JP7415144B2 - austenitic stainless steel - Google Patents

austenitic stainless steel Download PDF

Info

Publication number
JP7415144B2
JP7415144B2 JP2019219327A JP2019219327A JP7415144B2 JP 7415144 B2 JP7415144 B2 JP 7415144B2 JP 2019219327 A JP2019219327 A JP 2019219327A JP 2019219327 A JP2019219327 A JP 2019219327A JP 7415144 B2 JP7415144 B2 JP 7415144B2
Authority
JP
Japan
Prior art keywords
mass
less
steel
content
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019219327A
Other languages
Japanese (ja)
Other versions
JP2021088740A (en
Inventor
礼文 河内
貴代子 竹田
貴央 井澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2019219327A priority Critical patent/JP7415144B2/en
Publication of JP2021088740A publication Critical patent/JP2021088740A/en
Application granted granted Critical
Publication of JP7415144B2 publication Critical patent/JP7415144B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Articles (AREA)

Description

本発明は、オーステナイト系ステンレス鋼に関する。 The present invention relates to austenitic stainless steel.

例えば化学物質の製造プラントに用いられる鋼管は、高温の化学物質に長時間にわたって晒されることがあるため、その素材として高温における強度に優れるオーステナイト系ステンレス鋼が用いられることが多い。
オーステナイト系ステンレス鋼では、高温雰囲気中でその表面に金属酸化物が形成され、これが浸炭による材料劣化を防止する被膜として機能する。形成される金属酸化物の種類は材料に含まれる成分によるが、浸炭に対しては酸化アルミニウム(Al、アルミナ)が効果的であり、例えば特許文献1乃至特許文献3にはAlを所定量の割合で含むものが開示されている。
For example, steel pipes used in chemical manufacturing plants are often exposed to high-temperature chemicals for long periods of time, so austenitic stainless steel, which has excellent strength at high temperatures, is often used as the material.
In austenitic stainless steel, metal oxides are formed on the surface in a high-temperature atmosphere, and this acts as a coating that prevents material deterioration due to carburization. The type of metal oxide formed depends on the components contained in the material, but aluminum oxide (Al 2 O 3 , alumina) is effective for carburizing, and for example, Patent Documents 1 to 3 disclose that Al It is disclosed that it contains a predetermined amount.

国際公開番号WO2010/113830International publication number WO2010/113830 国際公開番号WO2018/088070International publication number WO2018/088070 特表2012-505314号公報Special Publication No. 2012-505314

しかしながら、単にオーステナイト系ステンレス鋼にAlを添加しても、Alのみでなく、FeやCrも酸化物を形成するため、均一なAlの形成を阻害する傾向にあり、これにより浸炭を抑制する効果を低下させてしまう。 However, even if Al is simply added to austenitic stainless steel, not only Al but also Fe and Cr will form oxides, which will tend to inhibit the formation of uniform Al 2 O 3 , thereby inhibiting carburization. This reduces the suppressive effect.

そこで本発明は、上記問題に鑑み浸炭を抑制する性能を高めることができるオーステナイト系ステンレス鋼を提供することを課題とする。 Therefore, in view of the above problems, it is an object of the present invention to provide an austenitic stainless steel that can improve the performance of suppressing carburization.

上記課題を解決するための1つの態様として、Fe、並びに、質量%で、Crを10.0質量%以上30.0質量%以下、Niを25.0質量%以上45.0質量%以下、及び、Alを2.5質量%以上4.5質量%以下で含み、少なくとも1つの方向における表面の残留応力の絶対値が250MPa以上500MPa以下である、オーステナイト系ステンレス鋼を開示する。 As one aspect for solving the above problems, in terms of Fe and mass%, Cr is 10.0% by mass or more and 30.0% by mass or less, Ni is 25.0% by mass or more and 45.0% by mass or less, The present invention also discloses an austenitic stainless steel that contains Al at 2.5% by mass or more and 4.5% by mass or less, and has an absolute value of surface residual stress in at least one direction of 250 MPa or more and 500 MPa or less.

上記の加えてさらに、Cを0.005質量%以上0.250質量%以下、Siを0.01質量%以上1.00質量%以下、Mnを2.00質量%以下、Pを0.040質量%以下、Sを0.010質量%以下、及び、Nbを0.20質量%以上3.50質量%以下、で含むとともに、Zrを0.100質量%以下、Hfを0.100質量%以下、Tiを0.200質量%未満、Moを2.50質量%以下、Wを5.00質量%以下、Bを0.100質量%以下、Vを0.500質量%以下、Cuを5.00質量%以下、Coを5.00質量%以下、Caを0.0500質量%以下、Mgを0.0500質量%以下、Nを0.0300質量%以下、及び、希土類元素を0.100質量%以下、から選ばれる少なくとも1つを含み、残部は不可避的不純物からなるオーステナイト系ステンレス鋼であってもよい。 In addition to the above, C is 0.005% by mass or more and 0.250% by mass or less, Si is 0.01% by mass or more and 1.00% by mass or less, Mn is 2.00% by mass or less, and P is 0.040% by mass. S is 0.010% by mass or less, Nb is 0.20% by mass or more and 3.50% by mass or less, Zr is 0.100% by mass or less, Hf is 0.100% by mass. Below, Ti is less than 0.200 mass%, Mo is less than 2.50 mass%, W is less than 5.00 mass%, B is less than 0.100 mass%, V is less than 0.500 mass%, Cu is 5% by mass or less. .00 mass% or less, Co 5.00 mass% or less, Ca 0.0500 mass% or less, Mg 0.0500 mass% or less, N 0.0300 mass% or less, and rare earth elements 0.100 mass% or less. The austenitic stainless steel may contain at least one selected from the following by mass% or less, with the remainder being unavoidable impurities.

上記オーステナイト系ステンレス鋼によれば、浸炭を抑制する性能を高めることができる。 According to the austenitic stainless steel, the performance of suppressing carburization can be improved.

