JP7394969B2 - 多重系回転センサおよび多重系回転センサを搭載した電動パワーステアリング装置 - Google Patents

多重系回転センサおよび多重系回転センサを搭載した電動パワーステアリング装置 Download PDF

Info

Publication number
JP7394969B2
JP7394969B2 JP2022513794A JP2022513794A JP7394969B2 JP 7394969 B2 JP7394969 B2 JP 7394969B2 JP 2022513794 A JP2022513794 A JP 2022513794A JP 2022513794 A JP2022513794 A JP 2022513794A JP 7394969 B2 JP7394969 B2 JP 7394969B2
Authority
JP
Japan
Prior art keywords
winding
magnetic poles
stator
stator magnetic
rotation sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2022513794A
Other languages
English (en)
Other versions
JPWO2021205597A5 (ja
JPWO2021205597A1 (ja
Inventor
昇平 藤倉
紘子 池田
辰也 森
憲司 池田
建太 久保
俊宏 松永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Publication of JPWO2021205597A1 publication Critical patent/JPWO2021205597A1/ja
Publication of JPWO2021205597A5 publication Critical patent/JPWO2021205597A5/ja
Application granted granted Critical
Publication of JP7394969B2 publication Critical patent/JP7394969B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/20Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/20Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature
    • G01D5/204Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature by influencing the mutual induction between two or more coils
    • G01D5/2046Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature by influencing the mutual induction between two or more coils by a movable ferromagnetic element, e.g. a core
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D3/00Indicating or recording apparatus with provision for the special purposes referred to in the subgroups
    • G01D3/02Indicating or recording apparatus with provision for the special purposes referred to in the subgroups with provision for altering or correcting the law of variation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0457Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such
    • B62D5/0481Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such monitoring the steering system, e.g. failures

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Technology Law (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)

