JP7405392B2 - Functional porous material and its manufacturing method - Google Patents

Functional porous material and its manufacturing method Download PDF

Info

Publication number
JP7405392B2
JP7405392B2 JP2019124705A JP2019124705A JP7405392B2 JP 7405392 B2 JP7405392 B2 JP 7405392B2 JP 2019124705 A JP2019124705 A JP 2019124705A JP 2019124705 A JP2019124705 A JP 2019124705A JP 7405392 B2 JP7405392 B2 JP 7405392B2
Authority
JP
Japan
Prior art keywords
porous material
fibers
reaction
functional
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019124705A
Other languages
Japanese (ja)
Other versions
JP2020007694A (en
Inventor
将輝 西岡
正人 宮川
多加子 長瀬
孝之 石坂
千鶴 信樂
涼子 岩渕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Publication of JP2020007694A publication Critical patent/JP2020007694A/en
Application granted granted Critical
Publication of JP7405392B2 publication Critical patent/JP7405392B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、機能性多孔質素材及びその製造方法に関する。 The present invention relates to a functional porous material and a method for producing the same.

機能性多孔質素材として、繊維表面に導電性や抗菌性を持たせた機能性繊維が知られている。
例えば、マルチフィラメントからなる有機繊維基材に金属めっき膜を設けた金属被覆繊維が開示されている(特許文献1参照)。この金属被覆繊維は、マルチフィラメントにおけるモノフィラメント(単糸)1本1本に金属めっき膜が形成されているものである。
また、導電性セルロース系繊維材料の製造方法が記載されている(特許文献2参照)。その製造方法は、まずアルカリ金属水酸化物を含む水溶液によりセルロース系繊維材料を膨潤させる(膨潤工程)。次いで銅イオンを含む化合物を溶解させた水溶液によってセルロース系繊維材料の外周部及び内部に銅イオンを含浸させる(含浸工程)。そして、セルロース系繊維材料に含浸させた銅イオンを、硫化物イオンを含む化合物を溶解させた水溶液によって硫化還元させてセルロース系繊維材料の外周部及び内部に硫化銅からなる微粒子を生成させる(硫化還元工程)。この硫化銅によってセルロース系繊維材料に導電性が付与される。
さらに、抗菌性繊維としては、金属フタロシアニン誘導体と、金属アンミン錯体とを有効成分に含む抗菌消臭材が繊維に担持されているものが開示されている(特許文献3参照)。
As functional porous materials, functional fibers whose fiber surfaces have conductivity and antibacterial properties are known.
For example, a metal-coated fiber in which a metal plating film is provided on an organic fiber base material made of multifilaments has been disclosed (see Patent Document 1). This metal-coated fiber is a multifilament in which a metal plating film is formed on each monofilament (single thread).
Furthermore, a method for producing a conductive cellulose fiber material is described (see Patent Document 2). In the manufacturing method, first, a cellulose-based fiber material is swollen with an aqueous solution containing an alkali metal hydroxide (swelling step). Next, the outer periphery and inside of the cellulosic fiber material are impregnated with copper ions using an aqueous solution in which a compound containing copper ions is dissolved (impregnation step). Then, the copper ions impregnated into the cellulose fiber material are reduced to sulfide using an aqueous solution in which a compound containing sulfide ions is dissolved to generate fine particles of copper sulfide on the outer periphery and inside of the cellulose fiber material (sulfide reduction process). This copper sulfide imparts electrical conductivity to the cellulosic fiber material.
Furthermore, as an antibacterial fiber, one in which an antibacterial deodorizing material containing a metal phthalocyanine derivative and a metal ammine complex as active ingredients is supported on the fiber is disclosed (see Patent Document 3).

特開2014‐055388号公報JP2014-055388A 特開2014‐167187号公報Japanese Patent Application Publication No. 2014-167187 特開2012‐095733号公報JP2012-095733A

従来の導電性繊維の多くは、繊維の表面に金属をコーティングするため(特許文献1、2参照)、摩擦による剥離、摩耗などによる性能劣化が生じる。また、抗菌性繊維(特許文献3参照)も、表面に付着した抗菌機能材が摩擦や洗濯等により脱離しやすく、抗菌寿命は短い。このように、既存の機能性多孔質素材はその機能性を長期に亘り持続させることが難しい。
また、機能性多孔質素材を人体等に接触させて用いる場合、機能性を担う化学物質が人体等と直に接触することにより皮膚疾患等の原因となるおそれもある。
Since most conventional conductive fibers have metal coated on the surface of the fibers (see Patent Documents 1 and 2), performance deterioration occurs due to peeling due to friction, wear, etc. Furthermore, antibacterial functional material attached to the surface of antibacterial fibers (see Patent Document 3) is easily detached by friction, washing, etc., and the antibacterial lifespan is short. As described above, it is difficult for existing functional porous materials to maintain their functionality over a long period of time.
Furthermore, when a functional porous material is used in contact with the human body, there is a risk that the chemical substance responsible for the functionality may cause skin diseases due to direct contact with the human body.

本発明は、摩擦等に曝されても機能性を長期に亘り発現することができ、また人体等と接触させても機能性化学物質の皮膚等への直接的な接触を抑制することができる機能性多孔質素材及びその製造方法を提供することを課題とする。 The present invention can maintain functionality over a long period of time even when exposed to friction, etc., and can suppress direct contact of functional chemical substances to the skin, etc. even when brought into contact with the human body, etc. An object of the present invention is to provide a functional porous material and a method for producing the same.

本発明者らは上記課題に鑑み鋭意検討を重ねた。その結果、反応原料溶液を多孔質素材の孔内に浸透させ、それを反応原料溶液に対して非相溶性の溶媒に浸漬し、孔内部までは浸透せずに多孔質素材の表面又はその近傍に留まっていた反応原料溶液を、孔内のより内部へと移行させることができることを見出した。さらに、この状態で反応原料溶液に化学反応を生じさせることにより、多孔質素材の孔の内部に選択的に、反応生成物である機能性化学物質を配することができることを見出した。
本発明はこれらの知見に基づきさらに検討を重ね、完成されるに至ったものである。
The present inventors have made extensive studies in view of the above problems. As a result, the reaction raw material solution is infiltrated into the pores of the porous material, and it is immersed in a solvent that is immiscible with the reaction raw material solution. It has been found that the reaction raw material solution that has remained in the pores can be moved deeper into the pores. Furthermore, it has been found that by causing a chemical reaction in the reaction raw material solution in this state, it is possible to selectively place a functional chemical substance, which is a reaction product, inside the pores of the porous material.
The present invention was completed after further studies based on these findings.

すなわち、本発明の上記課題は下記の手段により解決される。
[1]
多孔質素材の孔内に反応原料溶液を浸透させる工程と、
前記反応原料溶液を浸透させた前記多孔質素材を、前記反応原料溶液とは非相溶性の溶媒中に浸漬して、前記多孔質素材の表面及び/又はその近傍に存在する前記反応原料溶液を前記多孔質素材の孔内の内部や素材組織内へと移行させる工程と、
前記多孔質素材の孔内の内部や素材組織内へと移行させた前記反応原料溶液に化学反応を生じさせる工程とを含む、機能性多孔質素材の製造方法。
[2]
前記化学反応を加熱により生じさせる、[1]に記載の機能性多孔質素材の製造方法。
[3]
前記加熱がマイクロ波照射による加熱である、[2]に記載の機能性多孔質素材の製造方法。
[4]
前記マイクロ波照射がシングルモードのマイクロ波照射である、[3]に記載の機能性多孔質素材の製造方法。
[5]
前記反応原料溶液は金属前駆体を含み、
前記化学反応が、前記金属前駆体から金属を析出する反応である、[1]~[4]のいずれかに記載の機能性多孔質素材の製造方法。
[6]
前記反応原料溶液はアルコキシシラン化合物を含み、
前記化学反応が、前記アルコキシシラン化合物の加水分解とそれに続く縮重合によりシリカを生じる反応である、[1]~[4]のいずれかに記載の機能性多孔質素材の製造方法。
[7]
前記化学反応が、前記反応原料溶液中の化学物質の結晶化もしくは析出である、[1]~[4]のいずれかに記載の機能性多孔質素材の製造方法。
[8]
前記反応原料溶液はシリカ源、アルカリ源及び水を含み、
又は、前記シリカ源、前記アルカリ源及び前記水に加えケイ素を置換可能な金属源を含み、
前記化学反応がゼオライトを生じる反応である、[1]~[4]のいずれかに記載の機能性多孔質素材の製造方法。
[9]
前記反応原料溶液はポリアミック酸を含み、
前記化学反応が前記ポリアミック酸の脱水閉環反応によりポリイミドを生じる反応である、[1]~[4]のいずれかに記載の機能性多孔質素材の製造方法。
[10]
前記多孔質素材が、植物繊維、動物繊維、化学繊維、中空糸繊維若しくは中空粒子で構成され、又はこれらの2種以上からなる複合素材で構成されている、[1]~[9]のいずれかに記載の機能性多孔質素材の製造方法。
[11]
前記植物繊維が綿である、[10]に記載の機能性多孔質素材の製造方法。
[12]
多孔質素材の孔内に機能性化学物質を内包する機能性多孔質素材。
[13]
前記機能性化学物質が金属を含む、[12]に記載の機能性多孔質素材。
[14]
前記金属により抗菌及び/又は抗ウィルス機能を有する、[13]に記載の機能性多孔質素材。
[15]
前記機能性多孔質素材が前記金属により導電性を示す、[13]又は[14]に記載の機能性多孔質素材。
[16]
前記多孔質素材が綿素材とケイ素とを含む複合素材であり、該綿素材の外表面より内部及び/又は該綿素材組織内のケイ素濃度が高い[12]~[15]のいずれかに記載の機能性多孔質素材。
[17]
前記多孔質素材が炭素を構造として持つ多孔質中空繊維であり、該多孔質中空繊維の中空部分及び/又は内表面にゼオライトを保持している[12]~[15]のいずれかに記載の機能性多孔質素材。
That is, the above-mentioned problems of the present invention are solved by the following means.
[1]
a step of infiltrating a reaction raw material solution into the pores of the porous material;
The porous material impregnated with the reaction raw material solution is immersed in a solvent that is immiscible with the reaction raw material solution to remove the reaction raw material solution present on the surface of the porous material and/or in the vicinity thereof. a step of transferring it into the pores of the porous material or into the material structure;
A method for producing a functional porous material, the method comprising the step of causing a chemical reaction in the reaction raw material solution that has migrated into the pores of the porous material or into the structure of the material.
[2]
The method for producing a functional porous material according to [1], wherein the chemical reaction is caused by heating.
[3]
The method for producing a functional porous material according to [2], wherein the heating is heating by microwave irradiation.
[4]
The method for producing a functional porous material according to [3], wherein the microwave irradiation is single mode microwave irradiation.
[5]
The reaction raw material solution contains a metal precursor,
The method for producing a functional porous material according to any one of [1] to [4], wherein the chemical reaction is a reaction that precipitates a metal from the metal precursor.
[6]
The reaction raw material solution contains an alkoxysilane compound,
The method for producing a functional porous material according to any one of [1] to [4], wherein the chemical reaction is a reaction that produces silica through hydrolysis of the alkoxysilane compound and subsequent polycondensation.
[7]
The method for producing a functional porous material according to any one of [1] to [4], wherein the chemical reaction is crystallization or precipitation of a chemical substance in the reaction raw material solution.
[8]
The reaction raw material solution contains a silica source, an alkali source and water,
Or, in addition to the silica source, the alkali source and the water, it includes a metal source capable of replacing silicon,
The method for producing a functional porous material according to any one of [1] to [4], wherein the chemical reaction is a reaction that produces zeolite.
[9]
The reaction raw material solution contains polyamic acid,
The method for producing a functional porous material according to any one of [1] to [4], wherein the chemical reaction is a reaction that produces polyimide through a dehydration ring-closing reaction of the polyamic acid.
[10]
Any of [1] to [9], wherein the porous material is composed of vegetable fibers, animal fibers, chemical fibers, hollow fibers, or hollow particles, or a composite material consisting of two or more of these. A method for producing a functional porous material according to claim 1.
[11]
The method for producing a functional porous material according to [10], wherein the plant fiber is cotton.
[12]
A functional porous material that contains functional chemicals within its pores.
[13]
The functional porous material according to [12], wherein the functional chemical substance contains a metal.
[14]
The functional porous material according to [13], which has an antibacterial and/or antiviral function due to the metal.
[15]
The functional porous material according to [13] or [14], wherein the functional porous material exhibits conductivity due to the metal.
[16]
The porous material is a composite material containing a cotton material and silicon, and the silicon concentration is higher inside and/or in the structure of the cotton material than on the outer surface of the cotton material [12] to [15]. Functional porous material.
[17]
According to any one of [12] to [15], the porous material is a porous hollow fiber having carbon as a structure, and zeolite is held in the hollow portion and/or inner surface of the porous hollow fiber. Functional porous material.

本発明の機能性多孔質素材は摩擦等に曝されても機能性を長期に亘り発現することができ、また人体と接触させても機能性化学物質の皮膚等への直接的な接触を抑制することができる。本発明の機能性多孔質素材の製造方法によれば、上記の特性を有する本発明の機能性多孔質素材を得ることができる。 The functional porous material of the present invention can maintain its functionality over a long period of time even when exposed to friction, etc., and even when it comes into contact with the human body, it suppresses direct contact of functional chemicals to the skin, etc. can do. According to the method for producing a functional porous material of the present invention, a functional porous material of the present invention having the above characteristics can be obtained.

