%以下が好ましく、水分は0.10質量%以下が好ましい。 The ash content and water content of the carbon black in the present invention are not particularly limited, but from the viewpoint of suppressing side reactions, it is preferable that both are as small as possible. Specifically, the ash content is preferably 0.04% by mass or less, and the water content is preferably 0.10% by mass or less.

<結着材>
本発明で用いる結着材は、例えば、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、スチレンブタジエン共重合体、(メタ)アクリル酸エステル共重合体が挙げられる。結着材としてのポリマーの構造には制約がなく、ランダム共重合体、交互共重合体、グラフト共重合体、ブロック共重合体なども使用できる。これらの中では、耐電圧性の点でポリフッ化ビニリデンが好ましい。
<Binder>
Examples of the binder used in the present invention include polyvinylidene fluoride, polytetrafluoroethylene, styrene-butadiene copolymer, and (meth)acrylic acid ester copolymer. There are no restrictions on the structure of the polymer used as the binder, and random copolymers, alternating copolymers, graft copolymers, block copolymers, etc. can also be used. Among these, polyvinylidene fluoride is preferred in terms of voltage resistance.

<分散剤>
本発明で用いる分散剤は、少なくともポリビニルアルコール(以下、PVAと略すことがある。)を含有する。分散剤中のPVAの含有濃度は例えば50質量%以上とすることができ、好ましくは70質量%以上とすることができ、より好ましくは90質量%以上とすることができる。分散剤としてPVAのみを使用することもできる。PVAはそれ自体既知の重合方法、例えば、酢酸ビニルに代表される脂肪酸ビニルエステルを重合し、加水分解することにより得ることができる。
<Dispersant>
The dispersant used in the present invention contains at least polyvinyl alcohol (hereinafter sometimes abbreviated as PVA). The concentration of PVA in the dispersant can be, for example, 50% by mass or more, preferably 70% by mass or more, and more preferably 90% by mass or more. It is also possible to use PVA alone as a dispersant. PVA can be obtained by a known polymerization method, for example, by polymerizing and hydrolyzing a fatty acid vinyl ester typified by vinyl acetate.

上記脂肪酸ビニルエステルとしては、例えば、ギ酸ビニル、酢酸ビニル、プロピオン酸ビニル、酪酸ビニル、カプリン酸ビニル、ラウリン酸ビニル、パルミチン酸ビニル、ステアリン酸ビニルおよびその他の直鎖または分岐状の飽和脂肪酸ビニルエステルが挙げられる。なかでも酢酸ビニルが好ましい。 Examples of the fatty acid vinyl esters include vinyl formate, vinyl acetate, vinyl propionate, vinyl butyrate, vinyl caprate, vinyl laurate, vinyl palmitate, vinyl stearate, and other linear or branched saturated fatty acid vinyl esters. can be mentioned. Among them, vinyl acetate is preferred.

上記ポリビニルアルコールは、脂肪酸ビニルエステル以外の重合性不飽和モノマーと共重合して得ることもできる。脂肪酸ビニルエステルと共重合可能な重合性不飽和モノマーとしては、例えば、エチレン、プロピレンなどのオレフィン類;アルキル(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレート、グリシジル(メタ)アクリレート等などの(メタ)アクリロイル基含有モノマー;アリルグリシジルエーテルなどのアリルエーテル;塩化ビニル、塩化ビニリデン、フッ化ビニルなどのハロゲン化ビニル系化合物;アルキルビニルエーテル、4-ヒドロキシビニルエーテルなどのビニルエーテルなどが挙げられる。これらは1種を単独で又は2種以上を併用して用いることができる。 The above polyvinyl alcohol can also be obtained by copolymerizing with polymerizable unsaturated monomers other than fatty acid vinyl ester. Examples of polymerizable unsaturated monomers that can be copolymerized with fatty acid vinyl esters include olefins such as ethylene and propylene; Examples include meth)acryloyl group-containing monomers; allyl ethers such as allyl glycidyl ether; halogenated vinyl compounds such as vinyl chloride, vinylidene chloride, and vinyl fluoride; vinyl ethers such as alkyl vinyl ether and 4-hydroxy vinyl ether. These can be used alone or in combination of two or more.

ポリビニルアルコールの重合方法は、それ自体既知の重合方法、例えば、酢酸ビニルをアルコール系有機溶媒中で溶液重合してポリ酢酸ビニルを製造し、これを鹸化する等の方法により製造することができるが、これに限られるものではなく、例えば、バルク重合や乳化重合や懸濁重合等でもよい。溶液重合を行う場合には、連続重合でもよいしバッチ重合でもよく、単量体は一括して仕込んでもよいし、分割して仕込んでもよく、あるいは連続的又は断続的に添加してもよい。 Polyvinyl alcohol can be produced by a known polymerization method, for example, by solution polymerizing vinyl acetate in an alcoholic organic solvent to produce polyvinyl acetate, which is then saponified. However, the method is not limited to this, and may be, for example, bulk polymerization, emulsion polymerization, suspension polymerization, or the like. When solution polymerization is carried out, it may be continuous or batch polymerization, and the monomers may be charged all at once, divided into portions, or added continuously or intermittently.

溶液重合において使用する重合開始剤は、特に限定するものではないが、アゾビスイソブチロニトリル、アゾビス-2,4-ジメチルバレロニトリル、アゾビス(4-メトキシ-2,4-ジメチルバレロニトリル)等のアゾ化合物;アセチルパーオキサイド、ベンゾイルパーオキサイド、ラウロイルパーオキサイド、アセチルシクロヘキシルスルホニルパーオキシド、2,4,4-トリメチルペンチル-2-パーオキシフェノキシアセテート等の過酸化物;ジイソプロピルパーオキシジカーボネート、ジ-2-エチルヘキシルパーオキシジカーボネート、ジエトキシエチルパーオキシジカーボネート等のパーカーボネート化合物;t-ブチルパーオキシネオデカネート、α-クミルパーオキシネオデカネート、t-ブチルパーオキシネオデカネート等のパーエステル化合物;アゾビスジメチルバレロニトリル、アゾビスメトキシバレロニトリル等の公知のラジカル重合開始剤を使用することができる。 Polymerization initiators used in solution polymerization are not particularly limited, but include azobisisobutyronitrile, azobis-2,4-dimethylvaleronitrile, azobis(4-methoxy-2,4-dimethylvaleronitrile), etc. azo compounds; peroxides such as acetyl peroxide, benzoyl peroxide, lauroyl peroxide, acetylcyclohexylsulfonyl peroxide, 2,4,4-trimethylpentyl-2-peroxyphenoxy acetate; diisopropyl peroxydicarbonate, - Percarbonate compounds such as 2-ethylhexyl peroxydicarbonate and diethoxyethyl peroxydicarbonate; t-butyl peroxyneodecanate, α-cumyl peroxyneodecanate, t-butyl peroxyneodecanate, etc. Perester compound: Known radical polymerization initiators such as azobisdimethylvaleronitrile and azobismethoxyvaleronitrile can be used.

