JP7184332B2 - electric flow control valve - Google Patents

electric flow control valve Download PDF

Info

Publication number
JP7184332B2
JP7184332B2 JP2018229816A JP2018229816A JP7184332B2 JP 7184332 B2 JP7184332 B2 JP 7184332B2 JP 2018229816 A JP2018229816 A JP 2018229816A JP 2018229816 A JP2018229816 A JP 2018229816A JP 7184332 B2 JP7184332 B2 JP 7184332B2
Authority
JP
Japan
Prior art keywords
valve
valve body
holding shaft
shaft
body holding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018229816A
Other languages
Japanese (ja)
Other versions
JP2020091015A (en
Inventor
起美仁 笹尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Advance Denki Kogyo KK
Original Assignee
Advance Denki Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Advance Denki Kogyo KK filed Critical Advance Denki Kogyo KK
Priority to JP2018229816A priority Critical patent/JP7184332B2/en
Publication of JP2020091015A publication Critical patent/JP2020091015A/en
Application granted granted Critical
Publication of JP7184332B2 publication Critical patent/JP7184332B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electrically Driven Valve-Operating Means (AREA)

Description

本発明は電動流量調節弁に関し、特には直動型ステッピングモータによって作動される流量調節弁に関する。 The present invention relates to motorized flow control valves, and more particularly to flow control valves actuated by direct-acting stepping motors.

例えば半導体の製造設備等で使用される流量調節弁として電動式の直動型ステッピングモータによって作動されるニードル弁が知られている(特許文献1参照)。電動式は駆動源として電気を用い電気制御による操作であることから、装置の維持管理の自由度が大きく、遠隔操作やプロセス(処理対象)によって流量変化などが簡単容易に行うことができるメリットがある。 2. Description of the Related Art A needle valve operated by an electric direct-acting stepping motor is known as a flow control valve used in, for example, semiconductor manufacturing facilities (see Patent Document 1). The electric type uses electricity as the drive source and is operated by electric control, so there is a large degree of freedom in maintenance and management of the device, and it has the advantage of being able to easily change the flow rate by remote control and process (processing target). be.

図9,10に示す電動式ニードル弁100は、ハウジング111後部に配置された直動型ステッピングモータ170の直動軸160によって、ハウジング111前部の弁室120内にダイヤフラム145と一体に配置された弁体140のニードル部141を弁座125に対して近接離隔して弁座125との開度を調節する流量調節弁である。符号121は被制御流体の流入部、122はその流出部、146はダイヤフラム145を固定するためのダイヤフラム固定部材、147は通気孔である。 The electric needle valve 100 shown in FIGS. 9 and 10 is arranged integrally with a diaphragm 145 in a valve chamber 120 at the front of the housing 111 by means of a direct drive shaft 160 of a direct drive stepping motor 170 arranged at the rear of the housing 111. It is a flow control valve that adjusts the degree of opening with respect to the valve seat 125 by moving the needle portion 141 of the valve body 140 close to and away from the valve seat 125 . Reference numeral 121 denotes an inflow portion for the controlled fluid, 122 an outflow portion thereof, 146 a diaphragm fixing member for fixing the diaphragm 145, and 147 a vent hole.

弁室120後部には保持チャンバー130が設けられていて、ここに弁体140と連結された軸体部150が、スプライン嵌合構造によって周方向に回転不能に同軸的に進退自在に嵌装されている。この軸体部150はその後部で前記直動型ステッピングモータ170の直動軸160と連結されているとともに、軸体部150はばね部材152によって常時後方(弁室120と反対方向)に付勢されている。したがって、ステッピングモータ170の直動軸160の前進時には、モータの駆動力によってばね部材152の付勢力に抗して軸体部150が前進し、軸体部150に連結された弁体140を弁座125方向に近接させる。ステッピングモータ170の直動軸160の後退時には、ばね部材152の付勢力によって軸体部150が後退し弁体140は後退して弁座125から離隔する。 A holding chamber 130 is provided in the rear portion of the valve chamber 120, and a shaft body portion 150 connected to the valve body 140 is coaxially fitted therein by a spline fitting structure so as to be non-rotatable in the circumferential direction. It is The rear portion of the shaft portion 150 is connected to the direct-acting shaft 160 of the direct-acting stepping motor 170, and the shaft portion 150 is always biased rearward (in the direction opposite to the valve chamber 120) by a spring member 152. It is Therefore, when the direct drive shaft 160 of the stepping motor 170 advances, the shaft portion 150 advances against the urging force of the spring member 152 by the driving force of the motor, and the valve body 140 connected to the shaft portion 150 moves forward. It is brought close to the seat 125 direction. When the direct-acting shaft 160 of the stepping motor 170 retreats, the biasing force of the spring member 152 causes the shaft body portion 150 to retreat and the valve body 140 to retreat and separate from the valve seat 125 .

