JP7417986B2 - Electric flow control valve - Google Patents

Electric flow control valve Download PDF

Info

Publication number
JP7417986B2
JP7417986B2 JP2019212599A JP2019212599A JP7417986B2 JP 7417986 B2 JP7417986 B2 JP 7417986B2 JP 2019212599 A JP2019212599 A JP 2019212599A JP 2019212599 A JP2019212599 A JP 2019212599A JP 7417986 B2 JP7417986 B2 JP 7417986B2
Authority
JP
Japan
Prior art keywords
valve
valve body
shaft
drive mechanism
holding shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019212599A
Other languages
Japanese (ja)
Other versions
JP2021085418A (en
Inventor
起美仁 笹尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Advance Denki Kogyo KK
Original Assignee
Advance Denki Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Advance Denki Kogyo KK filed Critical Advance Denki Kogyo KK
Priority to JP2019212599A priority Critical patent/JP7417986B2/en
Publication of JP2021085418A publication Critical patent/JP2021085418A/en
Application granted granted Critical
Publication of JP7417986B2 publication Critical patent/JP7417986B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electrically Driven Valve-Operating Means (AREA)

Description

本発明は電動流量調節弁に関し、特には直動型ステッピングモータによって作動される流量調節弁に関する。 The present invention relates to an electric flow rate control valve, and more particularly to a flow rate control valve operated by a direct-acting stepping motor.

例えば半導体の製造設備等で使用される流量調節弁として電動式の直動型ステッピングモータによって作動されるニードル弁が知られている(特許文献1参照)。電動式は駆動源として電気を用い電気制御による操作であることから、装置の維持管理の自由度が大きく、遠隔操作やプロセス(処理対象)によって流量変化などが簡単容易に行うことができるメリットがある。 For example, a needle valve operated by an electric direct-acting stepping motor is known as a flow control valve used in semiconductor manufacturing equipment and the like (see Patent Document 1). Since the electric type uses electricity as the drive source and is operated by electrical control, there is a greater degree of freedom in maintenance and management of the equipment, and it has the advantage of being able to easily change the flow rate depending on remote control or the process (processing target). be.

図12,13に示す電動式ニードル弁100は、ハウジング111後部に配置された直動型ステッピングモータ170の直動軸160によって、ハウジング111前部の弁室120内にダイアフラム145と一体に配置された弁体140のニードル部141を弁座125に対して近接離隔して弁座125との開度を調節する流量調節弁である。符号121は被制御流体の流入部、122はその流出部、146はダイアフラム145を固定するためのダイアフラム固定部材、147は通気孔である。 The electric needle valve 100 shown in FIGS. 12 and 13 is arranged integrally with a diaphragm 145 in a valve chamber 120 at the front of the housing 111 by a direct-acting shaft 160 of a direct-acting stepping motor 170 arranged at the rear of the housing 111. The needle portion 141 of the valve body 140 is moved close to and separated from the valve seat 125 to adjust the degree of opening with respect to the valve seat 125. Reference numeral 121 indicates an inlet of the controlled fluid, 122 an outlet thereof, 146 a diaphragm fixing member for fixing the diaphragm 145, and 147 a vent hole.

弁室120後部には保持チャンバー130が設けられていて、ここに弁体140と連結された軸体部150が、スプライン嵌合構造によって周方向に回転不能に同軸的に進退自在に嵌装されている。この軸体部150はその後部で前記直動型ステッピングモータ170の直動軸160と連結されているとともに、軸体部150はばね部材152によって常時後方(弁室120と反対方向)に付勢されている。したがって、ステッピングモータ170の直動軸160の前進時には、モータの駆動力によってばね部材152の付勢力に抗して軸体部150が前進し、軸体部150に連結された弁体140を弁座125方向に近接させる。ステッピングモータ170の直動軸160の後退時には、ばね部材152の付勢力によって軸体部150が後退し弁体140は後退して弁座125から離隔する。 A holding chamber 130 is provided at the rear of the valve chamber 120, and a shaft portion 150 connected to the valve body 140 is fitted therein by a spline fitting structure so that it can move forward and backward coaxially in the circumferential direction without rotating. ing. This shaft body part 150 is connected to the direct-acting shaft 160 of the direct-acting stepping motor 170 at its rear part, and the shaft body part 150 is always urged backward (in the opposite direction to the valve chamber 120) by a spring member 152. has been done. Therefore, when the direct-acting shaft 160 of the stepping motor 170 moves forward, the shaft portion 150 moves forward against the biasing force of the spring member 152 due to the driving force of the motor, and the valve body 140 connected to the shaft portion 150 is opened. It is brought close to the seat 125 direction. When the direct-acting shaft 160 of the stepping motor 170 retreats, the shaft portion 150 retreats due to the biasing force of the spring member 152, and the valve body 140 retreats and separates from the valve seat 125.

各図において、符号115はハウジングの外壁部112に形成された放熱溝部、135はダイアフラムを透過した腐食性ガスにより金属製のモータや軸部材が腐食しないように必要によりパージされる気体流入ポートであり、136は同じくその気体流出ポートである。151はばね部材152のための軸体部側ばね受け部、153はダイアフラム固定部材側のばね受け部である。また、ステッピングモータ170に関して、171はロータ、172は直動軸160を進退させるシャフト、173はステッピングモータ170の配線部である。 In each figure, reference numeral 115 is a heat dissipation groove formed in the outer wall 112 of the housing, and 135 is a gas inflow port that is purged as necessary to prevent the metal motor and shaft members from being corroded by the corrosive gas that has passed through the diaphragm. 136 is also its gas outflow port. Reference numeral 151 indicates a spring receiving portion on the shaft body side for the spring member 152, and reference numeral 153 indicates a spring receiving portion on the diaphragm fixing member side. Regarding the stepping motor 170, 171 is a rotor, 172 is a shaft that advances and retreats the linear motion shaft 160, and 173 is a wiring section of the stepping motor 170.

上記従来の流量調節弁100では、ステッピングモータ170の駆動によって軸体部150を前進させ弁体140を弁座125方向に近接して弁の開度を調節するのであるが、ばね部材152が介装されているので、全閉の場合にはモータ内のロータネジ部に上方向の荷重がかかり摩擦力が増大する。閉鎖時に強く閉まりすぎて弁座を過剰に圧迫すると、これにより、流量調節弁の耐久性やパーティクルの発生等の問題を生ずるおそれがある。 In the conventional flow control valve 100, the stepping motor 170 is driven to advance the shaft portion 150 and bring the valve body 140 close to the valve seat 125 to adjust the opening degree of the valve. Therefore, when the motor is fully closed, an upward load is applied to the rotor screw portion within the motor, increasing frictional force. If the valve seat is pressed too hard by closing too strongly when it is closed, this may cause problems such as the durability of the flow control valve and the generation of particles.

また、閉の状態で軸体部150や弁体140が熱膨張した場合にも上方向の荷重がかかり摩擦力が増大する。そして、次の動作で弁を開方向に動かす駆動信号(電流)をモータ170に供給しても動かない場合がある。いわゆる、ステッピングモータが荷重に負けて動かない「脱調」である。 Further, when the shaft body portion 150 and the valve body 140 thermally expand in the closed state, an upward load is applied and the frictional force increases. Then, even if a drive signal (current) for moving the valve in the opening direction is supplied to the motor 170 in the next operation, the valve may not move. This is a so-called "step-out" in which the stepping motor does not move due to the load.