本形態に係るオーステナイト系ステンレス鋼(以下、「本鋼」と記載することがある。)は、Fe及び不可避的不純物に加えて他に少なくとも次の成分を含んでいる。
Cr:10.0質量%以上30.0質量%以下
Ni:25.0質量%以上45.0質量%以下
Al:2.5質量%以上4.5質量%以下
The austenitic stainless steel according to this embodiment (hereinafter sometimes referred to as "this steel") contains at least the following components in addition to Fe and inevitable impurities.
Cr: 10.0 mass% or more and 30.0 mass% or less Ni: 25.0 mass% or more and 45.0 mass% or less Al: 2.5 mass% or more and 4.5 mass% or less

ここで、Cr及びNiは、オーステナイト系ステンレスを構成する基本成分であり、Cr(クロム)により耐食性が実現され、Ni(ニッケル)によりオーステナイトの安定化が図られている。従って、Cr、Niは、少なくともオーステナイト系ステンレス鋼となる量が添加されている。ただし、Crについては含有量が30質量%を超えると浸炭の抑制効果が低下するため、30質量%以下とした。これはCrの含有量が30質量%を超えるとCrの酸化物が発生しやすくなりAlの均一な形成を阻害することによると考えられる。 Here, Cr and Ni are basic components constituting austenitic stainless steel, and Cr (chromium) provides corrosion resistance, and Ni (nickel) stabilizes austenite. Therefore, Cr and Ni are added at least in amounts to form austenitic stainless steel. However, if the Cr content exceeds 30% by mass, the effect of suppressing carburization decreases, so it was set to 30% by mass or less. This is considered to be because when the Cr content exceeds 30% by mass, Cr oxides are likely to be generated, which inhibits the uniform formation of Al 2 O 3 .

Al(アルミニウム)は、本鋼が高温環境に晒されることで表面にAl被膜を形成するために必要な成分である。本鋼では後述するように表面に残留応力を有することにより、表面におけるAl被膜の均一性を高め、浸炭を抑制する効果を高めることができる。ただし、Alの量が2.5質量%より少ないとこの効果が表れない。一方、Alの量が4.5質量%より多いと浸炭を抑制する効果は認められるものの、鋼の熱間加工性が低下する。 Al (aluminum) is a necessary component for forming an Al 2 O 3 film on the surface of this steel when exposed to a high-temperature environment. By having residual stress on the surface of this steel, as described later, the uniformity of the Al 2 O 3 coating on the surface can be improved and the effect of suppressing carburization can be enhanced. However, this effect does not appear if the amount of Al is less than 2.5% by mass. On the other hand, if the amount of Al is more than 4.5% by mass, the effect of suppressing carburization is recognized, but the hot workability of the steel decreases.

さらに、本鋼は、上記成分に加えて次の成分の少なくとも1つを含んでいてもよい。ただし、これらの成分はそれぞれの目的に応じて任意的に添加されるものであり必ずしも含まれる必要はなく、又は不可避的に含まれることもある。 Furthermore, the present steel may contain at least one of the following components in addition to the above components. However, these components are optionally added depending on their respective purposes and do not necessarily need to be included, or may be unavoidably included.

Cを0.005質量%以上0.250質量%以下で含むことができる。C(炭素)を0.005質量%以上含ませることにより、主にCrと結合して鋼中にCr炭化物を形成し、高温浸炭環境での使用時におけるクリープ強度を高める。C含有量が低すぎれば、この効果が得られない。一方、C含有量が高すぎれば、鋼の鋳造後の凝固組織中に粗大な共晶炭化物を多数形成し、鋼の靭性を低下させる。 C can be contained in an amount of 0.005% by mass or more and 0.250% by mass or less. By including 0.005% by mass or more of C (carbon), it mainly combines with Cr to form Cr carbide in the steel, increasing the creep strength when used in a high-temperature carburizing environment. If the C content is too low, this effect cannot be obtained. On the other hand, if the C content is too high, many coarse eutectic carbides will be formed in the solidified structure of the steel after casting, reducing the toughness of the steel.

Siを0.01質量%以上1.00質量%以下で含むことができる。Si(シリコン)は鋼を脱酸する。他の元素で脱酸を十分に実施できる場合、Siの含有量は出来るだけ少なくてもよい。一方、Si含有量が高すぎれば、熱間加工性が低下する。 It can contain Si in an amount of 0.01% by mass or more and 1.00% by mass or less. Si (silicon) deoxidizes steel. If deoxidation can be carried out sufficiently with other elements, the content of Si may be as small as possible. On the other hand, if the Si content is too high, hot workability will decrease.

Mnを2.00質量%以下で含むことができる。Mn(マンガン)は鋼中に含まれるSと結合してMnSを形成し、鋼の熱間加工性を高める。しかしながら、Mn含有量が高すぎれば、鋼が硬くなりすぎ、熱間加工性及び溶接性が低下する。 Mn can be contained in an amount of 2.00% by mass or less. Mn (manganese) combines with S contained in steel to form MnS and improves hot workability of steel. However, if the Mn content is too high, the steel will become too hard and the hot workability and weldability will decrease.

Pを0.040質量%以下で含むことができる。ただし、P(燐)は不純物の1つであり鋼の溶接性及び熱間加工性を低下させる。従って、Pの含有量はなるべく低い方が好ましく、より好ましくは0.030質量%以下である。 P can be contained in an amount of 0.040% by mass or less. However, P (phosphorus) is one of the impurities and reduces the weldability and hot workability of steel. Therefore, the P content is preferably as low as possible, more preferably 0.030% by mass or less.