各図において、符号115はハウジングの外壁部112に形成された放熱溝部、135はダイヤフラムを透過した腐食性ガスにより金属製のモータや軸部材が腐食しないように必要によりパージされる気体流入ポートであり、136は同じくその気体流出ポートである。151はばね部材152のための軸体部側ばね受け部、153はダイヤフラム固定部材側のばね受け部である。また、ステッピングモータ170に関して、171はロータ、172は直動軸160を進退させるシャフト、173はステッピングモータ170の配線部である。 In each figure, reference numeral 115 denotes a heat radiating groove formed in the outer wall portion 112 of the housing, and 135 denotes a gas inflow port that is purged as necessary to prevent corrosive gas passing through the diaphragm from corroding the metal motor and shaft members. and 136 is its gas outlet port. Reference numeral 151 denotes a spring receiving portion on the shaft portion side for the spring member 152, and 153 denotes a spring receiving portion on the side of the diaphragm fixing member. Further, regarding the stepping motor 170, 171 is a rotor, 172 is a shaft for advancing and retracting the linear motion shaft 160, and 173 is a wiring portion of the stepping motor 170. FIG.

上記従来の流量調節弁100では、ステッピングモータ170の駆動によって軸体部150を前進させ弁体140を弁座125方向に近接して弁の開度を調節するのであるが、ばね部材が介装されているので、全閉の場合にはモータ内のロータネジ部に上方向の荷重がかかり摩擦力が増大する。閉鎖時に強く閉まりすぎて弁座を過剰に圧迫すると、これにより、流量調節弁の耐久性やパーティクルの発生等の問題を生ずるおそれがある。 In the conventional flow control valve 100, the stepping motor 170 is driven to move the shaft portion 150 forward to bring the valve body 140 closer to the valve seat 125 to adjust the opening of the valve. Therefore, when the motor is fully closed, an upward load is applied to the rotor screw portion in the motor, increasing the frictional force. If the valve seat is pressed excessively by closing too strongly when closing, this may cause problems such as the durability of the flow control valve and the generation of particles.

また、閉の状態で軸体部や弁体が熱膨張した場合にも上方向の荷重がかかり摩擦力が増大する。そして、次の動作で弁を開方向に動かす駆動信号(電流)をモータ170に供給しても動かない場合がある。いわゆる、ステッピングモータが荷重に負けて動かない「脱調」である。 Also, when the shaft portion and the valve body thermally expand in the closed state, an upward load is applied and the frictional force increases. Then, even if a drive signal (current) for moving the valve in the opening direction is supplied to the motor 170 in the next operation, the motor 170 may not move. This is the so-called "out of step" in which the stepping motor does not move due to the load.

さらに、従来の電動流量調節弁では弁閉する力はモータの力であり、弁座の全閉シール力を維持するためにはモータの励磁を維持する必要があるが、これには消費電流の問題だけではなく、モータが発熱し条件が悪い場合にはダイヤフラムまで伝熱して、被制御流体の温度まで上昇させてしまうという問題を惹起するおそれがある。半導体製造に使用される流体にあっては、その化学反応は流体の流量と時間、温度によって変化するため、モータの発熱はプロセスに悪影響を与える懸念が大きい。 Furthermore, in the conventional electric flow control valve, the force for closing the valve is the force of the motor, and in order to maintain the fully closed sealing force of the valve seat, it is necessary to maintain the excitation of the motor, but this requires a large amount of current consumption. In addition to the problem, when the motor generates heat and the conditions are bad, the heat is transferred to the diaphragm, which may raise the temperature of the fluid to be controlled. In the fluid used in semiconductor manufacturing, the chemical reaction changes depending on the flow rate, time and temperature of the fluid, so there is a great concern that the heat generated by the motor will adversely affect the process.

上のような状況から、従来の電動流量調節弁では、弁座の全閉を避けて、原点センサーとステッピングモータへの駆動パルスのカウントにより軸体部の位置を把握して、弁座の全閉の手前で「寸止め」をして使用しているのが現状である。しかしながら、このような寸止めでは、微小流量の制御や流量ゼロからの立ち上げができないという問題があった。 Due to the above situation, the conventional electric flow control valve avoids fully closing the valve seat, grasps the position of the shaft part by counting the drive pulse to the origin sensor and stepping motor, and keeps the valve seat fully closed. It is the current situation that it is used with "dimension stop" just before closing. However, there is a problem that such sizing does not allow control of minute flow rate and start-up from zero flow rate.