Description

本願は、多重系回転センサおよび多重系回転センサを搭載した電動パワーステアリング装置に関するものである。
従来、等間隔で内方へ向けて突出する多数の磁極を有するステータと、各磁極に巻回されるステータ巻線とを備えた多重系回転センサで、第1系統巻線と第2系統巻線とからなるステータ巻線の各系統巻線を1個飛びの磁極、または2個飛びの磁極毎に交互に巻回された巻線配置とする巻線構造が知られている(例えば特許文献1参照)。
特開2013-247828号公報
このような多重系回転センサでは、ステータ巻線の各系統巻線はロータの磁極数に依らず、所定の磁極数毎に交互に巻回される。ここで、ロータ形状の製造ばらつき、または偏心等が存在した場合、各系統巻線には回転周波数のノイズ電圧が発生する。そのため、この巻線配置では、発生するノイズ電圧により角度検出精度が悪化するという課題があった。
本願は、上記の課題を解決するための技術を開示するものであり、角度検出精度が向上する巻線配置を備えた多重系回転センサを提供することを目的とする。
本願に開示される多重系回転センサは、
等間隔に配置されたS個の磁極を有するステータコアと、該磁極に巻回されるステータ巻線と、ステータコアと対向して配設されたR個の磁極を有するロータコアとを備え、ステータ巻線は系統数N(Nは2以上の自然数)の系統巻線からなる多重系回転センサにおいて、ステータ巻線は、励磁巻線と2相の出力巻線とから構成され、ステータコアの磁極数Sはロータコアの磁極数Rとステータ巻線の系統数Nとの間にS=nRN(nは自然数)の関係を有し、ステータコアのS個の磁極中、R個の磁極ずつに分けて各系統巻線が巻回されており、各系統巻線の巻線配置がロータの回転軸に対しR回回転対称となっていることを特徴とする。
本願に開示される多重系回転センサによれば、前記ステータ巻線の各系統巻線は前記ロータコアの磁極数Rに対応した巻線配置となる。そのため、ロータ形状の製造ばらつき、または偏心等によるノイズ電圧の位相が各系統巻線が巻回された各ステータ磁極間で360/R°となるため、各系統巻線に発生するノイズ電圧が抑制され、角度検出精度が向上する。
実施の形態1係る多重系回転センサを用いたモータシステムの構成図である。 実施の形態1係る多重回転センサが2系統巻線を施した場合の回路構成を示す図である。 実施の形態1に係る多重系回転センサのロータコア及びステータコアの構成を示す図である。 実施の形態1に係る2系統巻線を施した多重系回転センサのロータ磁極数とステータ磁極数の関係を示す図である。 実施の形態1及び2に係るステータ磁極に巻回される各系統巻線の配置を示す図である。 実施の形態1に係るステータ磁極に巻回される各系統巻線の配置を示す別の図である。 実施の形態1に係るステータ磁極に巻回される各系統巻線の配置を示す別の図である。 実施の形態1に係る多重系回転センサの同系統の系統巻線の結線例を示す図である。 実施の形態1に係る第1系統巻線に誘起する各ノイズ電圧の複素ベクトルを示す図である。 実施の形態3に係るアウターロータコアを用いた多重系回転センサを示す構成図である。 実施の形態4に係る多重系回転センサの各系統巻線の結線例を示す図である。 実施の形態4に係る多重系回転センサの各系統巻線の結線例を示す別の図である。 実施の形態5に係る3系統以上の系統巻線を施した多重系回転センサの回路構成を示す図である。 実施の形態5に係る3系統巻線を施した多重系回転センサのロータ磁極数とステータ磁極数の関係を示す図である。 実施の形態5に係る3系統の系統巻線がステータ磁極に巻回される配置を示す図である。 実施の形態5に係る3系統の系統巻線がステータ磁極に巻回される配置を示す別の図である。 実施の形態6に係る2系統の系統巻線がステータ磁極に巻回される配置を示す図である。 実施の形態7に係る電動パワーステアリング装置の構成を示す図である。 実施の形態1及び7に係る角度演算部、励磁回路部、及びECUのハードウエア構成の一例を示す図である。
以下、本願に係る多重系回転センサの好適な実施の形態について、図面を参照して説明する。なお、同一内容および相当部については同一符号を配し、その詳しい説明は省略する。以降の実施の形態も同様に、同一符号を付した構成について重複した説明は省略する。
実施の形態1.
<2系統直列に関する構成>
本実施の形態に係る多重系回転センサを用いたモータシステムの構成について図1を用いて説明する。図1は多重系回転センサを用いたモータシステム100を示す構成図である。モータシステム100は、回転電機2、シャフト3、及び多重系回転センサ8から構成される。回転電機2は例えば自動車に搭載されるモータを示す。回転電機2と多重系回転センサ8はシャフト3を介して接続される。多重系回転センサ8はシャフト3が接続され、シャフト3を回転軸として回転可能なロータを形成するロータコア6、ロータコア6に対向するステータコア4、ステータコア4に巻回されたステータ巻線5、ステータ巻線5と接続される励磁回路部1及び角度演算部7から構成される。
多重系回転センサ8の回路構成を図2を用いて説明する。図2は2系統の系統巻線を施した多重系回転センサ8における回路構成図である。図1で示した多重系回転センサ8のステータ巻線5は、図2において、第1系統巻線9、第2系統巻線13の2系統から構成され、各系統巻線16は各々第1出力巻線10、第2出力巻線11及び励磁巻線12から構成される。
第1出力巻線10及び第2出力巻線11は角度演算部7に接続され、各系統の励磁巻線12は励磁回路部1に接続される。角度演算部7及び励磁回路部1は各系統毎に別体でもよいが、複数系統で1つの励磁回路部1及び角度演算部7に接続する構成としてもよい。
次に、多重系回転センサ8のロータコア6及びステータコア4の構成について図3を用いて説明する。図3は2系統の系統巻線16を施した多重系回転センサ8におけるロータコア6及びステータコア4の構成図である。ロータコア6はステータコア4に対し内径側に位置する。ロータコア6は凸形状に周方向に等間隔に外径が変化する複数のロータ磁極24を有する。また、ステータコア4は内方へ向けて周方向に等間隔に突出する複数のステータ磁極21を有する。ロータ磁極24とステータ磁極21は、互いに対向して配置される。
