JP7383783B1 - デジタル移相回路 - Google Patents

デジタル移相回路 Download PDF

Info

Publication number
JP7383783B1
JP7383783B1 JP2022203323A JP2022203323A JP7383783B1 JP 7383783 B1 JP7383783 B1 JP 7383783B1 JP 2022203323 A JP2022203323 A JP 2022203323A JP 2022203323 A JP2022203323 A JP 2022203323A JP 7383783 B1 JP7383783 B1 JP 7383783B1
Authority
JP
Japan
Prior art keywords
line
circuit
parallel
phase shift
signal line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2022203323A
Other languages
English (en)
Other versions
JP2024088247A (ja
Inventor
雄介 上道
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP2022203323A priority Critical patent/JP7383783B1/ja
Priority to PCT/JP2023/038949 priority patent/WO2024135099A1/ja
Application granted granted Critical
Publication of JP7383783B1 publication Critical patent/JP7383783B1/ja
Publication of JP2024088247A publication Critical patent/JP2024088247A/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F21/00Variable inductances or transformers of the signal type
    • H01F21/12Variable inductances or transformers of the signal type discontinuously variable, e.g. tapped
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/18Phase-shifters
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H11/00Networks using active elements
    • H03H11/02Multiple-port networks
    • H03H11/16Networks for phase shifting
    • H03H11/20Two-port phase shifters providing an adjustable phase shift
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/18Networks for phase shifting
    • H03H7/20Two-port phase shifters providing an adjustable phase shift

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Coils Or Transformers For Communication (AREA)
  • Networks Using Active Elements (AREA)

Abstract

【課題】所望の移相特性を有しつつ移相量を動的に変更することができるデジタル移相回路を提供する。【解決手段】デジタル移相回路PS2は、固定インダクタ211,221と第1可変インダクタ(可変インダクタ212,222)とを直列接続した可変インダクタ回路(第1可変インダクタ回路210A,第2可変インダクタ回路220A)を備える。【選択図】図6

Description

本発明は、デジタル移相回路に関する。
近年、マイクロ波、準ミリ波、ミリ波等の高周波信号を用いた無線通信が脚光を浴びている。特に、準ミリ波帯より高周波における無線通信では、電波の直進性が高まるためビームフォーミングを行う必要があり、これを実現する移相回路が不可欠となる。