本発明の機能性多孔質素材の製造方法の好ましい一実施形態に用いる綿繊維であり、綿繊維の各層を部分的に剥離した状態を斜視にて示した図面代用合成写真である。This is a composite photograph in place of a drawing, which shows cotton fibers used in a preferred embodiment of the method for producing a functional porous material of the present invention, and shows a state in which each layer of cotton fibers has been partially peeled off in a perspective view. 本発明の機能性多孔質素材の製造方法の好ましい一実施形態に用いる綿繊維(図1に示した綿繊維、2本)を模式的に示した部分断面斜視図である。1 is a partially cross-sectional perspective view schematically showing cotton fibers (two cotton fibers shown in FIG. 1) used in a preferred embodiment of the method for producing a functional porous material of the present invention. 本発明の機能性多孔質素材の製造方法の好ましい一実施形態の、図2に示した綿繊維に反応原料溶液が浸透する浸透工程を模式的に示した部分断面斜視図である。FIG. 3 is a partial cross-sectional perspective view schematically showing a permeation step in which a reaction raw material solution permeates the cotton fibers shown in FIG. 2 in a preferred embodiment of the method for producing a functional porous material of the present invention. 本発明の機能性多孔質素材の製造方法の好ましい一実施形態の、図3に示した綿繊維に対して反応原料溶液がさらに内部へと移行する移行工程を模式的に示した部分断面斜視図である。A partial cross-sectional perspective view schematically showing a transition step in which the reaction raw material solution further migrates into the cotton fiber shown in FIG. 3 in a preferred embodiment of the method for producing a functional porous material of the present invention. It is. 本発明の機能性多孔質素材の製造方法の好ましい一実施形態の加熱、化学反応工程を模式的に示した部分断面斜視図である。FIG. 1 is a partially sectional perspective view schematically showing heating and chemical reaction steps in a preferred embodiment of the method for producing a functional porous material of the present invention. 本発明の機能性多孔質素材の製造方法の好ましい一実施形態に用いた綿繊維であり、綿繊維の各層を部分的に剥離した状態を斜視にて示した図面代用合成写真である。This is the cotton fiber used in a preferred embodiment of the method for producing a functional porous material of the present invention, and is a composite photograph in place of a drawing showing a state in which each layer of the cotton fiber is partially peeled off in perspective. (A)図は、実施例1の銀を析出した試料の綿布の断面を走査型電子顕微鏡(SEM)にて撮影した図面代用写真である。(B)図は、エネルギー分散型X線分光法を用いて(A)図の矢印A方向に綿布断面の組成分析を行った結果を示したグラフであり、縦軸に銀成分とカーボン成分のスペクトル強度(Intensity)を示し、横軸に位置(Point number)を示した。(A) is a photograph substituted for a drawing taken by a scanning electron microscope (SEM) of a cross section of a cotton cloth of a sample in which silver was precipitated in Example 1. Figure (B) is a graph showing the results of compositional analysis of a cross section of cotton fabric in the direction of arrow A in Figure (A) using energy dispersive X-ray spectroscopy, with the vertical axis showing the composition of silver and carbon components. The spectrum intensity (Intensity) is shown, and the position (Point number) is shown on the horizontal axis. (A)図は、実施例2の銀を析出した試料の綿布を走査型電子顕微鏡にて撮影した図面代用写真である。(B)図は、エネルギー分散型X線分光法を用いて(A)図の矢印B方向に綿布断面の組成分析を行った結果を示したグラフであり、縦軸に銀成分とカーボン成分のスペクトル強度(Intensity)を示し、横軸に位置(Point number)を示した。(A) is a photograph substituted for a drawing taken using a scanning electron microscope of a cotton cloth sample on which silver was precipitated in Example 2. Figure (B) is a graph showing the results of compositional analysis of a cross-section of cotton cloth in the direction of arrow B in Figure (A) using energy dispersive X-ray spectroscopy, with the vertical axis showing the silver and carbon components. The spectrum intensity (Intensity) is shown, and the position (Point number) is shown on the horizontal axis. (A)図は、実施例3の非晶質シリカを内部に析出した試料の綿布の断面を走査型電子顕微鏡にて撮影した図面代用写真である。(B)図は、エネルギー分散型X線分光法を用いて(A)図中の矢印A方向に綿布断面の組成分析を行った結果を示したグラフであり、縦軸にシリコン成分とカーボン成分のスペクトル強度(Intensity)を示し、横軸に位置(Position)を示した。Figure (A) is a photograph substituted for a drawing taken by a scanning electron microscope of a cross section of a cotton cloth sample in which amorphous silica of Example 3 was precipitated. Figure (B) is a graph showing the results of compositional analysis of a cross section of cotton fabric in the direction of arrow A in Figure (A) using energy dispersive X-ray spectroscopy, with the vertical axis representing silicon and carbon components. The spectrum intensity (Intensity) is shown, and the position (Position) is shown on the horizontal axis. (A)図は、実施例4の試料としたカポック繊維の断面を走査型電子顕微鏡(SEM)にて撮影した図面代用写真である。(B)図は、実施例4の非晶質シリカを内部に析出した試料のカポック繊維の断面を走査型電子顕微鏡にて撮影した図面代用写真である。(A) is a photograph substituted for a drawing of a cross section of the kapok fiber used as a sample of Example 4, taken with a scanning electron microscope (SEM). Figure (B) is a photograph substituted for a drawing taken by a scanning electron microscope of a cross section of the kapok fiber of the sample in which amorphous silica was precipitated in Example 4. (C)図は、エネルギー分散型X線分光法を用いて図10の(B)図中の矢印A方向にカポック繊維断面の組成分析を行った結果を示したグラフであり、縦軸にシリコン成分とカーボン成分のスペクトル強度(Intensity)を示し、横軸に位置(Position)を示した。Figure 10 (C) is a graph showing the results of compositional analysis of a cross section of kapok fiber in the direction of arrow A in Figure 10 (B) using energy dispersive X-ray spectroscopy. The spectral intensities of the components and carbon components are shown, and the position is shown on the horizontal axis. (A)図は、実施例5のシリカを内部に析出した試料の多孔質体中空糸(東レ社製 MKC.MXJ(600L))の断面を走査型電子顕微鏡にて撮影した図面代用写真である。(B)図は、エネルギー分散型X線分光法を用いて(A)図中の矢印A方向に繊維断面の組成分析を行った結果を示したグラフであり、縦軸にシリコン成分とカーボン成分のスペクトル強度(Intensity)を示し、横軸に位置(Position)を示した。(A) Figure is a photograph substituted for a drawing taken using a scanning electron microscope of a cross section of a porous hollow fiber sample (MKC.MXJ (600L) manufactured by Toray Industries, Inc.) in which silica was precipitated inside in Example 5. . Figure (B) is a graph showing the results of compositional analysis of a fiber cross section in the direction of arrow A in Figure (A) using energy dispersive X-ray spectroscopy, with the vertical axis representing silicon and carbon components. The spectrum intensity (Intensity) is shown, and the position (Position) is shown on the horizontal axis. (A)図は、実施例6の、ゼオライトを内部に析出した試料の多孔質体中空繊維(住友電気工業社製、商品名:ポアフロン(登録商標)チューブ)の断面を走査型電子顕微鏡にて撮影した図面代用写真である。(A) Diagram shows a cross section of a sample porous hollow fiber (manufactured by Sumitomo Electric Industries, Ltd., trade name: POREFLON (registered trademark) tube) in which zeolite was precipitated inside in Example 6, taken with a scanning electron microscope. This photo is a substitute for the drawing I took. (B)図は、エネルギー分散型X線分光法を用いて実施例6の試料の組成分析をして得た、酸素、ナトリウム、シリコン、アルミニウム成分の分布状態を走査型電子顕微鏡にて撮影した図面代用写真である。(B) The figure shows the distribution of oxygen, sodium, silicon, and aluminum components obtained by analyzing the composition of the sample of Example 6 using energy dispersive X-ray spectroscopy, and photographing it with a scanning electron microscope. This photo is a substitute for a drawing. (C)図は、X線回折測定により得られた回折パターンを示した図面であり、実施例6におけるゼオライトのX線回折パターンを示した図であり、縦軸に回折X線強度(Intensity)を示し、横軸に回折角度(2Theta degree)を示した。(C) is a diagram showing the diffraction pattern obtained by X-ray diffraction measurement, and is a diagram showing the X-ray diffraction pattern of the zeolite in Example 6, where the vertical axis represents the diffraction X-ray intensity (Intensity). The horizontal axis shows the diffraction angle (2 Theta degree). 実施例7のポリイミドを内部に析出した試料の多孔質体中空糸(住友電気工業社製、商品名:ポアフロン(登録商標)チューブ)の断面を走査型電子顕微鏡にて撮影した図面代用写真である。This is a photograph substituted for a drawing taken using a scanning electron microscope of a cross section of a sample porous hollow fiber (manufactured by Sumitomo Electric Industries, Ltd., trade name: POREFLON (registered trademark) tube) in which polyimide of Example 7 was precipitated. . 実施例8のヒノキチオール結晶を内部に析出した試料の多孔質体中空繊維(住友電気工業社製、商品名:ポアフロン(登録商標)チューブ)の断面を走査型電子顕微鏡にて撮影した図面代用写真である。This is a photograph substituted for a drawing taken with a scanning electron microscope of a cross section of a sample porous hollow fiber (manufactured by Sumitomo Electric Industries, Ltd., trade name: POREFLON (registered trademark) tube) in which the hinokitiol crystals of Example 8 were precipitated inside. be. 実施例9のミョウバン結晶を内部に析出した試料の多孔質体中空繊維(住友電気工業社製、商品名:ポアフロン(登録商標)チューブ)の断面を走査型電子顕微鏡にて撮影した図面代用写真である。This is a photograph substituted for a drawing taken with a scanning electron microscope of a cross section of a sample porous hollow fiber (manufactured by Sumitomo Electric Industries, Ltd., trade name: POREFLON (registered trademark) tube) in which alum crystals of Example 9 were precipitated inside. be. (A)図は、実施例10のミョウバン結晶を内部に析出した試料の天然繊維(竹)の断面を走査型電子顕微鏡にて撮影した図面代用写真である。Figure (A) is a photograph substituted for a drawing taken by a scanning electron microscope of a cross section of a natural fiber (bamboo) sample in which alum crystals of Example 10 were precipitated. (B)図は、エネルギー分散型X線分光法を用いて実施例10の試料の組成分析をして得た、カーボン、硫黄、アルミニウム成分の分布状態を走査型電子顕微鏡にて撮影した図面代用写真である。(B) The figure is a drawing substituted for a scanning electron microscope photograph of the distribution state of carbon, sulfur, and aluminum components obtained by compositional analysis of the sample of Example 10 using energy dispersive X-ray spectroscopy. It's a photo. (A)図は、実施例11のミョウバン結晶を内部に析出した試料の天然繊維(杉)の断面を走査型電子顕微鏡にて撮影した図面代用写真である。(A) is a photograph substituted for a drawing of a cross section of a natural fiber (cedar) of a sample in which alum crystals of Example 11 were precipitated using a scanning electron microscope. (B)図は、エネルギー分散型X線分光法を用いて実施例11の試料の組成分析をして得た、カーボン、硫黄、アルミニウム成分の分布状態を走査型電子顕微鏡にて撮影した図面代用写真である。(B) The figure is a drawing substituted for a scanning electron microscope photograph of the distribution state of carbon, sulfur, and aluminum components obtained by compositional analysis of the sample of Example 11 using energy dispersive X-ray spectroscopy. It's a photo. 実施例12の加熱に用いた共振器型マイクロ波加熱装置の好ましい構成の一例を示した概略断面図である。12 is a schematic cross-sectional view showing an example of a preferable configuration of a resonator-type microwave heating device used for heating in Example 12. FIG. エネルギー分散型X線分光法を用いて、実施例12によって作製した綿布断面の組成分析を行った結果を示したグラフであり、縦軸に銀成分とカーボン成分のスペクトル強度(Intensity)を示し、横軸に位置(Position)を示した。This is a graph showing the results of a compositional analysis of a cross section of the cotton cloth produced in Example 12 using energy dispersive X-ray spectroscopy, with the vertical axis showing the spectral intensity (Intensity) of the silver component and the carbon component. Position is shown on the horizontal axis.

[機能性多孔質素材の製造方法]
以下に本発明の機能性多孔質素材の製造方法の好ましい一実施形態を、図面を参照して説明する。
[Method for producing functional porous material]
A preferred embodiment of the method for producing a functional porous material of the present invention will be described below with reference to the drawings.

図1には、原料とする多孔質素材110の一例として綿繊維111を示す。綿繊維111は、セルロースを多量に(例えば95質量%以上)含む細長い(例えば、長さ30mm程度)形状の綿細胞からなる。綿繊維111は、外側から、キューティクル層112とネットワーク層113とワインディング層114とを有する一次細胞壁115、二次細胞壁116及び内腔(ルーメン)117を有する。そして一次細胞壁115が二次細胞壁116を覆った多層構造をとる。一次細胞壁115及び二次細胞壁116はミクロフィブリルの集合体である。ミクロフィブリルは、ナノファイバー(セルロース分子)が複数本束ねられてなる。綿繊維111では、このミクロフィブリル間の間隙が多孔質素材としての孔を形成している。 FIG. 1 shows cotton fibers 111 as an example of the porous material 110 used as a raw material. The cotton fibers 111 are made of elongated (for example, about 30 mm in length) cotton cells that contain a large amount of cellulose (for example, 95% by mass or more). The cotton fiber 111 has, from the outside, a primary cell wall 115 having a cuticle layer 112, a network layer 113 and a winding layer 114, a secondary cell wall 116 and a lumen 117. A multilayer structure is formed in which the primary cell wall 115 covers the secondary cell wall 116. The primary cell wall 115 and the secondary cell wall 116 are aggregates of microfibrils. Microfibrils are made up of multiple nanofibers (cellulose molecules) bundled together. In the cotton fiber 111, the gaps between the microfibrils form pores as a porous material.

多孔質素材としては、上記綿繊維の他に、各種の植物繊維、動物繊維、鉱物繊維、若しくは化学繊維により構成されたものを用いることができる。これらの繊維が単繊維の場合には、当該短繊維を束ねた繊維束(例えば、糸)等を多孔質素材として用いることができる。この場合、単繊維間の隙間が多孔質素材の孔になる。
植物繊維には、各種の植物由来の繊維が挙げられる。一例として、綿、リネン、芭蕉、カボック(通称 パンヤ綿)等が挙げられる。動物繊維には、各種の動物由来の繊維が挙げられる。一例として、羊毛、カシミア、アンゴラ、アルパカ等の獣毛、絹、羽毛等が挙げられる。鉱物繊維としては、石綿、ロックウール等が挙げられる。化学繊維には、再生セルロース繊維、半合成繊維、合成繊維、高機能繊維、無機繊維が挙げられる。再生セルロース繊維には、一例として、レーヨン、キュプラ、リオセル等が挙げられる。半合成繊維には、一例として、アセテート、トリアセテート等が挙げられる。合成繊維には、一例として、ポリアミド系繊維、ポリエステル系繊維等が挙げられる。高機能繊維には、一例として、アラミド繊維、ポリイミド繊維等が挙げられる。無機繊維には、一例として、ガラス繊維、炭素繊維等が挙げられる。
上記化学繊維は、中空繊維(ナイロン中空繊維、ポリエステル中空繊維等)であってもよい。
上記多孔質素材は、上述した繊維で構成されるものの他、中空粒子(中空ポリメタクリル酸メチル粒子、中空シリカ粒子等)であってもよい。
また、これら以外にも、ミクロポーラス材料、メソポーラス材料、マクロポーラス材料等を多孔質素材として用いることができる。ミクロポーラス材料としては、活性炭、ゼオライト、シリカゲル等が挙げられる。メソポーラス材料としては、二酸化ケイ素(メソポーラスシリカ)、酸化アルミニウム等が挙げられ、ニオブ、タンタル、チタン、ジルコニウム、セリウム、錫等の酸化物が挙げられる。マクロポーラス材料としては、軽石、ウレタンスポンジ等が挙げられる。IUPAC(国際純正応用化学連合)の定義では、多孔質材料は孔径分布で分類されており、孔径が、2nm未満のものをミクロポーラス、2~50nmのものをメソポーラス、50nmより大きいものをマクロポーラスと規定する。孔径分布は、ガス吸着法(例えば、N吸着-BJH(Barrett,Joyner,Hallender)法、N吸着-DFT(Density Functional Theory)法等)、水銀圧入法等によって求めることができる。
上記多孔質素材としては、少なくとも多孔質素材を含む複合素材を挙げることができる。複合素材としては、綿素材とケイ素とを含む複合素材を挙げることができ、例えば、該綿素材の外表面より内部及び/又は該綿素材組織内のケイ素濃度が高い形態を挙げることができる。なお、この複合素材は、そのまま後述の機能性多孔質素材として用いることもできる。
また、上記多孔質素材としては、炭素を構造として持つ多孔質中空繊維を挙げることができる。例えば、該多孔質中空繊維の中空部分及び/又は内表面にゼオライトを保持している形態として、後述する機能性多孔質素材として用いることができる。
In addition to the above-mentioned cotton fibers, the porous material may be made of various plant fibers, animal fibers, mineral fibers, or chemical fibers. When these fibers are single fibers, a fiber bundle (for example, thread) made of the short fibers can be used as the porous material. In this case, the gaps between the single fibers become pores in the porous material.
Plant fibers include fibers derived from various plants. Examples include cotton, linen, Basho, Kabok (commonly known as Panya cotton), etc. Animal fibers include fibers derived from various animals. Examples include wool, cashmere, animal hair such as angora and alpaca, silk, and feathers. Examples of mineral fibers include asbestos and rock wool. Chemical fibers include regenerated cellulose fibers, semi-synthetic fibers, synthetic fibers, high-performance fibers, and inorganic fibers. Examples of regenerated cellulose fibers include rayon, cupra, and lyocell. Examples of semi-synthetic fibers include acetate, triacetate, and the like. Examples of synthetic fibers include polyamide fibers and polyester fibers. Examples of high-performance fibers include aramid fibers and polyimide fibers. Examples of inorganic fibers include glass fibers and carbon fibers.
The chemical fibers may be hollow fibers (nylon hollow fibers, polyester hollow fibers, etc.).
The porous material may be made of hollow particles (hollow polymethyl methacrylate particles, hollow silica particles, etc.) in addition to being made of the fibers described above.
In addition to these, microporous materials, mesoporous materials, macroporous materials, etc. can be used as the porous material. Examples of microporous materials include activated carbon, zeolite, and silica gel. Examples of mesoporous materials include silicon dioxide (mesoporous silica), aluminum oxide, and oxides of niobium, tantalum, titanium, zirconium, cerium, tin, and the like. Examples of macroporous materials include pumice, urethane sponge, and the like. According to the definition of IUPAC (International Union of Pure and Applied Chemistry), porous materials are classified according to their pore size distribution: those with a pore size of less than 2 nm are called microporous, those with a pore size of 2 to 50 nm are called mesoporous, and those with a pore size of more than 50 nm are called macroporous. It is stipulated that The pore size distribution can be determined by a gas adsorption method (eg, N 2 adsorption-BJH (Barrett, Joyner, Hallender) method, N 2 adsorption-DFT (Density Functional Theory) method, etc.), mercury intrusion method, etc.
Examples of the porous material include composite materials containing at least a porous material. Examples of the composite material include a composite material containing a cotton material and silicon, and for example, a form in which the silicon concentration inside the cotton material and/or within the structure of the cotton material is higher than on the outer surface of the cotton material can be mentioned. Note that this composite material can also be used as it is as a functional porous material described below.
Furthermore, examples of the porous material include porous hollow fibers having carbon as a structure. For example, the porous hollow fiber can be used as a functional porous material described below in a form in which zeolite is held in the hollow portion and/or the inner surface.