重合反応温度は、特に限定するものではないが、通常30~150℃程度の範囲で設定することができる。 The polymerization reaction temperature is not particularly limited, but can usually be set within a range of about 30 to 150°C.

ポリビニルアルコールを製造する際の鹸化条件は特に限定されず、公知の方法で鹸化することができる。一般的には、メタノール等のアルコール溶液中において、アルカリ触媒又は酸触媒の存在下で、分子中のエステル部を加水分解することで行うことができる。アルカリ触媒としては、例えば、水酸化ナトリウム、水酸化カリウム、ナトリウムメチラート、ナトリウムエチラート、カリウムメチラート等のアルカリ金属の水酸化物や、アルコラート等を用いることができる。酸触媒としては、例えば、塩酸、硫酸等の無機酸水溶液、p-トルエンスルホン酸等の有機酸を用いることができるが、水酸化ナトリウムを用いることが望ましい。鹸化反応の温度は、特に限定されないが、好ましくは10~70℃、より好ましくは30~40℃の範囲であることが望ましい。反応時間は、特に限定されないが、30分~3時間の範囲で行なうことが望ましい。 Saponification conditions for producing polyvinyl alcohol are not particularly limited, and saponification can be performed by a known method. Generally, this can be carried out by hydrolyzing the ester moiety in the molecule in an alcohol solution such as methanol in the presence of an alkali catalyst or an acid catalyst. As the alkali catalyst, for example, alkali metal hydroxides such as sodium hydroxide, potassium hydroxide, sodium methylate, sodium ethylate, potassium methylate, alcoholates, etc. can be used. As the acid catalyst, for example, an aqueous solution of an inorganic acid such as hydrochloric acid or sulfuric acid, or an organic acid such as p-toluenesulfonic acid can be used, but sodium hydroxide is preferably used. The temperature of the saponification reaction is not particularly limited, but is preferably in the range of 10 to 70°C, more preferably 30 to 40°C. The reaction time is not particularly limited, but it is preferably carried out within a range of 30 minutes to 3 hours.

本発明におけるポリビニルアルコールの鹸化度は85.5~96.5モル%である。鹸化度を96.5モル%以下とすることで、N-メチル-2-ピロリドン等の溶媒への溶解性が高まるため、導電材の分散性が向上し、均一で低粘度の正極樹脂組成物を含むスラリーが得られ易くなる。鹸化度を85.5モル%以上とすることで、高い耐電圧性を得られ易くなる。尚、ここでいうポリビニルアルコールの鹸化度は、JIS K 6726:1994に準ずる方法で測定される値である。 The degree of saponification of polyvinyl alcohol in the present invention is 85.5 to 96.5 mol%. By setting the degree of saponification to 96.5 mol% or less, the solubility in solvents such as N-methyl-2-pyrrolidone increases, improving the dispersibility of the conductive material and creating a uniform and low-viscosity positive electrode resin composition. It becomes easier to obtain a slurry containing . By setting the degree of saponification to 85.5 mol% or more, high voltage resistance can be easily obtained. The degree of saponification of polyvinyl alcohol referred to herein is a value measured by a method according to JIS K 6726:1994.

本発明におけるポリビニルアルコールの平均重合度は500~1500であることが好ましい。平均重合度を1500以下とすることで、N-メチル-2-ピロリドン等の溶媒への溶解性が高まるため、導電材の分散性が向上し、均一で低粘度の正極樹脂組成物を含むスラリーが得られ易くなる。平均重合度を500以上とすることで、活物質及び導電材の分散性が高まり、良好な導電経路が得られ易くなる。 The average degree of polymerization of polyvinyl alcohol in the present invention is preferably 500 to 1,500. By setting the average degree of polymerization to 1500 or less, the solubility in solvents such as N-methyl-2-pyrrolidone increases, which improves the dispersibility of the conductive material and creates a slurry containing a homogeneous and low-viscosity positive electrode resin composition. becomes easier to obtain. By setting the average degree of polymerization to 500 or more, the dispersibility of the active material and the conductive material increases, making it easier to obtain a good conductive path.

<活物質>
本発明で用いる活物質は、リチウム含有複合酸化物またはリチウム含有ポリアニオン化合物であり、カチオンを可逆的に吸蔵放出可能な正極活物質のことである。例えば、LiCoO2、LiMn24、LiNiO2、LiMPO4、Li2MSiO4、LiNiXMn(2-X)4、Li(MnXNiYCoZ)O2、Li(AlXNiYCoZ)O2またはxLi2MnO3-(1-x)LiMO2などがあげられる。但し、LiNiXMn(2-X)4中のXは0<X<2という関係を満たし、Li(MnXNiYCoZ)O2中又はLi(AlXNiYCoZ)O2中のX、Y及びZは、X+Y+Z=1という関係を満たし、かつ0<X<1、0<Y<1、0<Z<1という関係を満たし、xLi2MnO3-(1-x)LiMO2中のxは0<x<1という関係を満たし、さらにLiMPO4中、Li2MSiO4中又はxLi2MnO3-(1-x)LiMO2中のMはFe、Co、Ni、Mnから選ばれる元素の1種以上であることが好ましい。
<Active material>
The active material used in the present invention is a lithium-containing composite oxide or a lithium-containing polyanion compound, and is a positive electrode active material that can reversibly intercalate and release cations. For example, LiCoO 2 , LiMn 2 O 4 , LiNiO 2 , LiMPO 4 , Li 2 MSiO 4 , LiNi x Mn (2-X) O 4 , Li(Mn x Ni Y Co Z )O 2 , Li(Al x Ni Y Examples include Co Z )O 2 or xLi 2 MnO 3 -(1-x)LiMO 2 . However , X in LiNi X Mn ( 2 - X) O 4 satisfies the relationship 0 < X, Y, and Z satisfy the relationship X+Y+Z=1, and the relationships 0<X<1, 0<Y<1, 0<Z<1, and xLi 2 MnO 3 -(1-x) x in LiMO 2 satisfies the relationship 0<x<1, and M in LiMPO 4 , Li 2 MSiO 4 or xLi 2 MnO 3 -(1-x)LiMO 2 is Fe, Co, Ni, Mn. It is preferable that it is one or more elements selected from.

上記活物質の内、本発明で用いる活物質はレーザー光散乱法で測定した体積基準の粒度の累積分布から求められる平均粒子径(D50)が20μm以下、好ましくは5μm以下であることが好ましい。このような構成にすることで、正極樹脂組成物を含むスラリー粘度の低減効果が十分に発現され、導電材の分散性が向上した正極と高いサイクル特性を有する二次電池が得られ易くなる。 Among the above active materials, the active material used in the present invention preferably has an average particle diameter (D50) of 20 μm or less, preferably 5 μm or less, as determined from the cumulative distribution of volume-based particle size measured by a laser light scattering method. With such a configuration, the effect of reducing the viscosity of the slurry containing the positive electrode resin composition is sufficiently expressed, and it becomes easy to obtain a positive electrode with improved dispersibility of the conductive material and a secondary battery with high cycle characteristics.