さらに、従来の電動流量調節弁では弁閉する力はモータの力であり、弁座の全閉シール力を維持するためにはモータの励磁を維持する必要がある。しかし、これには消費電流の問題だけではなく、モータが発熱し条件が悪い場合にはダイアフラムまで伝熱して、被制御流体の温度まで上昇させてしまうという問題を惹起するおそれがある。半導体製造に使用される流体にあっては、その化学反応は流体の流量と時間、温度によって変化するため、モータの発熱はプロセスに悪影響を与える懸念が大きい。 Furthermore, in the conventional electric flow rate control valve, the force for closing the valve is the force of the motor, and it is necessary to maintain the excitation of the motor in order to maintain the fully closed sealing force of the valve seat. However, this may cause not only the problem of current consumption, but also the problem that the motor generates heat and, under unfavorable conditions, heat is transferred to the diaphragm, raising the temperature of the fluid to be controlled. Since the chemical reaction of fluids used in semiconductor manufacturing varies depending on the flow rate, time, and temperature of the fluid, there is a great concern that the heat generated by the motor will adversely affect the process.

上のような状況から、従来の電動流量調節弁では、弁座の全閉を避けて、原点センサーとステッピングモータへの駆動パルスのカウントにより軸体部の位置を把握して、弁座の全閉の手前で「寸止め」をして使用しているのが現状である。しかしながら、このような寸止めでは、微小流量の制御や流量ゼロからの立ち上げができないという問題があった。 Due to the above situation, conventional electric flow control valves avoid fully closing the valve seat and grasp the position of the shaft by counting drive pulses to the origin sensor and stepping motor. Currently, it is used with a ``stop'' just before closing. However, with such a stop, there is a problem in that it is not possible to control minute flow rates or to start up from zero flow rate.

実登3165083号公報Jito No. 3165083 Publication

この発明は、前記の点に鑑みなされたものであり、電動流量調節弁の弁体の閉鎖時におけるモータへの摩擦力の増大を防止して、脱調を防ぎ、消費電流の問題だけではなく、モータの発熱に伴うプロセスへの悪影響を回避し、さらに弁座の全閉の手前で「寸止め」する必要がなく、微小流量の制御や流量ゼロからの立ち上げなどのランプ制御が可能となる新規な電動流量調節弁の構造を提供するものである。 This invention was made in view of the above points, and prevents an increase in the frictional force on the motor when the valve body of an electric flow control valve is closed, thereby preventing step-out and solving not only the problem of current consumption. , it avoids the adverse effects on the process due to the heat generated by the motor, and there is no need to "stop" the valve seat just before it fully closes, making it possible to perform ramp control such as controlling minute flow rates and starting from zero flow rate. The present invention provides a new electric flow control valve structure.

すなわち、請求項1の発明は、電動式駆動機構の作動軸によってハウジング前部の弁室内にダイアフラムと一体に配置された弁体を弁座に対して進退させて前記弁座との開度を調節する流量調節弁において、前記弁体は前記弁室後部の保持チャンバーに周方向に回転不能に同軸的に嵌挿された弁体保持軸部に連結保持されており、前記弁体保持軸部はその後部に係合空間部を有し、かつ保持軸部側ばね受け部と駆動機構側ばね受け部との間に介装されたばね部材により常時弁室側に付勢されていて、前記作動軸が、前記電動式駆動機構の駆動により直線方向に進退する進退部と、前記進退部に接続されて前記進退部とともに進退する可撓性を有するワイヤー部と、前記ワイヤー部の先端に設けられて前記弁体保持軸部と係合空間部を介して係合する先端係合部とを有し、前記弁体の後退時又は停止時には、前記作動軸の先端係合部が前記ワイヤー部を介して後退又は停止されて前記弁体保持軸部の係合空間部の係止部に係着することにより前記ばね部材の付勢力に抗して前記弁体保持軸部を後退又は停止させて、前記弁体を前記弁座から離隔させ、前記弁体の前進時には、前記作動軸の先端係合部が前記ワイヤー部を介して前進されて前記弁体保持軸部の係合空間部内に位置して前記ばね部材の付勢力とともに前記弁体保持軸部を前進させて、前記弁体を前記弁座に近接させるとともに、前記ばね部材の付勢力によって前記弁体が前記弁座を閉鎖した時には、前記弁体保持軸部の係合空間部の空間には前記作動軸の先端係合部の弁室側に間隙部を有するように構成されていることを特徴とする電動流量調節弁に係る。 That is, the invention of claim 1 moves a valve element, which is disposed integrally with a diaphragm in a valve chamber in a front part of a housing, forward and backward with respect to a valve seat by using an operating shaft of an electric drive mechanism to control the degree of opening with respect to the valve seat. In the flow control valve to be adjusted, the valve body is connected and held by a valve body holding shaft portion which is coaxially fitted into a holding chamber at the rear of the valve chamber in a circumferential direction so as not to rotate, and the valve body holding shaft portion has an engagement space in its rear part, and is always biased toward the valve chamber by a spring member interposed between the holding shaft side spring receiving part and the driving mechanism side spring receiving part, and is always biased toward the valve chamber side. A shaft includes a reciprocating part that moves forward and backward in a linear direction by driving of the electric drive mechanism, a flexible wire part that is connected to the retractable part and moves forward and backward together with the retractable part, and a tip of the wire part. and a tip engaging portion that engages with the valve body holding shaft through an engagement space, and when the valve body is retracted or stopped, the tip engaging portion of the operating shaft engages the wire portion. The valve body holding shaft is moved back or stopped through the valve body and engaged with the locking portion of the engagement space of the valve body holding shaft, thereby retracting or stopping the valve body holding shaft against the biasing force of the spring member. , the valve body is separated from the valve seat, and when the valve body moves forward, the distal end engagement portion of the actuating shaft is moved forward via the wire portion and positioned within the engagement space of the valve body holding shaft portion. and moves the valve body holding shaft forward with the biasing force of the spring member to bring the valve body close to the valve seat, and when the valve body closes the valve seat due to the biasing force of the spring member. , the electric flow rate regulating valve is characterized in that the engagement space of the valve body holding shaft is configured to have a gap on the valve chamber side of the distal end engagement portion of the operating shaft. .

請求項2の発明は、前記電動式駆動機構と前記ハウジングとが離隔されている請求項1に記載の電動流量調節弁に係る。 A second aspect of the invention relates to the electric flow rate control valve according to the first aspect, wherein the electric drive mechanism and the housing are separated from each other.

請求項3の発明は、前記作動軸の前記進退部が前記電動式駆動機構の軸摺動部に回転不能に嵌挿されている請求項1又は2に記載の電動流量調節弁に係る。 A third aspect of the present invention relates to the electric flow rate control valve according to the first or second aspect, wherein the advancing/retracting portion of the operating shaft is non-rotatably fitted into the shaft sliding portion of the electric drive mechanism.