以下の特許文献1には、第1コイル及び第2コイルを備えるトランスと、トランスの寄生インダクタンス成分によるインピーダンスのずれを抑制するリアクタンス素子を有するインピーダンス調整用回路とを備える移相回路が開示されている。この移相回路では、ローバンドでの移相量が90°より180°に近い移相量になり、ハイバンドでの移相量が180°より90°に近い移相量になるように、トランス及びインピーダンス調整用回路が調整されている。
特許第6168243号公報
ところで、近年においては、移相量を動的に変更することができるデジタル制御型の移相回路(デジタル移相回路)が要求されている。このようなデジタル移相回路の構成要素としては、例えば、並列接続される2つのコンデンサと、何れか一方のコンデンサに直列接続されたスイッチとを備え、スイッチの開閉によって2つのコンデンサの合成容量を変えることで、移相量を動的に変更するものが考えられる。
ここで、デジタル移相回路においてインピーダンス整合を保ったまま所望の移相特性を実現するには、コンデンサの容量だけを変えればよいという訳ではなく、インダクタンスの大きさも同時に変える必要がある。しかしながら、一般的には、可変インダクタを実現することは容易ではないことから、所望の移相特性を有し、インピーダンス整合を保ちつつ移相量を動的に変更することができるデジタル移相回路を実現することは難しい。
本発明は、上記事情に鑑みてなされたものであり、所望の移相特性を有しつつ移相量を動的に変更することができるデジタル移相回路を提供することを目的とする。
上記課題を解決するために、本発明の第1の態様によるデジタル移相回路(PS2)は、固定インダクタ(211、221)と第1可変インダクタ(212、222)とを直列接続した可変インダクタ回路(210A、220A)を備える。
本発明の第1の態様によるデジタル移相回路では、第1可変インダクタのインダクタンスを変えることにより、所望の移相特性を有しつつ移相量を動的に変更することができる。
本発明の第2の態様によるデジタル移相回路は、本発明の第1の態様によるデジタル移相回路において、前記第1可変インダクタが、信号線路(10)と、前記信号線路と平行に延びる第1平行線路(21p1)を含む第1線路(21)と、前記信号線路と平行に延びる第2平行線路(22p2)と、前記第2平行線路の一方の端部から前記信号線路の長手方向と交差する交差方向において前記信号線路から遠ざかるように延びる第1交差線路(22c1)と、前記第1交差線路の一方の端部から前記信号線路と平行に延びる第3平行線路(22p3)と、前記第3平行線路の一方の端部から前記交差方向において前記信号線路に近づくように延びる第2交差線路(22c2、22c2′)と、を含む第2線路(22)と、前記第1平行線路の一方の端部及び前記第2平行線路の一方の端部に電気的に接続された第1接地導体(31)と、前記第2線路の一方の端部に接続された第2接地導体(32)と、前記第1平行線路の他方の端部と前記第2接地導体との間に設けられた第1電子スイッチ(41)と、前記第2平行線路の他方の端部と前記第2接地導体との間に設けられた第2電子スイッチ(42)と、を備え、前記第1平行線路と前記第2平行線路との間に前記信号線路が位置する。
本発明の第3の態様によるデジタル移相回路は、本発明の第2の態様によるデジタル移相回路において、前記第2交差線路が、平面視において前記第2平行線路、前記信号線路、及び前記第1平行線路と交差するように延びており、前記第2線路が、前記第2交差線路の一方の端部から前記信号線路と平行に延びる第4平行線路(22p4)と、前記第4平行線路の一方の端部から前記交差方向において前記信号線路に近づくように延びる第3交差線路(22c3)と、を更に含む。
本発明の第4の態様によるデジタル移相回路は、本発明の第2の態様によるデジタル移相回路において、前記第1線路が、前記第1平行線路の一方の端部から前記交差方向において前記信号線路から遠ざかるように延びる第4交差線路(21c1)と、前記第4交差線路の一方の端部から前記信号線路と平行に延びる第5平行線路(21p2)と、前記第5平行線路の一方の端部から前記交差方向において前記信号線路に近づくように延びる第5交差線路(21c2)と、を更に含む。
本発明の第5の態様によるデジタル移相回路は、本発明の第1の態様によるデジタル移相回路において、前記第1可変インダクタが、信号線路(1)と、前記信号線路の両側に設けられた内側線路(2)と、前記信号線路の一方側及び他方側の少なくとも一つの側において、前記内側線路よりも前記信号線路から遠い位置に設けられた外側線路(3)と、前記内側線路及び前記外側線路の一方の端部に接続された第1接地導体(4a)と、前記外側線路の他方の端部に接続された第2接地導体(4b)と、前記信号線路の一方側に設けられた前記内側線路の他方の端部と前記第2接地導体との間に設けられた第1電子スイッチ(7a)と、前記信号線路の他方側に設けられた前記内側線路の他方の端部と前記第2接地導体との間に設けられた第2電子スイッチ(7b)と、を有する。