実登3165083号公報Japanese Patent No. 3165083

この発明は、前記の点に鑑みなされたものであり、電動流量調節弁の弁体の閉鎖時におけるモータへの摩擦力の増大を防止して、脱調を防ぎ、消費電流の問題だけではなく、モータの発熱に伴うプロセスへの悪影響を回避し、さらに弁座の全閉の手前で「寸止め」する必要がなく、微小流量の制御や流量ゼロからの立ち上げなどのランプ制御が可能となる新規な電動流量調節弁の構造を提供するものである。 The present invention has been devised in view of the above-mentioned points, and prevents an increase in the frictional force on the motor when the valve body of the electric flow control valve is closed, thereby preventing step-out and solving the problem of current consumption. It avoids adverse effects on the process due to the heat generated by the motor, eliminates the need for "dimension stop" before the valve seat is fully closed, and enables ramp control such as micro flow rate control and start-up from zero flow rate. It provides a new electric flow control valve structure.

すなわち、請求項1の発明は、ハウジング後部に配置された電動式駆動機構の直動軸によってハウジング前部の弁室内にダイヤフラムと一体に配置された弁体を弁座に対して進退して弁座との開度を調節する流量調節弁において、前記弁体は前記弁室後部に設けられた保持チャンバーに周方向に回転不能に同軸的に嵌挿された弁体保持軸部に連結保持されており、前記弁体保持軸部はその後部に前記直動軸の先端係合部が空間を介して係合する係合空間部を有し、かつ保持軸部側ばね受け部と駆動機構側ばね受け部との間に当該弁体保持軸部を常時弁室側に付勢するばね部材が介装されていて、前記弁体の後退時又は停止時には、前記直動軸の先端係合部が前記弁体保持軸部の係合空間部の係止部に係着して前記ばね部材の付勢力に抗して前記弁体保持軸部を後退又は停止させて、前記弁体を前記弁座から離隔させ、前記弁体の前進時には、前記直動軸の先端係合部が前記弁体保持軸部の係合空間部内に位置して前記ばね部材の付勢力とともに前記弁体保持軸部を前進させて、前記弁体を前記弁座に近接させるとともに、前記ばね部材の付勢力によって前記弁体が前記弁座を閉鎖した時には、前記弁体保持軸部の係合空間部の空間には前記直動軸の先端係合部の弁室側に間隙部を有するように構成されていることを特徴とする電動流量調節弁に係る。 That is, in the invention of claim 1, the valve disc, which is integrally arranged with the diaphragm in the valve chamber in the front part of the housing, is advanced and retracted with respect to the valve seat by the direct drive shaft of the electric drive mechanism arranged in the rear part of the housing. In the flow control valve for adjusting the degree of opening with the seat, the valve body is connected and held by a valve body holding shaft that is coaxially inserted into a holding chamber provided at the rear of the valve chamber so as not to rotate in the circumferential direction. The valve body holding shaft portion has an engagement space portion at its rear portion with which the front end engagement portion of the direct drive shaft engages through the space, and the holding shaft side spring receiving portion and the drive mechanism A spring member is interposed between the side spring receiving portion and always biases the valve body holding shaft portion toward the valve chamber side, and when the valve body is retracted or stopped, the tip of the direct-acting shaft is engaged. engages with the engaging portion of the engaging space of the valve body holding shaft portion to retract or stop the valve body holding shaft portion against the urging force of the spring member, thereby moving the valve body to the When the valve body is moved forward, the leading end engaging portion of the direct-acting shaft is positioned within the engaging space of the valve body holding shaft portion, and the valve body holding shaft is moved along with the urging force of the spring member. is advanced to bring the valve body closer to the valve seat, and when the valve body closes the valve seat by the biasing force of the spring member, the engagement space portion of the valve body holding shaft portion is closed. (1) relates to an electric flow control valve characterized in that it is constructed so as to have a gap portion on the valve chamber side of the tip engaging portion of the direct-acting shaft.

また、請求項2の発明は、請求項1において、前記ハウジングの外壁部に放熱溝部が形成されている電動流量調節弁に係る。 Further, the invention of claim 2 relates to the electric flow control valve according to claim 1, wherein a heat radiating groove is formed in the outer wall of the housing.

