JP7421983B2 - Seismic isolation building - Google Patents

Seismic isolation building Download PDF

Info

Publication number
JP7421983B2
JP7421983B2 JP2020061680A JP2020061680A JP7421983B2 JP 7421983 B2 JP7421983 B2 JP 7421983B2 JP 2020061680 A JP2020061680 A JP 2020061680A JP 2020061680 A JP2020061680 A JP 2020061680A JP 7421983 B2 JP7421983 B2 JP 7421983B2
Authority
JP
Japan
Prior art keywords
seismic isolation
isolation device
laminated rubber
guide rail
building
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020061680A
Other languages
Japanese (ja)
Other versions
JP2021161643A (en
Inventor
翔 青野
龍大 欄木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taisei Corp
Original Assignee
Taisei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taisei Corp filed Critical Taisei Corp
Priority to JP2020061680A priority Critical patent/JP7421983B2/en
Publication of JP2021161643A publication Critical patent/JP2021161643A/en
Application granted granted Critical
Publication of JP7421983B2 publication Critical patent/JP7421983B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Springs (AREA)
  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Vibration Prevention Devices (AREA)

Description

本発明は、免震装置およびこの免震装置が設けられた免震建物に関する。 The present invention relates to a seismic isolation device and a seismically isolated building equipped with this seismic isolation device.

従来より、すべり支承を備えた免震装置が提案されている(特許文献1参照)。
特許文献1には、基礎部に埋設されたPTFE板と、このPTFE板の上に摺動可能に設けられた弾性滑り支承と、この弾性すべり支承の上に設けられて建物を支持する積層ゴム支承と、を備える免震装置が示されている。
特許文献2には、布基礎の上に設けられた積層ゴム支承部材と、この積層ゴム支承部材の上に設けられたすべり材と、すべり材の上に摺動自在に設けられて建物壁を支持するすべり板と、を備える免震装置が示されている。
Conventionally, a seismic isolation device including a sliding bearing has been proposed (see Patent Document 1).
Patent Document 1 describes a PTFE board buried in a foundation, an elastic sliding bearing slidably provided on the PTFE board, and a laminated rubber support provided on the elastic sliding bearing to support the building. A seismic isolation device is shown comprising a bearing and.
Patent Document 2 describes a laminated rubber bearing member provided on a cloth foundation, a sliding member provided on the laminated rubber bearing member, and a sliding member provided slidably on the sliding member to support a building wall. A seismic isolation device is shown comprising a supporting sliding plate.

特開平8-158697号公報Japanese Patent Application Publication No. 8-158697 特開2000-54684号公報Japanese Patent Application Publication No. 2000-54684

本発明は、浮き上がりを防止できる免震装置が設けられた免震建物を提供することを課題とする。 An object of the present invention is to provide a seismically isolated building equipped with a seismic isolation device that can prevent uplift.

本発明者らは、軸力変動が大きな柱の直下に設置する免震装置として、積層ゴムと水平方向に移動可能でかつ鉛直方向に係止可能な直動機構とを組み合わせることで、免震装置の浮き上がりを防止し、積層ゴムの大型化や高剛性化を防止できる点に着眼して、本発明に至った。
第1の発明の免震装置(例えば、後述の免震装置20)は、基盤(例えば、後述の下部基礎2)上に設けられた構造物(例えば、後述の建物本体4)の免震装置であって、前記基盤上に設けられたガイドレール(例えば、後述のガイドレール21)と、前記ガイドレール上を走行可能な移動機構(例えば、後述の移動機構22)と、前記移動機構上に設けられて前記構造物を支持する積層ゴム(例えば、後述の積層ゴム23)と、を備え、前記移動機構は、前記ガイドレール上を転動する複数の鋼球(例えば、後述の鋼球24)が内蔵された直動転がり支承であり、前記ガイドレールに鉛直方向に係止した状態で前記ガイドレールを走行することを特徴とする。
The present inventors developed a seismic isolation device that is installed directly under a column with large axial force fluctuations by combining laminated rubber with a linear motion mechanism that is movable in the horizontal direction and can be locked in the vertical direction. The present invention was developed by focusing on the ability to prevent the device from lifting up and prevent the laminated rubber from becoming larger and more rigid.
The seismic isolation device of the first invention (e.g., the seismic isolation device 20 described below) is a seismic isolation device for a structure (e.g., the building body 4, described below) provided on a foundation (e.g., the lower foundation 2, described later). A guide rail provided on the base (for example, guide rail 21 described below), a moving mechanism (for example, moving mechanism 22 described below) that can run on the guide rail, and a moving mechanism provided on the moving mechanism. Laminated rubber (e.g., laminated rubber 23 described later) is provided to support the structure, and the moving mechanism includes a plurality of steel balls (e.g., steel balls 24 described later) rolling on the guide rail. ) is a built-in linear motion rolling bearing, and is characterized in that it travels on the guide rail while being locked in the vertical direction to the guide rail.