本発明の第6の態様によるデジタル移相回路は、本発明の第1~第5の何れかの態様によるデジタル移相回路において、第1ポート(P100)と第2ポート(P200)との間に接続された第1回路(100)と、前記第1回路に並列接続された第2回路(200A)と、前記第2回路と共通帰線(L0)との間に接続された第3回路(300A)と、を備え、前記第2回路が、前記可変インダクタ回路である第1可変インダクタ回路(210A)と、前記可変インダクタ回路である第2可変インダクタ回路(220A)とが直列接続された回路を備える。
本発明の第7の態様によるデジタル移相回路は、本発明の第6の態様によるデジタル移相回路において、前記第1回路が、第1可変コンデンサ(101)を備え、前記第3回路が、第2可変インダクタ(302)と第2可変コンデンサ(303)とが直列接続された回路を備え、前記第1可変インダクタ回路と前記第2可変インダクタ回路との接続点(Q)に接続される。
本発明の第8の態様によるデジタル移相回路は、第1ポート(P100)と第2ポート(P200)との間に接続された第1回路(100)と、前記第1回路に並列接続された第2回路(200、200A)と、前記第2回路と共通帰線(L0)との間に接続された第3回路(300、300A)と、を備え、前記第1回路、前記第2回路、及び前記第3回路の少なくとも1つが、可変インダクタ(212、222、302)を備える。
本発明の第9の態様によるデジタル移相回路は、本発明の第8の態様によるデジタル移相回路において、前記可変インダクタが、信号線路(10)と、前記信号線路と平行に延びる第1平行線路(21p1)を含む第1線路(21)と、前記信号線路と平行に延びる第2平行線路(22p2)と、前記第2平行線路の一方の端部から前記信号線路の長手方向と交差する交差方向において前記信号線路から遠ざかるように延びる第1交差線路(22c1)と、前記第1交差線路の一方の端部から前記信号線路と平行に延びる第3平行線路(22p3)と、前記第3平行線路の一方の端部から前記交差方向において前記信号線路に近づくように延びる第2交差線路(22c2、22c2′)と、を含む第2線路(22)と、前記第1平行線路の一方の端部及び前記第2平行線路の一方の端部に電気的に接続された第1接地導体(31)と、前記第2線路の一方の端部に接続された第2接地導体(32)と、前記第1平行線路の他方の端部と前記第2接地導体との間に設けられた第1電子スイッチ(41)と、前記第2平行線路の他方の端部と前記第2接地導体との間に設けられた第2電子スイッチ(42)と、を備え、前記第1平行線路と前記第2平行線路との間に前記信号線路が位置する。
本発明の第10の態様によるデジタル移相回路は、本発明の第9の態様によるデジタル移相回路において、前記第2交差線路が、平面視において前記第2平行線路、前記信号線路、及び前記第1平行線路と交差するように延びており、前記第2線路が、前記第2交差線路の一方の端部から前記信号線路と平行に延びる第4平行線路(22p4)と、前記第4平行線路の一方の端部から前記交差方向において前記信号線路に近づくように延びる第3交差線路(22c3)と、を更に含む。
本発明の第11の態様によるデジタル移相回路は、本発明の第9の態様によるデジタル移相回路において、前記第1線路が、前記第1平行線路の一方の端部から前記交差方向において前記信号線路から遠ざかるように延びる第4交差線路(21c1)と、前記第4交差線路の一方の端部から前記信号線路と平行に延びる第5平行線路(21p2)と、前記第5平行線路の一方の端部から前記交差方向において前記信号線路に近づくように延びる第5交差線路(21c2)と、を更に含む。
本発明の第12の態様によるデジタル移相回路は、本発明の第8の態様によるデジタル移相回路において、前記可変インダクタが、信号線路(1)と、前記信号線路の両側に設けられた内側線路(2)と、前記信号線路の一方側及び他方側の少なくとも一つの側において、前記内側線路よりも前記信号線路から遠い位置に設けられた外側線路(3)と、前記内側線路及び前記外側線路の一方の端部に接続された第1接地導体(4a)と、前記外側線路の他方の端部に接続された第2接地導体(4b)と、前記信号線路の一方側に設けられた前記内側線路の他方の端部と前記第2接地導体との間に設けられた第1電子スイッチ(7a)と、前記信号線路の他方側に設けられた前記内側線路の他方の端部と前記第2接地導体との間に設けられた第2電子スイッチ(7b)と、を有する。
本発明の第13の態様によるデジタル移相回路は、本発明の第8~12の何れかの態様によるデジタル移相回路(PS1)において、前記第1回路が、可変コンデンサ(101)を備え、前記第2回路が、第1固定インダクタ(211)と第2固定インダクタ(221)とが直列接続された回路を備え、前記第3回路が、前記可変インダクタ(302)と固定コンデンサ(301)とが直列接続された回路を備え、前記第1固定インダクタと前記第2固定インダクタとの接続点(Q)に接続される。