Sを0.010質量%以下で含むことができる。ただし、S(硫黄)は不純物の1つであり、鋼の溶接性及び熱間加工性を低下させる。従って、Sの含有量はなるべく低い方が好ましく、より好ましくは0.008質量%以下である。 S may be contained in an amount of 0.010% by mass or less. However, S (sulfur) is one of the impurities and reduces the weldability and hot workability of steel. Therefore, the S content is preferably as low as possible, more preferably 0.008% by mass or less.

Nbを0.20質量%以上3.50質量%以下で含むことができる。Nb(ニオブ)は、析出強化相となる金属間化合物(ラーベス相及びNiNb相)を形成して、結晶粒界及び結晶粒内を析出強化し、鋼のクリープ強度を高める。一方、Nb含有量が高すぎれば、金属間化合物が過剰に生成して、鋼の靭性が低下する。Nb含有量が高すぎればさらに、長時間時効後の靭性も低下する。 Nb can be contained in an amount of 0.20% by mass or more and 3.50% by mass or less. Nb (niobium) forms intermetallic compounds (Laves phase and Ni 3 Nb phase) that become precipitation-strengthening phases, strengthens grain boundaries and inside grains by precipitation, and increases the creep strength of steel. On the other hand, if the Nb content is too high, intermetallic compounds will be generated excessively and the toughness of the steel will decrease. If the Nb content is too high, the toughness after long-term aging will also decrease.

Zrを0.100質量%以下で含むことができる。Zr(ジルコニウム)は熱処理工程中及び高温浸炭環境下でAl皮膜の形成を促進する。一方、Zr含有量が高すぎれば、鋼中の金属間化合物の体積率が過剰に高くなり、熱間加工性が低下する。 Zr can be contained in an amount of 0.100% by mass or less. Zr (zirconium) promotes the formation of an Al 2 O 3 film during the heat treatment process and in a high temperature carburizing environment. On the other hand, if the Zr content is too high, the volume fraction of intermetallic compounds in the steel will become excessively high, resulting in poor hot workability.

Hfを0.100質量%以下で含むことができる。Hf(ハフニウム)は熱処理工程中及び高温浸炭環境下でAl皮膜の形成を促進する。一方、Hf含有量が高すぎれば、鋼中の金属間化合物の体積率が過剰に高くなり、熱間加工性が低下する。 Hf can be contained in an amount of 0.100% by mass or less. Hf (hafnium) promotes the formation of Al 2 O 3 film during the heat treatment process and under high temperature carburizing environment. On the other hand, if the Hf content is too high, the volume fraction of intermetallic compounds in the steel will become excessively high, and hot workability will decrease.

Tiを0.200質量%未満で含むことができる。Ti(チタン)は、析出強化相となる金属間化合物(ラーベス相及びNiTi相)を形成して、析出強化によりクリープ強度を高める。一方、Ti含有量が高すぎれば、金属間化合物が過剰に生成して、高温延性及び熱間加工性が低下する。Ti含有量が高すぎればさらに、長時間時効後の靭性が低下する。 Ti can be contained in an amount less than 0.200% by mass. Ti (titanium) forms intermetallic compounds (Laves phase and Ni 3 Ti phase) that become precipitation strengthening phases, and increases creep strength by precipitation strengthening. On the other hand, if the Ti content is too high, intermetallic compounds will be produced excessively, resulting in a decrease in high-temperature ductility and hot workability. If the Ti content is too high, the toughness after long-term aging will further decrease.

Moを2.50質量%以下で含むことができる。Mo(モリブデン)は、母相であるオーステナイトに固溶する。固溶したMoは、固溶強化によりクリープ強度を高める。一方、Mo含有量が高すぎれば、熱間加工性が低下する。 Mo can be contained in an amount of 2.50% by mass or less. Mo (molybdenum) is dissolved in austenite, which is the parent phase. Mo dissolved in solid solution increases creep strength through solid solution strengthening. On the other hand, if the Mo content is too high, hot workability will decrease.

Wを5.00質量%以下で含むことができる。W(タングステン)は、母相であるオーステナイトに固溶する。固溶したWは、固溶強化によりクリープ強度を高める。一方、W含有量が高すぎれば、熱間加工性が低下する。 W can be contained in an amount of 5.00% by mass or less. W (tungsten) is dissolved in austenite, which is the parent phase. W dissolved in solid solution increases creep strength through solid solution strengthening. On the other hand, if the W content is too high, hot workability will decrease.

Bを0.100質量%以下で含むことができる。B(ボロン)は粒界に偏析して、粒界での金属間化合物の析出を促進する。これにより、鋼のクリープ強度を高める。一方、B含有量が高すぎれば、鋼の溶接性及び熱間加工性が低下する。 B can be contained in an amount of 0.100% by mass or less. B (boron) segregates at grain boundaries and promotes precipitation of intermetallic compounds at the grain boundaries. This increases the creep strength of the steel. On the other hand, if the B content is too high, the weldability and hot workability of the steel will decrease.

Vを0.500質量%以下で含むことができる。V(バナジウム)は、Tiと同様に金属間化合物を形成し、鋼のクリープ強度を高める。一方、V含有量が高すぎれば、鋼中の金属間化合物の堆積率が過剰に高くなり、熱間加工性が低下する。 V can be contained in an amount of 0.500% by mass or less. Like Ti, V (vanadium) forms an intermetallic compound and increases the creep strength of steel. On the other hand, if the V content is too high, the deposition rate of intermetallic compounds in the steel will become excessively high, and hot workability will deteriorate.

Cuを5.00質量%以下で含むことができる。Cu(銅)はオーステナイトを安定化する。Cuはさらに、析出強化により鋼の強度及びクリープ強度を高める。一方で、Cu含有量が高すぎれば、鋼の延性及び熱間加工性が低下する。 Cu can be contained in an amount of 5.00% by mass or less. Cu (copper) stabilizes austenite. Cu further increases the strength and creep strength of steel through precipitation strengthening. On the other hand, if the Cu content is too high, the ductility and hot workability of the steel will decrease.