請求項4の発明は、前記作動軸のワイヤー部がフッ素樹脂製の保護部材内に摺動可能に嵌挿されている請求項1ないし3のいずれか1項に記載の電動流量調節弁に係る。 The invention according to claim 4 relates to the electric flow rate control valve according to any one of claims 1 to 3, wherein the wire portion of the operating shaft is slidably inserted into a protective member made of fluororesin. .

請求項1の発明に係る電動流量調節弁によると、電動式駆動機構の作動軸によってハウジング前部の弁室内にダイアフラムと一体に配置された弁体を弁座に対して進退させて前記弁座との開度を調節する流量調節弁において、前記弁体は前記弁室後部の保持チャンバーに周方向に回転不能に同軸的に嵌挿された弁体保持軸部に連結保持されており、前記弁体保持軸部はその後部に係合空間部を有し、かつ保持軸部側ばね受け部と駆動機構側ばね受け部との間に介装されたばね部材により常時弁室側に付勢されていて、前記作動軸が、前記電動式駆動機構の駆動により直線方向に進退する進退部と、前記進退部に接続されて前記進退部とともに進退する可撓性を有するワイヤー部と、前記ワイヤー部の先端に設けられて前記弁体保持軸部と係合空間部を介して係合する先端係合部とを有し、前記弁体の後退時又は停止時には、前記作動軸の先端係合部が前記ワイヤー部を介して後退又は停止されて前記弁体保持軸部の係合空間部の係止部に係着することにより前記ばね部材の付勢力に抗して前記弁体保持軸部を後退又は停止させて、前記弁体を前記弁座から離隔させ、前記弁体の前進時には、前記作動軸の先端係合部が前記ワイヤー部を介して前進されて前記弁体保持軸部の係合空間部内に位置して前記ばね部材の付勢力とともに前記弁体保持軸部を前進させて、前記弁体を前記弁座に近接させるとともに、前記ばね部材の付勢力によって前記弁体が前記弁座を閉鎖した時には、前記弁体保持軸部の係合空間部の空間には前記作動軸の先端係合部の弁室側に間隙部を有するように構成されているため、弁体を弁座に対して全閉する力ないし弁座の全閉シール力を維持するためにモータの励磁を維持する必要がなく、弁座を過剰に圧迫することがなく、またこれに伴う問題、すなわち、消費電流の問題のみならずモータの発熱による被制御流体の温度上昇に関連する種々の問題を一挙に解消することができる。さらに、従来のように弁座の全閉の手前で「寸止め」する必要がなくなり、微小流量の制御や流量ゼロからの立ち上げなどのランプ制御が可能となる。 According to the electric flow rate control valve according to the invention of claim 1, the valve body disposed integrally with the diaphragm in the valve chamber in the front part of the housing is moved forward and backward with respect to the valve seat by the operating shaft of the electric drive mechanism. In the flow rate control valve for adjusting the opening degree of the valve body, the valve body is connected and held by a valve body holding shaft part that is coaxially fitted into a holding chamber at the rear of the valve chamber in a circumferential direction and non-rotatable. The valve element holding shaft has an engagement space at its rear part, and is always urged toward the valve chamber by a spring member interposed between the holding shaft side spring receiving part and the drive mechanism side spring receiving part. a reciprocating part in which the actuating shaft moves forward and backward in a linear direction by driving of the electric drive mechanism; a flexible wire part that is connected to the reciprocating part and moves forward and backward together with the retractable part; and the wire part. has a tip engaging portion that is provided at the tip of the valve body and engages with the valve body holding shaft portion through an engagement space, and when the valve body is retracted or stopped, the tip engaging portion of the operating shaft is retracted or stopped via the wire portion and engages with the locking portion of the engagement space of the valve body holding shaft, thereby resisting the biasing force of the spring member and holding the valve body holding shaft. The valve body is moved backward or stopped to separate the valve body from the valve seat, and when the valve body moves forward, the distal end engaging portion of the operating shaft is advanced through the wire portion to engage the valve body holding shaft portion. The valve body holding shaft is positioned in the joint space and moves forward with the biasing force of the spring member to bring the valve body close to the valve seat, and the biasing force of the spring member causes the valve body to move toward the valve seat. When the seat is closed, the engagement space of the valve element holding shaft is configured to have a gap on the valve chamber side of the distal end engagement part of the actuating shaft, so that the valve element can be closed. There is no need to keep the motor energized to maintain a fully closing force against the valve seat or a fully closing sealing force on the valve seat, and there is no need to overpress the valve seat, and problems associated with this, namely: Not only the problem of current consumption but also various problems related to the temperature rise of the controlled fluid due to heat generated by the motor can be solved all at once. Furthermore, it is no longer necessary to "stop" the valve seat just before it fully closes, as in the past, and it becomes possible to control minute flow rates and ramp control such as starting from zero flow rate.

請求項2の発明に係る電動流量調節弁によると、請求項1の発明において、前記電動式駆動機構と前記ハウジングとが離隔されているため、ハウジングに放熱手段を設ける必要がなくなって構造の簡素化やハウジングの小型化を図ることができ、置換特性を向上させることができるとともに、防爆エリアや高温エリアから遠ざけて配置可能となって電動式駆動機構に対する被制御流体からの腐蝕や熱等の影響を回避することができる。 According to the electric flow control valve according to the invention of claim 2, in the invention of claim 1, since the electric drive mechanism and the housing are separated from each other, there is no need to provide a heat radiation means in the housing, and the structure is simplified. It is possible to reduce the size of the housing and improve the displacement characteristics, and it can be placed away from explosion-proof areas and high-temperature areas, preventing corrosion and heat from the controlled fluid from being caused to the electric drive mechanism. impact can be avoided.

請求項3の発明に係る電動流量調節弁によると、請求項1又は2の発明において、前記作動軸の前記進退部が前記電動式駆動機構の軸摺動部に回転不能に嵌挿されているため、進退部を適切に直線方向へ進退させることができる。 According to the electric flow rate control valve according to the invention of claim 3, in the invention of claim 1 or 2, the advancing and retracting portion of the operating shaft is fitted into the shaft sliding portion of the electric drive mechanism in a non-rotatable manner. Therefore, the advancing/retracting portion can be appropriately moved back and forth in the linear direction.

請求項4の発明に係る電動流量調節弁によると、請求項1ないし3の発明において、前記作動軸のワイヤー部がフッ素樹脂製の保護部材内に摺動可能に嵌挿されているため、ワイヤー部の損傷や劣化等を防止するとともに、ワイヤー部が摺動しやすく進退動の妨げとならない。 According to the electric flow rate control valve according to the invention of claim 4, in the invention of claims 1 to 3, the wire portion of the operating shaft is slidably inserted into the protective member made of fluororesin. In addition to preventing damage and deterioration of the wire portion, the wire portion slides easily and does not interfere with forward and backward movement.