続いて本発明の多孔質素材の製造方法の好ましい一例を説明する。図2~5は、多孔質素材110として図1に示した綿繊維111を用いる場合を模式的に示したものである。なお、図2及び3では模式的に2本の綿繊維を示し、図4及び5では模式的に1本の綿繊維を示した。
まず、図2に示すように、綿繊維111に、反応原料溶液を浸透させる(浸透工程)。具体的には、容器(図示せず)に入れた反応原料溶液(図示せず)中に綿繊維111を浸漬して、綿繊維111中に反応原料溶液を浸透させる。この浸透工程は、例えば、液温が15℃~30℃、大気圧(例えば、平地における大気圧)状態にて行うことができる。その結果、図3に示すように、綿繊維111の表面及び/又は表面近傍の綿繊維111の孔内や綿繊維組織内(すなわち綿繊維111の孔内及び/又は綿繊維組織内)に毛管現象によって反応原料溶液が浸透する。表面とは、綿繊維111の最も外側の外表面111Sをいう。孔内とは、綿繊維111のミクロフィブリル間の間隙内(図示せず)をいう。図面においては、綿繊維111の断面の色の濃い部分が反応原料溶液の浸透領域121を示す。浸透領域121は、綿繊維111の外表面111Sから内部方向に向かって分布する。この状態では、綿繊維111の半径方向内腔117側より表面側(キューティクル層112側)に反応原料溶液が多く浸透する。反応原料溶液の浸透を促進するために、浸透工程を減圧状態で行ってもよい。たとえば、0.01~1気圧で実施すると、綿繊維内/繊維間に保持されていた空気の排出が促進され、その部分に反応原料溶液の保持量を増やすことができる。
ここで、綿繊維は極性を有し極性溶媒になじみやすいため、反応原料溶液の媒体としては、水、水溶性有機溶媒、又はこれらの混合液を用いることが好ましい。多孔質素材が合成繊維のように比較的極性が低く、水となじみにくい物性の場合には、反応原料溶液の媒体としては、より疎水性の高い溶媒を用いることが好ましい。
Next, a preferred example of the method for manufacturing the porous material of the present invention will be explained. 2 to 5 schematically show the case where the cotton fiber 111 shown in FIG. 1 is used as the porous material 110. Note that FIGS. 2 and 3 schematically show two cotton fibers, and FIGS. 4 and 5 schematically show one cotton fiber.
First, as shown in FIG. 2, a reaction raw material solution is infiltrated into the cotton fibers 111 (infiltration step). Specifically, the cotton fibers 111 are immersed in a reaction raw material solution (not shown) placed in a container (not shown), so that the reaction raw material solution permeates into the cotton fibers 111. This infiltration step can be carried out, for example, at a liquid temperature of 15° C. to 30° C. and at atmospheric pressure (for example, atmospheric pressure on flat ground). As a result, as shown in FIG. 3, capillaries are formed on the surface of the cotton fiber 111 and/or within the pores and cotton fiber structure of the cotton fiber 111 near the surface (that is, within the pores of the cotton fiber 111 and/or within the cotton fiber structure). This phenomenon causes the reaction raw material solution to permeate. The surface refers to the outermost outer surface 111S of the cotton fiber 111. The inside of the pores refers to the spaces between the microfibrils of the cotton fibers 111 (not shown). In the drawing, the darker colored portion of the cross section of the cotton fiber 111 indicates the permeation region 121 of the reaction raw material solution. The permeation region 121 is distributed from the outer surface 111S of the cotton fiber 111 toward the inside. In this state, more of the reaction raw material solution permeates into the surface side (cuticle layer 112 side) of the cotton fibers 111 than on the radial lumen 117 side. In order to promote permeation of the reaction raw material solution, the permeation step may be performed under reduced pressure. For example, if the reaction is carried out at a pressure of 0.01 to 1 atm, the air retained in/between the cotton fibers will be expelled, and the amount of reaction raw material solution retained in that area can be increased.
Here, since cotton fibers have polarity and are easily compatible with polar solvents, it is preferable to use water, a water-soluble organic solvent, or a mixture thereof as a medium for the reaction raw material solution. When the porous material has relatively low polarity and physical properties that make it difficult to mix with water, such as synthetic fibers, it is preferable to use a more hydrophobic solvent as the medium for the reaction raw material solution.

反応原料溶液には、例えば、金属前駆体(金属塩)を含ませることができる。この場合、反応生成物を析出金属とすることができる。
一例として、金属前駆体が銀塩の場合、反応原料溶液として、硝酸銀を、金属に対する還元作用を示す溶媒(例えばアルコール、又はアルコールと水の混合溶媒)に溶解してなる溶液を用いることができる。アルコールとしては、メタノール、エタノール、エチレングリコール、ジエチレングリコール、プロピレングリコール、テトラエチレングリコール、グリセロール、ベンジルアルコール、ジプロピレングリコール等を挙げることができる。また、金属前駆体は銀塩に限られず、銅、白金、パラジウム、ルテニウム、ニッケル、コバルト、鉄、アルミニウム、チタン、金、クロム、亜鉛等の種々の金属塩を用いることができる。
また、反応原料溶液と反応生成物の組み合わせとしては、上述した金属前駆体と析出金属の他、例えば、金属水酸化物と酸化物の組み合わせ、金属アルコキシドと金属酸化物の組み合わせ、有機物モノマーと高分子重合体の組み合わせ、配位子(リガンド)と金属錯体の組み合わせ等を挙げることができる。
For example, a metal precursor (metal salt) can be included in the reaction raw material solution. In this case, the reaction product can be the precipitated metal.
For example, when the metal precursor is a silver salt, a solution obtained by dissolving silver nitrate in a solvent that exhibits a reducing action on metals (for example, alcohol or a mixed solvent of alcohol and water) can be used as the reaction raw material solution. . Examples of the alcohol include methanol, ethanol, ethylene glycol, diethylene glycol, propylene glycol, tetraethylene glycol, glycerol, benzyl alcohol, dipropylene glycol, and the like. Furthermore, the metal precursor is not limited to silver salts, and various metal salts such as copper, platinum, palladium, ruthenium, nickel, cobalt, iron, aluminum, titanium, gold, chromium, and zinc can be used.
In addition to the metal precursor and precipitated metal described above, combinations of the reaction raw material solution and reaction product include, for example, a combination of a metal hydroxide and an oxide, a combination of a metal alkoxide and a metal oxide, a combination of an organic monomer and a high Examples include combinations of molecular polymers, combinations of ligands and metal complexes, and the like.

反応原料溶液が浸透した綿繊維111から、必要により綿繊維111が保持できる反応原料溶液量を超える余剰の反応原料溶液を取り除く。例えば、軽く絞ることによって余剰の反応原料溶液を取り除くことができる。次いで、図4に示すように、容器131に入れた反応原料溶液とは非相溶性の溶媒132内に、綿繊維111を浸漬する。そして容器131内を密閉するように蓋133を被せることが好ましい。軽く絞るとは、液が垂れない程度に絞ることをいう。
溶媒132が反応原料溶液と非相溶性であるとは、溶媒132が反応原料溶液の溶媒と実質的に相溶しないことを意味する。すなわち、25℃において両溶媒が混じり合わずに各々独立した相で存在する関係を意味する。この場合において、本発明の効果を損なわない範囲であれば、両溶媒の界面付近において両溶媒が完全に相分離しておらず、互いに混じり合う領域が生じる関係にあってよい。より具体的に説明すると、実質的に相溶しない関係とは、25℃において溶媒132に対して反応原料溶液の溶媒の溶解度が10g/100g以下が好ましく、5g/100g以下がより好ましく、1g/100g以下がさらに好ましい。
例えば、多孔質素材として綿繊維を用い、反応原料溶液として水、水溶性有機溶媒、又はこれらの混合液(すなわち極性溶媒(親水性溶媒))を用いた場合には、溶媒132としては非極性溶媒(疎水性溶媒)を用いる。例えば、溶媒132として、ドデカン、デカン、ヘキサン、トルエン、ベンゼン、ナフタレン、フロリナート(商品名)、ハイドロフルオロオレフィン、シリコーンオイル、直鎖アルカン類、環状アルカン類、直鎖不飽和炭化水素類、環式不飽和炭化水素、芳香族類、フロン類、鉱油、植物油等を用いることができる。溶媒132の温度は特に制限されず、目的に応じて適宜に設定される。例えば-100℃~300℃とすることができる。
If necessary, excess reaction raw material solution exceeding the amount of reaction raw material solution that the cotton fibers 111 can hold is removed from the cotton fibers 111 into which the reaction raw material solution has permeated. For example, excess reaction raw material solution can be removed by gently squeezing. Next, as shown in FIG. 4, the cotton fibers 111 are immersed in a solvent 132 that is incompatible with the reaction raw material solution placed in a container 131. Then, it is preferable to cover the container 131 with a lid 133 so as to seal the inside thereof. Lightly squeezing means squeezing the liquid to the extent that it does not drip.
The fact that the solvent 132 is incompatible with the reaction raw material solution means that the solvent 132 is not substantially compatible with the solvent of the reaction raw material solution. That is, it means a relationship in which both solvents do not mix and exist as independent phases at 25°C. In this case, as long as the effects of the present invention are not impaired, there may be a relationship in which the two solvents are not completely phase-separated near the interface, but a region where they are mixed with each other. To explain more specifically, the relationship of substantially incompatibility means that the solubility of the solvent of the reaction raw material solution in the solvent 132 at 25° C. is preferably 10 g/100 g or less, more preferably 5 g/100 g or less, and 1 g/132. More preferably, it is 100g or less.
For example, when cotton fiber is used as the porous material and water, a water-soluble organic solvent, or a mixture thereof (i.e., a polar solvent (hydrophilic solvent)) is used as the reaction raw material solution, the solvent 132 is a non-polar one. Use a solvent (hydrophobic solvent). For example, as the solvent 132, dodecane, decane, hexane, toluene, benzene, naphthalene, Fluorinert (trade name), hydrofluoroolefin, silicone oil, linear alkanes, cyclic alkanes, linear unsaturated hydrocarbons, cyclic Unsaturated hydrocarbons, aromatics, fluorocarbons, mineral oil, vegetable oil, etc. can be used. The temperature of the solvent 132 is not particularly limited, and is appropriately set depending on the purpose. For example, the temperature can be -100°C to 300°C.

図4の形態において、綿繊維111に含浸した溶媒132に非相溶性の反応原料溶液は、溶媒132の液圧によって、綿繊維111の外表面111S側からミクロフィブリル間の間隙(孔内)を通してさらに綿繊維111の内部方向や綿繊維(素材)組織内、すなわち綿繊維111の内部方向及び/又は綿繊維(素材)組織内へと移行する(移行工程)。なお、毛管力がさらに働く場合には、綿繊維111の内部に浸透した反応原料溶液はミクロフィブリル間の間隙を通ってさらに内部へと移行する。したがって、反応原料溶液の浸透領域121は、綿繊維111の外表面111Sから綿繊維111の内部方向へと移行する。この結果、綿繊維111の外表面111S側から綿繊維111の内部方向に向かって反応原料溶液が多く存在するようになる。 In the form of FIG. 4, the reaction raw material solution that is incompatible with the solvent 132 impregnated into the cotton fiber 111 is passed from the outer surface 111S side of the cotton fiber 111 through the gaps (inside the pores) between the microfibrils by the hydraulic pressure of the solvent 132. Furthermore, it migrates in the inner direction of the cotton fibers 111 and into the cotton fiber (material) structure, that is, into the inner direction of the cotton fibers 111 and/or into the cotton fiber (material) structure (transfer step). Note that when the capillary force acts further, the reaction raw material solution that has permeated into the inside of the cotton fibers 111 moves further into the inside through the gaps between the microfibrils. Therefore, the permeation region 121 of the reaction raw material solution moves from the outer surface 111S of the cotton fiber 111 toward the inside of the cotton fiber 111. As a result, a large amount of the reaction raw material solution exists from the outer surface 111S side of the cotton fiber 111 toward the inside of the cotton fiber 111.

図4に示す形態では、綿繊維111を浸漬した溶媒132に圧力Pをかけている。圧力Pは、容器外部から、気体圧若しくは液体圧を加えてもよい。また、容器そのものに加圧シリンダを装備し、シリンダに動力を加えて加圧することもできる。若しくは容器を密閉し、溶液を加熱することで溶液の体積膨張や蒸気圧の発生により加圧してもよい。若しくは主溶媒の他に主溶媒よりも沸点が低い溶媒を加えて、加熱により気化させて加圧することも可能である。このように溶媒132の表面に大気圧よりも高い圧力がかかることによって、反応原料溶液が綿繊維111のミクロフィブリル間の間隙(孔内)を通って、さらに内部へと押し込まれるようになる。この結果、反応原料溶液は、綿繊維111の表面から内部へとより強い圧力によって移行し、綿繊維111の内腔117の内表面ないしその近傍にまで反応原料溶液を移行させることも可能となる。本発明の製造方法では、化学反応の開始前に圧力をかけてから化学反応を開始してもよく、また、化学反応を生じさせながら当該圧力をかける形態とすることもできる。また、この圧力の大きさは、多孔質素材の種類等に応じて適宜に設定することができる。例えば、1.05~20気圧程度とすることができ、1.1~10気圧程度としてもよい。 In the embodiment shown in FIG. 4, pressure P is applied to the solvent 132 in which the cotton fibers 111 are soaked. For the pressure P, gas pressure or liquid pressure may be applied from outside the container. It is also possible to equip the container itself with a pressure cylinder and pressurize it by applying power to the cylinder. Alternatively, the pressure may be increased by sealing the container and heating the solution to expand its volume or generate vapor pressure. Alternatively, it is also possible to add a solvent having a boiling point lower than that of the main solvent to the main solvent, vaporize it by heating, and pressurize it. By applying a pressure higher than atmospheric pressure to the surface of the solvent 132 in this manner, the reaction raw material solution passes through the gaps (inside the pores) between the microfibrils of the cotton fibers 111 and is forced further into the interior. As a result, the reaction raw material solution is transferred from the surface to the inside of the cotton fiber 111 under stronger pressure, and it is also possible to transfer the reaction raw material solution to the inner surface of the inner cavity 117 of the cotton fiber 111 or the vicinity thereof. . In the manufacturing method of the present invention, the chemical reaction may be started after applying pressure before starting the chemical reaction, or the pressure may be applied while the chemical reaction is occurring. Further, the magnitude of this pressure can be appropriately set depending on the type of porous material, etc. For example, the pressure may be approximately 1.05 to 20 atmospheres, or approximately 1.1 to 10 atmospheres.

次に図5に示すように、綿繊維111に含浸された反応原料溶液の浸透領域121を所定の反応温度に加熱するなどして、その中の反応原料溶液に化学反応を生じさせる。反応原料溶液が上述した金属塩と還元剤を含む場合、加熱により金属塩が還元されて金属を析出させることができる。 Next, as shown in FIG. 5, the permeation region 121 of the reaction raw material solution impregnated into the cotton fiber 111 is heated to a predetermined reaction temperature to cause a chemical reaction in the reaction raw material solution therein. When the reaction raw material solution contains the above-mentioned metal salt and reducing agent, the metal salt can be reduced by heating and the metal can be precipitated.