本発明の第14の態様によるデジタル移相回路は、本発明の第8~12の何れかの態様によるデジタル移相回路(PS3)において、前記第1回路が、固定インダクタ(102)を備え、前記第2回路が、第1可変コンデンサ(231)と第2可変コンデンサ(241)とが直列接続された回路を備え、前記第3回路が、前記可変インダクタ(302)と固定コンデンサ(301)とが直列接続された回路を備え、前記第1可変コンデンサと前記第2可変コンデンサとの接続点(Q)に接続される。
本発明の第15の態様によるデジタル移相回路は、本発明の第1~5の何れかの態様によるデジタル移相回路において、第1ポート(P100)と第2ポート(P200)との間に接続された第1回路(100)と、前記第1回路に並列接続された第2回路(200)と、前記第2回路と共通帰線(L0)との間に接続された第3回路(300)と、を備え、前記第1回路が、前記可変インダクタ回路を備え、前記第2回路が、第1可変コンデンサ(231)と第2可変コンデンサ(241)とが直列接続された回路を備え、前記第3回路は、可変インダクタ(302)と固定コンデンサ(301)とが直列接続された回路を備え、前記第1可変コンデンサと前記第2可変コンデンサとの接続点(Q)に接続される。
本発明によれば、可変インダクタのインダクタンスを動的に変えることができるため、所望の移相特性を有しつつ移相量を動的に変更することができるという効果がある。
本発明の第1実施形態によるデジタル移相回路の構成を示す回路図である。 本発明の第1実施形態における可変インダクタの要部構成を示す平面図である。 図2中のII-II線に沿う断面図矢視図である。 図2中のIII-III線に沿う断面矢視図である。 本発明の第1実施形態によるデジタル移相回路のシミュレーション結果を示す図である。 本発明の第2実施形態によるデジタル移相回路の構成を示す回路図である。 本発明の第2実施形態によるデジタル移相回路のシミュレーション結果を示す図である。 本発明の第3実施形態における可変インダクタの要部構成を示す平面図である。 デジタル移相回路の他の構成例を示す回路図である。 可変インダクタの他の構成例を示す平面図である。 可変インダクタの他の構成例を示す斜視図である。 可変インダクタの他の構成例を示す斜視図である。 可変インダクタの他の構成例を示す斜視図である。
以下、図面を参照して本発明の実施形態によるデジタル移相回路について詳細に説明する。尚、以下で参照する図面では、理解を容易にするために、必要に応じて各部材の寸法を適宜変えて図示している。
〔第1実施形態〕
〈デジタル移相回路〉
図1は、本発明の第1実施形態によるデジタル移相回路の構成を示す回路図である。図1に示す通り、本実施形態のデジタル移相回路PS1は、第1回路100、第2回路200、及び第3回路300を備える。第1回路100及び第2回路200は、第1ポートP100と第2ポートP200との間に接続された回路であり、互いに並列接続されている。第3回路300は、第2回路200と共通帰線L0(グランド線)との間に接続された回路である。このようなデジタル移相回路PS1は、マイクロ波、準ミリ波、ミリ波等の高周波信号を入力とし、所定の位相だけシフトした高周波信号を外部に出力する。
デジタル移相回路PS1は、第1ポートP100と第2ポートP200との間において対称性を有する。このため、デジタル移相回路PS1は、高周波信号が第1ポートP100から入力される場合には、所定の位相だけシフトした高周波信号を第2ポートP200から外部に出力する。また、デジタル移相回路PS1は、高周波信号が第2ポートP200から入力される場合には、所定の位相だけシフトした高周波信号を第1ポートP100から外部に出力する。
第1回路100は、可変コンデンサ101(第1可変コンデンサ)を備える。可変コンデンサ101の一方の電極は第1ポートP100に接続されており、他方の電極は第2ポートP200に接続されている。可変コンデンサ101は、デジタル移相回路PS1の移相量を変化させる際に、不図示の制御部によって制御される。
第2回路200は、直列接続された第1固定インダクタ回路210と第2固定インダクタ回路220とを備える。第1固定インダクタ回路210は、固定インダクタ211を備えており、第2固定インダクタ回路220は、固定インダクタ221を備えている。固定インダクタ211の一端は第1ポートP100に接続されており、他端は固定インダクタ221の一端に接続されている。固定インダクタ221の一端は固定インダクタ211の他端に接続されており、他端は第2ポートP200に接続されている。