請求項1の発明に係る電動流量調節弁によると、ハウジング後部に配置された電動式駆動機構の直動軸によってハウジング前部の弁室内にダイヤフラムと一体に配置された弁体を弁座に対して進退して弁座との開度を調節する流量調節弁において、前記弁体は前記弁室後部に設けられた保持チャンバーに周方向に回転不能に同軸的に嵌挿された弁体保持軸部に連結保持されており、前記弁体保持軸部はその後部に前記直動軸の先端係合部が空間を介して係合する係合空間部を有し、かつ保持軸部側ばね受け部と駆動機構側ばね受け部との間に当該弁体保持軸部を常時弁室側に付勢するばね部材が介装されていて、前記弁体の後退時又は停止時には、前記直動軸の先端係合部が前記弁体保持軸部の係合空間部の係止部に係着して前記ばね部材の付勢力に抗して前記弁体保持軸部を後退又は停止させて、前記弁体を前記弁座から離隔させ、前記弁体の前進時には、前記直動軸の先端係合部が前記弁体保持軸部の係合空間部内に位置して前記ばね部材の付勢力とともに前記弁体保持軸部を前進させて、前記弁体を前記弁座に近接させるとともに、前記ばね部材の付勢力によって前記弁体が前記弁座を閉鎖した時には、前記弁体保持軸部の係合空間部の空間には前記直動軸の先端係合部の弁室側に間隙部を有するように構成されていることより、弁体を弁座に対して全閉する力ないし弁座の全閉シール力を維持するためにモータの励磁を維持する必要がなく、弁座を過剰に圧迫することがなく、またこれに伴う問題、すなわち、消費電流の問題のみならずモータの発熱による被制御流体の温度上昇に関連する種々の問題を一挙に解消することができる。さらに、従来のように弁座の全閉の手前で「寸止め」する必要がなくなり、微小流量の制御や流量ゼロからの立ち上げなどのランプ制御が可能となる。 According to the electric flow control valve according to the first aspect of the invention, the direct drive shaft of the electric drive mechanism arranged in the rear part of the housing moves the valve element integrally with the diaphragm in the valve chamber in the front part of the housing to the valve seat. In the flow control valve that advances and retreats to adjust the degree of opening with the valve seat, the valve body is coaxially fitted into a holding chamber provided at the rear of the valve chamber so as not to rotate in the circumferential direction. The valve body holding shaft has an engaging space at its rear portion with which the front end engaging portion of the direct-acting shaft engages through the space, and a holding shaft side spring. A spring member is interposed between the receiving portion and the spring receiving portion on the drive mechanism side to always urge the valve body holding shaft toward the valve chamber. The front end engaging portion of the shaft is engaged with the engaging portion of the engaging space portion of the valve body holding shaft portion to retract or stop the valve body holding shaft portion against the urging force of the spring member, The valve body is separated from the valve seat, and when the valve body moves forward, the leading end engaging portion of the direct-acting shaft is positioned in the engaging space portion of the valve body holding shaft portion, and the urging force of the spring member is applied. When the valve body holding shaft is advanced to bring the valve body close to the valve seat and the valve body closes the valve seat by the biasing force of the spring member, the valve body holding shaft is engaged. Since the space of the joint space has a gap portion on the valve chamber side of the tip engaging portion of the direct-acting shaft, the force for fully closing the valve body against the valve seat or the force of the valve seat. There is no need to keep the motor energized in order to maintain the fully closed sealing force, and the valve seat is not pressed excessively. Various problems associated with the temperature rise of the control fluid can be solved all at once. Furthermore, it is no longer necessary to "stop" the valve seat before the valve seat is completely closed, and ramp control such as control of minute flow rates and start-up from zero flow rate becomes possible.

また、請求項2の発明に係る電動流量調節弁によると、前記ハウジング外壁部に放熱溝部が形成されていることより、簡単な構成によりハウジング内に生ずる熱の放熱が効果的に可能である。 Further, according to the electric flow control valve according to the invention of claim 2, since the heat radiation groove is formed in the outer wall of the housing, it is possible to effectively radiate the heat generated in the housing with a simple structure.

本発明の一実施形態に係る電動流量調節弁の開弁時の縦断面図である。1 is a vertical cross-sectional view of an electric flow control valve according to an embodiment of the present invention when the valve is opened; FIG. 図1の電動流量調節弁の閉弁時の縦断面図である。FIG. 2 is a vertical cross-sectional view of the electric flow control valve of FIG. 1 when the valve is closed; 図1のA-A断面図である。FIG. 2 is a cross-sectional view taken along the line AA of FIG. 1; 図1に示す開弁時の要部の拡大断面図である。FIG. 2 is an enlarged cross-sectional view of a main part when the valve is open shown in FIG. 1; 図2に示す閉弁時の要部の拡大断面図である。FIG. 3 is an enlarged cross-sectional view of a main part when the valve is closed shown in FIG. 2; 弁体の移動中の状態を表す要部の拡大断面図である。FIG. 4 is an enlarged cross-sectional view of a main part showing a state during movement of the valve body; 電動流量調節弁を利用した回路の概略図ある。1 is a schematic diagram of a circuit using an electric flow control valve; FIG. 電動流量調節弁を利用した回路の流量制御のグラフである。FIG. 10 is a graph of flow control for a circuit utilizing an electrically operated flow control valve; FIG. 従来の電動流量調節弁の開弁時の縦断面図である。FIG. 4 is a vertical cross-sectional view of a conventional electric flow control valve when the valve is opened; 図9の電動流量調節弁の閉弁時の縦断面図である。FIG. 10 is a vertical cross-sectional view of the electric flow control valve of FIG. 9 when the valve is closed; 従来の電動流量調節弁の「寸止め」の制御例を示したグラフである。It is the graph which showed the control example of "dimension stop" of the conventional electric flow control valve.