上記加熱方法の一例として、容器131に入れた溶媒132中の綿繊維111にマイクロ波MWを照射する。そして、綿繊維111に含浸された反応原料溶液の浸透領域121を所定の反応温度へと加熱制御して、その中の金属前駆体(図示せず)を加熱する形態を挙げることができる。所定の反応温度は、目的の反応の種類によって適宜に設定される。すなわち、目的の反応が生じる温度以上とし、また、溶媒132の沸点未満の温度とすることが好ましい。容器131には、マイクロ波MWを吸収しにくい、例えば、ポリテトラフルオロエチレン製(例えば、テフロン(登録商標)製)、石英製、セラミック製、酸化アルミニウム(アルミナ)製、ポリエーテルエーテルケトン(PEEK)製、アクリル(商品名)樹脂製などを用いることが好ましい。上記マイクロ波MWには、一般にマイクロ波周波数2~4GHzのSバンドを用いることができる。又は900~930MHzや、5.725~5.875GHzを用いることもできる。また、これ以外の周波数のマイクロ波を用いてもよい。
上記のようなマイクロ波MWの照射は、反応原料溶液の硝酸銀が直接発熱するため短時間に加熱でき、また熱伝導に起因する温度ムラが少なくできる点で好ましい。さらに非接触で加熱でき、マイクロ波MWの吸収の良い硝酸銀を選択的に加熱できる点でも好ましい。
マイクロ波照射はマルチモードでもシングルモードでもよく、目的の部位を効率的に、均一に加熱する観点ではシングルモードのマイクロ波照射を採用することが好ましい。
なお、加熱は、マイクロ波加熱に限定されない。例えば、光加熱であってもよい。またその他の加熱手段による加熱であっても良い。また、加熱は反応原料溶液に対して選択的に行ってもよいし、綿繊維や溶媒を加熱して間接的に反応原料溶液を加熱してもよい。
さらに、加熱手段以外による反応促進を用いることもできる。例えば、光重合では紫外線や可視光の照射でもよい。また、超音波の照射による反応促進も利用できる。若しくは衝撃波など圧力を反応開始に利用ができる。若しくはゆるやかな反応の場合は、単に静置することも有効な反応制御方法である。また、結晶化や析出など低温で促進される反応では、低温環境に保持するのも、有効な反応制御方法である。
As an example of the above heating method, the cotton fibers 111 in the solvent 132 placed in the container 131 are irradiated with microwave MW. An example of this method is to heat the permeation region 121 of the reaction raw material solution impregnated into the cotton fiber 111 to a predetermined reaction temperature, thereby heating the metal precursor (not shown) therein. The predetermined reaction temperature is appropriately set depending on the type of desired reaction. That is, it is preferable that the temperature is higher than the temperature at which the desired reaction occurs and lower than the boiling point of the solvent 132. The container 131 is made of a material that is difficult to absorb microwave MW, such as polytetrafluoroethylene (e.g., Teflon (registered trademark)), quartz, ceramic, aluminum oxide (alumina), or polyetheretherketone (PEEK). ), acrylic (trade name) resin, etc. are preferably used. The microwave MW can generally use an S band microwave frequency of 2 to 4 GHz. Alternatively, 900 to 930 MHz or 5.725 to 5.875 GHz can also be used. Further, microwaves having frequencies other than these may be used.
The above-mentioned microwave MW irradiation is preferable because silver nitrate in the reaction raw material solution directly generates heat, so it can be heated in a short time, and temperature unevenness caused by heat conduction can be reduced. Furthermore, it is preferable because it can be heated without contact and can selectively heat silver nitrate, which has good absorption of microwave MW.
Microwave irradiation may be in either multi-mode or single mode, and single-mode microwave irradiation is preferably employed from the viewpoint of efficiently and uniformly heating the target region.
Note that heating is not limited to microwave heating. For example, optical heating may be used. Heating may also be performed using other heating means. Further, heating may be performed selectively on the reaction raw material solution, or the reaction raw material solution may be heated indirectly by heating cotton fibers or a solvent.
Furthermore, reaction promotion by means other than heating means can also be used. For example, in photopolymerization, irradiation with ultraviolet rays or visible light may be used. Further, reaction acceleration by irradiation with ultrasonic waves can also be used. Alternatively, pressure such as shock waves can be used to initiate the reaction. Alternatively, in the case of a slow reaction, simply leaving it standing is also an effective reaction control method. In addition, for reactions that are promoted at low temperatures, such as crystallization and precipitation, maintaining the reaction in a low temperature environment is an effective reaction control method.

上記加熱によって、綿繊維111内の浸透領域121で選択的に化学反応を生じさせて化学物質を生成する。例えば、金属前駆体から金属を析出させる。 The heating selectively causes a chemical reaction in the permeation region 121 within the cotton fiber 111 to produce a chemical substance. For example, metals are deposited from metal precursors.

その後、溶媒132から綿繊維111を取出し、必要により所望の溶媒中に浸漬するなどして洗浄し、次いで乾燥し、目的の機能性多孔質素材を得ることができる。洗浄は、エタノールに浸漬し、超音波洗浄機にて洗浄することが好ましい。また乾燥は、大気中における自然乾燥若しくは電気炉による加熱乾燥によって行うことができる。若しくは、空気や窒素などと接触させて乾燥させることも有効である。また、上記洗浄は、水若しくはアルコールなどの液体に浸漬して洗浄してもよく、流水や流動状態の液体に接触させて洗浄してもよい。 Thereafter, the cotton fibers 111 are taken out from the solvent 132, washed by immersion in a desired solvent if necessary, and then dried to obtain the desired functional porous material. For cleaning, it is preferable to immerse it in ethanol and use an ultrasonic cleaner. Further, drying can be carried out by natural drying in the atmosphere or heating drying using an electric furnace. Alternatively, drying by contacting with air, nitrogen, etc. is also effective. Further, the above-mentioned cleaning may be performed by immersing in a liquid such as water or alcohol, or by contacting with running water or a liquid in a fluid state.

上記にようにして作製した綿繊維111は、図6に示すように、二次細胞壁116のミクロフィブリル118間に機能性化学物質(金属等)を有する。 The cotton fiber 111 produced as described above has a functional chemical substance (metal, etc.) between the microfibrils 118 of the secondary cell wall 116, as shown in FIG.

上記実施形態では、主に、多孔質素材に親水性の綿繊維111を用いた場合に焦点をあてて説明したが、多孔質素材は上述した通り、綿繊維に限られない。
すなわち、反応原料溶液には疎水性の反応原料溶液を用いて、その反応原料溶液を疎水性の多孔質素材の孔内に浸透させ、さらに、その多孔質素材を反応原料溶液に対して非相溶性の親水性の溶媒に浸漬することによって、反応原料溶液を多孔質素材の孔内のより内部へと移行させることもできる。そして、多孔質素材内部へと移行させた反応原料溶液に化学反応を生じさせることによって、綿繊維と同様に、多孔質素材の表面よりもその内部に多く化学物質(例えば金属)を生成することができる。
また、化学反応は、上述のように加熱によることができるが、加熱に限定されるものではなく、反応原料の種類によって、光(放射線)照射、超音波照射、衝撃波照射、静置、冷却等の手段を用いることもできる。
本発明において化学反応という用語は広義の意味に用いる。すなわち、化学物質が反応して別の化学物質へと変化することの他、化学物質の状態の変化も、本発明における化学反応に包含される。例えば、化学物質自体の変化を生じない結晶化もしくは析出も本発明における化学反応に包含される。本発明の機能性多孔質素材の製造方法を適用する化学反応の好ましい例としては、例えば、酸化反応、還元反応、重合反応、縮合反応、置換反応結晶化及び析出があげられる。
具体的な例として、上述のように上記反応原料溶液が金属前駆体を含み、上記化学反応が、上記金属前駆体から金属を析出する反応である形態を挙げることができる。
また、上記反応原料溶液がアルコキシシラン化合物(好ましくはテトラアルコキシシラン)を含み、上記化学反応が、上記アルコキシシラン化合物の加水分解とそれに続く縮重合によりシリカを生じる反応である形態を挙げることができる。
また、上記化学反応が、上記反応原料溶液中の化学物質の結晶化や析出である形態を挙げることができる。
また、上記反応原料溶液が、シリカ源、アルカリ源及び水を含み、又は、シリカ源、アルカリ源及び水に加えケイ素を置換可能な金属源を含み、上記化学反応がゼオライトを生じる反応である形態を挙げることができる。シリカ源としてはコロイダルシリカ、テトラエトキシシラン(TEOS)等を挙げることができる。アルカリ源としてはアルカリ土類金属カチオン、アルキルアンモニウムカチオン等を挙げることができる。ケイ素を置換可能な金属源としてはアルミナ、チタン等を挙げることができる。
さらに、上記反応原料溶液がポリアミック酸を含み、上記化学反応が上記ポリアミック酸の脱水閉環反応によりポリイミドを生じる反応である形態を挙げることができる。
In the above embodiment, the description has been mainly focused on the case where hydrophilic cotton fibers 111 are used as the porous material, but as described above, the porous material is not limited to cotton fibers.
That is, a hydrophobic reaction raw material solution is used as the reaction raw material solution, the reaction raw material solution is infiltrated into the pores of a hydrophobic porous material, and the porous material is further incompatible with the reaction raw material solution. By immersing it in a soluble hydrophilic solvent, the reaction raw material solution can also be moved deeper into the pores of the porous material. Then, by causing a chemical reaction in the reaction raw material solution transferred into the porous material, more chemical substances (for example, metals) are generated inside the porous material than on the surface, similar to cotton fibers. I can do it.
In addition, chemical reactions can be carried out by heating as described above, but are not limited to heating. Depending on the type of reaction raw materials, chemical reactions may be carried out by light (radiation) irradiation, ultrasonic irradiation, shock wave irradiation, standing still, cooling, etc. It is also possible to use the following means.
In the present invention, the term chemical reaction is used in a broad sense. That is, in addition to the reaction of a chemical substance to change into another chemical substance, a change in the state of a chemical substance is also included in the chemical reaction in the present invention. For example, crystallization or precipitation that does not cause a change in the chemical substance itself is also included in the chemical reaction in the present invention. Preferred examples of chemical reactions to which the method for producing a functional porous material of the present invention is applied include oxidation reactions, reduction reactions, polymerization reactions, condensation reactions, substitution reactions, crystallization, and precipitation.
As a specific example, as described above, the reaction raw material solution includes a metal precursor, and the chemical reaction is a reaction that precipitates a metal from the metal precursor.
Further, an embodiment may be mentioned in which the reaction raw material solution contains an alkoxysilane compound (preferably tetraalkoxysilane), and the chemical reaction is a reaction that produces silica through hydrolysis of the alkoxysilane compound and subsequent polycondensation. .
Another example is a form in which the chemical reaction is crystallization or precipitation of a chemical substance in the reaction raw material solution.
In addition, the reaction raw material solution contains a silica source, an alkali source, and water, or contains a metal source capable of replacing silicon in addition to the silica source, an alkali source, and water, and the chemical reaction is a reaction that produces zeolite. can be mentioned. Examples of the silica source include colloidal silica and tetraethoxysilane (TEOS). Examples of the alkali source include alkaline earth metal cations and alkylammonium cations. Examples of metal sources that can replace silicon include alumina, titanium, and the like.
Furthermore, an embodiment may be mentioned in which the reaction raw material solution contains a polyamic acid, and the chemical reaction is a reaction that produces polyimide through a dehydration ring-closing reaction of the polyamic acid.

[機能性多孔質素材]
本発明の機能性多孔質素材は、上記説明した多孔質素材において、その孔内に機能性化学物質を内包するものである。内包とは、多孔質素材の外表面より内部側の孔内に機能性化学物質がより多く存在することを意味する。本発明の機能性多孔質素材が、その孔内に機能性化学物質を内包することにより、機能性多孔質素材が摩擦等に曝されても機能性を長期に亘り発現することができ、また人体等と接触させても機能性化学物質の皮膚等への直接的な接触を防ぎ又は抑えることができる。
機能性化学物質は、導電機能、抗菌機能、抗ウィルス機能、防カビ機能、防ダニ機能、生物忌避機能、調湿機能、保温機能、発熱機能、吸熱機能、冷感機能、脱臭機能、消臭機能、芳香性、有害物質捕獲機能、有害物質無害化機能、薬品徐放性機能、発色機能、発光機能、紫外線遮蔽機能、電磁波遮蔽機能、絶縁機能、誘電性、磁性、電磁波反射機能、紫外線・可視光線・赤外線吸収機能、紫外線・可視光線・赤外線反射機能、防音機能、遮熱機能、防炎機能、防火機能、難燃性、防汚機能、制電機能、帯電防止機能、撥水機能、親水機能、形状記憶機能、形態安定機能、衝撃吸収機能、耐切創機能、鎮静作用の少なくともいずれか一つを有することが好ましい。具体的には、銀、銅、白金、パラジウム、錫、ニッケル、コバルト、金等の種々の金属若しくはそれらの金属を含む化合物が挙げられる。また、導電性高分子、ゼオライト、層状化合物、粘土、シリカゲル、無機結晶、有機結晶、アモルファス粒子、マイクロカプセル、ナノ細孔材料、半導体材料、誘電体材料、磁性材料、圧電材、熱電材料、光触媒、発光材、蛍光材、蓄光材、酸化チタン、保水材、吸水性ポリマー、活性炭、難燃剤、消火剤、断熱材、蓄熱材、保温剤香料、衝撃吸収材、顔料、インク、鎮静剤、精神安定剤、医薬品、抗菌材、抗ウィルス材、防カビ材等を挙げることができる。
[Functional porous material]
The functional porous material of the present invention is the above-described porous material that encapsulates a functional chemical substance within its pores. Encapsulation means that the functional chemical substance is present more in the pores on the inner side than on the outer surface of the porous material. The functional porous material of the present invention can exhibit functionality for a long period of time even when exposed to friction etc. by encapsulating a functional chemical substance in its pores, and Even if the functional chemical substance comes into contact with the human body, direct contact with the skin, etc. can be prevented or suppressed.
Functional chemical substances include conductive function, antibacterial function, antiviral function, anti-mold function, anti-mite function, biological repellent function, humidity control function, heat retention function, heat generation function, heat absorption function, cooling function, deodorizing function, and deodorizing function. Function, aroma, harmful substance capture function, harmful substance detoxification function, drug sustained release function, coloring function, luminescence function, ultraviolet shielding function, electromagnetic wave shielding function, insulation function, dielectricity, magnetism, electromagnetic wave reflection function, ultraviolet rays, Visible light/infrared absorption function, ultraviolet/visible light/infrared reflection function, soundproofing function, heat shielding function, flameproofing function, fireproofing function, flame retardant function, antifouling function, antistatic function, antistatic function, water repellent function, It is preferable to have at least one of a hydrophilic function, a shape memory function, a shape stabilizing function, a shock absorbing function, a cut resistance function, and a sedative effect. Specific examples include various metals such as silver, copper, platinum, palladium, tin, nickel, cobalt, and gold, or compounds containing these metals. Also, conductive polymers, zeolites, layered compounds, clay, silica gel, inorganic crystals, organic crystals, amorphous particles, microcapsules, nanopore materials, semiconductor materials, dielectric materials, magnetic materials, piezoelectric materials, thermoelectric materials, photocatalysts. , luminescent material, fluorescent material, phosphorescent material, titanium oxide, water retaining material, water absorbing polymer, activated carbon, flame retardant, fire extinguisher, heat insulating material, heat storage material, heat retaining fragrance, shock absorbing material, pigment, ink, sedative, spirit Examples include stabilizers, pharmaceuticals, antibacterial materials, antiviral materials, and antifungal materials.

以下に、本発明を実施例に基づいてさらに詳細に説明するが、本発明はこれらに限定して解釈されるものではない。 EXAMPLES The present invention will be described in more detail below based on Examples, but the present invention is not to be construed as being limited to these.

上記した合成方法を用いて、繊維内部に銀を含有している綿布を製造したのでその詳細について説明する。 A cotton cloth containing silver inside the fibers was manufactured using the above-mentioned synthesis method, and the details thereof will be explained below.