<正極樹脂組成物>
本発明に用いる正極樹脂組成物の製造には公知の方法を用いることができる。例えば、活物質、導電材、結着材及び分散剤の溶媒分散溶液をボールミル、サンドミル、二軸混練機、自転公転式攪拌機、プラネタリーミキサー、ディスパーミキサー等により混合することで得られ、一般的には、スラリーにして用いられる。前記の活物質、導電材、結着材及び分散剤としては、既述したものを用いれば良い。正極樹脂組成物を含むスラリーの分散媒としては、水、N-メチル-2-ピロリドン、シクロヘキサン、メチルエチルケトン、メチルイソブチルケトン等が挙げられる。高分子結着材としてポリフッ化ビニリデンを使用する際は、溶解性の点でN-メチル-2-ピロリドンが好ましく、スチレンブタジエン共重合体を使用する際は水が好ましい。
<Positive electrode resin composition>
A known method can be used to manufacture the positive electrode resin composition used in the present invention. For example, it can be obtained by mixing a solvent-dispersed solution of an active material, a conductive material, a binder, and a dispersant using a ball mill, sand mill, twin-screw kneader, rotation-revolution stirrer, planetary mixer, disper mixer, etc. It is used as a slurry. As the active material, conductive material, binder, and dispersant, those already described may be used. Examples of the dispersion medium for the slurry containing the positive electrode resin composition include water, N-methyl-2-pyrrolidone, cyclohexane, methyl ethyl ketone, methyl isobutyl ketone, and the like. When polyvinylidene fluoride is used as a polymer binder, N-methyl-2-pyrrolidone is preferred from the viewpoint of solubility, and when a styrene-butadiene copolymer is used, water is preferred.

本発明に用いる正極樹脂組成物中の分散剤と導電材の質量比{分散剤の質量/導電材の質量}は0.03~0.15であり、0.04~0.12がより好ましく、0.05~0.1が最も好ましい。正極樹脂組成物中の分散剤と導電材の質量比を0.03~0.15にすることで分散剤が導電材に吸着し、より高い分散効果が得られ易くなり、0.05~0.1にすることでより高い分散効果に加えて、過剰な分散剤が導電材表面を被覆し電荷移動反応を妨害する効果を抑え、電池の高抵抗化を抑制できる。 The mass ratio of the dispersant to the conductive material in the positive electrode resin composition used in the present invention {mass of the dispersant/mass of the conductive material} is 0.03 to 0.15, more preferably 0.04 to 0.12. , 0.05 to 0.1 are most preferred. By setting the mass ratio of the dispersant to the conductive material in the positive electrode resin composition to 0.03 to 0.15, the dispersant will be adsorbed to the conductive material, making it easier to obtain a higher dispersion effect. By setting the ratio to .1, in addition to a higher dispersion effect, it is possible to suppress the effect of excessive dispersant coating the surface of the conductive material and interfering with the charge transfer reaction, thereby suppressing the increase in resistance of the battery.

<正極>
本発明に用いる正極は以下の手順で作製可能である。まず、上記の正極樹脂組成物を含むスラリーをアルミニウム箔等の集電体上に塗布した後、加熱によりスラリーに含まれる溶媒を除去し、活物質が結着材を介して集電体表面に結着された多孔質体である正極合材層を形成する。次いで、集電体と正極合材層をロールプレス等により加圧して密着させることにより、目的とする正極を得ることができる。
<Positive electrode>
The positive electrode used in the present invention can be manufactured by the following procedure. First, a slurry containing the above positive electrode resin composition is applied onto a current collector such as aluminum foil, and then the solvent contained in the slurry is removed by heating, and the active material is applied to the surface of the current collector via the binder. A positive electrode composite material layer, which is a bound porous body, is formed. Next, the desired positive electrode can be obtained by pressurizing the current collector and the positive electrode composite material layer using a roll press or the like to bring them into close contact.

<リチウムイオン電池>
本発明に用いられるリチウムイオン電池の作製方法には、特に制限は無く、従来公知の電池の作製方法を用いて行えば良いが、例えば、図1に模式的に示した構成で、以下の方法により作製することもできる。すなわち、前記の正極を用いた正極1にアルミ製タブ5を溶接し、負極2にニッケル製タブ6を溶接した後、正極と負極の間に絶縁層となるポリオレフィン製微多孔膜3を配し、正極1、負極2およびポリオレフィン製微多孔膜3の空隙部分に非水電解液が十分に染込むまで注液し、外装4で封止することで作製することができる。
<Lithium ion battery>
There are no particular restrictions on the method for manufacturing the lithium ion battery used in the present invention, and any conventionally known battery manufacturing method may be used. It can also be produced by That is, after welding an aluminum tab 5 to the positive electrode 1 using the above-mentioned positive electrode and welding a nickel tab 6 to the negative electrode 2, a polyolefin microporous membrane 3 serving as an insulating layer is placed between the positive electrode and the negative electrode. , the nonaqueous electrolyte is injected into the voids of the positive electrode 1, the negative electrode 2, and the polyolefin microporous membrane 3 until it is sufficiently permeated, and then sealed with the exterior 4.

本発明のリチウムイオン電池の用途は、特に限定されないが、例えば、デジタルカメラ、ビデオカメラ、ポータブルオーディオプレイヤー、携帯液晶テレビ等の携帯AV機器、ノート型パソコン、スマートフォン、モバイルPC等の携帯情報端末、その他、携帯ゲーム機器、電動工具、電動式自転車、ハイブリッド自動車、電気自動車、電力貯蔵システム等の幅広い分野において使用することができる。 Applications of the lithium ion battery of the present invention are not particularly limited, but include, for example, portable AV devices such as digital cameras, video cameras, portable audio players, and portable LCD televisions, portable information terminals such as notebook computers, smartphones, and mobile PCs, In addition, it can be used in a wide range of fields such as portable game devices, power tools, electric bicycles, hybrid cars, electric cars, and power storage systems.

以下、実施例および比較例を挙げて本発明をより具体的に説明するが、本発明は、その趣旨を損なわない限り、以下に示す実施例に限定されるものではない。また、実施例および比較例ともに使用した正極は、吸着した水分を揮発させるために170℃で3時間真空乾燥を行った。 EXAMPLES Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples; however, the present invention is not limited to the Examples shown below unless the spirit thereof is impaired. Further, the positive electrodes used in both Examples and Comparative Examples were vacuum dried at 170° C. for 3 hours in order to volatilize the adsorbed moisture.