本発明の一実施形態に係る電動流量調節弁の設置状態の概略図である。1 is a schematic diagram of an installed state of an electric flow rate control valve according to an embodiment of the present invention. 図1の電動流量調節弁の開弁時の縦断面図である。FIG. 2 is a longitudinal cross-sectional view of the electric flow rate control valve of FIG. 1 when the valve is open. 図1の電動流量調節弁の閉弁時の縦断面図である。FIG. 2 is a longitudinal cross-sectional view of the electric flow rate control valve of FIG. 1 when the valve is closed. 図2のA-A断面図である。3 is a sectional view taken along line AA in FIG. 2. FIG. 図2のB-B断面図である。3 is a sectional view taken along line BB in FIG. 2. FIG. 図2に示す開弁時の要部の拡大断面図である。FIG. 3 is an enlarged sectional view of the main part shown in FIG. 2 when the valve is open. 弁体の移動中の状態を表す要部の拡大断面図である。FIG. 3 is an enlarged sectional view of a main part showing a state in which the valve body is moving. 図3に示す閉弁時の要部の拡大断面図である。FIG. 4 is an enlarged sectional view of the main part shown in FIG. 3 when the valve is closed. 本発明の電動流量調節弁を使用したマニホールドバルブの設置状態の概略図である。FIG. 2 is a schematic diagram of an installed state of a manifold valve using the electric flow control valve of the present invention. 電動流量調節弁を利用した回路の概略図ある。There is a schematic diagram of a circuit using an electric flow control valve. 電動流量調節弁を利用した回路の流量制御のグラフである。It is a graph of flow control of a circuit using an electric flow control valve. 従来の電動流量調節弁の開弁時の縦断面図である。FIG. 3 is a vertical cross-sectional view of a conventional electric flow rate control valve when the valve is opened. 図12の電動流量調節弁の閉弁時の縦断面図である。FIG. 13 is a longitudinal cross-sectional view of the electric flow rate control valve of FIG. 12 when the valve is closed. 従来の電動流量調節弁の「寸止め」の制御例を示したグラフである。It is a graph showing an example of "stopping" control of a conventional electric flow rate control valve.

図1~3に示す本発明の一実施形態に係る電動流量調節弁10は、主に半導体製造工場や半導体製造装置等の流体管路に配設されるニードル弁であって、電動式駆動機構60の作動軸70によってハウジング11前部の弁室20内にダイアフラム45と一体に配置された弁体40を弁座25に対して進退させて弁座25との開度を調節するものである。 An electric flow rate control valve 10 according to an embodiment of the present invention shown in FIGS. The valve element 40, which is disposed integrally with a diaphragm 45 in the valve chamber 20 at the front of the housing 11, is moved forward and backward relative to the valve seat 25 by an operating shaft 70 of 60 to adjust the degree of opening with respect to the valve seat 25. .

電動流量調節弁10では、ハウジング11、弁体40、ダイアフラム45等の各部が耐食性及び耐薬品性の高い材料で構成される。例えば、PTFE、PFA、PVDF等のフッ素樹脂である。フッ素樹脂は、切削等により所望する形状に容易に加工することができる。また、この電動流量調節弁10では、純水、アンモニア水、フッ酸、過酸化水素水、塩酸、オゾン水、水素水、酸素水、界面活性剤等の薬液、水素、酸素等のガス等の被制御流体が流通される。 In the electric flow control valve 10, each part, such as the housing 11, the valve body 40, and the diaphragm 45, is made of a material with high corrosion resistance and chemical resistance. For example, it is a fluororesin such as PTFE, PFA, or PVDF. Fluororesin can be easily processed into a desired shape by cutting or the like. In addition, this electric flow rate control valve 10 can handle pure water, ammonia water, hydrofluoric acid, hydrogen peroxide solution, hydrochloric acid, ozone water, hydrogen water, oxygen water, chemical solutions such as surfactants, gases such as hydrogen and oxygen, etc. A controlled fluid is passed through.

ハウジング11は、一側に被制御流体の流入部21を有し、弁座25を介して他側に被制御流体の流出部22が形成された弁室20と、弁室20の後部側に保持チャンバー30とを有する。 The housing 11 has a valve chamber 20 having an inflow section 21 for the controlled fluid on one side, an outflow section 22 for the controlled fluid on the other side via the valve seat 25, and a valve chamber 20 on the rear side of the valve chamber 20. It has a holding chamber 30.

弁体40は、ニードル部41と、ダイアフラム45とを有し、弁体保持軸部50に連結保持される。ニードル部41は、弁体40の進退により弁座25を開閉する。ダイアフラム45は、薄肉の可動膜からなり、弁室20内を流通する被制御流体の保持チャンバー30側への浸入を防止する。符号46はダイアフラム45を固定するためのダイアフラム固定部材である。 The valve body 40 has a needle portion 41 and a diaphragm 45, and is connected and held by a valve body holding shaft portion 50. The needle portion 41 opens and closes the valve seat 25 by moving the valve body 40 forward and backward. The diaphragm 45 is made of a thin movable membrane and prevents the controlled fluid flowing in the valve chamber 20 from entering the holding chamber 30 side. Reference numeral 46 denotes a diaphragm fixing member for fixing the diaphragm 45.

弁体保持軸部50は、弁室20後部の保持チャンバー30に周方向に回転不能に同軸的に進退自在に嵌挿され、後部に係合空間部55を有し、かつ保持軸部側(可動側)ばね受け部51と駆動機構側(固定側)ばね受け部53との間に介装されたばね部材52により常時弁室20側に付勢されている。弁体保持軸部50の形状は、例えば、図4に示すような公知のスプライン嵌合構造等が挙げられる。図において、符号56は弁体保持軸部50に螺合または接着で接合された係合空間部55の係止部、57は係合空間部55の通気孔である。 The valve body holding shaft portion 50 is fitted into the holding chamber 30 at the rear of the valve chamber 20 in a circumferential direction so as to move forward and backward coaxially and non-rotatably, and has an engagement space 55 at the rear, and has an engagement space 55 on the holding shaft side ( A spring member 52 interposed between a spring receiving part 51 on the movable side and a spring receiving part 53 on the driving mechanism side (fixed side) constantly urges the valve chamber 20 side. The shape of the valve body holding shaft portion 50 includes, for example, a known spline fitting structure as shown in FIG. 4. In the figure, reference numeral 56 indicates a locking portion of the engagement space 55 that is screwed or bonded to the valve body holding shaft 50, and 57 indicates a vent hole of the engagement space 55.

電動式駆動機構60は、適宜の演算装置(図示せず)の制御により進退量を調節して作動軸70を介して弁体40を進退させる部材である。電動式駆動機構60としては、弁体40の進退量を精度良く再現できるものであれば特に限定されず、例えば、ステッピングモータ、サーボモータ、超音波モータ等が好適に用いられる。実施形態の電動式駆動機構60は、直動型ステッピングモータである。電動式駆動機構60に関して、61はロータ、62は作動軸70を進退させるシャフト、63は配線部、64は軸摺動部である。 The electric drive mechanism 60 is a member that moves the valve body 40 back and forth via the operating shaft 70 by adjusting the amount of movement forward and backward under the control of an appropriate computing device (not shown). The electric drive mechanism 60 is not particularly limited as long as it can accurately reproduce the amount of movement of the valve body 40, and for example, a stepping motor, a servo motor, an ultrasonic motor, etc. are preferably used. The electric drive mechanism 60 of the embodiment is a direct acting stepping motor. Regarding the electric drive mechanism 60, 61 is a rotor, 62 is a shaft that advances and retreats the operating shaft 70, 63 is a wiring section, and 64 is a shaft sliding section.