ロータコア6の内径部には、回転軸となるシャフト3が接続される。ここで、ロータコア6とシャフト3は一体となっていてもよい。ステータ磁極21には系統巻線16が巻回される。ここで、1つのステータ磁極21につき1系統の系統巻線16が巻回される。なお、系統巻線16を構成する、励磁巻線12、第1出力巻線10、および第2出力巻線11の巻回する順序はいずれを先に巻回してもよい。
次に、2系統の系統巻線16により構成されるロータ磁極24及びステータ磁極21の関係と、2系統の系統巻線9、13の配置例を図4~図7を用いて説明する。図4は2系統の系統巻線9,13を施した多重系回転センサ8におけるロータ磁極数とステータ磁極数の組合せ例を示す。系統巻線16の系統数N=2、ロータコア6のロータ磁極数をR、nを自然数とすると、ステータコア4は次式で表されるステータ磁極数Sを有する。ここで、図に示す組合せは一例であり、式(1)を満たす組合せであればよい。
Figure 0007394969000001
図5において、R=4、N=2、n=2、S=16の場合のステータ磁極に巻回される系統巻線の配置例を示す。各系統巻線9,13の巻回されるステータ磁極21の位置は、ロータの回転軸に対し、周方向に4回回転対称となるように配置される。
そして、各系統巻線9、13の巻回されるステータ磁極数はそれぞれS/N=8個に巻回される。図中、各ステータ磁極にA~Pの符号を付しているが、第1系統巻線9は、ステータ磁極(A、E、I、M)及びステータ磁極(C、G、K、O)に巻回され、第2系統巻線13はステータ磁極(B、F、J、N)及びステータ磁極(D、H、L、P)に巻回される。
このように、各系統巻線9,13は、4回回転対称となるように磁極に巻回されていればよく、例えば、図6のように第1系統巻線9は、ステータ磁極(A、E、I、M)及びステータ磁極(B、F、J、N)に巻回され、第2系統巻線13は、ステータ磁極(C、G、K、O)及びステータ磁極(D、H、L、P)に巻回された巻線配置でもよい。
また、図7のR=4、N=2、n=、S=24の場合にて、第1系統巻線9は、ステータ磁極(B、H、N、T)及びステータ磁極(C、I、O、U)及びステータ磁極(E、K、Q、W)に巻回され、第2系統巻線13は、ステータ磁極(D、J、P、V)及びステータ磁極(F、L、R、X)及びステータ磁極(G、M、S、A)に巻回された巻線配置でもよい。
各ステータ磁極21に巻回された同系統の系統巻線16同士は直列に接続される。図8に同系統の巻線を全て直列に接続した際の結線例を示す。直列の場合はステータ磁極間を渡り線30で直列接続する構成が考えられる。但し、渡り線30の代わりに端子台を設けて接続する構成でもよい。
<動作>
次に本実施の形態の動作について、まず、図3を用いて説明する。ロータコア6は回転電機2と同期して回転する。各系統の励磁巻線12には図1または図2に示した励磁回路部1から電圧をかけることにより、予め定められた電流が流れ、ロータコア6及びステータコア4の内部に磁束が発生する。その際、ロータコア6の回転によりロータコア6の外径の周方向分布が変化するため、各系統の第1出力巻線10及び第2出力巻線11には回転周波数ωに対し、ロータコア6の磁極数Rに対応した周波数Rωの正弦波電圧が誘起される。角度演算部7により正弦波電圧の位相を算出することでロータ角度を演算する。
<効果>
次に本実施の形態の効果について図5を用いて説明する。前述したように、各系統巻線9、13の巻回されるステータ磁極位置はロータの回転軸に対し、周方向にR=4回、回転対称となるように配置される。すなわち、図4のように第1系統巻線9は、ステータ磁極(A、E、I、M)及びステータ磁極(C、G、K、O)に巻回され、第2系統巻線13は、ステータ磁極(B、F、J、N)及びステータ磁極(D、H、L、P)に巻回される。また、ロータコア6の回転により、ロータコア6の外径が変化することで、各系統の第1出力巻線10及び第2出力巻線11に正弦波電圧が誘起される。
ロータコア6が動的偏心している場合、またはロータコア6の形状が製造ばらつきにより変化した場合、各系統巻線9、13の第1出力巻線10及び第2出力巻線11には周波数Rωの正弦波電圧に加え、回転周波数ωのノイズ電圧が誘起される。第1系統巻線が巻回されたステータ磁極(A、E、I、M)を例にとると、このステータ磁極(A、E、I、M)におけるノイズ電圧の位相差は各磁極間で360/R度となる。そのため、ノイズ電圧を複素ベクトル空間で表すと図9のようになる。ここで、ベクトルA~ベクトルAはステータ磁極(A、E、I、M)各々に誘起されるノイズ電圧ベクトルを示す。ベクトルVnoiseは、ステータ磁極(A、E、I、M)各々に誘起されるノイズ電圧の合計ベクトルを示す。誘起されるノイズ電圧の合計Vnoiseは、図9におけるベクトルVnoiseの実部となるため、下記式(2)にて表現され、ほぼゼロとなる。
Figure 0007394969000002
ここで、A~Aはステータ磁極(A、E、I、M)各々に誘起されるノイズ電圧の振幅を示し、θはノイズ電圧の初期位相、ωはノイズ電圧の周波数を示す。
上記式(2)は、各系統巻線9、13が巻回されるその他のステータ磁極(C、G、K、O)、ステータ磁極(B、F、J、N)及びステータ磁極(D、H、L、P)においても同様に成立する。これによりノイズ電圧による多重系回転センサの角度検出誤差を抑制でき角度検出精度を向上することができる。上記効果は図5の構成に限らず、系統巻線16が周方向にR回対称に配置された構造、すなわち、ステータの各磁極に巻回されている各系統巻線の巻線配置がロータの回転軸に対しR回回転対称となっている構造であれば、全てにおいて成立する。
また、前述したように各系統巻線の巻回されるステータ磁極位置は周方向にR回対称となるように配置されていればよく、各系統巻線がステータ磁極S/RN個毎に異なる系統の系統巻線16を配置する構成も可能となる。例えば図6のように第1系統巻線9は、ステータ磁極(A、E、I、M)及びステータ磁極(B、F、J、N)に巻回され、第2系統巻線13は、ステータ磁極(C、G、K、O)及びステータ磁極(D、H、L、P)に巻回された巻線配置でもよい。このような構成により、各系統巻線の磁極間の渡り線の長さを最小にすることができ、製造性を向上させることができる。
の場合、前述したように第1系統巻線9は、ステータ磁極(A、E、I、M)及びステータ磁極(C、G、K、O)に巻回され、第2系統巻線13は、ステータ磁極(B、F、J、N)及びステータ磁極(D、H、L、P)に巻回された巻線配置となり、各系統巻線の磁極配置が全周に均等に配置される。