この発明によれば、免震装置に対してガイドレールの延出方向に水平力が作用した場合、移動機構がガイドレール上を走行することで、積層ゴムに作用するせん断力を低減できる。
また、地震時に免震装置に浮き上がり力(引張力)が作用した場合でも、移動機構がガイドレールに鉛直方向に係止しているため、免震装置の浮き上がりを防止できる。
このように、本発明の免震装置は、鉛直方向の圧縮力だけでなく、浮き上がり力(引張力)に抵抗できるうえに、ガイドレールの延出方向のせん断力を低減できる、複合免震装置である。よって、本発明の免震装置を適宜用いることで、免震装置を構成する積層ゴムのサイズや剛性を高めることなく、構造物の転倒余裕度を向上できる。
According to this invention, when a horizontal force acts on the seismic isolation device in the direction in which the guide rail extends, the moving mechanism travels on the guide rail, thereby reducing the shearing force acting on the laminated rubber.
Furthermore, even if an uplifting force (tensile force) is applied to the seismic isolation device during an earthquake, the moving mechanism is vertically engaged with the guide rail, thereby preventing the seismic isolation device from lifting up.
As described above, the seismic isolation device of the present invention is a composite seismic isolation device that can resist not only compressive force in the vertical direction but also uplift force (tensile force) and can reduce shearing force in the direction in which the guide rail extends. It is. Therefore, by appropriately using the seismic isolation device of the present invention, the overturn margin of the structure can be improved without increasing the size or rigidity of the laminated rubber that constitutes the seismic isolation device.

本発明の免震装置(例えば、後述の免震装置30)は、基盤(例えば、後述の下部基礎2)上に設けられた構造物(例えば、後述の建物本体4)の免震装置であって、前記基盤上に設けられたすべり部材(例えば、後述のすべり部材31)と、前記すべり部材上を摺動可能な移動プレート(例えば、後述の移動プレート32)と、前記移動プレート上に設けられて前記構造物を支持する積層ゴム(例えば、後述の積層ゴム33)と、を備え、前記すべり部材の両端には、前記移動プレートの上面に係止可能な係止部(例えば、後述の係止部34)が設けられることが好ましいThe seismic isolation device of the present invention (for example, the seismic isolation device 30 described below) is a seismic isolation device for a structure (for example, the building body 4 described below) provided on a foundation (for example, the lower foundation 2 described below). There is a sliding member (for example, a sliding member 31 described below) provided on the base, a moving plate that can slide on the sliding member (for example, a moving plate 32, described below), and a sliding member provided on the moving plate. Laminated rubber (e.g., laminated rubber 33 described below) is provided to support the structure, and both ends of the sliding member are provided with locking portions (e.g., It is preferable that a locking portion 34) is provided.

この発明によれば、免震装置に対してすべり部材の延出方向に水平力が作用した場合、移動プレートがすべり部材上を摺動することで、積層ゴムに作用するせん断力を低減できる。
また、地震時に免震装置に浮き上がり力(引張力)が作用した場合でも、移動プレートの両端がすべり部材の係止部に係止し、免震装置の浮き上がりを防止できる。
このように、本発明の免震装置は、鉛直方向の圧縮力だけでなく、浮き上がり力(引張力)に抵抗できるうえに、すべり部材の延出方向のせん断力を低減できる、複合免震装置である。よって、本発明の免震装置を適宜用いることで、免震装置を構成する積層ゴムのサイズや剛性を高めることなく、構造物の転倒余裕度を向上できる。
According to this invention, when a horizontal force acts on the seismic isolation device in the extending direction of the sliding member, the movable plate slides on the sliding member, thereby reducing the shearing force acting on the laminated rubber.
Furthermore, even if a lifting force (tensile force) is applied to the seismic isolation device during an earthquake, both ends of the movable plate are locked to the locking portions of the sliding member, thereby preventing the seismic isolation device from lifting up.
As described above, the seismic isolation device of the present invention is a composite seismic isolation device that can resist not only compressive force in the vertical direction but also uplift force (tensile force) and can also reduce shear force in the extending direction of the sliding member. It is. Therefore, by appropriately using the seismic isolation device of the present invention, the overturn margin of the structure can be improved without increasing the size or rigidity of the laminated rubber that constitutes the seismic isolation device.

の発明の免震建物(例えば、後述の免震建物1)は、基盤(例えば、後述の下部基礎2)と、前記基盤上に設けられた上述の免震装置(例えば、後述の免震装置20、30)と、前記免震装置上に設けられた構造物(例えば、後述の建物本体4)と、を備えることを特徴とする。 A seismic isolation building (e.g., seismic isolation building 1 described below) of the second invention includes a base (e.g., lower foundation 2 described later) and the above-mentioned seismic isolation device (e.g., seismic isolation device described below) provided on the base. It is characterized by comprising: a seismic isolation device (20, 30), and a structure (for example, a building body 4, which will be described later) provided on the seismic isolation device.

この発明によれば、免震装置が、鉛直方向の圧縮力だけでなく、浮き上がり力(引張力)に抵抗できるうえに、ガイドレールあるいはすべり部材の延出方向のせん断力を低減する。よって、このような免震装置が設けられた免震建物は、大きな地震に対して優れた免震性能を発揮できる。 According to this invention, the seismic isolation device can resist not only compressive force in the vertical direction but also uplift force (tensile force), and also reduces shear force in the direction in which the guide rail or sliding member extends. Therefore, a seismic isolation building equipped with such a seismic isolation device can exhibit excellent seismic isolation performance against large earthquakes.

本発明によれば、浮き上がりを防止できる免震装置が設けられた免震建物を提供できる。 According to the present invention, it is possible to provide a seismically isolated building equipped with a seismic isolation device that can prevent uplift.