作動軸70は、進退部71と、ワイヤー部72と、先端係合部73とを有する。進退部71は、電動式駆動機構60の駆動により直線方向に進退する直動軸である。この進退部71は、例えば図5に示すようなスプライン構造等により電動式駆動機構60の軸摺動部64に回転不能に嵌挿されているため、適切に直線方向へ進退させることができる。ワイヤー部72は、進退部71に接続されて進退部71とともに進退する可撓性を有する部材である。このワイヤー部72は、必要に応じてフッ素樹脂製の保護部材75内に摺動可能に嵌挿される。保護部材75は、ワイヤー部72を被覆して損傷や劣化等を防止するとともに、フッ素樹脂製であるためワイヤー部72が摺動しやすく進退動の妨げとならない。先端係合部73は、ワイヤー部72の先端に設けられて弁体保持軸部50と係合空間部55を介して係合する部位である。先端係合部73は、例えばスプライン構造等により弁体保持軸部50と係合空間部55に回転不能に嵌挿される(図示省略)。 The actuating shaft 70 has a reciprocating portion 71, a wire portion 72, and a tip engaging portion 73. The advancing/retracting portion 71 is a linear shaft that moves forward and backward in a linear direction by driving the electric drive mechanism 60 . Since the advancing/retracting portion 71 is non-rotatably fitted into the shaft sliding portion 64 of the electric drive mechanism 60 by a spline structure as shown in FIG. 5, for example, it can be appropriately moved back and forth in the linear direction. The wire portion 72 is a flexible member that is connected to the advancing/retracting portion 71 and moves back and forth together with the advancing/retracting portion 71 . This wire portion 72 is slidably inserted into a protective member 75 made of fluororesin as necessary. The protective member 75 covers the wire portion 72 to prevent damage and deterioration, and since it is made of fluororesin, the wire portion 72 easily slides and does not interfere with forward and backward movement. The tip engaging portion 73 is a portion that is provided at the tip of the wire portion 72 and engages with the valve body holding shaft portion 50 via the engagement space portion 55. The tip engaging portion 73 is non-rotatably fitted into the valve body holding shaft portion 50 and the engagement space portion 55 by, for example, a spline structure (not shown).

電動式駆動機構は、電動式であることから、通常は作動時に発熱して弁体側へ熱が伝わるため、ハウジングに溝部を形成する等の放熱手段を設ける必要がある。しかしながら、この電動式駆動機構60は、ワイヤー部72を有する作動軸70を介して弁体保持軸部50を進退可能に構成されることにより、図1~3に示すように、ハウジング11と離隔して設置することが可能となり、ハウジング11に放熱手段を設ける必要がなくなって構造の簡素化を図ることができる。 Since the electric drive mechanism is electric, it usually generates heat during operation and transfers the heat to the valve body, so it is necessary to provide heat dissipation means such as forming a groove in the housing. However, as shown in FIGS. 1 to 3, this electric drive mechanism 60 is configured to be able to move the valve body holding shaft section 50 forward and backward via the actuating shaft 70 having a wire section 72, so that it is separated from the housing 11 as shown in FIGS. The housing 11 does not need to be provided with a heat radiation means, and the structure can be simplified.

このように、ハウジング11と電動式駆動機構60とが離隔されていることにより、電動式駆動機構60の大きさに左右されることなくハウジング11が形成可能となるため、ハウジング11の小型化を図ることができ、置換特性を向上させることができる。さらに、腐蝕性の高い被制御流体や高温流体等が使用される場合に、電動式駆動機構60を防爆エリアや高温エリアから遠ざけて配置可能となり、電動式駆動機構60に対する被制御流体からの腐蝕や熱等の影響を回避することができる。 Since the housing 11 and the electric drive mechanism 60 are separated from each other in this way, the housing 11 can be formed without being influenced by the size of the electric drive mechanism 60, so that the housing 11 can be made smaller. The substitution characteristics can be improved. Furthermore, when a highly corrosive controlled fluid or high-temperature fluid is used, the electric drive mechanism 60 can be placed away from an explosion-proof area or a high-temperature area, thereby preventing corrosion of the electric drive mechanism 60 from the controlled fluid. It is possible to avoid the effects of heat and other factors.

また特に、ハウジング11と電動式駆動機構60とが離隔される場合、作動軸70のワイヤー部72が保護部材75内に嵌挿されることにより、ハウジング11と電動式駆動機構60との間での露出を防止することができる。その際、この保護部材75は、フッ素樹脂製であることから、ハウジング11と電動式駆動機構60との位置関係に対応した形状(例えば図1に図示のような側面視略L字状等)に形成される。そのため、作動軸70のワイヤー部72は、可撓性を有することにより保護部材75の形状に沿って進退する。これにより、ワイヤー部72は、進退時に不必要な変形が生じることがなく、電動式駆動機構60の作動を適切に伝達することができる。 In particular, when the housing 11 and the electric drive mechanism 60 are separated, the wire portion 72 of the actuating shaft 70 is inserted into the protection member 75, so that the distance between the housing 11 and the electric drive mechanism 60 is increased. Exposure can be prevented. At this time, since the protective member 75 is made of fluororesin, it has a shape corresponding to the positional relationship between the housing 11 and the electric drive mechanism 60 (for example, a substantially L-shape in side view as shown in FIG. 1). is formed. Therefore, the wire portion 72 of the actuation shaft 70 has flexibility and moves back and forth along the shape of the protection member 75. Thereby, the wire portion 72 can appropriately transmit the operation of the electric drive mechanism 60 without causing unnecessary deformation when moving forward or backward.

ここで、本発明の電動流量調節弁10の作動について説明する。電動流量調節弁10は、図2,6に示す弁体40の後退時又は停止時、つまり弁座25の開放(開弁)時には、電動式駆動機構60の作動軸70の先端係合部73がワイヤー部72を介して後退又は停止されて弁体保持軸部50の係合空間部55の係止部56に係着することにより、ばね部材52の付勢力に抗して弁体保持軸部50を後退又は停止させて、弁体40を弁座25から離隔させている。開放状態で作動軸70が停止されると、弁体保持軸部50はその後退位置でばね部材52の付勢力に抗して停止状態を保持する。 Here, the operation of the electric flow control valve 10 of the present invention will be explained. The electric flow rate control valve 10 engages the tip engaging portion 73 of the operating shaft 70 of the electric drive mechanism 60 when the valve body 40 is retracted or stopped as shown in FIGS. 2 and 6, that is, when the valve seat 25 is opened (opened). is retracted or stopped via the wire portion 72 and engages with the locking portion 56 of the engagement space 55 of the valve body holding shaft portion 50, so that the valve body holding shaft resists the biasing force of the spring member 52. The valve body 40 is separated from the valve seat 25 by retracting or stopping the portion 50. When the operating shaft 70 is stopped in the open state, the valve body holding shaft portion 50 maintains the stopped state against the biasing force of the spring member 52 in its retreated position.