Coを5.00質量%以下で含むことができる。Co(コバルト)はオーステナイトを安定化して、鋼材のクリープ強度を高める。一方で、Co含有量が高すぎれば、原料コストが高くなる。 Co can be contained in an amount of 5.00% by mass or less. Co (cobalt) stabilizes austenite and increases the creep strength of steel materials. On the other hand, if the Co content is too high, the raw material cost will increase.

Caを0.0500質量%以下で含むことができる。Ca(カルシウム)は、Sを硫化物として固定し、熱間加工性を高める。一方、Ca含有量が高すぎれば、靱性及び延性が低下する。そのため、熱間加工性が低下する。Ca含有量が高すぎればさらに、清浄性が低下する。 Ca can be contained in an amount of 0.0500% by mass or less. Ca (calcium) fixes S as sulfide and improves hot workability. On the other hand, if the Ca content is too high, toughness and ductility will decrease. Therefore, hot workability decreases. If the Ca content is too high, the cleanliness will further deteriorate.

Mgを0.0500質量%以下で含むことができる。Mg(マグネシウム)は、Sを硫化物として固定し、鋼の熱間加工性を高める。一方、Mg含有量が高すぎれば、靱性及び延性が低下する。そのため、熱間加工性が低下する。Mg含有量が高すぎればさらに、清浄性が低下する。 Mg can be contained in an amount of 0.0500% by mass or less. Mg (magnesium) fixes S as sulfide and improves the hot workability of steel. On the other hand, if the Mg content is too high, toughness and ductility will decrease. Therefore, hot workability decreases. If the Mg content is too high, the cleanliness will further deteriorate.

Nを0.0300質量%以下で含むことができる。N(窒素)は、オーステナイトを安定化する。一方、N含有量が高すぎれば、熱処理後でも未固溶で残存する粗大な窒化物及び/又は炭窒化物が生成する。粗大な窒化物及び/又は炭窒化物は鋼の靱性を低下する。 It can contain N in an amount of 0.0300% by mass or less. N (nitrogen) stabilizes austenite. On the other hand, if the N content is too high, coarse nitrides and/or carbonitrides that remain undissolved even after heat treatment will be generated. Coarse nitrides and/or carbonitrides reduce the toughness of steel.

REMを0.100質量%以下で含むことができる。REM(希土類元素)は、Sを硫化物として固定し、熱間加工性を高める。REMはさらに、酸化物を形成して、耐食性、クリープ強度、及びクリープ延性を高める。しかしながら、REM含有量が高すぎれば、酸化物等の介在物が多くなり、熱間加工性及び溶接性を低下させ、製造コストが上昇する。 REM can be included in an amount of 0.100% by mass or less. REM (rare earth element) fixes S as sulfide and improves hot workability. REM also forms oxides to enhance corrosion resistance, creep strength, and creep ductility. However, if the REM content is too high, inclusions such as oxides will increase, reducing hot workability and weldability, and increasing manufacturing costs.

本鋼はさらに、その表面における残留応力の絶対値が250MPa以上500MPa以下である。これにより本鋼が例えば鋼管とされ、その内側に高温の化学物質が通される際にもAlの被膜が速やかに均一性高く形成されて、浸炭から材料が保護される。
残留応力の絶対値の好ましい下限値は275MPaであり、より好ましくは300MPaである。一方、残留応力の絶対値の好ましい上限値は475MPaであり、より好ましくは450MPaである。
Furthermore, the absolute value of residual stress on the surface of this steel is 250 MPa or more and 500 MPa or less. As a result, even when this steel is made into a steel pipe and a high-temperature chemical substance is passed through the inside thereof, an Al 2 O 3 film is quickly formed with high uniformity, and the material is protected from carburization.
A preferable lower limit of the absolute value of residual stress is 275 MPa, more preferably 300 MPa. On the other hand, a preferable upper limit of the absolute value of residual stress is 475 MPa, more preferably 450 MPa.

ここで残留応力の絶対値とは、圧縮応力を負、引張応力を正で表したときにおける絶対値である。すなわち、圧縮応力であればその範囲は、-500MPa以上-250MPa以下を意味し、引張応力であればその範囲は、250MPa以上500MPa以下である。
残留応力の絶対値がこれより小さいと、鋼中のAlの拡散が促進されず、Fe酸化物およびFe-Crスピネル酸化物が主に形成されてしまい、均一なAlが形成されないと考えられる。一方、残留応力がこれより大きいと、鋼表面近傍におけるAlのみならずCrも拡散が促進されるため、表面においてAlとCrがそれぞれ形成され、均一なAlの形成が阻害されると考えられる。従って、これは残留応力が圧縮であっても引張であっても同様に考えることができる。特に、1030℃以上の高温浸炭環境では、Crは揮発性のあるCrOに変態しやすくなるため、表面の保護の観点から不安定であり、十分な浸炭の抑制機能を発揮し難い。これに対して本鋼によれば、安定性の高いAlの被膜を速やかに均一性高く形成することができるので、浸炭の抑制に有利である。
Here, the absolute value of residual stress is the absolute value when compressive stress is expressed as negative and tensile stress is expressed as positive. That is, for compressive stress, the range is -500 MPa or more and -250 MPa or less, and for tensile stress, the range is 250 MPa or more and 500 MPa or less.
If the absolute value of the residual stress is smaller than this, the diffusion of Al in the steel will not be promoted, Fe oxide and Fe-Cr spinel oxide will be mainly formed, and uniform Al 2 O 3 will not be formed. Conceivable. On the other hand, if the residual stress is larger than this, diffusion of not only Al but also Cr near the steel surface is promoted, so that Al 2 O 3 and Cr 2 O 3 are formed on the surface, resulting in uniform Al 2 O 3 formation. It is thought that the formation is inhibited. Therefore, this can be considered in the same way whether the residual stress is compressive or tensile. In particular, in a high-temperature carburizing environment of 1030°C or higher, Cr 2 O 3 easily transforms into volatile CrO 3 , making it unstable from the viewpoint of surface protection and difficult to exert sufficient carburization suppression function. . On the other hand, according to the present steel, a highly stable Al 2 O 3 coating can be quickly formed with high uniformity, which is advantageous in suppressing carburization.