第3回路300は、直列接続されたコンデンサ301と可変インダクタ302とを備えており、第2回路200に設けられた第1固定インダクタ回路210と第2固定インダクタ回路220との接続点Qに接続されている。コンデンサ301の一方の電極は接続点Qに接続されており、他方の電極は可変インダクタ302の一端に接続されている。可変インダクタ302の一端はコンデンサ301の他方の電極に接続されており、他端は共通帰線L0に接続されている。可変インダクタ302は、可変コンデンサ101と同様に、デジタル移相回路PS1の移相量を変化させる際に、不図示の制御部によって制御される。尚、可変インダクタ302の詳細については後述する。
上記構成において、不図示の制御部が、可変コンデンサ101及び可変インダクタ302を制御し、可変コンデンサ101の容量の大きさ及び可変インダクタ302のインダクタンスの大きさを変えることにより、デジタル移相回路PS1の移相量が変化する。例えば、不図示の制御部が可変コンデンサ101の容量をCxに設定し、可変インダクタ302のインダクタンスをLxに設定すると、デジタル移相回路PS1から出力される高周波信号位相はφxになる。また、例えば、不図示の制御部が可変コンデンサ101の容量をCyに設定し、可変インダクタ302のインダクタンスをLyに設定すると、デジタル移相回路PS1から出力される高周波信号の位相はφyになる。このようにして、不図示の制御部によってデジタル移相回路PS1の移相量(位相φxと位相φyとの差)が制御される。
〈可変インダクタ〉
図2は、本発明の第1実施形態における可変インダクタの要部構成を示す平面図である。図3は、図2中のII-II線に沿う断面図矢視図である。図4は、図2中のIII-III線に沿う断面矢視図である。図2~4に示す構成の可変インダクタID1は、図1に示す可変インダクタ302として用いられる。
図2に示す通り、可変インダクタID1は、信号線路10と、第1線路21と、第2線路22と、第1接地導体31と、第2接地導体32と、を備える。本実施形態における第1線路21は、第1平行線路21p1と、一対の上側パッド21d1、21d2と、を含む。本実施形態における第2線路22は、第2平行線路22p2と、第1交差線路22c1と、第3平行線路22p3と、第2交差線路22c2と、上側パッド22dと、を含む。また、本実施形態における可変インダクタID1は、第1電子スイッチ41及び第2電子スイッチ42と、複数の接続導体50と、複数の接続パッドP1~P4と、を備える(図3及び図4も参照)。
信号線路10は、図2に示す通り、一方向に延在する直線状の帯状導体である。即ち、信号線路10は、一定の幅、一定の厚さ及び所定の長さを有する長尺板状の導体である。信号線路10には、図2における紙面左側から紙面右側に向かって、つまり紙面左側の端部(入力端)から紙面右側の端部(出力端)に向かって信号電流が流れる。この信号電流は、上述したマイクロ波、準ミリ波、或いはミリ波の波長域を有する高周波信号である。信号線路10は、例えば、入力端が図1に示すコンデンサ301の他方の電極に接続され、出力端が図1に示す共通帰線L0に接続される。
ここで、本実施形態では、信号線路10の長手方向(信号線路10が延在する方向)を、単に長手方向Xという。長手方向Xに沿って、信号線路10の入力端から出力端に向かう向きを、+Xの向き又は右方という。右方とは反対の向きを、左方又は-Xの向きという。信号線路10に交差する(例えば、直交する)方向を、交差方向Yという。交差方向Yに沿う一つの向きを、奥側又は+Yの向きという。奥側とは反対の向きを、手前側又は-Yの向きという。長手方向X及び交差方向Yの双方に交差する(例えば、直交する)方向を、上下方向Zという。上下方向Zに沿う一つの向きを、上方又は+Zの向きという。上方とは反対の向きを、下方又は-Zの向きという。上下方向Zから見ることを、平面視という。
信号線路10は、電気的には集中定数回路としてのインダクタンスL1を有する。このインダクタンスL1は、信号線路10の長さ等、信号線路10の形状に応じた大きさを有する寄生インダクタンスである。
第1平行線路21p1は、信号線路10の他方の側方(-Y側)に設けられた直線状の帯状導体である。第1平行線路21p1は、一定の幅、一定の厚さ、及び所定の長さを有する長尺板状の導体である。第1平行線路21p1は、信号線路10と平行(長手方向X)に延びている。第1平行線路21p1と信号線路10とは、交差方向Yに間隔を空けて配されている。
上側パッド21d1は、第1平行線路21p1の一端(-X側)に接続された長方形状の平板導体である。上側パッド21d1の長辺は交差方向Yに延びており、上側パッド21d1の短辺は長手方向Xに延びている。上側パッド21d1の一方の短辺(+Y側)は、第1平行線路21p1の一方の側縁(+Y側)と略同一の位置にある。また、上側パッド21d1の他方の短辺(-Y側)は、第1平行線路21p1の他方の側縁(-Y側)よりも手前側(-Y側)に位置する。つまり、上側パッド21d1の交差方向Yにおける寸法は、第1平行線路21p1の幅(交差方向Yにおける寸法)よりも大きい。