また、図5~図7に各系統巻線16の巻回されるステータ磁極数は全てS/N個に巻回される。これにより、各系統巻線の巻回されるステータ磁極数は同一となるため、各系統巻線の角度検出精度を同一にすることができる。
また、上述した巻線配置に限らず製造性等の事情に合わせて巻線の配置を自由に変更しながら同様の効果を得ることができるため、製造性の向上を図ることができる。
実施の形態2.
<2系統直列、同ターン数に関する構成>
実施の形態1において説明した各系統巻線9、13の配置例において、例えば図5中、S/R=4個のステータ磁極毎に巻回される同系統の巻線は、各々同じターン数巻回され、接続されている。すなわち、第1系統巻線9は、ステータ磁極(A、E、I、M)に同ターン数の第1出力巻線10及び第2出力巻線11が巻回され、ステータ磁極(C、G、K、O)に同ターン数の第1出力巻線10及び第2出力巻線11が巻回される。また、第2系統巻線13は、ステータ磁極(B、F、J、N)に同ターン数の第1出力巻線10及び第2出力巻線11が巻回され、ステータ磁極(D、H、L、P)に同ターン数の第1出力巻線10及び第2出力巻線11が巻回される。
但し、第1系統巻線9に関して、ステータ磁極(A、E、I、M)とステータ磁極(C、G、K、O)は互いに異なるターン数で巻回されていてもよく、同様に、第2系統巻線13に関しても、ステータ磁極(B、F、J、N)とステータ磁極(D、H、L、P)は互いに異なるターン数で巻回されてもよい。また、第1系統巻線9および第2系統巻線13を構成する第1出力巻線10及び第2出力巻線11は互いに異なるターン数で巻回されてもよい。
また図5では系統数が2の場合を示しているがこの限りではなく、ロータ磁極数及びステータ磁極数が式(1)を満たし各系統巻線16の巻回されるステータ磁極21の位置が周方向にR回対称となるように配置されていればよい。すなわち、ステータの各磁極に巻回されている各系統巻線の巻線配置がロータの回転軸に対しR回回転対称となっていればよい。
<効果>
次に本実施の形態の効果について図5を用いて説明する。前述したようにS/R個のステータ磁極毎に巻回される同系統の巻線は各々同じターン数巻回され、接続されている。例えば図5のように第1系統巻線9はステータ磁極(A、E、I、M)に同ターン数の第1出力巻線10及び第2出力巻線11が巻回される。このとき、ロータコア6が動的偏心している場合、またはロータコア6の形状が製造ばらつきにより変化した場合に、第1系統巻線9の第1出力巻線10及び第2出力巻線11に誘起されるノイズ電圧の振幅は巻回されたステータ磁極(A、E、I、M)各々で同一となるため、誘起されるノイズ電圧の合計Vnoiseは下記式(3)によりゼロとなる。
Figure 0007394969000003
ここで、Aは、ステータ磁極(A、E、I、M)各々に誘起されるノイズ電圧の振幅を示す。上記式(3)は、各系統巻線16が巻回されるその他のステータ磁極(C、G、K、O)、ステータ磁極(B、F、J、N)及びステータ磁極(D、H、L、P)においても成立する。これにより、軸倍角に応じてロータ形状ずれ、偏心等により発生するノイズ電圧による角度検出誤差をさらに抑制でき、角度検出精度を向上することができる。
上記効果は図5の構成に限らず、ロータ磁極数及びステータ磁極数が前記式(1)を満たし、各系統巻線16の巻回されるステータ磁極位置が周方向にR回対称となるように配置された構造、すなわち、ステータの各磁極に巻回されている各系統巻線の巻線配置がロータ回転軸に対しR回回転対称となっている構造であれば、全てにおいて成立する。
実施の形態3.
<アウターロータの構成>
図10はロータコア6がアウターロータとなる多重系回転センサ8におけるロータコア6及びステータコア4の構成図を示す。ロータコア6はステータコア4に対して外径側に位置する。ロータコア6は凸形状に周方向に等間隔に内径が変化する複数のロータ磁極24を有し、ステータコア4は外方へ向けて周方向に等間隔に突出する複数のステータ磁極21を有する。ロータコア6とステータコア4は、互いに対向して配置される。そして、ロータコア6の外径側にシャフト3が接続される。ここで、ロータコア6とシャフト3は一体となっていてもよい。
<効果>
次に本実施の形態の効果について図10を用いて説明する。前述したように、ロータコア6はステータコア4に対して外径側に位置する。これにより、多重系回転センサの製造性、または多重系回転センサの設置される周辺機器の事情に合わせて、実施の形態1の構成のようなロータコア6がステータコア4に対し内径側に位置する構成から本実施の形態のようなロータコア6がステータコア4に対し径側に位置する構造に変更しつつ同様の効果を得ることができるため、多重系回転センサの製造性が向上する。
実施の形態4.
<2系統並列の構成>
図11、図12は2系統の系統巻線16を施した多重系回転センサ8における第1系統巻線9の結線例を示した図である。前述したように、1つのステータ磁極21につき1系統の系統巻線が巻回される。そして、各ステータ磁極21に巻回された同系統の系統巻線16同士は並列に接続される。図11に各系統巻線を全て並列に接続した際の結線例を示す。図11のように、並列の場合は結線板31を設けて各ステータ磁極を接続しているが、結線板31を設けず各ステータ磁極を渡り線で接続する構成でもよい。また、各系統巻線は直列または並列で接続さえされていればよく、図12のように直列接続と並列接続が混合していてもよい。また、本構成は上記の構成に限らず、2系統以上の複系統による多重系回転センサの構成全てにおいて成立する。