また、表面における残留応力は次のように得た値を用いる。
試験片の表面に対して、JIS K 0131(1996)に準拠して、残留応力を測定する。測定位置は試験片中央とし、X線応力測定方法として、sinφ法を用い、特性X線はCrKαとする。入射スリットは直径2mmとし、入射角を0°から50.8°の範囲で合計10点測定し、その測定値を平均して測定結果とする。回折角の決定は半価幅法を用い、応力定数Kは-622MPa/°とする。
ここで、残留応力の測定ではその表面において直交する2つの方向(いわゆるx方向とy方向)があるが、本発明では、当該x方向及びy方向の少なくとも一方において、本発明規定の範囲の残留応力が認められればよい。
Furthermore, for the residual stress on the surface, the value obtained as follows is used.
Residual stress is measured on the surface of the test piece in accordance with JIS K 0131 (1996). The measurement position is the center of the test piece, the sin 2 φ method is used as the X-ray stress measurement method, and the characteristic X-ray is CrKα. The entrance slit has a diameter of 2 mm, and the incident angle is measured at a total of 10 points in the range of 0° to 50.8°, and the measured values are averaged to obtain the measurement result. The diffraction angle is determined using the half width method, and the stress constant K is set to -622 MPa/°.
Here, in the measurement of residual stress, there are two directions (so-called x direction and y direction) that are perpendicular to each other on the surface, but in the present invention, in at least one of the x direction and y direction, the residual stress is It is sufficient if stress is observed.

表面に残留応力を付与する方法は特に限定されることはないが、圧縮応力であれば、ショットピーニング、ショットブラスト、研磨、ギアスカイビング加工、ホーニング加工等を挙げることができる。一方、引張応力であれば、フライス加工、グラインダ加工等を挙げることができる。 The method for applying residual stress to the surface is not particularly limited, but as long as compressive stress is applied, shot peening, shot blasting, polishing, gear skiving, honing, etc. can be used. On the other hand, in the case of tensile stress, milling, grinding, etc. can be used.

以上のように、オーステナイト系ステンレス鋼において、Alの含有量を規定し、さらに表面の残留応力を所定の範囲とすることで、高温で使用される場合にも速やかに均一性の高いAlによる被膜を形成させることができ、浸炭の抑制が図られる。なお、形成されるAlの被膜厚さは特に限定されることはないが、より効果的に浸炭を抑制する観点から0.5μm以上3μm以下の範囲であることが好ましい。 As described above, in austenitic stainless steel, by specifying the Al content and further setting the surface residual stress within a predetermined range, even when used at high temperatures, highly uniform Al 2 O 3 can be formed, and carburization can be suppressed. Note that the thickness of the Al 2 O 3 coating to be formed is not particularly limited, but from the viewpoint of more effectively suppressing carburization, it is preferably in the range of 0.5 μm or more and 3 μm or less.

このような鋼は、例えば化学プラントにおける配管のための管材として用いることができる。また、これに限らず、鋼板および棒鋼等の形態でも、浸炭が発生する環境において使用することができる。 Such steels can be used, for example, as tubing material for piping in chemical plants. Furthermore, the present invention is not limited to this, and forms such as steel plates and steel bars can also be used in environments where carburization occurs.

実施例として成分及び残留応力を変更した試験片を作製し、浸炭に対する性能を評価した。 As an example, test pieces were prepared with different components and residual stress, and their performance against carburization was evaluated.

<試験片の成分>
表1に各試験の試験材の成分を示した。
<Components of test piece>
Table 1 shows the components of the test materials for each test.

<試験材の作製>
上記各成分の鋼材を次のように加工することで浸炭試験のための試験材を得た。
表1に示した材料ごとに、インゴットを作製し、このインゴットを1220℃で3時間加熱して、加熱後のインゴットに対して熱間鍛造を実施し、円柱状のビレットを製造した。
次に機械加工により円柱状のビレットの中心軸に貫通孔を形成し、ビレット温度を1200℃として熱間押出を実施して熱間中間鋼材(鋼管)を製造した。この熱間中間鋼材に対して、冷間加工を実施して、直径60mm、肉厚8mmの冷間中間鋼材(鋼管)を得た。
得られた冷間中間鋼材に対して、大気雰囲気中で加熱することで溶体化処理を行い、その後、5.0体積%以上8.0体積%以下の硝酸及び5.0体積%以上8.0体積%以下の弗酸を含む酸洗溶液に浸漬することで、酸洗処理を実施し、表面酸化スケールを除去して酸洗中間鋼材を得た。
得られた酸洗中間鋼材の管内表面に対して、内部残留応力を付与するために表2に示す表面処理を施した。表2の括弧内は、ショットピーニング及びショットブラストについてはショット材の材質、研磨については番号記号をそれぞれ表している。
<Preparation of test material>
Test materials for the carburization test were obtained by processing steel materials having the above-mentioned components as follows.
Ingots were produced for each of the materials shown in Table 1, heated at 1220° C. for 3 hours, and the heated ingots were hot forged to produce cylindrical billets.
Next, a through hole was formed in the central axis of the cylindrical billet by machining, and hot extrusion was performed at a billet temperature of 1200° C. to produce a hot intermediate steel material (steel pipe). This hot intermediate steel material was subjected to cold working to obtain a cold intermediate steel material (steel pipe) with a diameter of 60 mm and a wall thickness of 8 mm.
The obtained cold intermediate steel material is subjected to solution treatment by heating in the air atmosphere, and then nitric acid of 5.0 volume % or more and 8.0 volume % or less and 5.0 volume % or more 8. A pickling treatment was performed by immersing the steel in a pickling solution containing 0% by volume or less of hydrofluoric acid, and surface oxidation scale was removed to obtain a pickled intermediate steel material.
The inner surface of the pipe of the obtained pickled intermediate steel material was subjected to the surface treatments shown in Table 2 in order to impart internal residual stress. The numbers in parentheses in Table 2 indicate the material of the shot material for shot peening and shot blasting, and the numbers and symbols for polishing.