<実施例1>
(正極樹脂組成物を含むスラリーの調製)
溶媒としてN-メチル-2-ピロリドン(関東化学社製、以下、NMPと記載)、結着材としてポリフッ化ビニリデン(アルケマ社製、「HSV900」、以下、PVdFと記載)、導電材としてカーボンブラック(デンカ社製、「Li-435」、以下、Li-435と記載)、分散剤としてポリビニルアルコール(ポリビニルアルコールAと記載)、活物質としてLiNi0.5Mn0.3Co0.22(ユミコア社製、「TX10」平均粒子径(D50)10μm、以下、NMC532と記載)をそれぞれ用意した。PVdFが固形分で1.9質量%、Li-435が固形分で1質量%、ポリビニルアルコールAが固形分で0.1質量%(分散剤の質量/導電材の質量=0.1)、NMC532が固形分で97質量%となるように秤量して混合し、この混合物に固形分含有量が68質量%になるようにNMPを添加し、自転公転式混合機(シンキー社製、あわとり練太郎ARV-310)を用いて、均一になるまで混合し正極樹脂組成物を含むスラリーを得た。
<Example 1>
(Preparation of slurry containing positive electrode resin composition)
N-methyl-2-pyrrolidone (manufactured by Kanto Kagaku Co., Ltd., hereinafter referred to as NMP) as a solvent, polyvinylidene fluoride (manufactured by Arkema, "HSV900", hereinafter referred to as PVdF) as a binder, and carbon black as a conductive material. (manufactured by Denka Corporation, "Li-435", hereinafter described as Li-435), polyvinyl alcohol (described as polyvinyl alcohol A) as a dispersant, LiNi 0.5 Mn 0.3 Co 0.2 O 2 (manufactured by Umicore Corporation, "TX10'' average particle diameter (D50) 10 μm, hereinafter referred to as NMC532) were prepared. PVdF is 1.9% by mass in solid content, Li-435 is 1% by mass in solid content, polyvinyl alcohol A is 0.1% by mass in solid content (mass of dispersant / mass of conductive material = 0.1), NMC532 was weighed and mixed so that the solid content was 97% by mass, and NMP was added to this mixture so that the solid content was 68% by mass. Using a Rentaro ARV-310), the mixture was mixed until homogeneous to obtain a slurry containing a positive electrode resin composition.

[分散性の評価(正極樹脂組成物を含むスラリーの粘度)]
正極樹脂組成物を含むスラリーの分散性をJIS K7244-10に記載される回転型レオメータを用いた方法で粘度を評価した。具体的には、回転型レオメータ(アントンパール社製、MCR300)を用いて、固形分含有量が68質量%の正極樹脂組成物を含むスラリー1gをディスク上に塗布し、測定温度を25℃に設定し、せん断速度を100s-1から0.01s-1まで変化させて測定を行い、せん断速度10s-1の粘度を評価した。粘度の数値が低い程、良好な分散性を意味する。本実施例の粘度は、1.24Pa・sであった。
[Evaluation of dispersibility (viscosity of slurry containing positive electrode resin composition)]
The viscosity of the slurry containing the positive electrode resin composition was evaluated using a method using a rotational rheometer as described in JIS K7244-10. Specifically, using a rotary rheometer (manufactured by Anton Paar, MCR300), 1 g of slurry containing a positive electrode resin composition with a solid content of 68% by mass was applied onto a disk, and the measurement temperature was raised to 25°C. The measurement was carried out by changing the shear rate from 100 s -1 to 0.01 s -1 to evaluate the viscosity at a shear rate of 10 s -1 . A lower viscosity value means better dispersibility. The viscosity of this example was 1.24 Pa·s.

(正極の作製)
調製した正極樹脂組成物を含むスラリーを、厚さ15μmのアルミニウム箔(UACJ社製)の片面上に、アプリケータにて成膜し、乾燥機内に静置して105℃、一時間で予備乾燥させ、NMP溶媒を完全に除去した。次に、ロールプレス機にて200kg/cmの線圧でプレスし、厚さ15μmのアルミニウム箔を含んだ塗膜の厚さが80μmになるように調製した。次いで、残留水分を完全に除去するため、170℃で3時間真空乾燥して正極を得た。
(Preparation of positive electrode)
The slurry containing the prepared positive electrode resin composition was formed into a film using an applicator on one side of a 15 μm thick aluminum foil (manufactured by UACJ), and left to stand in a dryer for pre-drying at 105°C for one hour. The NMP solvent was completely removed. Next, it was pressed using a roll press machine with a linear pressure of 200 kg/cm to prepare a coating film containing 15 μm thick aluminum foil to have a thickness of 80 μm. Next, in order to completely remove residual moisture, vacuum drying was performed at 170° C. for 3 hours to obtain a positive electrode.

[正極の極板抵抗評価]
作製した正極を直径14mmの円盤状に切り抜き、表裏をSUS304製平板電極によって挟んだ状態で、電気化学測定システム(ソーラトロン社製、ファンクションジェネレーター1260およびポテンショガルバノスタット1287)を用いて、振幅電圧10mV、周波数範囲1Hz~100kHzにて交流インピーダンスを測定した。得られた抵抗成分値に切り抜いた円盤状の面積を掛けた抵抗値を極板抵抗とした。本実施例の正極の極板抵抗は120Ω・cm2であった。
[Positive plate resistance evaluation]
The produced positive electrode was cut out into a disk shape with a diameter of 14 mm, and with the front and back sides sandwiched between SUS304 flat plate electrodes, an amplitude voltage of 10 mV was measured using an electrochemical measurement system (manufactured by Solartron, function generator 1260 and potentiogalvanostat 1287). AC impedance was measured in a frequency range of 1 Hz to 100 kHz. The resistance value obtained by multiplying the obtained resistance component value by the area of the cut out disk shape was defined as the plate resistance. The plate resistance of the positive electrode in this example was 120Ω·cm 2 .