<効果>
次に本実施の形態の効果について図11及び図12を用いて説明する。前述したように、各ステータ磁極21に巻回された同系統の系統巻線16同士は並列に接続される。これにより、各系統巻線16の抵抗を最も小さくすることができる。また、前述したように、各系統巻線は接続さえされていればよく、例えば図12のように直列接続と並列接続が混合していてもよい。これにより、回転電機2の各系統巻線の結線構造に依らず、実施の形態1と同様の効果を得ることができ、巻線の製造性向上、またはモータの設計自由度向上を図ることができる。
実施の形態5.
<3系統以上の構成>
図13は3系統以上のN系統の複系統巻線を施した場合の多重系回転センサ8における回路構成を示した図である。図13のように多重系回転センサ8のステータ巻線5はN系統の系統巻線9、13、14、15から構成され、各系統巻線16は各々第1出力巻線10、第2出力巻線11、励磁巻線12から構成される。各系統の第1出力巻線10及び第2出力巻線11は各々角度演算部7、各系統の励磁巻線12は励磁回路部1に接続される。ここで、角度演算部7及び励磁回路部1は各系統毎に別体となっていてもよいが、全系統で1つの励磁回路部1及び角度演算部7に接続する構成としてもよい。図14に系統数が3の場合におけるロータ磁極数Rとステータ磁極数Sの組合せ例を示す。図14に示す組合せは一例であり、式(1)を満たす組合せであればよい。
図15は、3系統の系統巻線を施した場合における各系統巻線16の配置例を示す。前述したように系統巻線16の系統数をN、ロータコア6のロータ磁極数をR、nを自然数とすると、ステータコア4は式(1)で表されるステータ磁極数Sを有する。図15ではR=4、N=3、n=2、S=24の場合を示している。
各系統巻線16の巻回されるステータ磁極位置は、ロータの回転軸に対し、周方向に4回、回転対称となるように配置される。すなわち、第1系統巻線9は、ステータ磁極(B、H、N、T)及びステータ磁極(E、K、Q、W)に巻回される。第2系統巻線13は、ステータ磁極(C、I、O、U)及びステータ磁極(F、L、R、X)に巻回される。第3系統巻線14は、ステータ磁極(D、J、P、V)及びステータ磁極(G、M、S、A)に巻回される。
なお、各系統巻線16は、ロータの回転軸に対し、4回回転対称に配置されていればよい。例えば、図16のように第1系統巻線9は、ステータ磁極(B、H、N、T)及びステータ磁極(C、I、O、U)に巻回される。第2系統巻線13は、ステータ磁極(D、J、P、V)及びステータ磁極(E、K、Q、W)に巻回される。第3系統巻線14は、ステータ磁極(F、L、R、X)及びステータ磁極(G、M、S、A)に巻回される。N>3の系統での系統巻線の配置も同様な手順により行うことが可能である。すなわち、ステータの各磁極に巻回されている各系統巻線の巻線配置がロータの回転軸に対しR回回転対称となっている構造であればよい。
<効果>
このような構成により、N≧3の複系統で構成することが可能となり、2系統以上の複系統の巻線故障時でも動作することができる。また、N≧3の複系統でもN=2の場合と同様の効果を得ることができる。
実施の形態6.
<主系統と補助系統の構成>
図17は系統数が2の場合における多重系回転センサ8における系統巻線16の配置例を示す。系統巻線16の系統数をN=2、ロータコア6のロータ磁極数をR、nを自然数とすると、ステータコア4は、式(1)で表されるステータ磁極数Sを有する。図17ではR=4、N=2、n=3、S=24の場合を示している。各系統巻線16の巻回されるステータ磁極位置は、ロータの回転軸に対し、周方向に4回回転対称となるように配置される。すなわち、第1系統巻線9は、ステータ磁極(B、H、N、T)及びステータ磁極(C、I、O、U)及びステータ磁極(D、J、P、V)及びステータ磁極(E、K、Q、W)に巻回される。第2系統巻線13は、ステータ磁極(F、L、R、X)及びステータ磁極(G、M、S、A)に巻回される。
この構成では、各系統巻線9、13が巻回されるステータ磁極21の数が系統間で異なることとなる。これは一例であり、ステータ磁極数Sが、式(1)を満たし、各系統巻線16の巻回されるステータ磁極位置は周方向にR回対称となるように配置される構成であればよい。すなわち、ステータの各磁極に巻回されている各系統巻線の巻線配置がロータの回転軸に対しR回回転対称となるように配置されていればよい。
<効果>
このような構成により、主系統である第1系統巻線9の巻回されるステータ磁極数を多くすることができ、各系統巻線16の巻回されるステータ磁極21の数が系統間で同一である場合に比べ、主系統の角度検出精度を向上することができる。なお、図17ではN=2の場合を示したがこの限りではなく、N≧2の整数であれば同様の効果を得ることができる。
実施の形態7.
<本回転センサを電動パワーステアリングに搭載した場合の構成>