本発明の第1実施形態に係る免震装置が設けられた免震建物の縦断面図である。1 is a longitudinal cross-sectional view of a seismically isolated building provided with a seismic isolation device according to a first embodiment of the present invention. 免震建物のA-A断面図である。It is an AA sectional view of a seismically isolated building. 免震建物のB-B断面図である。It is a BB sectional view of a seismically isolated building. 免震建物に設けられた免震装置の縦断面図およびC-C断面図である。FIG. 2 is a longitudinal sectional view and a CC sectional view of a seismic isolation device installed in a seismically isolated building. 免震装置の破線Dで囲まれた部分の拡大断面図である。FIG. 2 is an enlarged cross-sectional view of a portion of the seismic isolation device surrounded by a broken line D. FIG. シミュレーション解析に用いた免震建物の解析モデルを示す図である。FIG. 2 is a diagram showing an analytical model of a seismically isolated building used in simulation analysis. シミュレーション解析に用いた免震装置の積層ゴムの特性を示す図である。It is a figure showing the characteristic of the laminated rubber of the seismic isolation device used for simulation analysis. シミュレーション解析に用いた免震装置の配置を示す図である。FIG. 3 is a diagram showing the arrangement of seismic isolation devices used in simulation analysis. 従来の免震装置および本発明の免震装置についてのx方向およびy方向の変形量の比較図である。FIG. 4 is a comparison diagram of the amount of deformation in the x direction and the y direction for a conventional seismic isolation device and a seismic isolation device of the present invention. 従来の免震装置および本発明の免震装置についてのせん断ひずみと鉛直ひずみとの関係の比較図である。It is a comparative diagram of the relationship between shear strain and vertical strain for a conventional seismic isolation device and a seismic isolation device of the present invention. 従来の免震装置および本発明の免震装置についてのせん断ひずみと鉛直面圧との関係の比較図である。FIG. 2 is a comparison diagram of the relationship between shear strain and vertical pressure for a conventional seismic isolation device and a seismic isolation device of the present invention. 本発明の参考例に係る免震装置の平面図およびE-E断面図である。FIG. 2 is a plan view and an EE sectional view of a seismic isolation device according to a reference example of the present invention.

本発明は、積層ゴムと、水平方向に移動可能でかつ鉛直方向に係止可能な直動機構と、を備える免震装置である。第1実施形態は、直動機構を水平一方向の直動転がり支承としたものである(図1~図11)。第2実施形態は、直動機構を水平一方向の低摩擦の摺動機構としたものである(図12)。
以下、本発明の実施形態を図面に基づいて説明する。なお、以下の実施形態の説明にあたって、同一構成要件については同一符号を付し、その説明を省略もしくは簡略化する。
〔第1実施形態〕
図1は、本発明の第1実施形態に係る免震装置10、20が設けられた免震建物1の縦断面図である。図2は、免震建物1のA-A断面図である。図3は、免震建物1のB-B断面図である。
免震建物1は、基盤としての下部基礎2と、下部基礎2上に設けられて複数の免震装置10、20からなる免震層3と、免震装置10、20に支持された構造物としての建物本体4と、を備える。建物本体4は、上部基礎5、柱6、および梁7を備える。
免震装置10は、積層ゴム支承のみで構成されている。これに対し、免震装置20は、積層ゴム支承に加えて、この積層ゴム支承を所定方向に移動可能な機構(直動機構)が設けられた複合免震装置である。図1および図3中の矢印は、免震装置20の直動機構の移動方向を示す。図1および図3に示すように、免震建物1のx方向(左右方向)両端に位置する免震装置20は、x方向に移動可能な直動機構を備えている。免震建物1のy方向(上下方向)両端に位置する免震装置20は、y方向に移動可能な直動機構を備えている。
The present invention is a seismic isolation device that includes laminated rubber and a linear motion mechanism that is horizontally movable and vertically lockable. In the first embodiment, the linear motion mechanism is a linear motion rolling support in one horizontal direction (FIGS. 1 to 11). In the second embodiment, the linear motion mechanism is a low friction sliding mechanism in one horizontal direction (FIG. 12).
Embodiments of the present invention will be described below based on the drawings. In addition, in the following description of the embodiment, the same constituent elements are given the same reference numerals, and the description thereof will be omitted or simplified.
[First embodiment]
FIG. 1 is a longitudinal sectional view of a seismically isolated building 1 provided with seismic isolation devices 10 and 20 according to a first embodiment of the present invention. FIG. 2 is an AA cross-sectional view of the seismic isolation building 1. FIG. 3 is a BB sectional view of the seismic isolation building 1.
The seismic isolation building 1 includes a lower foundation 2 as a base, a seismic isolation layer 3 provided on the lower foundation 2 and consisting of a plurality of seismic isolation devices 10 and 20, and a structure supported by the seismic isolation devices 10 and 20. A building main body 4 is provided. The building body 4 includes an upper foundation 5, columns 6, and beams 7.
The seismic isolation device 10 is composed only of laminated rubber bearings. On the other hand, the seismic isolation device 20 is a composite seismic isolation device that is provided with a laminated rubber bearing and a mechanism (linear motion mechanism) that can move the laminated rubber bearing in a predetermined direction. The arrows in FIGS. 1 and 3 indicate the moving direction of the linear motion mechanism of the seismic isolation device 20. As shown in FIGS. 1 and 3, the seismic isolation devices 20 located at both ends of the seismic isolation building 1 in the x direction (left and right direction) are equipped with a linear motion mechanism movable in the x direction. The seismic isolation device 20 located at both ends of the seismic isolation building 1 in the y direction (vertical direction) is equipped with a linear motion mechanism movable in the y direction.