(負極の作製)
溶媒として純水(関東化学社製)、負極活物質として人造黒鉛(日立化成社製、「MAG-D」)、結着材としてスチレンブタジエンゴム(日本ゼオン社製、「BM-400B」、以下、SBRと記載)、分散剤としてカルボキシメチルセルロース(ダイセル社製、「D2200」、以下、CMCと記載)をそれぞれ用意した。次いで、CMCが固形分で1質量%、人造黒鉛が固形分で97質量%となるように秤量して混合し、この混合物に純水を添加し、自転公転式混合機(シンキー社製、あわとり練太郎ARV-310)を用いて、均一になるまで混合した。さらに、SBRが固形分で2質量%となるように秤量し、上記混合物に添加し、自転公転式混合機(シンキー社製、あわとり練太郎ARV-310)を用いて、均一になるまで混合し、負極スラリーを得た。次いで、負極スラリーを、厚さ10μmの銅箔(UACJ社製)上にアプリケータにて成膜し、乾燥機内に静置して60℃、一時間で予備乾燥させた。次に、ロールプレス機にて100kg/cmの線圧でプレスし、銅箔を含んだ塗膜の厚さが50μmになるように調製した。残留水分を完全に除去するため、120℃で3時間真空乾燥して負極を得た。
(Preparation of negative electrode)
Pure water (manufactured by Kanto Kagaku Co., Ltd.) as a solvent, artificial graphite (manufactured by Hitachi Chemical Co., Ltd., "MAG-D") as a negative electrode active material, and styrene-butadiene rubber (manufactured by Nippon Zeon Co., Ltd., "BM-400B", hereinafter referred to as a binder) , SBR) and carboxymethyl cellulose (manufactured by Daicel Corporation, "D2200", hereinafter referred to as CMC) were prepared as a dispersant. Next, CMC and artificial graphite were weighed and mixed to have a solid content of 1% by mass and 97% by mass, pure water was added to this mixture, and Using a Tori Rentaro ARV-310), the mixture was mixed until uniform. Furthermore, SBR was weighed to have a solid content of 2% by mass, added to the above mixture, and mixed until homogeneous using an autorotation-revolution mixer (Shinky Co., Ltd., Awatori Rentaro ARV-310). A negative electrode slurry was obtained. Next, the negative electrode slurry was formed into a film using an applicator on a copper foil having a thickness of 10 μm (manufactured by UACJ), and was left standing in a dryer to be pre-dried at 60° C. for one hour. Next, it was pressed using a roll press machine with a linear pressure of 100 kg/cm to prepare a coating film containing copper foil having a thickness of 50 μm. In order to completely remove residual moisture, vacuum drying was performed at 120° C. for 3 hours to obtain a negative electrode.

(リチウムイオン電池の作製)
露点-50℃以下に制御したドライルーム内で、上記正極を40×40mmに加工し、負極を44×44mmに加工した後、正極にアルミ製タブ、負極にニッケル製タブを溶接した。正極と負極それぞれの合材塗工面が中央で対向するようにし、さらに正極と負極間に45×45mmに加工したポリオレフィン微多孔質膜を配置した。次に70×140mm角に切断・加工したシート状の外装を長辺の中央部で二つ折りにした。次いで、正極用アルミ製タブと負極用ニッケル製タブが外装の外部に露出するように外装を配置しながら、二つ折りにした外装によって正極-ポリオレフィン微多孔質膜負極の積層体を挟んだ。次にヒートシーラーを用いて、外装の正極用アルミ製タブと負極用ニッケル製タブが露出した辺を含む2辺を加熱融着した後、加熱融着していない一辺から、2gの電解液(キシダ化学製、エチレンカーボネート/ジエチルカーボネート=1/2(体積比)+1M LiPF6溶液、以下、電解液と記載)を注液し、正極、負極およびポリオレフィン微多孔膜に十分に染み込ませてから、真空ヒートシーラーにより、電池の内部を減圧しながら、外装の残り1辺を加熱融着してリチウムイオン電池を得た。
(Preparation of lithium ion battery)
In a dry room controlled at a dew point of −50° C. or lower, the positive electrode was processed into a size of 40×40 mm and the negative electrode was processed into a size of 44×44 mm, and then an aluminum tab was welded to the positive electrode and a nickel tab was welded to the negative electrode. The composite coated surfaces of the positive and negative electrodes faced each other at the center, and a polyolefin microporous membrane processed to a size of 45×45 mm was placed between the positive and negative electrodes. Next, the sheet-like exterior that had been cut and processed into a 70 x 140 mm square was folded in half at the center of the long side. Next, the laminate of the positive electrode and the polyolefin microporous membrane negative electrode was sandwiched between the folded outer case while arranging the outer case so that the aluminum tab for the positive electrode and the nickel tab for the negative electrode were exposed to the outside of the outer case. Next, use a heat sealer to heat-seal the two sides of the exterior including the exposed sides of the aluminum tab for the positive electrode and the nickel tab for the negative electrode, and then apply 2 g of the electrolyte ( After injecting ethylene carbonate/diethyl carbonate = 1/2 (volume ratio) + 1M LiPF 6 solution (hereinafter referred to as electrolyte solution) manufactured by Kishida Chemical Co., Ltd. and sufficiently soaking it into the positive electrode, negative electrode, and polyolefin microporous membrane, A lithium ion battery was obtained by heat-sealing the remaining side of the exterior while reducing the pressure inside the battery using a vacuum heat sealer.

作製したリチウムイオン電池について、以下の方法により電池性能を評価した。 The battery performance of the produced lithium ion battery was evaluated by the following method.

(リチウムイオン電池の評価)
[放電レート特性(3C放電時の放電容量維持率)]
作製したリチウムイオン電池を、25℃において、4.3V、0.2C制限の定電流定電圧充電をした後、0.2Cの定電流で3.0Vまで放電した。次いで、再度4.3V、0.2C制限の定電流定電圧で回復充電した後、放電電流を0.2Cとして3.0Vまで放電させ、このときの放電容量を測定した。引き続き、前記の回復充電の条件は毎回保って充電し、一方で放電電流は0.5C、1C、2C、3Cと段階的に変化させながら、回復充電と放電とを繰り返し、各放電電流に対する放電容量を測定した。電池の放電レート特性の指標として、0.2C放電時に対する3C放電時の放電容量維持率を算出した。本実施例のリチウムイオン電池の3C放電時の放電容量維持率は80.5%であった。
(Evaluation of lithium ion batteries)
[Discharge rate characteristics (discharge capacity retention rate during 3C discharge)]
The produced lithium ion battery was charged at 4.3 V and a constant current and voltage with a 0.2 C limit at 25° C., and then discharged to 3.0 V at a constant current of 0.2 C. Next, after recovery charging was performed again at 4.3 V and constant current and constant voltage with a 0.2 C limit, the battery was discharged to 3.0 V at a discharge current of 0.2 C, and the discharge capacity at this time was measured. Subsequently, the above-mentioned recovery charging conditions were maintained each time for charging, while recovery charging and discharging were repeated while changing the discharge current stepwise from 0.5C, 1C, 2C, and 3C, and the discharge for each discharge current was repeated. Capacity was measured. As an index of the discharge rate characteristics of the battery, the discharge capacity retention rate during 3C discharge compared to 0.2C discharge was calculated. The discharge capacity retention rate of the lithium ion battery of this example at 3C discharge was 80.5%.

[サイクル特性(サイクル後の放電容量維持率)]
作製したリチウムイオン電池を、25℃において、4.3V、1C制限の定電流定電圧充電をした後、1Cの定電流で3.0Vまで放電した。上記充放電を500サイクル繰り返し、各サイクルにおける放電容量を測定した。電池のサイクル特性の指標として、特に1サイクル後に対する500サイクル後の放電容量維持率を算出した。本実施例のリチウムイオン電池のサイクル後の放電容量維持率は90%であった。
[Cycle characteristics (discharge capacity retention rate after cycling)]
The produced lithium ion battery was charged at 4.3 V with a constant current and voltage limit of 1 C at 25° C., and then discharged to 3.0 V with a constant current of 1 C. The above charging and discharging was repeated 500 cycles, and the discharge capacity in each cycle was measured. As an index of the cycle characteristics of the battery, in particular, the discharge capacity retention rate after 500 cycles compared to after 1 cycle was calculated. The discharge capacity retention rate of the lithium ion battery of this example after cycling was 90%.