図1,2に示す本発明の一実施形態に係る電動流量調節弁10は、主に半導体製造工場や半導体製造装置等の流体管路に配設されるニードル弁であって、ハウジング11後部に配置された直動型ステッピングモータ70の直動軸60によって、ハウジング11前部の弁室20内にダイヤフラム45と一体に配置された弁体40のニードル部41が弁座25に対して進退して弁座25に近接離隔してその開度を調節するものである。符号21は被制御流体の流入部、22はその流出部、46はダイヤフラム45を固定するためのダイヤフラム固定部材、47は通気孔である。 An electric flow control valve 10 according to one embodiment of the present invention shown in FIGS. A needle portion 41 of a valve body 40 arranged integrally with a diaphragm 45 in a valve chamber 20 at the front portion of a housing 11 advances and retreats with respect to a valve seat 25 by means of a direct-acting shaft 60 of an arranged direct-acting stepping motor 70 . The opening of the valve seat 25 is adjusted by moving the valve seat 25 closer to the valve seat 25 . Reference numeral 21 is an inflow portion for the controlled fluid, 22 is an outflow portion thereof, 46 is a diaphragm fixing member for fixing the diaphragm 45, and 47 is a vent hole.

弁室20後部には保持チャンバー30が設けられていて、ここに前記弁体40と連結された弁体保持軸部50が、図3に示すような公知のスプライン嵌合構造によって周方向に回転不能に同軸的に進退自在に嵌装されている。弁体保持軸部50はその後部に前記直動軸60の先端係合部61が空間54を介して係合する係合空間部55を有している。そして、弁体保持軸部50の保持軸部側ばね受け部(可動側)51と駆動機構側ばね受け部(固定側)53との間に当該弁体保持軸部50を常時弁室20側に付勢するばね部材52が介装されている。符号57は係合空間部55の通気孔である。 A holding chamber 30 is provided in the rear portion of the valve chest 20 , and a valve body holding shaft portion 50 connected to the valve body 40 is inserted in the circumferential direction by a known spline fitting structure as shown in FIG. It is non-rotatably coaxially fitted so that it can advance and retreat. The valve body holding shaft portion 50 has an engagement space portion 55 at its rear portion with which the front end engagement portion 61 of the direct drive shaft 60 engages via a space 54 . Then, the valve body holding shaft portion 50 is always placed on the valve chamber 20 side between the holding shaft side spring bearing portion (movable side) 51 and the drive mechanism side spring bearing portion (fixed side) 53 of the valve body holding shaft portion 50 . A spring member 52 is interposed for biasing. A reference numeral 57 is a ventilation hole of the engagement space portion 55 .

次に、本発明の流量調節弁10の作動について説明する。流量調節弁10は、図1,4に示す弁体40の後退時又は停止時、つまり弁座25の開放(開弁)時には、ステッピングモータ70の直動軸60の先端係合部61が弁体保持軸部50の係合空間部55の係止部56に係着してばね部材52の付勢力に抗して弁体保持軸部50を後退又は停止させて、当該弁体40を弁座25から離隔させている。開放状態で直動軸60が停止されると、弁体保持軸部50はその後退位置でばね部材52の付勢力に抗して停止状態を保持する。なお、係合空間部55の係止部56は、弁体保持軸部50に螺合または接着で接合されている。 Next, the operation of the flow control valve 10 of the present invention will be explained. When the valve body 40 is retracted or stopped as shown in FIGS. The valve body holding shaft portion 50 is engaged with the engaging portion 56 of the engaging space portion 55 of the body holding shaft portion 50 and is retracted or stopped against the biasing force of the spring member 52, thereby moving the valve body 40 into the valve. It is separated from the seat 25 . When the direct-acting shaft 60 is stopped in the open state, the valve body holding shaft portion 50 is held in the stopped state against the biasing force of the spring member 52 at the retracted position. The locking portion 56 of the engaging space portion 55 is joined to the valve body holding shaft portion 50 by screwing or bonding.