図4(a)は、免震装置20の縦断面図であり、図4(b)は、図4(a)の免震装置20のC-C断面図である。
免震装置20は、下部基礎2上に設けられた3本のガイドレール21と、これらガイドレール21上を走行可能な6つの移動機構22と、これら移動機構22上に設けられて建物本体4の上部基礎5を支持する積層ゴム23と、を備える。つまり、免震装置20の直動機構は、ガイドレール21および移動機構22で構成されている。
積層ゴム23は、ゴムと鋼板とを交互に積層したものであり、弾性変形可能となっている。
移動機構22は、各ガイドレール21について2つずつ設けられている。この免震装置10では、移動機構22がガイドレール21上を走行することで、積層ゴム23が図4(a)中矢印方向に移動する。
4(a) is a longitudinal sectional view of the seismic isolation device 20, and FIG. 4(b) is a CC sectional view of the seismic isolation device 20 of FIG. 4(a).
The seismic isolation device 20 includes three guide rails 21 provided on the lower foundation 2, six moving mechanisms 22 that can run on these guide rails 21, and a building body 4 provided on these moving mechanisms 22. and a laminated rubber 23 that supports the upper foundation 5 of. That is, the linear motion mechanism of the seismic isolation device 20 includes the guide rail 21 and the moving mechanism 22.
The laminated rubber 23 is made by alternately laminating rubber and steel plates, and is elastically deformable.
Two moving mechanisms 22 are provided for each guide rail 21. In this seismic isolation device 10, as the moving mechanism 22 runs on the guide rail 21, the laminated rubber 23 moves in the direction of the arrow in FIG. 4(a).

図5は、図4(b)に示す免震装置20の破線Dで囲まれた部分の拡大断面図である。
移動機構22は、ガイドレール21上を転動する複数の鋼球24が内蔵された直動転がり支承である。ガイドレール21の上面には、2つの溝25が形成され、ガイドレール21の側面には、それぞれ溝26が形成されている。この移動機構22は、鋼球24がガイドレール21の溝25、26上を転動しながら所定の移動経路27を循環することで、ガイドレール21上を円滑に走行する。このとき、移動機構22の鋼球24がガイドレール21の側面の溝26に嵌合しているため、移動機構22はガイドレール21に鉛直方向に係止した状態で走行する。
FIG. 5 is an enlarged sectional view of a portion of the seismic isolation device 20 shown in FIG. 4(b) surrounded by a broken line D.
The moving mechanism 22 is a linear motion rolling support that incorporates a plurality of steel balls 24 that roll on a guide rail 21. Two grooves 25 are formed on the upper surface of the guide rail 21, and grooves 26 are formed on the side surfaces of the guide rail 21, respectively. This moving mechanism 22 smoothly travels on the guide rail 21 by circulating the steel ball 24 along a predetermined moving path 27 while rolling on the grooves 25 and 26 of the guide rail 21. At this time, since the steel balls 24 of the moving mechanism 22 are fitted into the grooves 26 on the side surfaces of the guide rails 21, the moving mechanism 22 travels while being vertically engaged with the guide rails 21.

以上の免震建物を図6に示すようにモデル化して、シミュレーション解析を行った。
建物本体を、20層の鋼構造のラーメン骨組みとし、重量を約30000t、x方向の固有周期を2.43秒とした。免震特性としては、建物本体を剛体としたときの免震周期を約5.3秒とした。また、減衰機構としてリリーフ型のオイルダンパを想定し、最大減衰力を建物本体の重量の約18%とした。
免震装置の積層ゴムを、図7に示すような引張降伏特性を有する非線形弾性ばねとした。
また、免震装置の積層ゴムとして、天然ゴム系積層ゴム(NRB)を用いた3種類を用意し、図8に示すように配置した。すなわち、直径950mmでせん断弾性係数Gが0.34N/mmのもの(Aタイプ)、直径1200mmでせん断弾性係数Gが0.34N/mmのもの(Bタイプ)、直径1200mmのせん断弾性係数Gが0.29N/mmのもの(Cタイプ)である。
The above seismically isolated building was modeled as shown in Figure 6 and a simulation analysis was conducted.
The main body of the building is a 20-layer steel rigid frame frame with a weight of approximately 30,000 tons and a natural period in the x direction of 2.43 seconds. Regarding the seismic isolation characteristics, the seismic isolation period was set to approximately 5.3 seconds when the building body was a rigid body. In addition, a relief-type oil damper was assumed as the damping mechanism, and the maximum damping force was set to approximately 18% of the weight of the building body.
The laminated rubber of the seismic isolation device was a nonlinear elastic spring with tensile yield characteristics as shown in FIG.
In addition, three types of natural rubber laminated rubber (NRB) were prepared as the laminated rubber of the seismic isolation device, and were arranged as shown in FIG. That is, one with a diameter of 950 mm and a shear modulus of elasticity G of 0.34 N/mm 2 (Type A), one with a diameter of 1200 mm and a shear modulus of elasticity G of 0.34 N/mm 2 (Type B), and one with a shear modulus of elasticity of 1200 mm in diameter. The G is 0.29 N/mm 2 (C type).