上側パッド21d2は、第1平行線路21p1の他端(+X側)に接続された長方形状の平板導体である。上側パッド21d2の長辺は交差方向Yに延びており、上側パッド21d2の短辺は長手方向Xに延びている。上側パッド21d2の一方の短辺(+Y側)は、第1平行線路21p1の一方の側縁(+Y側)と略同一の位置にある。また、上側パッド21d2の他方の短辺(-Y側)は、第1平行線路21p1の他方の側縁(-Y側)よりも手前側(-Y側)に位置する。つまり、上側パッド21d2の交差方向Yにおける寸法は、第1平行線路21p1の幅(交差方向Yにおける寸法)よりも大きい。
第2平行線路22p2は、信号線路10の一方の側方(+Y側)に設けられた直線状の帯状導体である。第2平行線路22p2は、一定の幅、一定の厚さ、及び所定の長さを有する長尺板状の導体である。第2平行線路22p2は、信号線路10と平行(長手方向X)に延びている。第2平行線路22p2と信号線路10とは、交差方向Yに間隔を空けて配されている。
第2平行線路22p2は、信号線路10に対して第1平行線路21p1とは逆側に設けられている。言い換えれば、第2平行線路22p2は、信号線路10が交差方向Yにおいて第1平行線路21p1及び第2平行線路22p2の間に位置するように、配置されている。
第1交差線路22c1は、第2平行線路22p2の一端(-X側)に接続された直線状の帯状導体である。第1交差線路22c1は、一定の幅、一定の厚さ、及び所定の長さを有する長尺板状の導体である。第1交差線路22c1は、第2平行線路22p2の一端(-X側)から、交差方向Yにおいて信号線路10から遠ざかるように延びている。つまり、本実施形態における第1交差線路22c1は、第2平行線路22p2の一端(-X側)から奥側(+Y側)に向けて延びている。第1交差線路22c1の手前側の端縁(-Y側)は、第2平行線路22p2の一方の側縁(-Y側)と略同一の位置にある。
上側パッド22dは、第2平行線路22p2の他端(+X側)に接続された長方形状の平板導体である。上側パッド22dの長辺は交差方向Yに延びており、上側パッド22dの短辺は長手方向Xに延びている。上側パッド22dの一方の短辺(-Y側)は、第2平行線路22p2の一方の側縁(-Y側)と略同一の位置にある。また、上側パッド22dの他方の短辺(+Y側)は、第2平行線路22p2の他方の側縁(+Y側)よりも奥側(+Y側)に位置する。つまり、上側パッド22dの交差方向Yにおける寸法は、第2平行線路22p2の幅(交差方向Yにおける寸法)よりも大きい。
第3平行線路22p3は、第1交差線路22c1の一端(+Y端)に接続された直線状の帯状導体である。第3平行線路22p3は、一定の幅、一定の厚さ、及び所定の長さを有する長尺板状の導体である。第3平行線路22p3は、第1交差線路22c1の一端(+Y側)から、信号線路10と平行(長手方向X)に延びている。つまり、本実施形態における第3平行線路22p3は、第1交差線路22c1の一端(+Y側)から右側(+X側)に向けて延びている。
第3平行線路22p3は、信号線路10の一方側(+Y側)において、第2平行線路22p2よりも信号線路10から遠い位置に設けられている。言い換えれば、第3平行線路22p3は、第2平行線路22p2が交差方向Yにおいて信号線路10と第3平行線路22p3との間に位置するように、配置されている。
図2に示す通り、交差方向Yにおいて、第2平行線路22p2の中心線と第3平行線路22p3の中心線との間の距離d1は、第2平行線路22p2の中心線と第1接地導体31の奥側の外縁(第3平行線路22p3側の外縁)との間の距離d2よりも大きい。また、第3平行線路22p3の右端(+X側)は、第2線路22の上側パッド22dの右側(+X側)長辺よりも右方(+X側)に位置する。
第2交差線路22c2は、第3平行線路22p3の一端(+X側)に接続された直線状の帯状導体である。第2交差線路22c2は、一定の幅、一定の厚さ、及び所定の長さを有する長尺板状の導体である。第2交差線路22c2は、第3平行線路22p3の一端(+X側)から、交差方向Yにおいて信号線路10に近づくように延びている。つまり、本実施形態における第2交差線路22c2は、第3平行線路22p3の一端(+X端)から手前側(-Y側)に向けて延びている。
本実施形態における第2交差線路22c2の一端縁(-Y側)は、上側パッド22dの一方の短辺(-Y側)及び第2平行線路22p2の一方の側縁(-Y側)と略同一の位置にある。また、上側パッド22dと第2交差線路22c2とは、長手方向Xにおいて間隔を空けて配されている。また、本実施形態における第2交差線路の左側縁(-X側)は、信号線路10の右端縁(+X側)と略同一の位置にある。