[実施例1]
実施例1は、試料を以下のように作製した。市販されている白色の綿布(5cm(縦)×17cm(横)×0.25mm(厚さ)、目付け300g/m)を測定試料とした。綿布の厚さは、測定領域に100g/cmの圧力をかけたときに測定した厚さである。
その測定試料を、反応原料溶液の硝酸銀1Mを溶解させたエチレングリコール溶液(3ml)に5分間浸漬して、全量を吸収させた。
この綿布とドデカン(15ml)をテフロン(登録商標)製の容器(容量:100ml)に入れて、綿布をドデカン中に3分間浸漬し、綿繊維の表面又はその近傍に存在する反応原料溶液を綿布の綿繊維の孔内内部や綿繊維組織内へと移行させた。その後、テフロン(登録商標)製の蓋を被せて密閉し、マイクロ波加熱を行った。マイクロ波加熱装置としてMicroSYNTH(商品名)(マイルストーンゼネラル株式会社製)を用い、溶媒の温度を150℃、加熱開始時の容器内圧力を1気圧(101kPa)にして5分間の加熱を行った。なお、150℃到達時の容器内圧力は1.2気圧であった。この容器内圧力の上昇は、硝酸銀溶液中に含まれる水分が気体になったためと推察される。温度測定は、光ファイバー温度計を用いて、ドデカンの温度を測定した。圧力測定は、MicroSYNTH付属の圧力センサーを用いて、容器内の圧力を測定した。
加熱後、容器を50℃まで冷却して、容器から綿布を取り出した。そして、洗浄し、乾燥した。洗浄は、綿布をエタノールに浸漬して、超音波洗浄器にて3分間洗浄した。また、乾燥は、綿布を室温の大気中にて24時間自然乾燥した。
その後、走査型電子顕微鏡(SEM)(日立ハイテクノロジー社製S-4800(商品名))及びエネルギー分散型X線分光法(EDX)(BRUKER社製QUANTAX400(商品名))を用いて、綿布断面の観察及び組成分析を行った。
カッターを用いて綿布を切断し、その断面をSEMにより観察した。図7(A)に示したように、綿布のSEM断面像において、図の中心付近に示された矢印A方向に沿って綿繊維111の断面の組成分析を行い、一本の綿繊維に対して直径方向の銀成分及びカーボン成分の強度分布を調べた。図7(B)に示したように、成分の強度分布より、綿繊維表面はカーボン成分が主であり、銀成分は綿繊維表面にはほとんど含まれていないことが確認された。また、綿繊維は中空(内腔)を有することが知られており、銀成分は2つのピークを示したことから、二次細胞壁116のミクロフィブリル118(図6参照)間の隙間に選択的に分布しているといえる。
[Example 1]
In Example 1, a sample was prepared as follows. A commercially available white cotton cloth (5 cm (length) x 17 cm (width) x 0.25 mm (thickness), basis weight 300 g/m 2 ) was used as a measurement sample. The thickness of the cotton cloth is the thickness measured when a pressure of 100 g/cm 2 is applied to the measurement area.
The measurement sample was immersed for 5 minutes in an ethylene glycol solution (3 ml) in which 1M silver nitrate as a reaction raw material solution was dissolved, to absorb the entire amount.
This cotton cloth and dodecane (15 ml) were placed in a Teflon (registered trademark) container (capacity: 100 ml), and the cotton cloth was immersed in dodecane for 3 minutes to remove the reaction raw material solution present on or near the surface of the cotton fibers. It migrated into the pores of cotton fibers and into the cotton fiber tissue. Thereafter, it was sealed with a Teflon (registered trademark) lid, and microwave heating was performed. Using MicroSYNTH (trade name) (manufactured by Milestone General Co., Ltd.) as a microwave heating device, heating was performed for 5 minutes at a solvent temperature of 150°C and a pressure inside the container of 1 atm (101 kPa) at the start of heating. . Note that the pressure inside the container when the temperature reached 150°C was 1.2 atm. This increase in the pressure inside the container is presumed to be due to the water contained in the silver nitrate solution turning into gas. The temperature of dodecane was measured using an optical fiber thermometer. The pressure inside the container was measured using a pressure sensor attached to MicroSYNTH.
After heating, the container was cooled to 50° C. and the cotton cloth was taken out from the container. Then, it was washed and dried. For cleaning, the cotton cloth was dipped in ethanol and washed in an ultrasonic cleaner for 3 minutes. For drying, the cotton cloth was naturally dried in the air at room temperature for 24 hours.
Then, using a scanning electron microscope (SEM) (S-4800 (trade name) manufactured by Hitachi High-Technologies) and energy dispersive X-ray spectroscopy (EDX) (QUANTAX400 (trade name) manufactured by BRUKER), the cross-section of the cotton fabric was Observations and composition analysis were conducted.
The cotton fabric was cut using a cutter, and the cross section was observed using SEM. As shown in FIG. 7(A), in the SEM cross-sectional image of cotton cloth, a compositional analysis of the cross-section of cotton fiber 111 was performed along the direction of arrow A shown near the center of the figure. The intensity distribution of the silver component and carbon component in the diametrical direction was investigated. As shown in FIG. 7(B), it was confirmed from the intensity distribution of the components that the carbon component was the main component on the cotton fiber surface, and the silver component was hardly contained on the cotton fiber surface. In addition, it is known that cotton fibers have a hollow space (lumen), and since the silver component showed two peaks, it selectively appeared in the gaps between the microfibrils 118 (see Figure 6) of the secondary cell wall 116. It can be said that it is distributed in

[実施例2]
実施例2は、試料を以下のように作製した。市販されている綿布(2.5cm(縦)×5cm(横)×0.25mm(厚さ)、目付け300g/m)を測定試料として、酢酸銀0.4Mとエチレンジアミン四酢酸四ナトリウム0.8Mを溶解させたエチレングリコール溶液(0.5ml)に5分間浸漬して、全量を吸収させた。
この綿布とドデカン(15ml)及びヘキサン(5ml)をテフロン(登録商標)製の容器(容量:100ml)に入れて、綿布をドデカンとヘキサンの混合溶媒中に3分間浸漬し、綿繊維の表面又はその近傍に存在する反応原料溶液を綿布の綿繊維の孔内内部や綿繊維組織内へと移行させた。その後、テフロン(登録商標)製の蓋を被せて密閉し、実施例1と同様にマイクロ波加熱を行った。溶媒の温度を150℃、加熱開始時の容器内圧力を1気圧にして5分間の加熱を行った。なお、150℃到達時の容器内圧力は3.5気圧であった。この容器内圧力の上昇は、ヘキサン(沸点69℃)の一部が気体になったためと推察される。
加熱後、容器を50℃まで冷却して、容器から綿布を取り出した。そして、洗浄し、乾燥した。洗浄は、綿布をエタノールに浸漬した状態にして、超音波洗浄器にて3分間洗浄した。また、乾燥は、綿布を室温の大気中にて24時間自然乾燥した。
その後、SEM及びEDXを用いて、綿布断面の観察及び組成分析を行った。図8(A)に示したように、綿布のSEM断面像において、図の中心付近に示された矢印B方向に沿って綿繊維の断面の組成分析を行い、一本の綿繊維に対して直径方向の銀成分及びカーボン成分の強度分布を調べた。その結果、図8(B)に示したように、成分の強度分布より、綿繊維表面はカーボン成分が主であり、銀成分は綿繊維表面にはほとんど含まれていないことが確認された。銀成分は綿繊維の中空に近い部分でピークを示した。これは容器内圧力を高くしたことで、実施例1よりも反応原料溶液が綿繊維の中心部に移動し、綿繊維の太さ方向の中心部に銀が分布していた。
[Example 2]
In Example 2, a sample was prepared as follows. A commercially available cotton cloth (2.5 cm (length) x 5 cm (width) x 0.25 mm (thickness), basis weight 300 g/m 2 ) was used as a measurement sample, and 0.4 M of silver acetate and 0.4 M of tetrasodium ethylenediaminetetraacetate were used. It was immersed in an 8M ethylene glycol solution (0.5 ml) for 5 minutes to absorb the entire amount.
This cotton cloth, dodecane (15 ml) and hexane (5 ml) were placed in a Teflon (registered trademark) container (capacity: 100 ml), and the cotton cloth was immersed in a mixed solvent of dodecane and hexane for 3 minutes. The reaction raw material solution existing in the vicinity was transferred into the pores of the cotton fibers of the cotton cloth and into the cotton fiber structure. Thereafter, it was sealed with a Teflon (registered trademark) lid, and microwave heating was performed in the same manner as in Example 1. Heating was performed for 5 minutes at a solvent temperature of 150° C. and a container internal pressure of 1 atm at the start of heating. Note that the pressure inside the container when the temperature reached 150°C was 3.5 atm. This increase in the pressure inside the container is presumed to be due to part of the hexane (boiling point 69° C.) becoming a gas.
After heating, the container was cooled to 50° C. and the cotton cloth was taken out from the container. Then, it was washed and dried. For cleaning, the cotton cloth was soaked in ethanol and washed in an ultrasonic cleaner for 3 minutes. For drying, the cotton cloth was naturally dried in the air at room temperature for 24 hours.
Thereafter, the cross section of the cotton fabric was observed and the composition analyzed using SEM and EDX. As shown in Figure 8 (A), in the SEM cross-sectional image of cotton cloth, a compositional analysis of the cross-section of cotton fibers was performed along the direction of arrow B shown near the center of the figure. The intensity distribution of the silver component and carbon component in the diametrical direction was investigated. As a result, as shown in FIG. 8(B), it was confirmed from the intensity distribution of the components that the carbon component was the main component on the cotton fiber surface, and the silver component was hardly contained on the cotton fiber surface. The silver component showed a peak near the hollow part of the cotton fiber. This is because the pressure inside the container was increased, so that the reaction raw material solution moved to the center of the cotton fibers more than in Example 1, and silver was distributed in the center of the cotton fibers in the thickness direction.

[実施例3]
実施例3は、綿布への無機化合物の内包例として、繊維内部に非晶質シリカ(シリカゲル)を含有している綿布を製造した。その詳細について説明する。
非晶質シリカの合成反応には、TEOSをジメチルアミンで加水分解する反応を用いた。
試料は以下のように作製した。市販されている綿布0.05gを測定試料とし、反応原料溶液(0.2ml)に1分間浸漬して、全量を吸収させた。反応原料溶液は、2-プロパノール(2.5ml)、純水(0.5ml)、TEOS(0.16ml)、ジメチルアミン50質量%溶液(0.02ml)を1分間、スターラー撹拌にて混合したものを用いた。この溶液は25℃で静置する場合、透明だった溶液は約10分後から徐々に白色を呈し、約3時間後には非晶質シリカの合成反応が完了することを、透過電子顕微鏡での粒子観察から確認している。スターラー撹拌直後の反応原料溶液を用いて1分間、綿布を浸漬した。その後、フロリナート(3M社製 FC-43)を充填した石英製の試験管(内径4mm外径6mm)にこの綿布を入れた。そして、試験管の一端をプランジャーポンプに接続し、さらにフロリナートを送液することで約5気圧まで加圧し、綿布の繊維の表面又はその近傍に存在する反応原料溶液を繊維の孔内内部や繊維組織内へと移行させた。反応原料溶液の混合開始から10分以内に加圧までを完了し、25℃にて3時間、約5気圧での加圧状態を保持した。加圧開始から3時間後、試験管から綿布を取り出し、洗浄・乾燥した。洗浄は、綿布をエタノールに浸漬して、超音波洗浄器にて3分間洗浄した。また、乾燥は、綿布を室温の大気中にて24時間自然乾燥した。
その後、SEM及びEDXを用いて、綿布の繊維断面の観察及び組成分析を行った。カッターを用いて綿布の繊維を切断し、その断面をSEMにより観察した。図9(A)に示したように、繊維のSEM断面像において、矢印A方向に沿って繊維の断面の組成分析を行い、一本の繊維に対して直径方向のシリコン成分及びカーボン成分の強度分布を調べた。図9(B)に示した成分の強度分布より、シリコン成分とカーボン成分は同じ領域に分布しており、非晶質シリカは繊維内部に分布していることがわかった。
[Example 3]
In Example 3, a cotton cloth containing amorphous silica (silica gel) inside its fibers was produced as an example of incorporating an inorganic compound into a cotton cloth. The details will be explained below.
For the synthesis reaction of amorphous silica, a reaction in which TEOS was hydrolyzed with dimethylamine was used.
The sample was prepared as follows. 0.05 g of commercially available cotton cloth was used as a measurement sample, and immersed in the reaction raw material solution (0.2 ml) for 1 minute to absorb the entire amount. The reaction raw material solution was prepared by mixing 2-propanol (2.5 ml), pure water (0.5 ml), TEOS (0.16 ml), and 50% dimethylamine solution (0.02 ml) with a stirrer for 1 minute. I used something. When this solution was allowed to stand at 25°C, the transparent solution gradually turned white after about 10 minutes, and the synthesis reaction of amorphous silica was completed after about 3 hours using a transmission electron microscope. This has been confirmed through particle observation. A cotton cloth was immersed for 1 minute in the reaction raw material solution immediately after stirring with a stirrer. Thereafter, this cotton cloth was placed in a quartz test tube (inner diameter 4 mm, outer diameter 6 mm) filled with Fluorinert (FC-43, manufactured by 3M). Then, one end of the test tube is connected to a plunger pump, and the pressure is increased to approximately 5 atmospheres by feeding Fluorinert, and the reaction raw material solution present on or near the surface of the cotton fabric fibers is pumped into the inside of the pores of the fibers. It migrated into the fibrous tissue. Pressurization was completed within 10 minutes from the start of mixing of the reaction raw material solution, and the pressurized state was maintained at about 5 atm at 25° C. for 3 hours. Three hours after the start of pressurization, the cotton cloth was taken out from the test tube, washed and dried. For cleaning, the cotton cloth was dipped in ethanol and washed in an ultrasonic cleaner for 3 minutes. For drying, the cotton cloth was naturally dried in the air at room temperature for 24 hours.
Thereafter, the fiber cross section of the cotton fabric was observed and the composition analyzed using SEM and EDX. The fibers of the cotton cloth were cut using a cutter, and the cross section was observed using SEM. As shown in FIG. 9(A), in the SEM cross-sectional image of the fiber, compositional analysis of the fiber cross-section along the direction of arrow A was performed, and the strength of the silicon component and carbon component in the diametrical direction for one fiber We investigated the distribution. From the intensity distribution of the components shown in FIG. 9(B), it was found that the silicon component and the carbon component were distributed in the same region, and the amorphous silica was distributed inside the fiber.