入力波として、熊本地震西原村小森波のEW成分を用いて、解析モデルのx方向に入力した。比較例は、上述の解析モデルに本発明のような移動機構を備えていない従来の免震装置を適用して、地震応答を求めたものである。これに対し、実施例は、上述の解析モデルに本発明の移動機構を備えた免震装置を適用して、地震応答を求めたものである。この実施例において、本発明の免震装置を図3に示すように配置し、直動転がり支承の摩擦係数を0.02とした。 As an input wave, the EW component of the Nishihara Village Komori wave from the Kumamoto Earthquake was used and input into the x direction of the analysis model. In the comparative example, an earthquake response was obtained by applying a conventional seismic isolation device that does not include a moving mechanism like the present invention to the above-mentioned analytical model. On the other hand, in the example, the seismic response was obtained by applying the seismic isolation device equipped with the moving mechanism of the present invention to the above-mentioned analytical model. In this example, the seismic isolation device of the present invention was arranged as shown in FIG. 3, and the friction coefficient of the linear rolling bearing was set to 0.02.

図9~図11にシミュレーション解析結果を示す。図9~図11の左側は、x方向左端の従来および本発明の免震装置についての比較図であり、図9~図11の右側は、x方向右端の従来および本発明の免震装置についての比較図である。図9は、x方向およびy方向の変形量を示している。図10は、せん断ひずみと鉛直ひずみとの関係を示している。図11は、せん断ひずみと鉛直面圧との関係を示している。
図9によれば、比較例では、x方向(EW方向)のせん断変形の最大値が70cm程度となるが、実施例では、x方向(EW方向)のせん断変形の最大値が30cm程度となり、x方向のせん断変形の最大値を大幅に低減できることが判る。
Figures 9 to 11 show simulation analysis results. The left side of FIGS. 9 to 11 is a comparison diagram of the conventional and inventive seismic isolation devices at the left end in the x direction, and the right side of FIGS. 9 to 11 is a comparison diagram of the conventional and inventive seismic isolation devices at the right end in the x direction. FIG. FIG. 9 shows the amount of deformation in the x and y directions. FIG. 10 shows the relationship between shear strain and vertical strain. FIG. 11 shows the relationship between shear strain and vertical pressure.
According to FIG. 9, in the comparative example, the maximum value of shear deformation in the x direction (EW direction) is about 70 cm, but in the example, the maximum value of shear deformation in the x direction (EW direction) is about 30 cm, It can be seen that the maximum value of shear deformation in the x direction can be significantly reduced.

また、図10および図11によれば、比較例(従来の免震装置)では、最大引張ひずみが10%程度(右端の免震装置)、最大圧縮ひずみが3%程度となっている。また、せん断ひずみの最大値は400%近くなる。
これに対し、実施例(本発明の免震装置)では、最大引張ひずみおよび最大圧縮ひずみには大きな違いがないものの、最大引張点におけるせん断ひずみは100%程度、最大圧縮点におけるせん断ひずみは150%程度となり、せん断ひずみの最大値を大幅に低減できることが判る。
Further, according to FIGS. 10 and 11, in the comparative example (conventional seismic isolation device), the maximum tensile strain is about 10% (seismic isolation device on the right end), and the maximum compressive strain is about 3%. Further, the maximum value of shear strain is close to 400%.
On the other hand, in the example (seismic isolation device of the present invention), although there is no big difference in the maximum tensile strain and the maximum compressive strain, the shear strain at the maximum tension point is about 100%, and the shear strain at the maximum compression point is about 150%. %, indicating that the maximum value of shear strain can be significantly reduced.

本実施形態によれば、以下のような効果がある。
(1)、免震装置20に対してガイドレール21の延出方向に水平力が作用した場合、移動機構22がガイドレール21上を走行することで、積層ゴム23に作用するせん断力を低減できる。
また、地震時に免震装置20に浮き上がり力(引張力)が作用した場合でも、移動機構22がガイドレール21に鉛直方向に係止しているため、免震装置20の浮き上がりを防止できる。
このように、本発明の免震装置20は、鉛直方向の圧縮力だけでなく、浮き上がり力(引張力)に抵抗できるうえに、ガイドレール21の延出方向のせん断力を低減できる、複合免震装置である。よって、本発明の免震装置20を適宜用いることで、免震装置20を構成する積層ゴム23のサイズや剛性を高めることなく、建物本体4の転倒余裕度を向上できる。
言い換えると、地震発生時、免震建物1の免震装置20には、地震荷重によって積層ゴム23に引張力や過大な圧縮力が作用するとともに、積層ゴム23のせん断変形が増大することになる。よって、本実施形態では、免震装置20を、積層ゴム23と鉛直方向の移動を拘束しつつ水平一方向に移動可能な移動機構22(直動転がり支承)とを、鉛直方向に直列に緊結した複合支承とした。本実施形態の免震建物1では、積層ゴム23のせん断変形を低減するように移動機構22の移動方向を設定することで、積層ゴム23の破断および座屈に対する安全性を向上させて、建物本体4の転倒余裕度を向上させ、免震層3の崩壊を防止する免震構造を実現できる。また、本発明によれば、塔上比の大きい超高層の免震建物に対して、巨大地震時における転倒を防止できる。
According to this embodiment, there are the following effects.
(1) When a horizontal force acts on the seismic isolation device 20 in the direction in which the guide rail 21 extends, the moving mechanism 22 travels on the guide rail 21 to reduce the shear force acting on the laminated rubber 23 can.
Furthermore, even if a lifting force (tensile force) is applied to the seismic isolation device 20 during an earthquake, the moving mechanism 22 is vertically engaged with the guide rail 21, so that the seismic isolation device 20 can be prevented from lifting.
As described above, the seismic isolation device 20 of the present invention is a composite isolation device that can resist not only compressive force in the vertical direction but also uplift force (tensile force) and can reduce shear force in the direction in which the guide rail 21 extends. It is a seismic device. Therefore, by appropriately using the seismic isolation device 20 of the present invention, the overturn margin of the building body 4 can be improved without increasing the size or rigidity of the laminated rubber 23 that constitutes the seismic isolation device 20.
In other words, when an earthquake occurs, tensile force or excessive compressive force acts on the rubber lamination 23 due to the earthquake load on the seismic isolation device 20 of the seismic isolation building 1, and the shear deformation of the rubber lamination 23 increases. . Therefore, in the present embodiment, the seismic isolation device 20 is tightly coupled in series in the vertical direction with the laminated rubber 23 and the moving mechanism 22 (linear rolling bearing) that can move in one horizontal direction while restraining movement in the vertical direction. A composite bearing was adopted. In the seismically isolated building 1 of this embodiment, the moving direction of the moving mechanism 22 is set so as to reduce the shear deformation of the laminated rubber 23, thereby improving the safety against breakage and buckling of the laminated rubber 23, and building the building. It is possible to realize a seismic isolation structure that improves the fall margin of the main body 4 and prevents the seismic isolation layer 3 from collapsing. Further, according to the present invention, it is possible to prevent a super high-rise seismic isolation building with a large tower-to-top ratio from falling during a huge earthquake.