また、本実施形態における第2交差線路22c2の一端(-Y側)は、不図示の導体によって、第2接地導体32と常時電気的に接続されている。言い換えれば、第2線路22の一端は、不図示の導体によって、第2接地導体32と常時電気的に接続されている。
以上説明した第1交差線路22c1、第3平行線路22p3、及び第2交差線路22c2は、奥側(+Y側)に凸となるU字状にループしたループ線路を構成している。
第1接地導体31は、信号線路10の入力端側(-X側)に設けられる板状の導体である。第1接地導体31は、電気的に接地されている。また、第1接地導体31の右側(+X側)の側縁には、長方形状の切欠き31aが形成されている。本実施形態では、この切欠き31aが形成されていることにより、第1接地導体31と信号線路10とが長手方向Xにおいて重なっていない。
また、本実施形態では、第1接地導体31のうち切欠き31aよりも左側(-X側)に位置する部分を「基部31b」と称し、切欠き31aよりも手前側(-Y側)に位置する部分を「第1突起部31c」と称し、切欠き31aよりも奥側(+Y側)に位置する部分を「第2突起部31d」という。第1突起部31c及び第2突起部31dの各々は、基部31bから右側(+X側)に向けて突出している。尚、第1接地導体31には、切欠き31a、第1突起部31c、第2突起部31dが形成されていなくともよい。例えば、第1接地導体31の平面視形状は矩形形状であってもよい。
第1突起部31c及び第2突起部31dの各々は、長辺が交差方向Yに延び、短辺が長手方向Xに延びる長方形状を有する。第1突起部31cは、上側パッド21d1と上下方向Zにおいて重なっている。第2突起部31dは、上下方向Zにおいて、第1交差線路22c1の手前側(-Y側)端部と上下方向Zにおいて重なっている。第1接地導体31は、図3に示す通り、信号線路10、第1線路21(上側パッド21d1)、及び第2線路22(第1交差線路22c1)よりも下方に位置する。
第2接地導体32は、信号線路10の出力端側(+X側)に設けられる板状の導体である。第2接地導体32は、電気的に接地されている。詳細な図示は省略するが、第2接地導体32は、信号線路10、及び第2線路22(第2交差線路22c2)よりも下方に位置する。
第1接続パッドP1は、図3に示す通り、上述した上側パッド21d1と、上側中間パッド71aと、下側中間パッド71bと、上述した第1突起部31cと、を含む。上側パッド21d1、上側中間パッド71a、下側中間パッド71b、及び第1突起部31cは、平面視において互いに重なっている。また、上側パッド21d1、上側中間パッド71a、下側中間パッド71b、及び第1突起部31cは、上側(+Z側)から下側(-Z側)に向けてこの順に並んでおり、上下方向Zにおいて間隔を空けて配されている。
詳細な図示は省略するが、本実施形態における上側パッド21d1、上側中間パッド71a、下側中間パッド71b、及び第1突起部31cは、互いに略同一の形状を有する。つまり、上側パッド21d1、上側中間パッド71a、下側中間パッド71b、及び第1突起部31cは、長手方向X及び交差方向Yにおける位置及び寸法が、互いに略同一である。
図3に示す通り、上側パッド21d1と上側中間パッド71aとは、複数の接続導体50によって電気的且つ機械的に接続されている。また、上側中間パッド71aと下側中間パッド71bとは、複数の接続導体50によって電気的且つ機械的に接続されている。また、下側中間パッド71bと第1突起部31cとは、複数の接続導体50によって電気的且つ機械的に接続されている。これにより、第1接続パッドP1は、第1平行線路21p1の一端(-X側)と第1接地導体31とを、常時電気的に接続している。
尚、本明細書において「接続導体50」は、上下方向Zに延在する導体であり、接続導体50の上端に接続される部材と接続導体50の下端に接続される部材とを電気的且つ機械的に接続する部材である。接続導体50は、例えば絶縁層(不図示)を上下方向Zに貫通するビアである。
第2接続パッドP2は、図3に示す通り、上述した第1交差線路22c1の手前側(-Y側)端部と、上側中間パッド72aと、下側中間パッド72bと、上述した第2突起部31dと、を含む。第1交差線路22c1の手前側(-Y側)端部、上側中間パッド72a、下側中間パッド72b、及び第2突起部31dは、平面視において互いに重なっている。また、第1交差線路22c1の手前側(-Y側)端部、上側中間パッド72a、下側中間パッド72b、及び第2突起部31dは、上側(+Z側)から下側(-Z側)に向けてこの順に並んでおり、上下方向Zにおいて間隔を空けて配されている。
詳細な図示は省略するが、本実施形態における上側中間パッド72a、下側中間パッド72b、及び第2突起部31dは、互いに略同一の形状を有する。つまり、上側中間パッド72a、下側中間パッド72b、及び第2突起部31dの各々は、長手方向X及び交差方向Yにおける位置及び寸法が、互いに略同一である。