[実施例4]
実施例4は、綿布(綿花)とは異なる天然繊維への機能性物質の内包例として、カポック繊維(通称パンヤ綿)の内部に非晶質シリカ(シリカゲル)を含有している繊維を製造した。その詳細について説明する。
試料は以下のように作製した。市販されているカポック繊維0.02gを測定試料とし、反応原料溶液(0.5ml)に1分間浸漬して、全量を吸収させた。反応原料溶液は、実施例3と同じものを用いた。1分間の浸漬後、フロリナートを充填した石英製の試験管(内径4mm外径6mm)にカポック繊維を入れた。そして、試験管の一端をプランジャーポンプに接続し、さらにフロリナートを送液することで約5気圧まで加圧し、カポック繊維の表面又はその近傍に存在する反応原料溶液をカポック繊維の内部へと移行させた。反応原料溶液の混合開始から10分以内に加圧までを完了し、25℃にて3時間、約5気圧での加圧状態を保持した。加圧開始から3時間後、試験管からカポック繊維を取り出し、洗浄・乾燥した。洗浄は、カポック繊維をエタノールに浸漬して、超音波洗浄器にて3分間洗浄した。また、乾燥は、カポック繊維を室温の大気中にて24時間自然乾燥した。
その後、カッターを用いてカポック繊維を切断し、その断面をSEMにより観察した。図10(A)に示した反応原料溶液を吸収させる前のカポック繊維の断面像と、図10(B)に示す反応原料溶液を吸収させて上述の処理を行った後のカポック繊維の断面像を比較すると、図10(B)に示したように、繊維の中空部に多量の粒子が存在することが確認された。さらに一本の繊維に対して直径方向のシリコン成分及びカーボン成分の強度分布をEDXにて調べた。図11(C)に示したように、シリコン成分は主に繊維の中空部に分布することが確認され、非晶質シリカ粒子は主に繊維の中空部に分布していることがわかった。
[Example 4]
Example 4 is an example of incorporating a functional substance into a natural fiber different from cotton cloth (cotton), in which a fiber containing amorphous silica (silica gel) was produced inside kapok fiber (commonly known as panya cotton). . The details will be explained below.
The sample was prepared as follows. 0.02 g of commercially available kapok fiber was used as a measurement sample and immersed in the reaction raw material solution (0.5 ml) for 1 minute to absorb the entire amount. The same reaction raw material solution as in Example 3 was used. After immersion for 1 minute, the kapok fibers were placed in a quartz test tube (inner diameter 4 mm, outer diameter 6 mm) filled with Fluorinert. Then, one end of the test tube is connected to a plunger pump, and Fluorinert is further pumped to increase the pressure to approximately 5 atmospheres, and the reaction raw material solution existing on or near the surface of the kapok fiber is transferred to the inside of the kapok fiber. I let it happen. Pressurization was completed within 10 minutes from the start of mixing of the reaction raw material solution, and the pressurized state was maintained at about 5 atm at 25° C. for 3 hours. Three hours after the start of pressurization, the kapok fibers were taken out from the test tube, washed and dried. For cleaning, the kapok fibers were immersed in ethanol and washed in an ultrasonic cleaner for 3 minutes. Further, for drying, the kapok fibers were naturally dried in the air at room temperature for 24 hours.
Thereafter, the kapok fiber was cut using a cutter, and its cross section was observed using SEM. A cross-sectional image of the kapok fiber before absorbing the reaction raw material solution shown in FIG. 10(A), and a cross-sectional image of the kapok fiber after absorbing the reaction raw material solution and performing the above treatment shown in FIG. 10(B) As shown in FIG. 10(B), it was confirmed that a large amount of particles were present in the hollow part of the fiber. Furthermore, the strength distribution of the silicon component and carbon component in the diameter direction of each fiber was examined using EDX. As shown in FIG. 11(C), it was confirmed that the silicon component was mainly distributed in the hollow part of the fiber, and the amorphous silica particles were found to be mainly distributed in the hollow part of the fiber.

[実施例5]
実施例5は、化学繊維への無機化合物の内包例として、多孔質体中空糸の内部にシリカを含有している繊維を製造した。その詳細について説明する。
試料は以下のように作製した。市販されている浄水器用の多孔質体中空糸(東レ社製 MKC.MXJ(600L))を3cmの長さに切って測定試料とし、反応原料溶液に浸してエバポレーターで脱気(約0.8気圧)することで、多孔質体中空糸の繊維内部まで反応原料溶液を吸収させた。反応原料溶液は、実施例3と同じものを用いた。約1分間、反応原料溶液を吸収させた後、フロリナートを充填した石英製の試験管(内径4mm外径6mm)にこの繊維を入れて、試験管の一端をプランジャーポンプに接続し、さらにフロリナートを送液することで約5気圧まで加圧し、繊維の表面又はその近傍に存在する反応原料溶液を繊維の内部へと移行させた。反応原料溶液の混合開始から10分以内に加圧までを完了し、25℃にて3時間、約5気圧での加圧状態を保持した。加圧開始から3時間後、試験管から多孔質体中空糸の繊維を取り出し、取り出した繊維を室温の大気中にて72時間自然乾燥した。
その後、SEM及びEDXを用いて、多孔質体中空糸の繊維断面の観察及び組成分析を行った。カッターを用いて繊維を切断し、その断面をSEMにより観察した。図12(A)に示したように、多孔質体中空糸の繊維のSEM断面像において、図の中心付近に示された矢印A方向に沿って繊維の断面の組成分析を行い、一本の繊維に対して直径方向のシリコン成分及びカーボン成分の強度分布を調べた。図12(B)に示した成分の強度分布より、シリコン成分とカーボン成分は同じ領域に分布しており、非晶質シリカは多孔質体中空糸の繊維内部に分布していることがわかった。
[Example 5]
In Example 5, a fiber containing silica inside the porous hollow fiber was produced as an example of incorporating an inorganic compound into a chemical fiber. The details will be explained below.
The sample was prepared as follows. A commercially available porous hollow fiber for water purifiers (MKC.MXJ (600L) manufactured by Toray Industries, Ltd.) was cut into 3 cm lengths as a measurement sample, immersed in the reaction raw material solution, and degassed with an evaporator (approximately 0.8 Atmospheric pressure), the reaction raw material solution was absorbed into the fibers of the porous hollow fibers. The same reaction raw material solution as in Example 3 was used. After absorbing the reaction raw material solution for about 1 minute, the fibers were placed in a quartz test tube (inner diameter 4 mm, outer diameter 6 mm) filled with Fluorinert, one end of the test tube was connected to a plunger pump, and then Fluorinert was added. The pressure was increased to about 5 atmospheres by feeding the fiber, and the reaction raw material solution existing on or near the surface of the fiber was transferred into the interior of the fiber. Pressurization was completed within 10 minutes from the start of mixing of the reaction raw material solution, and the pressurized state was maintained at about 5 atm at 25° C. for 3 hours. Three hours after the start of pressurization, the fibers of the porous hollow fibers were taken out from the test tube, and the taken out fibers were naturally dried in the air at room temperature for 72 hours.
Thereafter, the cross section of the fibers of the porous hollow fibers was observed and the composition analyzed using SEM and EDX. The fibers were cut using a cutter, and the cross section was observed using SEM. As shown in FIG. 12(A), in the SEM cross-sectional image of the fiber of the porous hollow fiber, a compositional analysis of the cross-section of the fiber was performed along the direction of arrow A shown near the center of the figure. The strength distribution of the silicon component and carbon component in the diametrical direction of the fiber was investigated. From the intensity distribution of the components shown in Figure 12(B), it was found that the silicon component and the carbon component were distributed in the same area, and the amorphous silica was distributed inside the fibers of the porous hollow fibers. .

[実施例6]
実施例6は、化学繊維への無機化合物の内包例として、多孔質体中空糸の内部にゼオライトを含有している繊維を製造した。その詳細について説明する。
試料は以下のように作製した。市販されている多孔質体中空繊維(住友電気工業社製、商品名:ポアフロン(登録商標)チューブ、(材質:テフロン(登録商標))、内径3mm、外径4mm)を4cmの長さに切り、繊維の両端をバーナーで熱することで融着・封止して測定試料とした。そして、反応原料溶液に浸してエバポレーターで脱気(約0.8気圧)することで繊維内部まで反応原料溶液を吸収させた。反応原料溶液は、アルミン酸ナトリウム、コロイダルシリカ30質量%溶液、水酸化ナトリウムをそれぞれ純水に溶解させて、それらを、Na:Al:Si:HO=4:1:1:53となるように混合した後、室温にて24時間撹拌したものを用いた。約1分間、反応原料溶液を吸収させた後、この繊維とドデカン(15ml)及びヘキサン(5ml)をテフロン(登録商標)製の容器(容量:100ml)に入れて、テフロン(登録商標)製の蓋を被せて密閉し、実施例1と同様にマイクロ波加熱を行った。溶媒の温度を150℃、加熱開始時の容器内圧力を1気圧にして10分間の加熱を行った。なお、150℃到達時の容器内圧力は約5気圧であった。この容器内圧力の上昇は、ヘキサン(沸点69℃)の一部が気体になったためと推察される。加熱後、容器を30℃まで冷却して、容器から繊維を取り出し、室温の大気中にて72時間自然乾燥した。
その後、繊維を切断したところ、繊維の内壁に白色の内包物が付着しているのを確認した。この内包物に対して実施例1と同様のSEM及びEDXを用いて、観察及び組成分析を行った。
カッターを用いて繊維を切断し、その断面をSEMにより観察した。図13(A)に示すSEM像で見られるように、粒子径5~10μmの球状粒子が確認された。また、図14(B)に示すEDXでの組成分析結果より、酸素、ナトリウム、シリコン、アルミニウム成分は均質に分布していることが分かった。EDXのエネルギースペクトルから求めた組成比(atom%)は、O:Na:Si:Al=50.2:29.1:11.4:9.3であった。続いて、内包物の粉末に対するX線回折測定(装置:Rigaku社製 SmartLab)を行った。その結果、図15(C)に示した回折パターンより、SOD型のゼオライト構造が確認され、繊維の内包物にゼオライト微粒子が含まれていることがわかった。
[Example 6]
In Example 6, a fiber containing zeolite inside a porous hollow fiber was produced as an example of incorporating an inorganic compound into a chemical fiber. The details will be explained below.
The sample was prepared as follows. A commercially available porous hollow fiber (manufactured by Sumitomo Electric Industries, Ltd., product name: POREFLON (registered trademark) tube, (material: Teflon (registered trademark), inner diameter 3 mm, outer diameter 4 mm) was cut into a length of 4 cm. Both ends of the fiber were heated with a burner to fuse and seal them to prepare a measurement sample. Then, the fibers were immersed in the reaction raw material solution and degassed (approximately 0.8 atm) using an evaporator to absorb the reaction raw material solution into the inside of the fiber. The reaction raw material solution is obtained by dissolving sodium aluminate, a 30% by mass solution of colloidal silica, and sodium hydroxide in pure water, so that the ratio of Na:Al:Si: H2O =4:1:1:53 is obtained. After mixing as described above, the mixture was stirred at room temperature for 24 hours and then used. After allowing the reaction raw material solution to be absorbed for about 1 minute, the fibers, dodecane (15 ml) and hexane (5 ml) were placed in a Teflon (registered trademark) container (capacity: 100 ml). It was sealed with a lid, and microwave heating was performed in the same manner as in Example 1. Heating was performed for 10 minutes at a solvent temperature of 150° C. and a container internal pressure of 1 atm at the start of heating. Note that the pressure inside the container when the temperature reached 150° C. was about 5 atm. This increase in the pressure inside the container is presumed to be due to part of the hexane (boiling point 69° C.) becoming a gas. After heating, the container was cooled to 30° C., and the fibers were taken out from the container and air-dried in the air at room temperature for 72 hours.
After that, when the fibers were cut, it was confirmed that white inclusions were attached to the inner walls of the fibers. Observation and compositional analysis of this inclusion were performed using the same SEM and EDX as in Example 1.
The fibers were cut using a cutter, and the cross section was observed using SEM. As seen in the SEM image shown in FIG. 13(A), spherical particles with a particle diameter of 5 to 10 μm were confirmed. Further, from the composition analysis results by EDX shown in FIG. 14(B), it was found that oxygen, sodium, silicon, and aluminum components were homogeneously distributed. The composition ratio (atom %) determined from the EDX energy spectrum was O:Na:Si:Al=50.2:29.1:11.4:9.3. Subsequently, X-ray diffraction measurement (apparatus: SmartLab manufactured by Rigaku) was performed on the powder of inclusions. As a result, an SOD type zeolite structure was confirmed from the diffraction pattern shown in FIG. 15(C), and it was found that zeolite fine particles were contained in the inclusions of the fibers.

[実施例7]
実施例7は、化学繊維への有機化合物の内包例として、多孔質体中空糸の内部にポリイミドを含有している繊維を製造した。その詳細について説明する。
試料は以下のように作製した。市販されている多孔質体中空繊維(住友電気工業社製、商品名:ポアフロン(登録商標)チューブ、内径1mm、外径2mm)を4cmの長さに切って測定試料とし、繊維の両端をバーナーで熱することで融着・封止した。そして、反応原料溶液に浸してエバポレーターで脱気(約0.8気圧)することで繊維内部まで反応原料溶液を吸収させた。反応原料溶液として、poly(4,4’-oxydiphenylene-pyromellitimide)(ピロメリット酸二無水物と4,4’-オキシジアニリンの共重合体であり、代表的なポリイミドであるカプトン(登録商標)の原料)が2質量%、無水酢酸とピリジンが各0.06質量%ずつ溶解しているN,N-ジメチルアセトアミド溶液を用いた。約10秒間、繊維に反応原料溶液を吸収させた後、この繊維とヘキサン(15ml)をテフロン(登録商標)製の容器(容量:100ml)に入れて、テフロン(登録商標)製の蓋を被せて密閉し、実施例1と同様にマイクロ波加熱を行った。溶媒の温度を90℃、加熱開始時の容器内圧力を1気圧にして30分間の加熱を行った。なお、90℃到達時の容器内圧力は3気圧であった。この容器内圧力の上昇は、ヘキサン(沸点69℃)の一部が気体になったためと推察される。加熱後、容器を25℃まで冷却して、容器から多孔質体中空繊維を取り出し、室温の大気中にて24時間自然乾燥した。
乾燥後の多孔質体中空繊維の外表面は実験前と同じ白色を呈していたが、繊維を切断したところ、図16に示した写真で見られるように、繊維内壁に粉末状の黄色い内包物が付着しており、繊維内にポリイミド粉末が含まれていることがわかった。
[Example 7]
In Example 7, a fiber containing polyimide inside a porous hollow fiber was produced as an example of incorporating an organic compound into a chemical fiber. The details will be explained below.
The sample was prepared as follows. A commercially available porous hollow fiber (manufactured by Sumitomo Electric Industries, Ltd., product name: POREFLON (registered trademark) tube, inner diameter 1 mm, outer diameter 2 mm) was cut into 4 cm length as a measurement sample, and both ends of the fiber were placed in a burner. It was fused and sealed by heating. Then, the fibers were immersed in the reaction raw material solution and degassed (approximately 0.8 atm) using an evaporator to absorb the reaction raw material solution into the inside of the fiber. As a reaction raw material solution, poly(4,4'-oxydiphenylene-pyromellitimide) (a copolymer of pyromellitic dianhydride and 4,4'-oxydianiline, Kapton (registered trademark), a typical polyimide) was used. An N,N-dimethylacetamide solution was used in which 2% by mass of (raw material) and 0.06% by mass each of acetic anhydride and pyridine were dissolved. After allowing the fibers to absorb the reaction raw material solution for about 10 seconds, the fibers and hexane (15 ml) were placed in a Teflon (registered trademark) container (capacity: 100 ml) and covered with a Teflon (registered trademark) lid. The container was sealed, and microwave heating was performed in the same manner as in Example 1. Heating was performed for 30 minutes at a solvent temperature of 90° C. and a container internal pressure of 1 atm at the start of heating. Note that the pressure inside the container when the temperature reached 90°C was 3 atm. This increase in the pressure inside the container is presumed to be due to part of the hexane (boiling point 69° C.) becoming a gas. After heating, the container was cooled to 25° C., and the porous hollow fibers were taken out from the container and air-dried in the air at room temperature for 24 hours.
The outer surface of the porous hollow fiber after drying had the same white color as before the experiment, but when the fiber was cut, powdery yellow inclusions were found on the inner wall of the fiber, as seen in the photograph shown in Figure 16. was found to be attached to the fibers, indicating that polyimide powder was contained within the fibers.