なお、各表面処理の詳細は次の通りである。
ショットピーニング及びショットブラストは、圧力を5kgf/cm、ショット粒径を0.5mm、ショット量を5kg/min、送り量を5mm/sに統一して行った。
ギアスカイビングは、歯数を25、回転速度を2000rpm、送り量を0.1mm/rev(=約3.3mm/s)、交差角を20°、すくい角を10°とした。
ホーニングは、圧力を5kgf/cm、砥石粒度を#60、振動数を10/s、送り量を200mm/sとした。
研磨は周方向(幅方向)に研磨目ができるように研磨した。
The details of each surface treatment are as follows.
Shot peening and shot blasting were performed at a pressure of 5 kgf/cm 2 , a shot particle size of 0.5 mm, a shot amount of 5 kg/min, and a feed rate of 5 mm/s.
For gear skiving, the number of teeth was 25, the rotational speed was 2000 rpm, the feed amount was 0.1 mm/rev (= about 3.3 mm/s), the crossing angle was 20°, and the rake angle was 10°.
The honing was performed at a pressure of 5 kgf/cm 2 , a grindstone grain size of #60, a vibration frequency of 10/s, and a feed rate of 200 mm/s.
Polishing was performed so that polishing marks were formed in the circumferential direction (width direction).

<残留応力の測定>
得られた各試験材に対して、次のようにして残留応力を得た。
表面処理を行った管内面を残すようにして、厚さが4mm、幅(管の周方向)が20mm、及び長さ(管の軸方法)が20mmの試験片を採取した。採取した試験片の管内表面側の中央部に対して、JIS K 0131(1996)に準拠して、残留応力を測定した。本例における表面処理はいずれも残留圧縮応力を生じる方法なので、残留圧縮応力となった。より具体的には次の通りである。
・測定位置:試験片中央
・測定方向:長さ方向(管軸方向)
・X線応力測定方法:sinφ法
・特性X線:CrKα
・入射スリット(=測定範囲):直径2mm
・入射角:0°以上50.8°以下の範囲で変化させ計10点
・回折角決定法:半価幅法
・応力定数(K):-622MPa/°
そして10点の測定値を平均し、これを測定結果とした。表3に結果を「残留応力(MPa)」として示す。
<Measurement of residual stress>
Residual stress was obtained for each of the obtained test materials as follows.
A test piece with a thickness of 4 mm, a width (in the circumferential direction of the tube) of 20 mm, and a length (in the axial direction of the tube) of 20 mm was taken while leaving the surface-treated inner surface of the tube. Residual stress was measured in accordance with JIS K 0131 (1996) at the center of the tube inner surface of the sampled test piece. Since the surface treatments in this example are all methods that generate residual compressive stress, residual compressive stress was generated. More specifically, it is as follows.
・Measurement position: Center of test piece ・Measurement direction: Length direction (tube axis direction)
・X-ray stress measurement method: sin 2 φ method ・Characteristic X-ray: CrKα
・Incidence slit (=measurement range): 2mm in diameter
・Incidence angle: 10 points in total, varying in the range from 0° to 50.8° ・Diffraction angle determination method: Half width method ・Stress constant (K): -622 MPa/°
Then, the measured values at 10 points were averaged, and this was taken as the measurement result. The results are shown in Table 3 as "residual stress (MPa)".

ここで、本例では測定方向を長さ方向(管軸の方向)としたが、幅方向(管の周方向)で測定を行ってもよい。長さ方向及び幅方向の少なくとも一方で本発明規定の範囲の残留応力が認められればよい。 Here, in this example, the measurement direction is the length direction (the direction of the tube axis), but the measurement may be performed in the width direction (the circumferential direction of the tube). It is sufficient that residual stress within the range defined by the present invention is observed in at least one of the length direction and the width direction.

<浸炭試験>
得られた各試験片について次のようにして浸炭試験を行った。
(浸炭)
15体積%のCH、3体積%のCO、及び、82体積%のHの雰囲気で、これを1150℃に加熱し、ここに各試験片を入れて96時間保持することにより浸炭を行った。
(浸炭評価)
浸炭後の試験片の管内表面に対して、#600の乾式研磨を行い、表面の酸化皮膜を除去し、表層から0.5mmずつ、4層分(合計2mm深さまで)の分析用切粉を採取した。次に、この各層の分析用切粉を用いて、JIS G1211-3(2013)に準拠した高周波燃焼赤外吸収法により、各層のC含有量(質量%)を求めた。また、浸炭前の試験片のC含有量(以下、「母材C含有量」と記載することがある。)を、予め、JIS G1211-3(2013)に準拠した高周波燃焼赤外吸収法により測定しておいた。浸炭後の各層でのC含有量と、母材C含有量との差分値を、各層の侵入C量と定義した。得られた4つの侵入C量の算術平均値を、平均侵入C量(質量%)とした。得られた平均侵入C量を、表3に「平均侵入C量(質量%)」として示す。
<Carburizing test>
A carburization test was conducted on each of the obtained test pieces as follows.
(Carburizing)
In an atmosphere of 15% by volume CH 4 , 3% by volume CO 2 , and 82% by volume H 2 , this was heated to 1150°C, and each test piece was placed there and held for 96 hours to carry out carburization. went.
(carburization evaluation)
The inner surface of the test piece after carburization was dry-polished with #600 to remove the oxide film on the surface, and 4 layers of cutting chips for analysis (up to a total depth of 2 mm) were removed from the surface by 0.5 mm each. Collected. Next, using the analysis chips of each layer, the C content (mass %) of each layer was determined by high frequency combustion infrared absorption method in accordance with JIS G1211-3 (2013). In addition, the C content (hereinafter sometimes referred to as "base metal C content") of the test piece before carburization was determined in advance by high-frequency combustion infrared absorption method in accordance with JIS G1211-3 (2013). I had measured it. The difference value between the C content in each layer after carburizing and the base material C content was defined as the amount of intruded C in each layer. The arithmetic mean value of the four obtained amounts of intruded C was defined as the average amount of intruded C (mass %). The obtained average amount of intruded C is shown in Table 3 as "average amount of intruded C (mass %)".