これに対して、弁座25の開放状態から弁体40を前進させて弁座25を閉鎖する場合は、図7に示すように、電動式駆動機構60の作動軸70が前進される。図3,8に示す弁体40の前進時(弁座25の閉鎖(閉弁)時)には、図示のように、作動軸70の先端係合部73がワイヤー部72を介して前進されて弁体保持軸部50の係合空間部55内に位置して、ばね部材52の付勢力を妨げることなくばね部材52の付勢力とともに作動軸70と弁体保持軸部50とを前進させて弁体40を弁座25に近接させ、ばね部材52の付勢力によって弁体40が弁座25を閉鎖する。この前進時においては、作動軸70の先端係合部73と弁体保持軸部50の係合空間部55の係止部56との係着状態が維持される。そのため、弁体保持軸部50は、作動軸70の移動量を超えて移動することがなく、作動軸70の作動に応じて移動量が制御される。 On the other hand, when the valve body 40 is advanced from the open state of the valve seat 25 to close the valve seat 25, the operating shaft 70 of the electric drive mechanism 60 is advanced, as shown in FIG. When the valve body 40 moves forward (when the valve seat 25 closes) as shown in FIGS. 3 and 8, the tip engaging portion 73 of the operating shaft 70 is moved forward via the wire portion 72, as shown in the figure. position in the engagement space 55 of the valve body holding shaft 50, and move the operating shaft 70 and the valve body holding shaft 50 forward together with the biasing force of the spring member 52 without interfering with the biasing force of the spring member 52. Then, the valve body 40 is brought close to the valve seat 25, and the valve body 40 closes the valve seat 25 by the biasing force of the spring member 52. During this forward movement, the engaged state between the distal end engaging portion 73 of the actuating shaft 70 and the locking portion 56 of the engaging space portion 55 of the valve body holding shaft portion 50 is maintained. Therefore, the valve element holding shaft portion 50 does not move beyond the amount of movement of the operating shaft 70, and the amount of movement is controlled in accordance with the operation of the operating shaft 70.

このようにして弁体保持軸部50を前進させることにより、図3,8に示すように、弁体40が弁座25に当接されて、弁座25を閉鎖(閉弁)する。そして、ばね部材52の付勢力によって弁体40が弁座25を閉鎖した時には、弁体保持軸部50の係合空間部55には作動軸70の先端係合部73の弁室20側に間隙部Sを有するように構成される。つまり、作動軸70の先端係合部73は係合空間部55の空間54の弁室20側に間隙部Sを有するので、ばね部材52の付勢力によって弁体40が弁座25を閉鎖した後は、自由(フリー)状態となっており、必要により、作動軸70の先端係合部73はこの係合空間部55の間隙部Sをさらに前進移動できるように構成されている。なお、先端係合部73は係合空間部55に回動不能に嵌挿されているため、係合空間部55内を適切に移動可能である。 By advancing the valve body holding shaft portion 50 in this manner, the valve body 40 comes into contact with the valve seat 25, and the valve seat 25 is closed (valve closed), as shown in FIGS. 3 and 8. When the valve body 40 closes the valve seat 25 due to the biasing force of the spring member 52, the engagement space 55 of the valve body holding shaft 50 has the valve chamber 20 side of the distal end engagement portion 73 of the operating shaft 70. It is configured to have a gap S. That is, since the distal end engagement portion 73 of the operating shaft 70 has the gap S on the valve chamber 20 side of the space 54 of the engagement space 55, the valve body 40 closes the valve seat 25 due to the biasing force of the spring member 52. After that, it is in a free state, and if necessary, the distal end engaging portion 73 of the actuating shaft 70 is configured to be able to move further forward through the gap S of the engaging space 55. Note that since the distal end engaging portion 73 is unrotatably fitted into the engaging space 55, it can move appropriately within the engaging space 55.

図からも理解されるように、ばね部材52の付勢力によって弁体40が移動され、弁体40が弁座25に当接して弁座25が閉鎖(閉弁)後に、作動軸70の先端係合部73が作動手段である電動式駆動機構60により係合空間部55の間隙部Sを有し該間隙部Sを自由(フリー)移動できるということは、弁体40の閉鎖時における弁座25との衝突や過大な摩擦等が回避ないし緩和されることを意味する。そのため、これらの衝突や摩擦等に伴う問題の発生を一挙に解決することができる。 As can be understood from the figure, the valve body 40 is moved by the biasing force of the spring member 52, and after the valve body 40 contacts the valve seat 25 and the valve seat 25 is closed (valve closed), the tip of the operating shaft 70 The fact that the engaging part 73 has a gap S in the engagement space 55 and can move freely in the gap S by the electric drive mechanism 60 which is the actuating means means that the valve body 40 is closed when the valve body 40 is closed. This means that collisions with the seat 25, excessive friction, etc. are avoided or alleviated. Therefore, problems caused by these collisions, friction, etc. can be solved all at once.

また、この電動流量調節弁10では、閉弁後の開弁に際しては、作動軸70の先端係合部73は、係合空間部55の空間54の弁室20側に間隙部Sに自由(フリー)状態となって位置しており、換言すれば、従来のように弁体40を弁座25に対して全閉する力ないし弁座25の全閉シール力を維持するためのモータの励磁を維持する必要がない。したがって、これに伴う問題、すなわち、消費電流の問題のみならずモータの発熱による被制御流体の温度上昇に関連する種々の問題を一挙に解消することができる。もちろん、従来のように弁座25の全閉の手前で「寸止め」する必要がない。さらに、開弁方向の移動、つまり作動軸70の後退移動は、負荷の無い自由(フリー)状態からスタートできるので、微小な流量の開弁制御や流量ゼロからの立ち上げなどのランプ制御が可能となる。 In addition, in this electric flow rate control valve 10, when opening the valve after closing, the distal end engaging portion 73 of the operating shaft 70 is freely connected to the gap S in the space 54 of the engaging space 55 on the valve chamber 20 side. In other words, the motor is energized to maintain the force to fully close the valve body 40 to the valve seat 25 or the fully closed sealing force of the valve seat 25 as in the conventional case. There is no need to maintain. Therefore, problems associated with this, that is, not only the problem of current consumption but also various problems related to the temperature rise of the controlled fluid due to heat generated by the motor, can be solved all at once. Of course, there is no need to "stop" the valve seat 25 just before it is fully closed, as in the conventional case. Furthermore, since the movement in the valve opening direction, that is, the backward movement of the operating shaft 70, can be started from a free state with no load, it is possible to perform valve opening control at minute flow rates and ramp control such as starting from zero flow rate. becomes.

本発明の電動流量調節弁は、図9に示すようなマニホールドバルブ10Aにも使用することができる。マニホールドバルブ10Aでは、ハウジング11Aが一体に形成されて、各流路(流入部)21,21,21,21に対応して弁体がそれぞれ設けられる。そして、各弁体ごとに対応した作動軸70を介して電動式駆動機構60Aが設けられている。このマニホールドバルブ10Aにおいても、可撓性を有するワイヤー部を備えた作動軸70により、ハウジング11Aと電動式駆動機構60Aとを離隔させることができる。 The electric flow control valve of the present invention can also be used for a manifold valve 10A as shown in FIG. In the manifold valve 10A, a housing 11A is integrally formed, and valve bodies are provided corresponding to each flow path (inflow portion) 21, 21, 21, 21, respectively. An electric drive mechanism 60A is provided for each valve body via a corresponding operating shaft 70. Also in this manifold valve 10A, the housing 11A and the electric drive mechanism 60A can be separated from each other by the operating shaft 70 having a flexible wire portion.