[耐電圧性(フロート充電後の放電容量維持率)]
作製したリチウムイオン電池を、25℃において、4.35V、0.5C制限の定電流定電圧で2時間フロート充電した後、0.5Cの定電流で3.0Vまで放電させ、このときの放電容量を測定した。次いで、再度4.35V、0.5C制限の定電流定電圧で48時間フロート充電した後、同様に0.5Cの定電流で3.0Vまで放電させ、このときの放電容量を測定した。電池の耐電圧性の指標として、2時間充電時に対する48時間充電時のフロート充電後の容量維持率を算出した。本実施例のリチウムイオン電池のフロート充電後の容量維持率は94%であった。
[Voltage resistance (discharge capacity retention rate after float charging)]
The prepared lithium ion battery was float charged at 25°C for 2 hours at 4.35V and a constant current and voltage with a 0.5C limit, and then discharged to 3.0V at a constant current of 0.5C. Capacity was measured. Next, the battery was float charged again for 48 hours at 4.35 V and a constant current and voltage limited to 0.5 C, and then similarly discharged to 3.0 V at a constant current of 0.5 C, and the discharge capacity at this time was measured. As an index of the voltage resistance of the battery, the capacity retention rate after float charging during 2-hour charging and 48-hour charging was calculated. The capacity retention rate of the lithium ion battery of this example after float charging was 94%.

実施例1~8、比較例1~4で使用したポリビニルアルコールの鹸化度及び平均重合度を表1に示す。また、実施例1~8、比較例1~6で使用したカーボンブラックの平均一次粒子径及びDBP吸油量を表2に示す。 Table 1 shows the saponification degree and average degree of polymerization of the polyvinyl alcohol used in Examples 1 to 8 and Comparative Examples 1 to 4. Table 2 also shows the average primary particle diameter and DBP oil absorption of the carbon blacks used in Examples 1 to 8 and Comparative Examples 1 to 6.

<実施例2>
実施例1の分散剤を、ポリビニルアルコールBへ変更した以外は、実施例1と同様な方法で正極樹脂組成物、正極及びリチウムイオン電池を作製し、各評価を実施した。結果を表3に示す。
<Example 2>
A positive electrode resin composition, a positive electrode, and a lithium ion battery were prepared in the same manner as in Example 1, except that the dispersant in Example 1 was changed to polyvinyl alcohol B, and each evaluation was performed. The results are shown in Table 3.

<実施例3>
実施例1の分散剤を、ポリビニルアルコールCへ変更した以外は、実施例1と同様な方法で正極樹脂組成物、正極及びリチウムイオン電池を作製し、各評価を実施した。結果を表3に示す。
<Example 3>
A positive electrode resin composition, a positive electrode, and a lithium ion battery were prepared in the same manner as in Example 1, except that the dispersant in Example 1 was changed to polyvinyl alcohol C, and each evaluation was performed. The results are shown in Table 3.

<実施例4>
実施例1の分散剤を、ポリビニルアルコールDへ変更した以外は、実施例1と同様な方法で正極樹脂組成物、正極及びリチウムイオン電池を作製し、各評価を実施した。結果を表3に示す。
<Example 4>
A positive electrode resin composition, a positive electrode, and a lithium ion battery were prepared in the same manner as in Example 1, except that the dispersant in Example 1 was changed to polyvinyl alcohol D, and each evaluation was performed. The results are shown in Table 3.

<実施例5>
実施例1の導電材を、SAB(デンカ社製)へ変更した以外は、実施例1と同様な方法で正極樹脂組成物、正極及びリチウムイオン電池を作製し、各評価を実施した。結果を表3に示す。
<Example 5>
A positive electrode resin composition, a positive electrode, and a lithium ion battery were prepared in the same manner as in Example 1, except that the conductive material in Example 1 was changed to SAB (manufactured by Denka Corporation), and each evaluation was performed. The results are shown in Table 3.

<実施例6>
実施例1の導電材を、Li-250(デンカ社製)へ変更し、PVdFが固形分で1.95質量%、Li-250が固形分で1質量%、ポリビニルアルコールAが固形分で0.05質量%(分散剤の質量/導電材の質量=0.05)となるように秤量して混合した以外は、実施例1と同様な方法で正極樹脂組成物、正極及びリチウムイオン電池を作製し、各評価を実施した。結果を表3に示す。
<Example 6>
The conductive material in Example 1 was changed to Li-250 (manufactured by Denka Corporation), and the solid content of PVdF was 1.95% by mass, the solid content of Li-250 was 1% by mass, and the solid content of polyvinyl alcohol A was 0. A positive electrode resin composition, a positive electrode, and a lithium ion battery were prepared in the same manner as in Example 1, except that they were weighed and mixed so that the amount was 0.05% by mass (mass of dispersant/mass of conductive material = 0.05). were prepared and various evaluations were conducted. The results are shown in Table 3.

<実施例7>
実施例1の導電材を、ECP(ライオン社製)へ変更し、PVdFが固形分で1.84質量%、ECPが固形分で1質量%、ポリビニルアルコールAが固形分で0.16質量%(分散剤の質量/導電材の質量=0.16)となるように秤量して混合した以外は、実施例1と同様な方法で正極樹脂組成物、正極及びリチウムイオン電池を作製し、各評価を実施した。結果を表3に示す。
<Example 7>
The conductive material of Example 1 was changed to ECP (manufactured by Lion Corporation), and PVdF was 1.84% by mass in solid content, ECP was 1% by mass in solid content, and polyvinyl alcohol A was 0.16% by mass in solid content. A positive electrode resin composition, a positive electrode, and a lithium ion battery were prepared in the same manner as in Example 1, except that they were weighed and mixed so that (mass of dispersant/mass of conductive material = 0.16). An evaluation was conducted. The results are shown in Table 3.

<実施例8>
実施例1の導電材を、Li-250(デンカ社製)へ変更し、PVdFが固形分で1.98質量%、Li-250が固形分で1質量%、ポリビニルアルコールAが固形分で0.02質量%(分散剤の質量/導電材の質量=0.02)となるように秤量して混合した以外は、実施例1と同様な方法で正極樹脂組成物、正極及びリチウムイオン電池を作製し、各評価を実施した。結果を表3に示す。
<Example 8>
The conductive material in Example 1 was changed to Li-250 (manufactured by Denka Corporation), and the solid content of PVdF was 1.98% by mass, the solid content of Li-250 was 1% by mass, and the solid content of polyvinyl alcohol A was 0. A positive electrode resin composition, a positive electrode, and a lithium ion battery were prepared in the same manner as in Example 1, except that they were weighed and mixed so that the amount was 0.02% by mass (mass of dispersant/mass of conductive material = 0.02). were prepared and various evaluations were conducted. The results are shown in Table 3.