<熱間加工評価>
浸炭の抑制自体に直接関連はしないが、Alの含有量による熱間加工性への影響があるため、熱間加工評価も行った。具体的には次の通りである。
浸炭試験のために作製したインゴットから一部を引張試験用試験片として取得し、試験片を作製した。引張試験片の平行部の直径は10mm、平行部の長さは130mmとした。得られた引張試験片を用いて、JIS G 0567(2012)に準拠して、900℃で、10/秒のひずみ速度で引張試験を行った。
引張試験前の引張試験片の平行部の原断面積をS(mm)、破断後の引張試験片の最小断面積をS(mm)と定義して、次式から絞りR(%)を求めた。
=(1-S/S)×100(%)
<Hot processing evaluation>
Although not directly related to the suppression of carburization itself, since hot workability is affected by the Al content, hot workability evaluation was also performed. Specifically, it is as follows.
A part of the ingot prepared for the carburization test was obtained as a test piece for a tensile test, and a test piece was prepared. The diameter of the parallel part of the tensile test piece was 10 mm, and the length of the parallel part was 130 mm. Using the obtained tensile test piece, a tensile test was conducted at 900° C. and at a strain rate of 10/sec in accordance with JIS G 0567 (2012).
Defining the original cross-sectional area of the parallel part of the tensile test piece before the tensile test as S o (mm 2 ) and the minimum cross-sectional area of the tensile test piece after breaking as S u (mm 2 ), the aperture R A is calculated from the following formula. (%) was calculated.
R A = (1-S u /S o ) x 100 (%)

得られた絞りRが、60%以上である場合、熱間加工性が高いと判断し、表3の「熱間加工性」に「高」と示した。一方、得られた絞りRが60%未満である場合、熱間加工性が低いと判断し、表3の「熱間加工性」に「低」と示した。 When the obtained reduction of area R A is 60% or more, hot workability is judged to be high, and "high" is indicated in "hot workability" in Table 3. On the other hand, when the obtained reduction of area R A is less than 60%, the hot workability is determined to be low, and "low" is shown in "Hot workability" in Table 3.

以上の結果からわかるように、Crが10.0質量%以上30.0質量%以下、Niが25.0質量%以上45.0質量%以下、Al:2.5質量%以上4.5質量%以下、及び、残留応力の絶対値が250MPa以上500MPa以下である例は、いずれも平均C量が0.2質量%以下であり、浸炭が抑制されている。
これに対して、Cr量がこれを満たさないNo.13、No.14、Al量がこれを満たさないNo.16、残留応力の絶対値がこれを満たさないNo.18乃至No.22はいずれも平均侵入C量が0.2質量%を超えており、浸炭が抑制できていないことがわかる。
As can be seen from the above results, Cr is 10.0% by mass or more and 30.0% by mass or less, Ni is 25.0% by mass or more and 45.0% by mass or less, Al: 2.5% by mass or more and 4.5% by mass. % or less, and examples in which the absolute value of the residual stress is 250 MPa or more and 500 MPa or less, the average C content is 0.2 mass % or less, and carburization is suppressed.
On the other hand, No. 1 whose Cr content does not meet this requirement. 13, No. 14. No. 14 whose Al amount does not meet this requirement. No. 16, the absolute value of residual stress does not satisfy this. 18 to No. In all of No. 22, the average amount of intruded C exceeds 0.2% by mass, indicating that carburization cannot be suppressed.

すなわち、本鋼によりAlの被膜が円滑に均一性高く形成され、浸炭の抑制効果を高めることができたと考えられる。 That is, it is considered that the Al 2 O 3 coating was formed smoothly and with high uniformity by this steel, and the effect of suppressing carburization was enhanced.

なお、Ni量がこれを超えるNo.15、Al量がこれを超えるNo.17について浸炭は抑制されているが熱間加工性が低下してしまう。
また、残留応力付与の方法による効果への影響は特に見られなかった。
In addition, No. 1 with a Ni amount exceeding this. 15, No. with an Al amount exceeding this. Regarding No. 17, carburization was suppressed, but hot workability deteriorated.
Further, no particular influence on the effect was observed depending on the method of applying residual stress.

Claims (1)