以上説明した多重系回転センサは、車両用の電動パワーステアリング装置に適用することができる。以下、実施の形態7に係る電動パワーステアリング装置について図18を用いて説明する。
図18は自動車の電動パワーステアリング装置の構成図である。運転者はステアリングホイール(図示しない)を操舵し、そのトルクがステアリングシャフト(図示しない)を介してシャフト41に伝達される。このときトルクセンサ42が検出したトルクは電気信号に変換されケーブル(図示しない)を通じて第一系統電力供給源43および第二系統電力供給源44に伝達される。一方、車速などの自動車の情報が電気信号に変換されケーブルを介して第一系統電力供給源43および第二系統電力供給源44に伝達される。第一系統電力供給源43および第二系統電力供給源44は、トルクと車速などの自動車の情報に基づいて、必要なアシストトルクを演算し、ECU(Electric Control Unit)49を通じて回転電機2に電流を供給する。回転電機2はラック軸の移動方向(矢印で示す)に平行な向きに配置されている。また、第一系統電力供給源43および第二系統電力供給源44への電源供給はバッテリ、またはオルタネータから電源コネクタ46、電源コネクタ47を介して送られる。回転電機2が発生したトルクは、ベルト(図示せず)とボールネジ(図示せず)が内蔵されたギヤボックス52によって減速されハウジング54の内部にあるラック軸(図示せず)を矢印の方向に動かす推力を発生させ、運転者の操舵力をアシストする。
これにより、タイロッド40が動き,タイヤが転舵して車両を旋回させることができる。回転電機2のトルクによってアシストされ、運転者は少ない操舵力で車両を旋回させることができる。なお、ラックブーツ53は異物が装置内に侵入しないように設けられている。図1で説明したように、回転電機2のシャフト3に多重系回転センサ8が取り付けられている。多重系回転センサ8は、回転電機2の回転子の回転角を検出し、それに対応する角度信号を出力する。ECU49には電源45から電源コネクタ48を介して電力が供給される。
このような電動パワーステアリング装置においては、回転電機が発生するコギングトルクまたはトルクリップルはギヤを介して運転者に伝わるため、良好な操舵感覚を得るためにはコギングトルクまたはトルクリップルが小さい方が望ましい。また,回転電機が動作するときの振動・騒音も小さい方が望ましい。
<効果>
実施の形態1~6で述べた多重系回転センサ8を電動ステアリング装置に搭載することにより、各々の実施の形態で述べた効果、すなわち多重系回転センサ8の角度検出誤差を抑制することにより角度検出精度を向上することができ、快適な操舵感を得ることができる。また、多重系回転センサ8は、3系統以上の複数系統を構成することができ、2系統以上の巻線が故障した際にも動作をすることができる。これにより、故障が発生した場合でも、安全に操舵のためのアシスト力を出力することができる。
なお、図1で示した励磁回路部1、角度演算部7、および図18で示したECU49は、マイコンで構成されていても良い。励磁回路部1、角度演算部7およびECUのマイコンのハードウエアの一例を図19に示す。プロセッサ500と記憶装置510から構成され、図示していないが、記憶装置510はランダムアクセスメモリ等の揮発性記憶装置と、フラッシュメモリ等の不揮発性の補助記憶装置とを具備する。また、フラッシュメモリの代わりにハードディスクの補助記憶装置を具備してもよい。プロセッサ500は、記憶装置510から入力されたプログラムを実行することにより、例えば、角度演算部7での角度演算を行う。この場合、補助記憶装置から揮発性記憶装置を介してプロセッサ500にプログラムが入力される。また、プロセッサ500は、演算結果等のデータを記憶装置510の揮発性記憶装置に出力してもよいし、揮発性記憶装置を介して補助記憶装置にデータを保存してもよい。
なお、励磁回路部1、角度演算部7およびECU49内のハードウエアはマイコンでなくてもよく、ASIC(Application Specific Integrated Circuit)、FPGA(Field Programmable Gate Array)、簡単な論理回路、またはリレーなどでもよい。
本開示は、様々な例示的な実施の形態及び実施例が記載されているが、1つ、または複数の実施の形態に記載された様々な特徴、態様、及び機能は特定の実施の形態の適用に限られるのではなく、単独で、または様々な組み合わせで実施の形態に適用可能である。
従って、例示されていない無数の変形例が、本願明細書に開示される技術の範囲内において想定される。例えば、少なくとも1つの構成要素を変形する場合、追加する場合または省略する場合、さらには、少なくとも1つの構成要素を抽出し、他の実施の形態の構成要素と組み合わせる場合が含まれるものとする。
1:励磁回路部、2:回転電機、3:シャフト、4:ステータコア、5:ステータ巻線、6:ロータコア、7:角度演算部、8:多重系回転センサ、9:第1系統巻線、10:第1出力巻線、11:第2出力巻線、12:励磁巻線、13:第2系統巻線、14:第3系統巻線、15:第N系統巻線、16:系統巻線、21:ステータ磁極、24:ロータ磁極、30:渡り線、31:結線板