(2)免震装置20が、鉛直方向の圧縮力だけでなく、浮き上がり力(引張力)に抵抗できるうえに、ガイドレールあるいはすべり部材の延出方向のせん断力を低減する。よって、このような免震装置20が設けられた免震建物1は、大きな地震に対して優れた免震性能を発揮できる。 (2) The seismic isolation device 20 can resist not only compressive force in the vertical direction but also uplift force (tensile force), and also reduces shear force in the extending direction of the guide rail or sliding member. Therefore, the seismic isolation building 1 provided with such a seismic isolation device 20 can exhibit excellent seismic isolation performance against large earthquakes.

(3)地震時に免震建物1に水平力が作用すると、免震建物1の周縁部には、大きな圧縮力あるいは引張力が作用する。そこで、本実施形態では、免震建物1の周縁部に、積層ゴム23の移動を許容した免震装置20を設けた。よって、地震時には、積層ゴム23が水平移動して、積層ゴム23のせん断変形を抑制できるから、積層ゴム23の引張破断や座屈に対する余裕度を向上させて、建物本体4の転倒余裕度を向上できる。 (3) When a horizontal force acts on the seismic isolation building 1 during an earthquake, a large compressive force or tensile force acts on the periphery of the seismic isolation building 1. Therefore, in this embodiment, a seismic isolation device 20 that allows the movement of the laminated rubber 23 is provided at the periphery of the seismically isolated building 1. Therefore, in the event of an earthquake, the laminated rubber 23 moves horizontally and the shear deformation of the laminated rubber 23 can be suppressed, thereby improving the margin of the laminated rubber 23 against tensile breakage and buckling, and reducing the margin of the building body 4 overturning. You can improve.

参考例
図12(a)は、本発明の参考例に係る免震装置30の平面図である。図12(b)は、図12(a)の免震装置30のE-E断面図である。
免震装置30は、下部基礎2上に設けられたすべり部材31と、すべり部材31上を摺動可能な移動プレート32と、移動プレート32上に設けられて建物本体4の上部基礎5を支持する積層ゴム33と、を備える。
すべり部材31と移動プレート32との接触面は、これらすべり部材31および移動プレート32を形成する材料を適宜選択することにより、低摩擦で摺動可能となっている。
また、すべり部材31の両端には、移動プレート32の両端の上面に係止可能な係止部34が設けられている。係止部34は、すべり部材31の両端から上方に延びる一対の壁部35と、この一対の壁部35の上端から内側に略水平に延びる水平部36と、を備える。移動プレート32の上面と水平部36の下面との間には、僅かな隙間が形成されている。
積層ゴム33は、積層ゴム23と同様の構成である。
[ Reference example ]
FIG. 12(a) is a plan view of a seismic isolation device 30 according to a reference example of the present invention. FIG. 12(b) is a sectional view taken along line EE of the seismic isolation device 30 in FIG. 12(a).
The seismic isolation device 30 includes a sliding member 31 provided on the lower foundation 2, a moving plate 32 that can slide on the sliding member 31, and a moving plate 32 that is provided on the moving plate 32 to support the upper foundation 5 of the building body 4. A laminated rubber 33 is provided.
The contact surface between the sliding member 31 and the moving plate 32 can be slid with low friction by appropriately selecting materials for forming the sliding member 31 and the moving plate 32.
Furthermore, locking portions 34 that can lock onto the upper surfaces of both ends of the moving plate 32 are provided at both ends of the sliding member 31. The locking portion 34 includes a pair of wall portions 35 extending upward from both ends of the sliding member 31, and a horizontal portion 36 extending substantially horizontally inward from the upper ends of the pair of wall portions 35. A slight gap is formed between the upper surface of the moving plate 32 and the lower surface of the horizontal portion 36.
The laminated rubber 33 has the same configuration as the laminated rubber 23.