オーステナイト系ステンレス鋼であって、
Fe、並びに、
Crを10.0質量%以上30.0質量%以下、
Niを25.0質量%以上45.0質量%以下、及び、
Alを2.5質量%以上4.5質量%以下で含み、
さらに、
Cを0.005質量%以上0.250質量%以下、
Siを0.01質量%以上1.00質量%以下、
Mnを2.00質量%以下、
Pを0.040質量%以下、
Sを0.010質量%以下、及び、
Nbを0.20質量%以上3.50質量%以下、で含むとともに、
Zrを0.100質量%以下、
Hfを0.100質量%以下、
Tiを0.200質量%未満、
Moを2.50質量%以下、
Wを5.00質量%以下、
Bを0.100質量%以下、
Vを0.500質量%以下、
Cuを5.00質量%以下、
Coを5.00質量%以下、
Caを0.0500質量%以下、
Mgを0.0500質量%以下、
Nを0.0300質量%以下、及び、
希土類元素を0.100質量%以下、から選ばれる少なくとも1つを含み、
残部は不可避的不純物であり、
少なくとも1方向における表面の残留応力の絶対値が250MPa以上500MPa以下である、
オーステナイト系ステンレス鋼
An austenitic stainless steel material ,
Fe, and
Cr from 10.0% by mass to 30.0% by mass,
25.0% by mass or more and 45.0% by mass or less of Ni, and
Contains Al in an amount of 2.5% by mass or more and 4.5% by mass or less,
moreover,
C from 0.005% by mass to 0.250% by mass,
0.01% by mass or more and 1.00% by mass or less of Si,
Mn is 2.00% by mass or less,
P 0.040% by mass or less,
0.010% by mass or less of S, and
Contains Nb in an amount of 0.20% by mass or more and 3.50% by mass or less,
0.100% by mass or less of Zr,
Hf 0.100% by mass or less,
Ti less than 0.200% by mass,
2.50% by mass or less of Mo,
W not more than 5.00% by mass,
0.100% by mass or less of B,
V 0.500% by mass or less,
5.00% by mass or less of Cu,
5.00% by mass or less of Co,
Ca not more than 0.0500% by mass,
Mg not more than 0.0500% by mass,
0.0300% by mass or less of N, and
Contains at least one selected from 0.100% by mass or less of a rare earth element,
The rest are unavoidable impurities,
The absolute value of the surface residual stress in at least one direction is 250 MPa or more and 500 MPa or less,
Austenitic stainless steel material .
JP2019219327A 2019-12-04 2019-12-04 austenitic stainless steel Active JP7415144B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019219327A JP7415144B2 (en) 2019-12-04 2019-12-04 austenitic stainless steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019219327A JP7415144B2 (en) 2019-12-04 2019-12-04 austenitic stainless steel

Publications (2)

Publication Number Publication Date
JP2021088740A JP2021088740A (en) 2021-06-10
JP7415144B2 true JP7415144B2 (en) 2024-01-17

Family

ID=76219502

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019219327A Active JP7415144B2 (en) 2019-12-04 2019-12-04 austenitic stainless steel

Country Status (1)

Country Link
JP (1) JP7415144B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230164722A (en) 2021-05-26 2023-12-04 가부시키가이샤 고베 세이코쇼 High-strength alloyed hot-dip galvanized steel sheet and method for manufacturing the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005078148A1 (en) 2004-02-12 2005-08-25 Sumitomo Metal Industries, Ltd. Metal tube for use in carburizing gas atmosphere
JP2006283085A (en) 2005-03-31 2006-10-19 Hitachi Metals Ltd Method for producing spring material
WO2010093034A1 (en) 2009-02-16 2010-08-19 住友金属工業株式会社 Method for producing metal tube
JP2017194131A (en) 2016-04-21 2017-10-26 中央発條株式会社 Austenite stainless steel spring
WO2019131954A1 (en) 2017-12-28 2019-07-04 日本製鉄株式会社 Austenite-based heat-resistant alloy

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005078148A1 (en) 2004-02-12 2005-08-25 Sumitomo Metal Industries, Ltd. Metal tube for use in carburizing gas atmosphere
JP2006283085A (en) 2005-03-31 2006-10-19 Hitachi Metals Ltd Method for producing spring material
WO2010093034A1 (en) 2009-02-16 2010-08-19 住友金属工業株式会社 Method for producing metal tube
JP2017194131A (en) 2016-04-21 2017-10-26 中央発條株式会社 Austenite stainless steel spring
WO2019131954A1 (en) 2017-12-28 2019-07-04 日本製鉄株式会社 Austenite-based heat-resistant alloy

Also Published As

Publication number Publication date
JP2021088740A (en) 2021-06-10

Similar Documents

Publication Publication Date Title
JP6256458B2 (en) Austenitic stainless steel and manufacturing method thereof
JP5420292B2 (en) Ferritic stainless steel
KR102124914B1 (en) Austenitic stainless steel
JP4729135B2 (en) Nitriding steel and nitriding parts
JP2010222695A (en) Alloy-saving two-phase stainless steel material having excellent corrosion resistance, and method for manufacturing the same
CN104053808A (en) Case hardening steel material with little heat-treatment strain
JP7260767B2 (en) Welded joints and welding materials used in the manufacture of such welded joints
JPWO2019131954A1 (en) Austenitic heat resistant alloy
JP5842769B2 (en) Duplex stainless steel and manufacturing method thereof
JP6432701B2 (en) Ferritic stainless steel sheet and manufacturing method thereof
JP6286435B2 (en) Duplex stainless steel and duplex stainless steel structure using the same
WO2018198834A1 (en) Ferritic stainless steel sheet, and production method therefor
JP7415144B2 (en) austenitic stainless steel
JP6340870B2 (en) Austenitic stainless steel
JP7114998B2 (en) austenitic stainless steel
JP5242495B2 (en) Ferritic stainless steel wire for boss materials with excellent high temperature durability
WO2014208562A1 (en) Carburized component
JP3270498B2 (en) Duplex stainless steel with excellent crack and corrosion resistance
JP2018184661A (en) Stainless cold-rolled steel plate material and method for producing the same
JP5477248B2 (en) Nitriding steel and nitriding parts with excellent machinability
JP5459197B2 (en) Alloy steel for machine structural use
JP5440720B2 (en) Steel for carburizing or carbonitriding
JP6627662B2 (en) Austenitic stainless steel
JP7131318B2 (en) austenitic stainless steel
JP7332258B2 (en) High-Ni corrosion-resistant alloy with excellent intergranular corrosion resistance and pitting corrosion resistance, as well as excellent hot workability and cold workability

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220803

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230809

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230912

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231024

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231128

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231211

R151 Written notification of patent or utility model registration

Ref document number: 7415144

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151