<比較例1>
実施例1の分散剤を、ポリビニルアルコールEへ変更した以外は、実施例1と同様な方法で正極樹脂組成物、正極及びリチウムイオン電池を作製し、各評価を実施した。結果を表3に示す。
<Comparative example 1>
A positive electrode resin composition, a positive electrode, and a lithium ion battery were prepared in the same manner as in Example 1, except that the dispersant in Example 1 was changed to polyvinyl alcohol E, and each evaluation was performed. The results are shown in Table 3.

<比較例2>
実施例1の分散剤を、ポリビニルアルコールFへ変更した以外は、実施例1と同様な方法で正極樹脂組成物、正極及びリチウムイオン電池を作製し、各評価を実施した。結果を表3に示す。
<Comparative example 2>
A positive electrode resin composition, a positive electrode, and a lithium ion battery were prepared in the same manner as in Example 1, except that the dispersant in Example 1 was changed to polyvinyl alcohol F, and each evaluation was performed. The results are shown in Table 3.

<比較例3>
実施例1の導電材を、#3040B(三菱化学社製)へ変更し、PVdFが固形分で1.97質量%、#3040Bが固形分で1質量%、ポリビニルアルコールAが固形分で0.03質量%(分散剤の質量/導電材の質量=0.03)となるように秤量して混合した以外は、実施例1と同様な方法で正極樹脂組成物、正極及びリチウムイオン電池を作製し、各評価を実施した。結果を表3に示す。
<Comparative example 3>
The conductive material in Example 1 was changed to #3040B (manufactured by Mitsubishi Chemical Corporation), and the solid content of PVdF was 1.97% by mass, the solid content of #3040B was 1% by mass, and the solid content of polyvinyl alcohol A was 0.9% by mass. A positive electrode resin composition, a positive electrode, and a lithium ion battery were prepared in the same manner as in Example 1, except that the composition was weighed and mixed so that the amount was 0.03% by mass (mass of dispersant/mass of conductive material = 0.03). and conducted each evaluation. The results are shown in Table 3.

<比較例4>
実施例1の導電材を、BlackPearls2000(キャボット社製)へ変更し、PVdFが固形分で1.85質量%、BlackPearls2000が固形分で1質量%、ポリビニルアルコールAが固形分で0.15質量%(分散剤の質量/導電材の質量=0.15)となるように秤量して混合した以外は、実施例1と同様な方法で正極樹脂組成物、正極及びリチウムイオン電池を作製し、各評価を実施した。結果を表3に示す。
<Comparative example 4>
The conductive material in Example 1 was changed to BlackPearls 2000 (manufactured by Cabot), PVdF was 1.85% by mass in solid content, BlackPearls 2000 was 1% by mass in solid content, and polyvinyl alcohol A was 0.15% by mass in solid content. A positive electrode resin composition, a positive electrode, and a lithium ion battery were prepared in the same manner as in Example 1, except that they were weighed and mixed so that (mass of dispersant/mass of conductive material = 0.15). An evaluation was conducted. The results are shown in Table 3.

<比較例5>
実施例1の分散剤を、ポリビニルピロリドン(日本触媒社製、K-90)へ変更した以外は、実施例1と同様な方法で正極樹脂組成物、正極及びリチウムイオン電池を作製し、各評価を実施した。結果を表3に示す。
<Comparative example 5>
A positive electrode resin composition, a positive electrode, and a lithium ion battery were prepared in the same manner as in Example 1, except that the dispersant in Example 1 was changed to polyvinylpyrrolidone (manufactured by Nippon Shokubai Co., Ltd., K-90), and various evaluations were conducted. was carried out. The results are shown in Table 3.

<比較例6>
実施例1の分散剤を添加せずに、PVdFが固形分で2質量%、Li-435が固形分で1質量%となるように秤量して混合した以外は、実施例1と同様な方法で正極樹脂組成物、正極及びリチウムイオン電池を作製し、各評価を実施した。結果を表3に示す。
<Comparative example 6>
A method similar to Example 1, except that the dispersant of Example 1 was not added, and PVdF was weighed and mixed so that the solid content was 2% by mass and the Li-435 was 1% by mass. A positive electrode resin composition, a positive electrode, and a lithium ion battery were prepared using the following methods, and various evaluations were performed. The results are shown in Table 3.

Figure 0007423247000001
Figure 0007423247000001

Figure 0007423247000002
Figure 0007423247000002

実施例1~8の正極樹脂組成物は、比較例1~6の正極樹脂組成物に比べて分散性が高いことが明らかになった。これにより本発明の実施例の正極は極板抵抗が低くなり、放電時の電圧降下を抑えられることが分かった。 It was revealed that the positive electrode resin compositions of Examples 1 to 8 had higher dispersibility than the positive electrode resin compositions of Comparative Examples 1 to 6. As a result, it was found that the positive electrode of the example of the present invention had a low plate resistance, and the voltage drop during discharge could be suppressed.

さらに、実施例1~8のリチウムイオン電池は、比較例1~6のリチウムイオン電池に比べて放電レート特性が高く、サイクル特性も高く、耐電圧性が高いことが明らかになった。これにより本発明の正極樹脂組成物を用いたリチウムイオン電池は放電電流の増加に伴う放電レート特性の低下を抑えられ、高い寿命も兼ね備えていることが分かった。 Furthermore, it was revealed that the lithium ion batteries of Examples 1 to 8 had higher discharge rate characteristics, higher cycle characteristics, and higher voltage resistance than the lithium ion batteries of Comparative Examples 1 to 6. As a result, it was found that a lithium ion battery using the positive electrode resin composition of the present invention can suppress a decrease in discharge rate characteristics due to an increase in discharge current, and also has a long life.