この免震装置30では、移動プレート32がすべり部材31上を摺動することで、積層ゴム23が図12(a)中矢印方向に移動する。なお、この免震装置30に浮き上がり力が作用すると、移動プレート32の上面が係止部34の水平部36の下面に係止し、免震装置30の鉛直方向の移動が規制される。 In this seismic isolation device 30, as the moving plate 32 slides on the sliding member 31, the laminated rubber 23 moves in the direction of the arrow in FIG. 12(a). Note that when a lifting force is applied to the seismic isolation device 30, the upper surface of the moving plate 32 is engaged with the lower surface of the horizontal portion 36 of the locking portion 34, and movement of the seismic isolation device 30 in the vertical direction is restricted.

参考例によれば、上述の(2)、(3)の効果に加えて、以下のような効果がある。
(4)免震装置30に対してすべり部材31の延出方向に水平力が作用した場合、移動プレート32がすべり部材31上を摺動することで、積層ゴム33に作用するせん断力を低減できる。
また、地震時に免震装置30に浮き上がり力(引張力)が作用した場合でも、移動プレート32の両端がすべり部材31の係止部34に係止し、免震装置30の浮き上がりを防止できる。
このように、本発明の免震装置30は、鉛直方向の圧縮力だけでなく、浮き上がり力(引張力)に抵抗できるうえに、すべり部材31の延出方向のせん断力を低減できる、複合免震装置である。よって、本発明の免震装置30を適宜用いることで、免震装置30を構成する積層ゴム33のサイズや剛性を高めることなく、建物本体4の転倒余裕度を向上できる。
According to this reference example , in addition to the effects (2) and (3) described above, there are the following effects.
(4) When a horizontal force acts on the seismic isolation device 30 in the direction in which the sliding member 31 extends, the movable plate 32 slides on the sliding member 31 to reduce the shearing force acting on the laminated rubber 33 can.
Furthermore, even if a lifting force (tensile force) is applied to the seismic isolation device 30 during an earthquake, both ends of the movable plate 32 are locked to the locking portions 34 of the sliding member 31, thereby preventing the seismic isolation device 30 from lifting.
As described above, the seismic isolation device 30 of the present invention is a composite isolation device that can resist not only compressive force in the vertical direction but also uplift force (tensile force) and can also reduce shear force in the extending direction of the sliding member 31. It is a seismic device. Therefore, by appropriately using the seismic isolation device 30 of the present invention, the overturn margin of the building body 4 can be improved without increasing the size or rigidity of the laminated rubber 33 that constitutes the seismic isolation device 30.

なお、本発明は前記実施形態に限定されるものではなく、本発明の目的を達成できる範囲での変形、改良等は本発明に含まれるものである。
例えば、上述の各実施形態では、免震建物1のx方向両端に位置する免震装置20、30をx方向に移動可能とし、y方向両端に位置する免震装置20、30をy方向に移動可能としたが、これに限らず、移動機構を備えた免震装置の配置やその移動方向は、適宜設定されてよい。例えば、建物の四隅の柱のように、どの方向に水平力が作用しても軸力変動が想定される柱がある場合は、その柱の直下には、従来の浮き上がりを許容する免震装置を配置し、その他の柱の直下には、本発明の水平二方向に移動可能な免震装置を配置してもよい。また、移動方向を適宜設定するとは、水平一方向に限らず、建物の四隅の柱のようにどの方向に水平力が作用しても軸力変動が想定される柱の直下においては、水平二方向に移動可能な免震装置を配置してもよい。また、この水平二方向に移動可能な本発明の免震装置の代わりに、従来の浮上りを許容する免震装置を配置し、その他の柱直下に水平一方向に移動可能な本発明の免震装置を配置するなど、本発明の免震装置を従来の免震装置とを併用してもよい。
Note that the present invention is not limited to the above-described embodiments, and any modifications, improvements, etc. that can achieve the purpose of the present invention are included in the present invention.
For example, in each of the embodiments described above, the base isolation devices 20 and 30 located at both ends of the base isolation building 1 in the x direction are movable in the x direction, and the base isolation devices 20 and 30 located at both ends of the base isolation building 1 in the y direction are movable in the y direction. Although it is made movable, the arrangement of the seismic isolation device provided with the moving mechanism and the moving direction thereof may be set as appropriate. For example, if there is a column such as a column at the four corners of a building where axial force is expected to fluctuate no matter which direction horizontal force is applied, a conventional seismic isolation device that allows uplift is installed directly under the column. , and the horizontally movable seismic isolation device of the present invention may be placed directly under the other pillars. Also, setting the moving direction appropriately means not only one horizontal direction, but also the horizontal two directions directly under pillars where axial force fluctuations are expected regardless of the horizontal force acting in any direction, such as pillars at the four corners of a building. A seismic isolation device movable in the direction may be arranged. Moreover, instead of the seismic isolation device of the present invention that is movable in two horizontal directions, a conventional seismic isolation device that allows floating is placed, and the seismic isolation device of the present invention that is movable in one horizontal direction is placed directly under the other columns. The seismic isolation device of the present invention may be used in combination with a conventional seismic isolation device, such as by arranging a seismic device.