これに対して、弁座25の開放状態から弁座25を閉鎖する場合は図6に示すように、ステッピングモータ70の直動軸60が前進される。図2,5に示す弁座25の閉鎖(閉弁)時には、図示のように、ばね部材52の付勢力を妨げることなくばね部材52の付勢力とともに直動軸60が弁体保持軸部50とともに前進し、ばね部材52の付勢力によって弁体40が弁座25を閉鎖する。この前進時においては、直動軸60の先端係合部61と弁体保持軸部50の係合空間部55の係止部56との係着状態が維持される。そのため、弁体保持軸部50は、直動軸60の移動量を超えて移動することがなく、直動軸60の作動に応じて移動量が制御される。 On the other hand, when closing the valve seat 25 from the open state of the valve seat 25, the direct drive shaft 60 of the stepping motor 70 is moved forward as shown in FIG. 2 and 5, when the valve seat 25 is closed (valve is closed), the linear motion shaft 60 moves along with the biasing force of the spring member 52 without interfering with the biasing force of the spring member 52 as shown in the drawings. , and the valve body 40 closes the valve seat 25 by the biasing force of the spring member 52 . During this forward movement, the engaging state between the tip engaging portion 61 of the direct-acting shaft 60 and the locking portion 56 of the engaging space portion 55 of the valve body holding shaft portion 50 is maintained. Therefore, the valve body holding shaft portion 50 does not move beyond the amount of movement of the direct-acting shaft 60 , and the amount of movement is controlled according to the operation of the direct-acting shaft 60 .

このようにして弁体保持軸部50を前進させることにより、図2,5に示すように、弁体40が弁座25に当接されて、弁座25を閉鎖(閉弁)する。そして、ばね部材52の付勢力によって弁体40が弁座25を閉鎖した時には、弁体保持軸部50の係合空間部55には直動軸60の先端係合部61の弁室20側に間隙部Sを有するように構成される。つまり、直動軸60の先端係合部61は係合空間部55の空間54の弁室20側に間隙部Sを有するので、ばね部材52の付勢力によって弁体40が弁座25を閉鎖した後は、自由(フリー)状態となっており、必要により、直動軸60の先端係合部61はこの係合空間部55の間隙部Sをさらに前進移動できるように構成されているのである。 By advancing the valve body holding shaft portion 50 in this manner, the valve body 40 is brought into contact with the valve seat 25 to close the valve seat 25 (valve is closed), as shown in FIGS. When the valve body 40 closes the valve seat 25 by the biasing force of the spring member 52 , the engagement space 55 of the valve body holding shaft portion 50 is filled with the valve chamber 20 side of the front end engagement portion 61 of the direct drive shaft 60 . It is configured to have a gap S at. That is, since the leading end engaging portion 61 of the direct-acting shaft 60 has the gap portion S on the valve chamber 20 side of the space 54 of the engaging space portion 55 , the urging force of the spring member 52 causes the valve body 40 to close the valve seat 25 . After that, it is in a free state, and the front end engaging portion 61 of the linear motion shaft 60 is configured to be able to move further forward in the gap portion S of the engaging space portion 55 as necessary. be.

図からも理解されるように、ばね部材52の付勢力によって弁体40が移動され、弁体40が弁座25に当接して弁座25が閉鎖(閉弁)後に、直動軸60の先端係合部61が作動手段であるステッピングモータ70により係合空間部55の間隙部Sを有し該間隙部Sを自由(フリー)移動できるということは、弁体40の閉鎖時における弁座25との衝突や過大な摩擦等が回避ないし緩和されることを意味し、これらの衝突や摩擦等に伴う問題の発生を一挙に解決することができるのである。 As can be understood from the figure, the valve body 40 is moved by the biasing force of the spring member 52, and after the valve body 40 abuts against the valve seat 25 and the valve seat 25 is closed (valve closed), the direct-acting shaft 60 is moved. The fact that the tip end engaging portion 61 has a gap S in the engaging space portion 55 and can move freely in the gap S by means of the stepping motor 70, which is an operating means, means that the valve seat when the valve body 40 is closed can be moved freely. This means that collisions with 25 and excessive friction are avoided or alleviated, and the occurrence of problems associated with these collisions, frictions, etc. can be solved at once.

また、この流量調節弁10では、閉弁後の開弁に際しては、直動軸60の先端係合部61は、係合空間部55の空間54の弁室20側に間隙部Sに自由(フリー)状態となって位置しており、換言すれば、従来のように弁体40を弁座25に対して全閉する力ないし弁座の全閉シール力を維持するためのモータの励磁を維持する必要がないので、したがって、これに伴う問題、すなわち、消費電流の問題のみならずモータの発熱による被制御流体の温度上昇に関連する種々の問題を一挙に解消することができる。もちろん、従来のように弁座の全閉の手前で「寸止め」する必要がない。さらに、開弁方向の移動、つまり直動軸の後退移動は、負荷の無い自由(フリー)状態からスタートできるので、微小な流量の開弁制御や流量ゼロからの立ち上げなどのランプ制御が可能となる。 Further, in the flow control valve 10, when the valve is opened after the valve is closed, the distal end engaging portion 61 of the direct-acting shaft 60 is freely ( In other words, the excitation of the motor for maintaining the force to fully close the valve body 40 against the valve seat 25 or the fully closed sealing force of the valve seat is applied as in the conventional art. Since there is no need to maintain it, therefore, various problems associated with this, namely, not only the problem of current consumption but also the temperature rise of the controlled fluid due to the heat generated by the motor, can be solved at once. Of course, there is no need to "stop" the valve seat before the valve seat is fully closed as in the conventional art. In addition, the movement in the valve opening direction, that is, the receding movement of the linear shaft, can be started from a free state with no load, so it is possible to perform ramp control such as valve opening control for minute flow rates and start-up from zero flow rate. becomes.