1 リチウムイオン電池正極
2 リチウムイオン電池負極
3 ポリオレフィン製微多孔膜
4 アルミ製タブ
5 ニッケル製タブ
6 外装
1 Lithium ion battery positive electrode 2 Lithium ion battery negative electrode 3 Polyolefin microporous membrane 4 Aluminum tab 5 Nickel tab 6 Exterior

Claims (7)

導電材、結着材及び分散剤を含有する正極樹脂組成物であって、前記分散剤が少なくともポリビニルアルコールを含み、前記導電材が少なくともカーボンブラックを含み、前記ポリビニルアルコールの鹸化度が85.5~96.5モル%であり、平均重合度が600~1500であり、前記カーボンブラックの平均一次粒子径が18nm~40nmであることを特徴とする正極樹脂組成物。 A positive electrode resin composition containing a conductive material, a binder, and a dispersant, wherein the dispersant contains at least polyvinyl alcohol, the conductive material contains at least carbon black, and the saponification degree of the polyvinyl alcohol is 85.5. ~96.5 mol%, an average degree of polymerization of 600 to 1500, and an average primary particle diameter of the carbon black of 18 nm to 40 nm. 前記ポリビニルアルコールの平均重合度が600~1200であることを特徴とする請求項1に記載の正極樹脂組成物。 The positive electrode resin composition according to claim 1, wherein the polyvinyl alcohol has an average degree of polymerization of 600 to 1,200 . 前記カーボンブラックのDBP吸収量が250~310ml/100gであることを特徴とする請求項1又は2に記載の正極樹脂組成物。 The positive electrode resin composition according to claim 1 or 2, wherein the carbon black has a DBP absorption amount of 250 to 310 ml/100 g. 前記分散剤と導電材の質量比{分散剤の質量/導電材の質量}が0.03~0.15であることを特徴とする請求項1~3のいずれか1項に記載の正極樹脂組成物。 The positive electrode resin according to any one of claims 1 to 3, wherein the mass ratio of the dispersant to the conductive material {mass of the dispersant/mass of the conductive material} is 0.03 to 0.15. Composition. 前記結着材がポリフッ化ビニリデンであることを特徴とする請求項1~4のいずれか1項に記載の正極樹脂組成物。 The positive electrode resin composition according to any one of claims 1 to 4, wherein the binder is polyvinylidene fluoride. 請求項1~5のいずれか1項に記載の正極樹脂組成物を含む正極。 A positive electrode comprising the positive electrode resin composition according to any one of claims 1 to 5. 請求項6に記載の正極を備えた二次電池。 A secondary battery comprising the positive electrode according to claim 6.
JP2019192255A 2019-10-21 2019-10-21 Positive electrode resin composition, positive electrode and secondary battery Active JP7423247B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019192255A JP7423247B2 (en) 2019-10-21 2019-10-21 Positive electrode resin composition, positive electrode and secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019192255A JP7423247B2 (en) 2019-10-21 2019-10-21 Positive electrode resin composition, positive electrode and secondary battery

Publications (2)

Publication Number Publication Date
JP2021068552A JP2021068552A (en) 2021-04-30
JP7423247B2 true JP7423247B2 (en) 2024-01-29

Family

ID=75638577

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019192255A Active JP7423247B2 (en) 2019-10-21 2019-10-21 Positive electrode resin composition, positive electrode and secondary battery

Country Status (1)

Country Link
JP (1) JP7423247B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023238495A1 (en) * 2022-06-08 2023-12-14 デンカ株式会社 Slurry, method for producing electrodes, and method for producing batteries

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005268026A (en) 2004-03-18 2005-09-29 Dainippon Printing Co Ltd Coating composite for active material layer, electrode plate for non-aqueous electrolytic liquid secondary battery, and non-aqueous electrolytic liquid secondary battery
JP2016046188A (en) 2014-08-26 2016-04-04 東洋インキScホールディングス株式会社 Carbon black dispersion and use of the same
JP2017054650A (en) 2015-09-08 2017-03-16 株式会社豊田自動織機 Composition containing positive electrode active material, dispersant and solvent
WO2018021073A1 (en) 2016-07-28 2018-02-01 デンカ株式会社 Conductive resin composition for electrodes, electrode composition, electrode using same and lithium ion battery
WO2018037910A1 (en) 2016-08-24 2018-03-01 デンカ株式会社 Carbon black for batteries, conductive composition for electrodes, electrode for batteries, and battery

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005268026A (en) 2004-03-18 2005-09-29 Dainippon Printing Co Ltd Coating composite for active material layer, electrode plate for non-aqueous electrolytic liquid secondary battery, and non-aqueous electrolytic liquid secondary battery
JP2016046188A (en) 2014-08-26 2016-04-04 東洋インキScホールディングス株式会社 Carbon black dispersion and use of the same
JP2017054650A (en) 2015-09-08 2017-03-16 株式会社豊田自動織機 Composition containing positive electrode active material, dispersant and solvent
WO2018021073A1 (en) 2016-07-28 2018-02-01 デンカ株式会社 Conductive resin composition for electrodes, electrode composition, electrode using same and lithium ion battery
WO2018037910A1 (en) 2016-08-24 2018-03-01 デンカ株式会社 Carbon black for batteries, conductive composition for electrodes, electrode for batteries, and battery

Also Published As

Publication number Publication date
JP2021068552A (en) 2021-04-30

Similar Documents

Publication Publication Date Title
JP5961922B2 (en) Negative electrode for secondary battery and method for producing the same
US11028209B2 (en) Conductive resin composition for electrodes, electrode composition, electrode using same and lithium ion battery
JP4135074B2 (en) Negative electrode manufacturing method and battery manufacturing method
WO2017056974A1 (en) Binder composition, non-aqueous electrolyte secondary battery electrode, and non-aqueous electrolyte secondary battery
JP7337049B2 (en) Positive electrode composition for lithium ion secondary battery, positive electrode for lithium ion secondary battery, and lithium ion secondary battery
JP7056642B2 (en) Conductive material dispersion for electrochemical element electrodes, slurry composition for electrochemical element electrodes and their manufacturing methods, electrodes for electrochemical elements, and electrochemical elements
CN105474449B (en) Lithium secondary battery
WO2011001666A1 (en) Positive electrode for nonaqueous electrolyte secondary battery, method for producing same, and nonaqueous electrolyte secondary battery
JP2016119221A (en) Wound electrode element for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery using the same, and method for manufacturing wound electrode element for nonaqueous electrolyte secondary battery
WO2020111201A1 (en) Lithium ion secondary battery positive electrode composition, lithium ion secondary battery positive electrode, and lithium ion secondary battery
JP2019160789A (en) Negative electrode for lithium ion battery and lithium ion battery
JP7423247B2 (en) Positive electrode resin composition, positive electrode and secondary battery
JP2016021391A (en) Conductive material fluid dispersion for electrochemical devices, slurry for electrochemical device positive electrodes, positive electrode for electrochemical devices, and electrochemical device
JP2023520193A (en) Negative electrode active material for lithium secondary battery, negative electrode and lithium secondary battery
JP7223999B2 (en) Positive electrode composition for lithium ion secondary battery, positive electrode for lithium ion secondary battery, and lithium ion secondary battery
JP7477290B2 (en) Anode resin composition, anode and secondary battery
JP7490567B2 (en) Positive electrode composition for lithium ion secondary battery, positive electrode for lithium ion secondary battery, and lithium ion secondary battery
US20230130295A1 (en) Negative electrode and battery
WO2023205927A1 (en) Negative electrode plate and preparation method therefor, secondary battery, battery module, battery pack and electric device
JP2016201228A (en) Active material and battery using the same
WO2024026615A1 (en) Negative electrode active material, electrochemical device and electronic device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220905

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230706

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230815

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230925

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240117

R150 Certificate of patent or registration of utility model

Ref document number: 7423247

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150