1…免震建物 2…下部基礎(基盤) 3…免震層 4…建物本体(構造物)
5…上部基礎 6…柱 7…梁 10、20、30…免震装置
21…ガイドレール 22…移動機構 23…積層ゴム 24…鋼球
25、26…溝 27…鋼球の移動経路
31…すべり部材 32…移動プレート 33…積層ゴム 34…係止部 35…壁部
36…水平部
1... Seismic isolation building 2... Lower foundation (foundation) 3... Seismic isolation layer 4... Building body (structure)
5...Upper foundation 6...Column 7...Beam 10, 20, 30...Seismic isolation device 21...Guide rail 22...Movement mechanism 23...Laminated rubber 24...Steel ball 25, 26...Groove 27...Movement path of steel ball 31...Slip Member 32... Moving plate 33... Laminated rubber 34... Locking part 35... Wall part 36... Horizontal part

Claims (1)

基盤と、
前記基盤上に設けられる複合支承および積層ゴム支承と、
前記複合支承および前記積層ゴム支承上に設けられた構造物と、を備え、
前記複合支承は、前記構造物の外周部の柱の直下に設けられ、
前記積層ゴム支承は、前記構造物の前記外周部を除く柱の直下に設けられ、
前記複合支承は、前記基盤上に設けられたガイドレールと、前記ガイドレール上を水平一方向のみに走行可能な直動転がり支承と、前記直動転がり支承上に設けられて前記構造物を支持する積層ゴム支承と、を備え、
前記直動転がり支承は、前記ガイドレール上を転動する複数の鋼球が内蔵され、前記ガイドレールに鉛直方向に係止した状態で前記ガイドレールを走行することを特徴とする免震建物。
The foundation and
A composite bearing and a laminated rubber bearing provided on the base;
A structure provided on the composite bearing and the laminated rubber bearing,
The composite support is provided directly below the column on the outer periphery of the structure,
The laminated rubber support is provided directly under the column excluding the outer peripheral portion of the structure,
The composite bearing includes a guide rail provided on the base, a linear rolling bearing that can run only in one horizontal direction on the guide rail, and a linear rolling bearing provided on the linear rolling bearing to support the structure. and a laminated rubber bearing,
A seismically isolated building characterized in that the linear motion rolling bearing includes a plurality of steel balls that roll on the guide rail, and travels on the guide rail while being vertically locked to the guide rail.
JP2020061680A 2020-03-31 2020-03-31 Seismic isolation building Active JP7421983B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020061680A JP7421983B2 (en) 2020-03-31 2020-03-31 Seismic isolation building

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020061680A JP7421983B2 (en) 2020-03-31 2020-03-31 Seismic isolation building

Publications (2)

Publication Number Publication Date
JP2021161643A JP2021161643A (en) 2021-10-11
JP7421983B2 true JP7421983B2 (en) 2024-01-25

Family

ID=78002831

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020061680A Active JP7421983B2 (en) 2020-03-31 2020-03-31 Seismic isolation building

Country Status (1)

Country Link
JP (1) JP7421983B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008169857A (en) 2007-01-09 2008-07-24 Toyo Tire & Rubber Co Ltd Base isolation supporting device and base isolation constructing method
JP2018119329A (en) 2017-01-26 2018-08-02 大成建設株式会社 Building base isolation structure

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3871393B2 (en) * 1997-04-07 2007-01-24 三井住友建設株式会社 Insulating support device and seismic isolation structure using this support device
JPH11336832A (en) * 1998-05-26 1999-12-07 Mitsubishi Steel Mfg Co Ltd Base isolation support device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008169857A (en) 2007-01-09 2008-07-24 Toyo Tire & Rubber Co Ltd Base isolation supporting device and base isolation constructing method
JP2018119329A (en) 2017-01-26 2018-08-02 大成建設株式会社 Building base isolation structure

Also Published As

Publication number Publication date
JP2021161643A (en) 2021-10-11

Similar Documents

Publication Publication Date Title
JP6984056B2 (en) Seismic isolation bearing structure
JP2005061211A (en) Seismic isolator
JP2018096501A (en) Seismic isolator and seismic isolator layer
JP3736052B2 (en) Isolation device
KR101127938B1 (en) Seismic isolating apparatus
JP7421983B2 (en) Seismic isolation building
JP5911743B2 (en) Damping damper and damping structure
JP6796817B2 (en) Seismic isolation mechanism
JP3728650B2 (en) Column base support structure and earthquake-resistant building
KR20010074179A (en) Multi-directional Seismic Isolation Devices
JP5469019B2 (en) Vertical seismic isolation support device
JP6682393B2 (en) Tuned Mass Damper
JP3011487B2 (en) Dynamic vibration absorber
JP4968880B2 (en) Seismic isolation device
KR102152740B1 (en) Bridge Bearing Layout Method of Bridge Structures
JP2017043988A (en) Vibration control building
JP3157352U (en) Elliptical leaf spring unit, elliptical multi-stage leaf spring device, vertical vibration damping device, horizontal uniaxial vibration damping device, and upper and lower floor seismic isolation device
JP2001329716A (en) Method and structure of base isolation of multistory building
JP6628988B2 (en) Seismic isolation device
JPH04154B2 (en)
JP7438154B2 (en) vibration damping building
JP2019094630A (en) Column capital displacement restraining structure of building
JP2024073037A (en) Seismic isolation structure
JP6914407B2 (en) Seismic isolation mechanism
KR101876286B1 (en) Seismic isolation device having multiple elastic restoring force

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220705

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230523

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230524

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230705

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230808

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230929

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231003

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231004

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231221

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240115

R150 Certificate of patent or registration of utility model

Ref document number: 7421983

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150