図7は電動流量調節弁10を利用した回路の概略図であり、図8にその流量制御のグラフを示す。なお、この例では、電動流量調節弁10の下流側に開閉弁90が配置されており、図8に示すように、開閉弁90を開放したまま電動流量調節弁10の開閉により流体の停止を含む流量制御が可能となる。ここでは、開閉弁90は、緊急時の遮断や当該回路の停止時等に閉弁される。ちなみに、図11は先述した従来の電動流量調節弁の「寸止め」の制御例を示したグラフであるが、従来の調節弁では寸止めした後に開閉弁によってその閉弁ないし開弁がなされる。 FIG. 7 is a schematic diagram of a circuit using the electric flow control valve 10, and FIG. 8 shows a graph of the flow control. In this example, an on-off valve 90 is arranged downstream of the electric flow control valve 10, and as shown in FIG. It is possible to control the flow rate including Here, the on-off valve 90 is closed when the circuit is shut down in an emergency or when the circuit is stopped. By the way, FIG. 11 is a graph showing an example of control of the conventional electric flow control valve "stop". .

本発明の流量調節弁によれば、上に述べたように、弁体の閉鎖時における弁座との衝突等が回避ないし緩和されこれに伴う問題の発生を抑制することができる。のみならず、電動式流量調節弁の弁体の閉鎖時におけるモータへの摩擦力の増大を防止して、脱調を防ぎ、消費電流の問題だけではなく、モータの発熱に伴うプロセスへの悪影響を回避し、さらに弁座の全閉の手前で「寸止め」する必要がなく、微小流量の制御や流量ゼロからの立ち上げなどのランプ制御が可能となるなど、電動流量調節弁の有用性を限りなく拡大するものである。 According to the flow rate control valve of the present invention, as described above, collision with the valve seat when the valve body is closed can be avoided or alleviated, and problems associated therewith can be suppressed. In addition, it prevents an increase in the frictional force on the motor when the valve body of the electric flow control valve is closed, preventing step-out. In addition, there is no need to "stop" before the valve seat is fully closed, and it is possible to control minute flow rates and ramp control such as starting from zero flow rate. is infinitely expanded.

10 電動流量調節弁(ニードル弁)
11 ハウジング
12 ハウジング外壁部
15 放熱溝部
20 弁室
21 流入部
22 流出部
25 弁座
30 保持チャンバー
40 弁体
41 ニードル部
45 ダイヤフラム
46 ダイヤフラム固定部材
50 弁体保持軸部
51 保持軸部側ばね受け部
52 ばね部材
53 駆動機構側ばね受け部
54 空間
55 係合空間部
56 係止部
60 直動軸
61 先端係合部
70 電動式駆動機構(ステッピングモータ)
90 開閉弁
S 間隙部
10 electric flow control valve (needle valve)
REFERENCE SIGNS LIST 11 housing 12 housing outer wall 15 heat radiation groove 20 valve chamber 21 inflow 22 outflow 25 valve seat 30 holding chamber 40 valve body 41 needle 45 diaphragm 46 diaphragm fixing member 50 valve body holding shaft 51 holding shaft side spring bearing 52 Spring member 53 Drive mechanism side spring bearing portion 54 Space 55 Engagement space portion 56 Locking portion 60 Linear motion shaft 61 Tip engagement portion 70 Electric drive mechanism (stepping motor)
90 on-off valve S gap

Claims (2)