図10は電動流量調節弁10を利用した回路の概略図であり、図11にその流量制御のグラフを示す。なお、この例では、電動流量調節弁10の下流側に開閉弁90が配置されており、図11に示すように、開閉弁90を開放したまま電動流量調節弁10の開閉により流体の停止を含む流量制御が可能となる。ここでは、開閉弁90は、緊急時の遮断や当該回路の停止時等に閉弁される。ちなみに、図14は先述した従来の電動流量調節弁の「寸止め」の制御例を示したグラフであるが、従来の調節弁では寸止めした後に開閉弁によってその閉弁ないし開弁がなされる。 FIG. 10 is a schematic diagram of a circuit using the electric flow control valve 10, and FIG. 11 shows a graph of the flow rate control. In this example, an on-off valve 90 is arranged downstream of the electric flow control valve 10, and as shown in FIG. 11, the fluid can be stopped by opening and closing the electric flow control valve 10 while the on-off valve 90 is open. It is possible to control the flow rate including Here, the on-off valve 90 is closed when the circuit is shut down in an emergency or when the circuit concerned is stopped. Incidentally, FIG. 14 is a graph showing an example of "stopping" control of the conventional electric flow rate control valve mentioned above. In the conventional control valve, after the stoppage is stopped, the valve is closed or opened by an on-off valve. .

本発明の電動流量調節弁によれば、上に述べたように、弁体の閉鎖時における弁座との衝突等が回避ないし緩和されこれに伴う問題の発生を抑制することができる。のみならず、電動式流量調節弁の弁体の閉鎖時におけるモータへの摩擦力の増大を防止して、脱調を防ぎ、消費電流の問題だけではなく、モータの発熱に伴うプロセスへの悪影響を回避し、さらに弁座の全閉の手前で「寸止め」する必要がなく、微小流量の制御や流量ゼロからの立ち上げなどのランプ制御が可能となるなど、電動流量調節弁の有用性を限りなく拡大するものである。 According to the electric flow control valve of the present invention, as described above, collisions between the valve body and the valve seat when the valve body is closed can be avoided or alleviated, and the occurrence of problems associated with this can be suppressed. In addition, it prevents an increase in the frictional force on the motor when the valve body of the electric flow control valve is closed, thereby preventing step-out, and solving not only the problem of current consumption but also the negative effects on the process due to heat generation in the motor. The usefulness of electric flow control valves is that they avoid the need to "stop" the valve seat just before it fully closes, and enable control of minute flow rates and ramp control such as starting from zero flow rate. It is meant to expand without limit.

また、弁体を進退させる電動式駆動機構の作動軸が可撓性を有するワイヤー部を備えることにより、電動式駆動機構とハウジングとを離隔させることが可能となり、ハウジングに放熱手段を設ける必要がなくなって構造の簡素化やハウジングの小型化を図ることができ、置換特性を向上させることができるとともに、防爆エリアや高温エリアから遠ざけて配置可能となって電動式駆動機構に対する被制御流体からの腐蝕や熱等の影響を回避することができる。 Furthermore, by providing the operating shaft of the electric drive mechanism that advances and retreats the valve body with a flexible wire section, it becomes possible to separate the electric drive mechanism and the housing, eliminating the need to provide heat dissipation means in the housing. This makes it possible to simplify the structure and reduce the size of the housing, improve displacement characteristics, and allow it to be placed away from explosion-proof areas and high-temperature areas, reducing the amount of control fluid that flows into the electric drive mechanism. The effects of corrosion, heat, etc. can be avoided.

以上の通り、本発明の電動流量調節弁は、作動軸の先端系郷部が弁体保持軸部と係合空間部を介して係合して、ばね部材の付勢力によって閉弁した時には、弁体保持軸部の係合空間部の空間には先端係合部の弁室側に間隙部を有するように構成されていることにより、電動流量調節弁の弁体の閉鎖時におけるモータへの摩擦力の増大を防止して、脱調を防ぎ、消費電流の問題だけではなく、モータの発熱に伴うプロセスへの悪影響を回避し、さらに弁座の全閉の手前で「寸止め」する必要がなく、微小流量の制御や流量ゼロからの立ち上げなどのランプ制御が可能となる。そのため、従来の電動流量調節弁の代替品として有望である。 As described above, in the electric flow rate control valve of the present invention, when the tip part of the operating shaft engages with the valve body holding shaft part through the engagement space part and the valve is closed by the biasing force of the spring member, The space in the engagement space of the valve element holding shaft is configured to have a gap on the valve chamber side of the tip engagement part, thereby reducing the impact on the motor when the valve element of the electric flow rate control valve is closed. It is necessary to prevent an increase in frictional force, prevent step-out, and avoid not only current consumption problems but also the negative effects on the process due to heat generation of the motor, and furthermore, it is necessary to "stop" the valve seat just before it fully closes. This makes it possible to control minute flow rates and ramp control such as starting up from zero flow rate. Therefore, it is promising as a replacement for conventional electric flow control valves.

10 電動流量調節弁(ニードル弁)
10A マニホールドバルブ
11 ハウジング
11A マニホールドバルブのハウジング
20 弁室
21 流入部
22 流出部
25 弁座
30 保持チャンバー
40 弁体
41 ニードル部
45 ダイアフラム
46 ダイアフラム固定部材
50 弁体保持軸部
51 保持軸部側ばね受け部
52 ばね部材
53 駆動機構側ばね受け部
54 空間
55 係合空間部
56 係止部
57 係合空間部の通気孔
60 電動式駆動機構(ステッピングモータ)
60A マニホールドバルブの電動式駆動機構
61 電動式駆動機構のロータ
62 電動式駆動機構のシャフト
63 電動式駆動機構の配線部
64 電動式駆動機構の軸摺動部
70 作動軸
71 進退部
72 ワイヤー部
73 先端係合部
75 保護部材
90 開閉弁
S 間隙部
10 Electric flow control valve (needle valve)
10A Manifold valve 11 Housing 11A Housing of manifold valve 20 Valve chamber 21 Inflow part 22 Outflow part 25 Valve seat 30 Holding chamber 40 Valve body 41 Needle part 45 Diaphragm 46 Diaphragm fixing member 50 Valve body holding shaft part 51 Holding shaft side spring support Part 52 Spring member 53 Drive mechanism side spring receiving part 54 Space 55 Engagement space 56 Locking part 57 Ventilation hole in engagement space 60 Electric drive mechanism (stepping motor)
60A Electric drive mechanism of manifold valve 61 Rotor of electric drive mechanism 62 Shaft of electric drive mechanism 63 Wiring part of electric drive mechanism 64 Shaft sliding part of electric drive mechanism 70 Operating shaft 71 Advance/retreat part 72 Wire part 73 Tip engaging part 75 Protective member 90 On-off valve S Gap part

Claims (4)