Claims (6)

  1. 等間隔に配置されたS個の磁極を有するステータコアと、該磁極に巻回されるステータ巻線と、前記ステータコアと対向して配設されたR個の磁極を有するロータコアとを備え、前記ステータ巻線は系統数N(Nは2以上の自然数)の系統巻線からなる多重系回転センサにおいて、
    前記ステータ巻線は、励磁巻線と2相の出力巻線とから構成され、前記ステータコアの磁極数Sは前記ロータコアの磁極数Rと前記ステータ巻線の系統数Nとの間にS=nRN(nは自然数)の関係を有し、前記ステータコアのS個の磁極中、R個の磁極ずつに分けて各系統巻線が巻回されており、前記各系統巻線の巻線配置がロータの回転軸に対しR回回転対称となっていることを特徴とする多重系回転センサ。
  2. 前記ステータ巻線は前記ステータコアの周方向に、S/R毎に位置する磁極に同じ系統の系統巻線が同じターン数巻回されていることを特徴とする請求項1に記載の多重系回転センサ。
  3. 前記ステータコアのS/RNおきの磁極に異なる系統の系統巻線が巻回されていることを特徴とする、請求項1に記載の多重系回転センサ。
  4. それぞれの系統巻線は前記ステータコアのS/N個の磁極に巻回されていることを特徴とする請求項1または2に記載の多重系回転センサ。
  5. 系統の別に応じて、巻回される前記ステータコアの磁極数が異なることを特徴とする請求項1または2に記載の多重系回転センサ。
  6. 請求項1からのいずれか一項に記載の多重系回転センサを搭載した電動パワーステアリング装置。
JP2022513794A 2020-04-09 2020-04-09 多重系回転センサおよび多重系回転センサを搭載した電動パワーステアリング装置 Active JP7394969B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/015955 WO2021205597A1 (ja) 2020-04-09 2020-04-09 多重系回転センサおよび多重系回転センサを搭載した電動パワーステアリング装置