[実施例8]
実施例8は、化学繊維への有機結晶の内包例として、多孔質体中空糸の内部にヒノキチオール結晶を含有している繊維を製造した。その詳細について説明する。
本実施例は、実施例1~7とは逆の非相溶性溶媒の組み合わせ、すなわち疎水性溶媒に原料を溶解させて、親水性溶媒にて加圧を行っている例である。
試料は以下のように作製した。市販されている多孔質体中空繊維(住友電気工業社製、商品名:ポアフロン(登録商標)チューブ、内径3mm、外径4mm)を4cmの長さに切り、多孔質体中空繊維の両端をバーナーで熱することで融着・封止して測定試料とした。そして、反応原料溶液に浸してエバポレーターで脱気(約0.8気圧)することで多孔質体中空繊維内部まで反応原料溶液を吸収させた。反応原料溶液として、ヒノキチオールを1質量%溶解したヘキサン溶液を用いた。約1分間、反応原料溶液を吸収させた後、一端を封止した長さ1mのチューブ(内径10mm)にこの多孔質体中空繊維と水を入れて、封止部を下にしてチューブを鉛直方向に設置し、多孔質体中空繊維をチューブの封止部付近に保持することで、水の静水圧で約1.1気圧まで加圧した。その後、多孔質体中空繊維を含むチューブの封止部付近をウォーターバスに浸して、25℃から昇温を行った。加熱開始から約15分後に75℃に到達した時点で加熱を終了し、チューブを大気中に取り出して冷却を行った。冷却開始から10分後にはチューブ表面温度は室温である25℃となっていた。この時点で多孔質体中空繊維をチューブから取り出し、室温の大気中にて24時間自然乾燥した。
その後、カッターを用いて多孔質体中空繊維を切断し、その繊維断面をレーザー顕微鏡(キーエンス製 VK-9510)にて観察した。図17に示したように、繊維の内壁に直径50μm前後の透明な結晶物が付着しており、繊維内にヒノキチオール結晶が含まれていることがわかった。
[Example 8]
In Example 8, as an example of incorporating organic crystals into chemical fibers, fibers containing hinokitiol crystals inside porous hollow fibers were manufactured. The details will be explained below.
This example is an example in which the combination of immiscible solvents is opposite to that of Examples 1 to 7, that is, the raw materials are dissolved in a hydrophobic solvent and pressurized with a hydrophilic solvent.
The sample was prepared as follows. A commercially available porous hollow fiber (manufactured by Sumitomo Electric Industries, Ltd., product name: POREFLON (registered trademark) tube, inner diameter 3 mm, outer diameter 4 mm) was cut into a length of 4 cm, and both ends of the porous hollow fiber were attached to a burner. The sample was fused and sealed by heating and used as a measurement sample. Then, it was immersed in the reaction raw material solution and degassed (approximately 0.8 atm) using an evaporator to absorb the reaction raw material solution into the interior of the porous hollow fibers. A hexane solution in which 1% by mass of hinokitiol was dissolved was used as the reaction raw material solution. After absorbing the reaction raw material solution for about 1 minute, put the porous hollow fibers and water into a 1 m long tube (inner diameter 10 mm) with one end sealed, and place the tube vertically with the sealed part facing down. By holding the porous hollow fiber near the sealing part of the tube, the pressure was increased to about 1.1 atmospheres using the hydrostatic pressure of water. Thereafter, the vicinity of the sealed portion of the tube containing the porous hollow fibers was immersed in a water bath, and the temperature was raised from 25°C. Heating was terminated when the temperature reached 75° C. approximately 15 minutes after the start of heating, and the tube was taken out into the atmosphere and cooled. Ten minutes after the start of cooling, the tube surface temperature was 25° C., which is room temperature. At this point, the porous hollow fiber was taken out from the tube and air-dried for 24 hours in the air at room temperature.
Thereafter, the porous hollow fibers were cut using a cutter, and the cross section of the fibers was observed using a laser microscope (VK-9510 manufactured by Keyence Corporation). As shown in FIG. 17, transparent crystals with a diameter of about 50 μm were attached to the inner wall of the fiber, indicating that hinokitiol crystals were contained within the fiber.

[実施例9]
実施例9は、化学繊維への無機結晶の内包例として、多孔質体中空糸の内部にミョウバン結晶を含有している繊維を製造した。その詳細について説明する。
試料は以下のように作製した。市販されている多孔質体中空繊維(住友電気工業社製、商品名:ポアフロン(登録商標)チューブ、内径3mm、外径4mm)を4cmの長さに切り、繊維の両端をバーナーで熱することで融着・封止して測定試料とした。そして、ウォーターバスにて60℃に加熱した反応原料溶液に浸してエバポレーターで脱気(0.5~0.9気圧)することで繊維内部まで溶液を吸収させた。反応原料溶液として、1Lの水に焼ミョウバン(AlK(SO・12HO)170gを溶解させたものを用いた。約1分間、反応原料溶液を吸収させた後、この多孔質体中空繊維を素早く60℃のドデカンを充填した石英製の試験管(内径4mm、外径6mm)に入れた。そして、試験管の一端をプランジャーポンプに接続し、さらにドデカンを送液することで約1.1気圧まで加圧した。この試験管を60℃のウォーターバスに5分間浸漬後、試験管を徐冷した。徐冷開始から約10分後に25℃となり、試験管から多孔質体中空繊維を取り出し、室温の大気中にて72時間自然乾燥した。
その後、カッターを用いて多孔質体中空繊維を切断し、その繊維断面をレーザー顕微鏡にて観察した。図18に示したように、繊維の内壁に直径数百μmの透明な結晶物が付着しており、繊維内にミョウバン結晶が含まれていることがわかった。
[Example 9]
In Example 9, as an example of incorporating inorganic crystals into chemical fibers, fibers containing alum crystals inside porous hollow fibers were manufactured. The details will be explained below.
The sample was prepared as follows. Cut a commercially available porous hollow fiber (manufactured by Sumitomo Electric Industries, Ltd., product name: POREFLON (registered trademark) tube, inner diameter 3 mm, outer diameter 4 mm) into a length of 4 cm, and heat both ends of the fiber with a burner. It was fused and sealed to make a measurement sample. Then, the fibers were immersed in a reaction raw material solution heated to 60° C. in a water bath and degassed (0.5 to 0.9 atm) using an evaporator to absorb the solution into the fibers. As a reaction raw material solution, 170 g of calcined alum (AlK(SO 4 ) 2.12H 2 O) dissolved in 1 L of water was used. After absorbing the reaction raw material solution for about 1 minute, the porous hollow fibers were quickly placed in a quartz test tube (inner diameter 4 mm, outer diameter 6 mm) filled with dodecane at 60°C. Then, one end of the test tube was connected to a plunger pump, and dodecane was further pumped to increase the pressure to about 1.1 atmospheres. This test tube was immersed in a 60° C. water bath for 5 minutes, and then slowly cooled. Approximately 10 minutes after the start of slow cooling, the temperature reached 25°C, and the porous hollow fibers were taken out from the test tube and air-dried in the air at room temperature for 72 hours.
Thereafter, the porous hollow fibers were cut using a cutter, and the cross section of the fibers was observed using a laser microscope. As shown in FIG. 18, transparent crystals with a diameter of several hundred μm were attached to the inner walls of the fibers, indicating that alum crystals were contained within the fibers.

[実施例10]
実施例10は、天然繊維への無機結晶の内包例として、竹の内部にミョウバン結晶を含有している繊維を製造した。その詳細について説明する。
試料は以下のように作製した。竹(直径2mm、長さ10mm)を測定試料とし、ウォーターバスにて60℃に加熱した反応原料溶液に浸して、エバポレーターで脱気(0.5~0.9気圧)することで竹の繊維内部まで溶液を吸収させた。反応原料溶液として、1Lの水に焼ミョウバン(AlK(SO・12HO)170gを溶解させたものを用いた。約5分間、反応原料溶液を吸収させた後、この竹の繊維を素早く60℃のヘキサンを充填した石英製の試験管(内径4mm外径6mm)に入れた。そして、試験管の一端をプランジャーポンプに接続し、さらにヘキサンを送液することで約5気圧まで加圧した。約5気圧を保持したまま、この試験管を60℃のウォーターバスに10分間浸漬後、試験管を徐冷した。徐冷開始から約10分後に25℃となり、試験管から竹の繊維を取り出し、室温の大気中にて72時間自然乾燥した。
その後、竹の繊維を導管方向と平行に切断し、その繊維断面をSEM及びEDXを用いて、観察及び組成分析を行った。図19(A)に示したSEM像の点線部で囲んだ部分に見られるように、導管内において導管の直径(約50μm)と同等程度の結晶物が確認された。図20(B)に示したEDXでの組成分析結果より、結晶物には硫黄とアルミニウム成分が含まれることから、繊維の内包物にミョウバン結晶が含まれていることがわかった。
[Example 10]
In Example 10, as an example of incorporating inorganic crystals into natural fibers, fibers containing alum crystals inside bamboo were manufactured. The details will be explained below.
The sample was prepared as follows. Bamboo (diameter 2 mm, length 10 mm) was used as a measurement sample, immersed in a reaction raw material solution heated to 60°C in a water bath, and degassed with an evaporator (0.5 to 0.9 atm) to obtain bamboo fibers. The solution was absorbed to the inside. As a reaction raw material solution, 170 g of calcined alum (AlK(SO 4 ) 2.12H 2 O) dissolved in 1 L of water was used. After absorbing the reaction raw material solution for about 5 minutes, the bamboo fibers were quickly placed in a quartz test tube (inner diameter 4 mm, outer diameter 6 mm) filled with hexane at 60°C. Then, one end of the test tube was connected to a plunger pump, and hexane was further pumped to increase the pressure to about 5 atmospheres. The test tube was immersed in a 60° C. water bath for 10 minutes while maintaining a pressure of about 5 atm, and then slowly cooled. Approximately 10 minutes after the start of slow cooling, the temperature reached 25°C, and the bamboo fibers were taken out from the test tube and air-dried in the air at room temperature for 72 hours.
Thereafter, the bamboo fibers were cut parallel to the conduit direction, and the fiber cross sections were observed and compositionally analyzed using SEM and EDX. As seen in the area surrounded by the dotted line in the SEM image shown in FIG. 19(A), crystalline substances with a size equivalent to the diameter of the conduit (approximately 50 μm) were confirmed within the conduit. From the composition analysis result by EDX shown in FIG. 20(B), it was found that the crystalline substance contained sulfur and aluminum components, and therefore, the inclusions of the fiber contained alum crystals.

[実施例11]
実施例11は、天然繊維への無機結晶の内包例として、木材の内部にミョウバン結晶を含有している繊維を製造した。その詳細について説明する。
試料は以下のように作製した。実施例10の竹の代わりに杉材(直径2mm、長さ8mm)を測定試料として用いた以外は同じ手順とした。
作製した繊維を導管方向と平行に切断し、その繊維断面をSEM及びEDXを用いて、観察及び組成分析を行った。図21(A)に示したすSEM像の点線で囲んだ部分に見られるように、導管内において導管と同等程度の直径(約30μm)を有する結晶物が見られた。図22(B)に示した、図21(A)の点線で囲んだ部分を中心としたEDXでの組成分析により、結晶物には硫黄成分とアルミニウム成分が含まれることから、繊維の内包物にミョウバン結晶が含まれていることがわかった。
[Example 11]
In Example 11, as an example of incorporating inorganic crystals into natural fibers, fibers containing alum crystals inside wood were manufactured. The details will be explained below.
The sample was prepared as follows. The procedure was the same as in Example 10 except that cedar wood (diameter 2 mm, length 8 mm) was used as the measurement sample instead of bamboo.
The fabricated fibers were cut parallel to the conduit direction, and the fiber cross section was observed and composition analyzed using SEM and EDX. As seen in the area surrounded by the dotted line in the SEM image shown in FIG. 21(A), a crystalline substance having a diameter (approximately 30 μm) comparable to that of the conduit was observed within the conduit. EDX composition analysis centered on the area surrounded by the dotted line in FIG. 21(A), shown in FIG. 22(B), revealed that the crystalline substance contains sulfur and aluminum components. was found to contain alum crystals.

[実施例12]
実施例12は、共振器型マイクロ波加熱装置を用いて、綿布内部に銀成分を内包させた。その詳細について説明する。
試料は以下のように作製した。綿布0.013gを測定試料とし、反応原料溶液の硝酸銀400mMを溶解させたエチレングリコール溶液(0.05ml)に5分間浸漬して、全量を吸収させた。
この綿布を、ドデカンを充填した石英製の試験管(内径4mm外径6mm、長さ100mm)に入れ、図23に示すように、試験管21の一端をプランジャーポンプ15に接続した。そして、試験管21内にドデカン41を送液することで約3気圧まで加圧し、綿布31の表面又はその近傍に存在する反応原料溶液を綿布の繊維の孔内内部や繊維組織内へと移行させた。その後、共振器型マイクロ波加熱装置10を用いて綿布31の加熱を行った。試験管21内の圧力は試験管21の入口に設けた圧力計16(長野計器社製BA10-273-5000)によって測定した。
マイクロ波加熱装置10の空胴共振器11には、内部に円筒型のマイクロ波照射空間12を有する金属製の空胴共振器を用いた。このマイクロ波照射空間12は、TM010モードと呼ばれる定在波が形成できるように、マイクロ波発振器(図示せず)の周波数帯に応じた内径を設定した。マイクロ波照射空間12の内径とは、円筒型のマイクロ波照射空間12の中心軸Cに直交する方向の断面形状である円形の直径をいう。TM010モードでは、円筒中心軸C上に電界が極大となる定在波が形成される。そして、マイクロ波発生器(図示せず)を備えたマイクロ波発振器には、周波数を調整できるVCO発振器(Voltage Controlled Oscillator)を用いた。マイクロ波発振器の発振周波数は、空胴共振器11内にTM010モードの定在波が維持できる周波数となるように、マイクロ波照射空間12内部のエネルギー強度を計測するための検出部(図示せず)からの信号を制御して調整した。
[Example 12]
In Example 12, a resonator-type microwave heating device was used to encapsulate a silver component inside the cotton fabric. The details will be explained below.
The sample was prepared as follows. 0.013 g of cotton cloth was used as a measurement sample and immersed for 5 minutes in an ethylene glycol solution (0.05 ml) in which 400 mM of silver nitrate as a reaction raw material solution was dissolved to absorb the entire amount.
This cotton cloth was placed in a quartz test tube (inner diameter 4 mm, outer diameter 6 mm, length 100 mm) filled with dodecane, and one end of the test tube 21 was connected to the plunger pump 15 as shown in FIG. Then, by feeding dodecane 41 into the test tube 21, the pressure is increased to about 3 atmospheres, and the reaction raw material solution present on or near the surface of the cotton cloth 31 is transferred into the pores of the fibers of the cotton cloth and into the fiber structure. I let it happen. Thereafter, the cotton cloth 31 was heated using the resonator type microwave heating device 10. The pressure inside the test tube 21 was measured with a pressure gauge 16 (BA10-273-5000, manufactured by Nagano Keiki Co., Ltd.) provided at the inlet of the test tube 21.
As the cavity resonator 11 of the microwave heating device 10, a metal cavity resonator having a cylindrical microwave irradiation space 12 therein was used. This microwave irradiation space 12 had an inner diameter set according to the frequency band of a microwave oscillator (not shown) so that a standing wave called TM 010 mode could be formed. The inner diameter of the microwave irradiation space 12 refers to the diameter of a circle that is a cross-sectional shape in a direction perpendicular to the central axis C of the cylindrical microwave irradiation space 12. In the TM 010 mode, a standing wave with a maximum electric field is formed on the cylinder center axis C. A VCO oscillator (Voltage Controlled Oscillator) whose frequency can be adjusted was used as a microwave oscillator equipped with a microwave generator (not shown). The oscillation frequency of the microwave oscillator is determined by a detection unit (not shown) for measuring the energy intensity inside the microwave irradiation space 12 so that the oscillation frequency of the microwave oscillator becomes a frequency that can maintain the standing wave of TM 010 mode in the cavity resonator 11. controlled and adjusted the signals from

マイクロ波発生器(図示せず)には半導体式マイクロ波発生器(895~935MHz、最大出力300W)を用い、空胴共振器11には、内径239mm、試験管21への照射長さは40mmの空胴共振器を用いた。試験管21内の綿布31を含む部分を空胴共振器11内に設置し、設定温度130℃にて1分間、マイクロ波加熱を行った。温度計測には放射温度計(図示せず)を用い、試験管21の表面温度を測定した。
加熱後、綿布31をエタノールに浸漬して、超音波洗浄器にて3分間洗浄を行った。その後、室温の大気中にて24時間自然乾燥した。
図24に、SEM-EDX測定より得られた、一本の繊維断面の銀成分およびカーボン成分の強度分布を示した。銀成分は2つのピークを示したことから、二次細胞壁116のミクロフィブリル118(図6参照)間の隙間に選択的に分布しているといえる。
A semiconductor microwave generator (895 to 935 MHz, maximum output 300 W) was used as the microwave generator (not shown), the cavity resonator 11 had an inner diameter of 239 mm, and the irradiation length to the test tube 21 was 40 mm. A cavity resonator was used. The portion of the test tube 21 containing the cotton cloth 31 was placed in the cavity resonator 11, and microwave heating was performed at a set temperature of 130° C. for 1 minute. A radiation thermometer (not shown) was used to measure the temperature, and the surface temperature of the test tube 21 was measured.
After heating, the cotton cloth 31 was immersed in ethanol and washed in an ultrasonic cleaner for 3 minutes. Thereafter, it was naturally dried in the air at room temperature for 24 hours.
FIG. 24 shows the strength distribution of the silver component and carbon component in the cross section of one fiber obtained by SEM-EDX measurement. Since the silver component showed two peaks, it can be said that it is selectively distributed in the gaps between the microfibrils 118 (see FIG. 6) of the secondary cell wall 116.