電動式駆動機構の作動軸によってハウジング前部の弁室内にダイアフラムと一体に配置された弁体を弁座に対して進退させて前記弁座との開度を調節する流量調節弁において、
前記弁体は前記弁室後部の保持チャンバーに周方向に回転不能に同軸的に嵌挿された弁体保持軸部に連結保持されており、
前記弁体保持軸部はその後部に係合空間部を有し、かつ保持軸部側ばね受け部と駆動機構側ばね受け部との間に介装されたばね部材により常時弁室側に付勢されていて、
前記作動軸が、前記電動式駆動機構の駆動により直線方向に進退する進退部と、前記進退部に接続されて前記進退部とともに進退する可撓性を有するワイヤー部と、前記ワイヤー部の先端に設けられて前記弁体保持軸部と係合空間部を介して係合する先端係合部とを有し、
前記弁体の後退時又は停止時には、前記作動軸の先端係合部が前記ワイヤー部を介して後退又は停止されて前記弁体保持軸部の係合空間部の係止部に係着することにより前記ばね部材の付勢力に抗して前記弁体保持軸部を後退又は停止させて、前記弁体を前記弁座から離隔させ、
前記弁体の前進時には、前記作動軸の先端係合部が前記ワイヤー部を介して前進されて前記弁体保持軸部の係合空間部内に位置して前記ばね部材の付勢力とともに前記弁体保持軸部を前進させて、前記弁体を前記弁座に近接させるとともに、
前記ばね部材の付勢力によって前記弁体が前記弁座を閉鎖した時には、前記弁体保持軸部の係合空間部の空間には前記作動軸の先端係合部の弁室側に間隙部を有するように構成されている
ことを特徴とする電動流量調節弁。
A flow rate regulating valve in which a valve body disposed integrally with a diaphragm in a valve chamber in a front part of a housing is moved forward and backward relative to a valve seat by an operating shaft of an electric drive mechanism to adjust the degree of opening with respect to the valve seat,
The valve body is connected and held by a valve body holding shaft part that is coaxially fitted into a holding chamber at the rear of the valve chamber in a circumferential direction so as not to rotate,
The valve element holding shaft has an engagement space at its rear part, and is always biased toward the valve chamber by a spring member interposed between the holding shaft side spring receiving part and the drive mechanism side spring receiving part. has been,
The operating shaft includes a reciprocating part that moves forward and backward in a linear direction by driving of the electric drive mechanism, a flexible wire part that is connected to the reciprocating part and moves forward and backward together with the retractable part, and a tip of the wire part. a distal end engagement portion that is provided and engages with the valve body holding shaft portion through an engagement space;
When the valve body is retracted or stopped, the distal end engagement portion of the operating shaft is retracted or stopped via the wire portion and is engaged with the locking portion of the engagement space of the valve body holding shaft portion. retracting or stopping the valve body holding shaft portion against the biasing force of the spring member to separate the valve body from the valve seat;
When the valve body moves forward, the distal end engagement portion of the actuating shaft is advanced through the wire portion and is located within the engagement space of the valve body holding shaft portion, and the valve body is moved together with the biasing force of the spring member. Moving the holding shaft portion forward to bring the valve body close to the valve seat,
When the valve body closes the valve seat due to the biasing force of the spring member, a gap is formed in the engagement space of the valve body holding shaft on the valve chamber side of the distal end engagement portion of the operating shaft. An electric flow control valve characterized in that it is configured to have.
前記電動式駆動機構と前記ハウジングとが離隔されている請求項1に記載の電動流量調節弁。 The electric flow control valve according to claim 1, wherein the electric drive mechanism and the housing are separated from each other. 前記作動軸の前記進退部が前記電動式駆動機構の軸摺動部に回転不能に嵌挿されている請求項1又は2に記載の電動流量調節弁。 3. The electric flow rate control valve according to claim 1, wherein the reciprocating portion of the operating shaft is non-rotatably fitted into the shaft sliding portion of the electric drive mechanism. 前記作動軸のワイヤー部がフッ素樹脂製の保護部材内に摺動可能に嵌挿されている請求項1ないし3のいずれか1項に記載の電動流量調節弁。 The electric flow rate control valve according to any one of claims 1 to 3, wherein the wire portion of the operating shaft is slidably inserted into a protective member made of fluororesin.
JP2019212599A 2019-11-25 2019-11-25 Electric flow control valve Active JP7417986B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019212599A JP7417986B2 (en) 2019-11-25 2019-11-25 Electric flow control valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019212599A JP7417986B2 (en) 2019-11-25 2019-11-25 Electric flow control valve

Publications (2)

Publication Number Publication Date
JP2021085418A JP2021085418A (en) 2021-06-03
JP7417986B2 true JP7417986B2 (en) 2024-01-19

Family

ID=76087175

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019212599A Active JP7417986B2 (en) 2019-11-25 2019-11-25 Electric flow control valve

Country Status (1)

Country Link
JP (1) JP7417986B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006064865A1 (en) 2004-12-15 2006-06-22 Kabushiki Kaisha Saginomiya Seisakusho Electrically operated control valve
JP3165083U (en) 2010-10-15 2011-01-06 アドバンス電気工業株式会社 Motorized valve
JP2012102798A (en) 2010-11-10 2012-05-31 Panasonic Corp Shut-off valve

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0694910B2 (en) * 1988-01-14 1994-11-24 株式会社鷺宮製作所 Electric control valve
JP6371950B2 (en) * 2013-09-02 2018-08-15 丸一株式会社 Water stop valve

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006064865A1 (en) 2004-12-15 2006-06-22 Kabushiki Kaisha Saginomiya Seisakusho Electrically operated control valve
JP3165083U (en) 2010-10-15 2011-01-06 アドバンス電気工業株式会社 Motorized valve
JP2012102798A (en) 2010-11-10 2012-05-31 Panasonic Corp Shut-off valve

Also Published As

Publication number Publication date
JP2021085418A (en) 2021-06-03

Similar Documents

Publication Publication Date Title
JP4892697B2 (en) Valve drive device, control method for valve drive device, and pump
JP6014476B2 (en) Butterfly pressure control valve
US8733399B2 (en) Flow adjusting valve
JP2011158096A (en) Butterfly type pressure control valve
JP6254815B2 (en) Flow control valve and flow control device using the same
JP7417986B2 (en) Electric flow control valve
JP2016138641A (en) Valve seat seal structure of fluid control valve
JP2016156397A (en) Valve energization structure of fluid control valve
US20130146795A1 (en) Freeze robust anode valve and passage design
JP7184332B2 (en) electric flow control valve
WO2008053943A1 (en) Fluid control valve
JP2021173394A (en) Electric flow regulating valve
GB2511566A (en) Gas supply cartridge
JP2007247743A (en) Solenoid shutoff valve and method of controlling same
JP3227404U (en) Electric flow control valve
JP2002168361A (en) Flow control valve
JP2017506313A (en) Valve actuating device and method
JP2023062512A (en) Motor-operated valve
JP2022137853A (en) Motor valve and fluid control device
JP6902674B2 (en) Metering device for controlling gaseous media
JP2006336900A (en) Pressure relief valve
JP4633489B2 (en) Lightly operated faucet
JP2015146163A (en) Flow rate control valve and flow rate control device using the same
JP2005299836A (en) Flow regulating valve
JP2016109054A (en) Valve gear and steam turbine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221019

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230830

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231010

R155 Notification before disposition of declining of application

Free format text: JAPANESE INTERMEDIATE CODE: R155

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231226

R150 Certificate of patent or registration of utility model

Ref document number: 7417986

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150