Publications (3)

Publication Number Publication Date
JPWO2021205597A1 JPWO2021205597A1 (ja) 2021-10-14
JPWO2021205597A5 JPWO2021205597A5 (ja) 2022-10-27
JP7394969B2 true JP7394969B2 (ja) 2023-12-08

Family

ID=78022906

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022513794A Active JP7394969B2 (ja) 2020-04-09 2020-04-09 多重系回転センサおよび多重系回転センサを搭載した電動パワーステアリング装置

Country Status (5)

Country Link
US (1) US20230078128A1 (ja)
EP (1) EP4134632B1 (ja)
JP (1) JP7394969B2 (ja)
CN (1) CN115427763A (ja)
WO (1) WO2021205597A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003194584A (ja) 2001-10-16 2003-07-09 Mitsubishi Electric Corp 回転角度検出装置、それを用いた永久磁石型回転電機、及び、永久磁石型回転電機を用いた電動パワーステアリング装置
JP2015186369A (ja) 2014-03-25 2015-10-22 セイコーエプソン株式会社 可変リラクタンス型レゾルバ、モータ及びロボット

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010002205A (ja) * 2008-06-18 2010-01-07 Nsk Ltd 多重系回転センサ
JP2013247828A (ja) * 2012-05-29 2013-12-09 Tamagawa Seiki Co Ltd 冗長系レゾルバ巻線構造
WO2019123592A1 (ja) * 2017-12-21 2019-06-27 三菱電機株式会社 冗長型レゾルバ、およびそれを用いた回転角度検出装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003194584A (ja) 2001-10-16 2003-07-09 Mitsubishi Electric Corp 回転角度検出装置、それを用いた永久磁石型回転電機、及び、永久磁石型回転電機を用いた電動パワーステアリング装置
JP2015186369A (ja) 2014-03-25 2015-10-22 セイコーエプソン株式会社 可変リラクタンス型レゾルバ、モータ及びロボット

Also Published As

Publication number Publication date
US20230078128A1 (en) 2023-03-16
EP4134632B1 (en) 2024-06-05
CN115427763A (zh) 2022-12-02
EP4134632A1 (en) 2023-02-15
WO2021205597A1 (ja) 2021-10-14
EP4134632A4 (en) 2023-05-24
JPWO2021205597A1 (ja) 2021-10-14

Similar Documents

Publication Publication Date Title
US10833549B2 (en) Rotary electric machine
US10404124B2 (en) Rotary electric machine
JP4251196B2 (ja) ステアリング装置用モータ
JP2010048760A (ja) レゾルバの異常検出装置および電気式動力舵取装置
US9755470B2 (en) Rotary electric machine and electric power steering device using rotary electric machine
US7427858B2 (en) Resolver reference position adjustment method
CN109428407B (zh) 定子芯
WO2018135375A1 (ja) 電動モータ
EP2589935A2 (en) Rotation angle detection device and torque sensor
US20050046296A1 (en) Electric motor and steering system using the same
JP4362129B2 (ja) レゾルバ
JP4575331B2 (ja) レゾルバ
JP2007322132A (ja) 回転角検出装置およびトルクセンサ
JP7081386B2 (ja) 回転検出装置、および、これを用いた電動パワーステアリング装置
JP7394969B2 (ja) 多重系回転センサおよび多重系回転センサを搭載した電動パワーステアリング装置
JP7142776B2 (ja) 冗長レゾルバ装置及び電動パワーステアリング装置
JP5905176B1 (ja) 回転電機および当該回転電機を用いた電動パワーステアリング装置
JP4020013B2 (ja) 車両用操舵装置
JP2012010465A (ja) モータ制御装置及び車両用操舵装置
WO2021205596A1 (ja) 冗長レゾルバ及び冗長レゾルバを搭載した電動パワーステアリング装置
JP4438386B2 (ja) トルク検出装置
WO2023002779A1 (ja) パワーステアリング装置
JP2022086919A (ja) ブラシレスモータ

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220830

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220830

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230816

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230928

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231031

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231128

R151 Written notification of patent or utility model registration

Ref document number: 7394969

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151