10 マイクロ波加熱装置
11 空胴共振器
12 マイクロ波照射空間
15 プランジャーポンプ
16 圧力計
21 試験管
31 綿布
41 ドデカン
110 多孔質素材
111 綿繊維
111S 外表面
112 キューティクル層
113 ネットワーク層
114 ワインディング層
115 一次細胞壁
116 二次細胞壁
117 内腔(ルーメン)
118 ミクロフィブリル
121 反応原料溶液の浸透領域
131 容器
132 溶媒
133 蓋
MW マイクロ波
10 Microwave heating device 11 Cavity resonator 12 Microwave irradiation space 15 Plunger pump 16 Pressure gauge 21 Test tube 31 Cotton cloth 41 Dodecane 110 Porous material 111 Cotton fiber 111S Outer surface 112 Cuticle layer 113 Network layer 114 Winding layer 115 Primary Cell wall 116 Secondary cell wall 117 Lumen
118 Microfibril 121 Permeation area of reaction raw material solution 131 Container 132 Solvent 133 Lid MW Microwave

Claims (16)

単繊維を束ねた繊維束である多孔質素材の孔内に反応原料溶液を浸透させる工程と、
前記反応原料溶液を浸透させた前記多孔質素材を、前記反応原料溶液とは非相溶性の溶媒中に浸漬して、前記多孔質素材の表面及び/又はその近傍に存在する前記反応原料溶液を前記多孔質素材の孔内の内部や素材組織内へと移行させる工程と、
前記多孔質素材の孔内の内部や素材組織内へと移行させた前記反応原料溶液に化学反応を生じさせ、多孔質素材の孔内や素材組織内に機能性化学物質を内包させる工程とをこの順に含み、得られる機能性多孔質素材の外表面には機能性化学物質を有しない、機能性多孔質素材の製造方法。

(但し、下記(A)及び(B)の方法を除く。
(A):
含浸剤によりポリマー基材を含浸する方法であって、前記方法は、
(a)大気圧で圧力容器内にポリマー基材を入れること、
(b)前記ポリマー基材と、キャリアー液体および含浸剤の混合物を同時に接触させること、ここで、前記含浸剤は超臨界流体中に実質的に不溶性である、
(c)圧力容器をシールすること、
(d)前記ポリマー基材を膨潤させ、それにより、前記キャリアー液体および含浸剤が膨潤したポリマー基材中に少なくとも部分的に浸入するのに充分な時間、前記ポリマー基材並びに前記キャリアー液体および含浸剤の混合物を圧力容器内で超臨界流体にさらすこと、および、
(e)前記キャリアー液体が前記ポリマー基材から拡散して、一定量の前記含浸剤がポリマー基材中に封じ込められるように、圧力容器内の圧力を開放すること、
を含む方法。
(B):
セルロース繊維を含むセルロース系繊維製品にアルカリ水溶液を付与した後、乾燥させて実質的に水分を除去し、次いで該セルロース系繊維製品に芳香族アシル化剤を含む非水性溶液を付与した後、最後に該セルロース系繊維製品に水分を付与することによって、該セルロース繊維に対して芳香族アシル化反応を進行させることを特徴とするセルロース系繊維製品の芳香族アシル化方法。)
A step of infiltrating a reaction raw material solution into the pores of a porous material that is a fiber bundle made of single fibers;
The porous material impregnated with the reaction raw material solution is immersed in a solvent that is immiscible with the reaction raw material solution to remove the reaction raw material solution present on the surface of the porous material and/or in the vicinity thereof. a step of transferring it into the pores of the porous material or into the material structure;
A step of causing a chemical reaction in the reaction raw material solution transferred into the pores and material structure of the porous material to encapsulate a functional chemical substance in the pores and material structure of the porous material. A method for producing a functional porous material including the above steps in this order and having no functional chemical substance on the outer surface of the obtained functional porous material.

(However, methods (A) and (B) below are excluded.
(A):
A method of impregnating a polymer substrate with an impregnating agent, the method comprising:
(a) placing a polymeric substrate in a pressure vessel at atmospheric pressure;
(b) simultaneously contacting the polymeric substrate with a mixture of a carrier liquid and an impregnating agent, wherein the impregnating agent is substantially insoluble in the supercritical fluid;
(c) sealing the pressure vessel;
(d) swelling the polymeric substrate and the carrier liquid and impregnating agent for a period of time sufficient to cause the carrier liquid and impregnating agent to penetrate at least partially into the swollen polymeric substrate; exposing the mixture of agents to a supercritical fluid in a pressure vessel; and
(e) releasing pressure within the pressure vessel such that the carrier liquid diffuses out of the polymeric substrate and a quantity of the impregnating agent is entrapped within the polymeric substrate;
method including.
(B):
After applying an alkaline aqueous solution to a cellulosic textile product containing cellulose fibers, drying to substantially remove water, then applying a non-aqueous solution containing an aromatic acylating agent to the cellulosic textile product, and finally 1. A method for aromatic acylation of cellulose fiber products, characterized in that an aromatic acylation reaction is allowed to proceed on the cellulose fibers by adding moisture to the cellulose fiber products. )
前記化学反応を加熱により生じさせる、請求項1に記載の機能性多孔質素材の製造方法。 The method for producing a functional porous material according to claim 1, wherein the chemical reaction is caused by heating. 前記加熱がマイクロ波照射による加熱である、請求項2に記載の機能性多孔質素材の製造方法。 The method for manufacturing a functional porous material according to claim 2, wherein the heating is heating by microwave irradiation. 前記マイクロ波照射がシングルモードのマイクロ波照射である、請求項3に記載の機能性多孔質素材の製造方法。 The method for producing a functional porous material according to claim 3, wherein the microwave irradiation is single mode microwave irradiation. 前記反応原料溶液は金属前駆体を含み、
前記化学反応が、前記金属前駆体から金属を析出する反応である、請求項1~4のいずれか1項に記載の機能性多孔質素材の製造方法。
The reaction raw material solution contains a metal precursor,
The method for producing a functional porous material according to any one of claims 1 to 4, wherein the chemical reaction is a reaction that precipitates a metal from the metal precursor.
前記反応原料溶液はアルコキシシラン化合物を含み、
前記化学反応が、前記アルコキシシラン化合物の加水分解とそれに続く縮重合によりシリカを生じる反応である、請求項1~4のいずれか1項に記載の機能性多孔質素材の製造方法。
The reaction raw material solution contains an alkoxysilane compound,
The method for producing a functional porous material according to any one of claims 1 to 4, wherein the chemical reaction is a reaction that produces silica through hydrolysis of the alkoxysilane compound and subsequent polycondensation.
前記化学反応が、前記反応原料溶液中の化学物質の結晶化もしくは析出である、請求項1~4のいずれか1項に記載の機能性多孔質素材の製造方法。 The method for producing a functional porous material according to any one of claims 1 to 4, wherein the chemical reaction is crystallization or precipitation of a chemical substance in the reaction raw material solution. 前記反応原料溶液はシリカ源、アルカリ源及び水を含み、
又は、前記シリカ源、前記アルカリ源及び前記水に加えケイ素を置換可能な金属源を含み、
前記化学反応がゼオライトを生じる反応である、請求項1~4のいずれか1項に記載の機能性多孔質素材の製造方法。
The reaction raw material solution contains a silica source, an alkali source and water,
Or, in addition to the silica source, the alkali source and the water, it includes a metal source capable of replacing silicon,
The method for producing a functional porous material according to any one of claims 1 to 4, wherein the chemical reaction is a reaction that produces zeolite.
前記反応原料溶液はポリアミック酸を含み、
前記化学反応が前記ポリアミック酸の脱水閉環反応によりポリイミドを生じる反応である、請求項1~4のいずれか1項に記載の機能性多孔質素材の製造方法。
The reaction raw material solution contains polyamic acid,
The method for producing a functional porous material according to any one of claims 1 to 4, wherein the chemical reaction is a reaction that produces polyimide through a dehydration ring-closing reaction of the polyamic acid.
前記多孔質素材が、植物繊維、動物繊維、化学繊維若しくは中空糸繊維で構成され、又はこれらの2種以上からなる複合素材で構成されている、請求項1~9のいずれか1項に記載の機能性多孔質素材の製造方法。 According to any one of claims 1 to 9, the porous material is composed of plant fibers, animal fibers, chemical fibers, hollow fibers , or a composite material consisting of two or more of these. A method for producing the functional porous material described above. 前記植物繊維が綿である、請求項10に記載の機能性多孔質素材の製造方法。 The method for producing a functional porous material according to claim 10, wherein the plant fiber is cotton. 単繊維を束ねた繊維束である多孔質素材の孔内に金属を含む機能性化学物質を内包し、前記多孔質素材の外表面には前記機能性化学物質を有しない、機能性多孔質素材。 A functional porous material that contains a functional chemical substance containing metal in the pores of a porous material that is a fiber bundle made up of single fibers, and does not have the functional chemical substance on the outer surface of the porous material. . 前記金属により抗菌及び/又は抗ウィルス機能を有する、請求項12に記載の機能性多孔質素材。 The functional porous material according to claim 12, which has an antibacterial and/or antiviral function due to the metal. 前記機能性多孔質素材が前記金属により導電性を示す、請求項12又は13に記載の機能性多孔質素材。 The functional porous material according to claim 12 or 13, wherein the functional porous material exhibits conductivity due to the metal. 前記多孔質素材が綿素材とケイ素とを含む複合素材であり、該綿素材の外表面より内部及び/又は該綿素材組織内のケイ素濃度が高い請求項12~14のいずれか1項に記載の機能性多孔質素材。 According to any one of claims 12 to 14, the porous material is a composite material containing a cotton material and silicon, and the silicon concentration inside and/or within the structure of the cotton material is higher than on the outer surface of the cotton material. Functional porous material. 前記多孔質素材が炭素を構造として持つ多孔質中空繊維であり、該多孔質中空繊維の中空部分及び/又は内表面にゼオライトを保持している請求項12~14のいずれか1項に記載の機能性多孔質素材。 15. The porous material according to claim 12, wherein the porous material is a porous hollow fiber having carbon as a structure, and zeolite is held in the hollow portion and/or inner surface of the porous hollow fiber. Functional porous material.
JP2019124705A 2018-07-03 2019-07-03 Functional porous material and its manufacturing method Active JP7405392B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018126900 2018-07-03
JP2018126900 2018-07-03

Publications (2)

Publication Number Publication Date
JP2020007694A JP2020007694A (en) 2020-01-16
JP7405392B2 true JP7405392B2 (en) 2023-12-26

Family

ID=69150990

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019124705A Active JP7405392B2 (en) 2018-07-03 2019-07-03 Functional porous material and its manufacturing method

Country Status (1)

Country Link
JP (1) JP7405392B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001123373A (en) 1999-10-20 2001-05-08 Tokai Senko Kk Method for aromatic acylation of cellulose-based fiber product
JP2005060855A (en) 2003-08-08 2005-03-10 Sk Kaken Co Ltd Modified vegetable fiber
JP2008081871A (en) 2006-09-27 2008-04-10 Akio Henmi Functional fiber and method for producing the same
JP2013170190A (en) 2012-02-20 2013-09-02 National Institute Of Advanced Industrial Science & Technology Composite fine particle of metal nanoparticle/polyimide, and method for producing the same
JP2015047535A (en) 2013-08-30 2015-03-16 独立行政法人産業技術総合研究所 Chemical substance synthesizing device and method
JP2018501412A (en) 2014-12-03 2018-01-18 コベントリー ユニバーシティー Method for producing antibacterial yarn and fabric by nanoparticle impregnation

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5713642B2 (en) * 1972-07-22 1982-03-18
JPS6023429A (en) * 1983-07-19 1985-02-06 Chuetsu Pulp Kogyo Kk Magnetic cellulosic material and its production
JP2668378B2 (en) * 1988-03-18 1997-10-27 孝一 西本 Method for producing flame retarded plant fiber molded article
US5340614A (en) * 1993-02-11 1994-08-23 Minnesota Mining And Manufacturing Company Methods of polymer impregnation

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001123373A (en) 1999-10-20 2001-05-08 Tokai Senko Kk Method for aromatic acylation of cellulose-based fiber product
JP2005060855A (en) 2003-08-08 2005-03-10 Sk Kaken Co Ltd Modified vegetable fiber
JP2008081871A (en) 2006-09-27 2008-04-10 Akio Henmi Functional fiber and method for producing the same
JP2013170190A (en) 2012-02-20 2013-09-02 National Institute Of Advanced Industrial Science & Technology Composite fine particle of metal nanoparticle/polyimide, and method for producing the same
JP2015047535A (en) 2013-08-30 2015-03-16 独立行政法人産業技術総合研究所 Chemical substance synthesizing device and method
JP2018501412A (en) 2014-12-03 2018-01-18 コベントリー ユニバーシティー Method for producing antibacterial yarn and fabric by nanoparticle impregnation

Also Published As

Publication number Publication date
JP2020007694A (en) 2020-01-16

Similar Documents

Publication Publication Date Title
Cai et al. Cellulose aerogels from aqueous alkali hydroxide–urea solution
Kurapati et al. Near-infrared light-responsive graphene oxide composite multilayer capsules: a novel route for remote controlled drug delivery
Michael P áMingos Tilden Lecture. Applications of microwave dielectric heating effects to synthetic problems in chemistry
JP5162752B2 (en) Cellulose airgel and method for producing the same
JP2020503038A (en) Heat conduction core for electronic vaporizer
KR101253032B1 (en) Method for producing fiber and fabric with heating, heat-retaining and heat storage function
Park et al. Signal‐induced release of guests from a photolatent metal–phenolic supramolecular cage and its hybrid assemblies
CN101052424A (en) Methods and apparatus for a low-cost vapor-dispersing device
CN105603584A (en) Polyacrylonitrile mesoporous activated carbon fiber for super capacitor electrode and preparation method of fiber
WO2015059179A1 (en) Capsule, namely nanocapsule, microcapsule or macrocapsule, having a very low oxygen permeability
CN110237564A (en) A kind of preparation method of self-heating nano linear array foam
JP7405392B2 (en) Functional porous material and its manufacturing method
Atta Immobilization of silver and strontium oxide aluminate nanoparticles integrated into plasma‐activated cotton fabric: Luminescence, superhydrophobicity, and antimicrobial activity
TW201302181A (en) Porous particles with masking powder and methods of making and using the same
DE60023325T2 (en) SELECTABLE CHANGE FILM MATERIAL USING DIFFERENT ENERGY TYPES
Samanta et al. Charge regulated diffusion of silica nanoparticles into wood for flame retardant transparent wood
Wang et al. Silver nanoparticles loaded thermoresponsive hybrid nanofibrous hydrogel as a recyclable dip‐catalyst with temperature‐tunable catalytic activity
Ghayempour et al. Herbal products on cellulosic fabric with controlled release: comparison of in situ encapsulation and UV curing of the prepared nanocapsules
JP7421789B2 (en) Functional hollow carbon fiber and its manufacturing method
Bettotti et al. Nanocellulose and its interface: on the road to the design of emerging materials
JP2000504568A (en) Liquid active material evaporator
Chae et al. Fibrous mesoporous polymer monoliths: Macromolecular design and enhanced photocatalytic degradation of aromatic dyes
Wang et al. A novel photothermo-responsive nanocarrier for the controlled release of low-volatile fragrances
CN109908966B (en) Photocatalytic composite material and preparation method thereof
Giménez-Martín et al. Adsorption of chlorhexidine onto cellulosic fibers

Legal Events

Date Code Title Description
AA64 Notification of invalidation of claim of internal priority (with term)

Free format text: JAPANESE INTERMEDIATE CODE: A241764

Effective date: 20190730

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190718

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220513

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230418

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230509

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230706

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230822

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230929

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231121

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231207

R150 Certificate of patent or registration of utility model

Ref document number: 7405392

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150