ハウジング後部に配置された電動式駆動機構の直動軸によってハウジング前部の弁室内にダイヤフラムと一体に配置された弁体を弁座に対して進退して弁座との開度を調節する流量調節弁において、
前記弁体は前記弁室後部に設けられた保持チャンバーに周方向に回転不能に同軸的に嵌挿された弁体保持軸部に連結保持されており、
前記弁体保持軸部はその後部に前記直動軸の先端係合部が空間を介して係合する係合空間部を有し、かつ保持軸部側ばね受け部と駆動機構側ばね受け部との間に当該弁体保持軸部を常時弁室側に付勢するばね部材が介装されていて、
前記弁体の後退時又は停止時には、前記直動軸の先端係合部が前記弁体保持軸部の係合空間部の係止部に係着して前記ばね部材の付勢力に抗して前記弁体保持軸部を後退又は停止させて、前記弁体を前記弁座から離隔させ、
前記弁体の前進時には、前記直動軸の先端係合部が前記弁体保持軸部の係合空間部内に位置して前記ばね部材の付勢力とともに前記弁体保持軸部を前進させて、前記弁体を前記弁座に近接させるとともに、
前記ばね部材の付勢力によって前記弁体が前記弁座を閉鎖した時には、前記弁体保持軸部の係合空間部の空間には前記直動軸の先端係合部の弁室側に間隙部を有するように構成されている
ことを特徴とする電動流量調節弁。
The valve body, which is integrated with the diaphragm in the valve chamber at the front of the housing, advances and retreats with respect to the valve seat by the direct drive shaft of the electric drive mechanism located at the rear of the housing to adjust the opening degree between the valve seat and the flow rate. in the control valve,
The valve body is connected to and held by a valve body holding shaft that is coaxially inserted into a holding chamber provided at the rear of the valve chamber so as not to rotate in the circumferential direction,
The valve body holding shaft portion has an engaging space portion at its rear portion with which the tip end engaging portion of the direct drive shaft engages through the space, and has a holding shaft portion side spring bearing portion and a drive mechanism side spring bearing portion. A spring member is interposed to constantly urge the valve body holding shaft portion toward the valve chamber side between
When the valve body is retracted or stopped, the leading end engaging portion of the direct-acting shaft is engaged with the locking portion of the engaging space portion of the valve body holding shaft portion to resist the biasing force of the spring member. retracting or stopping the valve body holding shaft to separate the valve body from the valve seat;
When the valve body advances, the leading end engaging portion of the direct-acting shaft is positioned within the engaging space of the valve body holding shaft portion, and the valve body holding shaft portion is advanced together with the urging force of the spring member. Bringing the valve body close to the valve seat,
When the valve body closes the valve seat by the urging force of the spring member, a clearance is provided in the space of the engagement space of the valve body holding shaft portion on the valve chamber side of the tip end engagement portion of the direct drive shaft. An electric flow control valve, characterized in that it is configured to have:
前記ハウジングの外壁部に放熱溝部が形成されている請求項1に記載の電動流量調節弁。 2. The electric flow control valve according to claim 1, wherein the outer wall of the housing is formed with a heat radiating groove.
JP2018229816A 2018-12-07 2018-12-07 electric flow control valve Active JP7184332B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018229816A JP7184332B2 (en) 2018-12-07 2018-12-07 electric flow control valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018229816A JP7184332B2 (en) 2018-12-07 2018-12-07 electric flow control valve

Publications (2)

Publication Number Publication Date
JP2020091015A JP2020091015A (en) 2020-06-11
JP7184332B2 true JP7184332B2 (en) 2022-12-06

Family

ID=71013676

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018229816A Active JP7184332B2 (en) 2018-12-07 2018-12-07 electric flow control valve

Country Status (1)

Country Link
JP (1) JP7184332B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006064865A1 (en) 2004-12-15 2006-06-22 Kabushiki Kaisha Saginomiya Seisakusho Electrically operated control valve
JP3165083U (en) 2010-10-15 2011-01-06 アドバンス電気工業株式会社 Motorized valve

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006064865A1 (en) 2004-12-15 2006-06-22 Kabushiki Kaisha Saginomiya Seisakusho Electrically operated control valve
JP3165083U (en) 2010-10-15 2011-01-06 アドバンス電気工業株式会社 Motorized valve

Also Published As

Publication number Publication date
JP2020091015A (en) 2020-06-11

Similar Documents

Publication Publication Date Title
EP2903846B1 (en) Spring-operated back-up/fail-safe module for active grille shutter systems
JP6717694B2 (en) Gas valve device
JP5415500B2 (en) Gas valve device
US20110291037A1 (en) Flow Adjusting Valve
JP7184332B2 (en) electric flow control valve
JPH11294163A (en) Cooling control device for internal combustion engine
JP6901332B2 (en) Gas valve gear
JP7417986B2 (en) Electric flow control valve
JP5935191B2 (en) Thermal power control device
JP2021173394A (en) Electric flow regulating valve
JP6773469B2 (en) Gas valve device
JP3227404U (en) Electric flow control valve
JP2007247743A (en) Solenoid shutoff valve and method of controlling same
WO2016092939A1 (en) Valve device and vapor turbine
JP2002168361A (en) Flow control valve
JP2023062512A (en) Motor-operated valve
CN108779863B (en) Thermal management module with sliding shut-off valve
JP2022137853A (en) Motor valve and fluid control device
JP4289068B2 (en) valve
US8070126B2 (en) Device for actuation of a valve
JP7120895B2 (en) Electric gas valve device
JP2021099145A (en) Electric flow regulating valve
JPWO2023032481A5 (en)
JP2019011911A (en) Fuel gas amount control device
JP2005299836A (en) Flow regulating valve

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211027

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220830

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220930

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221018

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221116

R150 Certificate of patent or registration of utility model

Ref document number: 7184332

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150