図3に示す通り、第1交差線路22c1の手前側(-Y側)端部と上側中間パッド72aとは、複数の接続導体50によって電気的且つ機械的に接続されている。また、上側中間パッド72aと下側中間パッド72bとは、複数の接続導体50によって電気的且つ機械的に接続されている。また、下側中間パッド72bと第2突起部31dとは、複数の接続導体50によって電気的且つ機械的に接続されている。これにより、第2接続パッドP2は、第2平行線路22p2の一端(-X側)と第1接地導体31とを、常時電気的に接続している。
第3接続パッドP3は、図4に示す通り、上述した上側パッド21d2と、上側中間パッド73aと、下側中間パッド73bと、下側パッド33aと、を含む。上側パッド21d2、上側中間パッド73a、下側中間パッド73b、及び下側パッド33aは、平面視において互いに重なっている。また、上側パッド21d2、上側中間パッド73a、下側中間パッド73b、及び下側パッド33aは、上側(+Z側)から下側(-Z側)に向けてこの順に並んでおり、上下方向Zにおいて間隔を空けて配されている。
ここで、下側パッド33aは、図2に示す通り、長辺が交差方向Yに延び、短辺が長手方向Xに延びる長方形状の平板導体である。下側パッド33aは、第2接地導体32とは別体に設けられる。下側パッド33aと第2接地導体32とは、第1電子スイッチ41の状態に応じて、電気的接続の有無が切り替わる。従って、下側パッド33aは、第1電子スイッチ41の状態に応じて、電気的接地の有無が切り替わる。
詳細な図示は省略するが、本実施形態における上側パッド21d2、上側中間パッド73a、下側中間パッド73b、及び下側パッド33aは、互いに略同一の形状を有する。つまり、上側パッド21d2、上側中間パッド73a、下側中間パッド73b、及び下側パッド33aは、長手方向X及び交差方向Yにおける位置及び寸法が、互いに略同一である。
図4に示す通り、上側パッド21d2と上側中間パッド73aとは、複数の接続導体50によって電気的且つ機械的に接続されている。また、上側中間パッド73aと下側中間パッド73bとは、複数の接続導体50によって電気的且つ機械的に接続されている。また、下側中間パッド73bと下側パッド33aとは、複数の接続導体50によって電気的且つ機械的に接続されている。これにより、第3接続パッドP3は、第1平行線路21p1の他端(+X側)と第1電子スイッチ41とを、常時電気的に接続している。
第4接続パッドP4は、図4に示す通り、上述した上側パッド22dと、上側中間パッド74aと、下側中間パッド74bと、下側パッド33bと、を含む。上側パッド22d、上側中間パッド74a、下側中間パッド74b、及び下側パッド33bは、平面視において互いに重なっている。また、上側パッド22d、上側中間パッド74a、下側中間パッド74b、及び下側パッド33bは、上側(+Z側)から下側(-Z側)に向けてこの順に並んでおり、上下方向Zにおいて間隔を空けて配されている。
ここで、下側パッド33bは、図2に示す通り、長辺が交差方向Yに延び、短辺が長手方向Xに延びる長方形状の平板導体である。下側パッド33bは、第2接地導体32及び下側パッド33aとは別体に設けられる。下側パッド33bと第2接地導体32とは、第2電子スイッチ42の状態に応じて、電気的接続の有無が切り替わる。従って、下側パッド33bは、第2電子スイッチ42の状態に応じて、電気的接地の有無が切り替わる。
詳細な図示は省略するが、本実施形態における上側パッド22d、上側中間パッド74a、下側中間パッド74b、及び下側パッド33bは、互いに略同一の形状を有する。つまり、上側パッド22d、上側中間パッド74a、下側中間パッド74b、及び下側パッド33bは、長手方向X及び交差方向Yにおける位置及び寸法が、互いに略同一である。
ここで、前述した通り、上側パッド22dの交差方向Yにおける寸法は、第2平行線路22p2の幅(交差方向Yにおける寸法)よりも大きい(図2も参照)。従って、第4接続パッドP4の交差方向Yにおける寸法の最大値は、第2平行線路22p2の幅(交差方向Yにおける寸法)よりも大きい。
また、前述した通り、本実施形態における第2交差線路22c2の一端縁(-Y側)は、上側パッド22dの一方の短辺(-Y側)と略同一の位置にある(図2も参照)。従って、第2交差線路22c2の少なくとも一部と第4接続パッドP4の少なくとも一部(本実施形態では全部)とは、長手方向Xにおいて対向している。
第1電子スイッチ41は、図2に示す通り、第3接続パッドP3の下側パッド33aと第2接地導体32とを開閉自在に接続するトランジスタである。本実施形態における第1電子スイッチ41は、図2に示す通り、例えばMOS型FETであり、ドレイン端子が第3接続パッドP3の下側パッド33aに接続され、ソース端子が第2接地導体32に接続され、またゲート端子がスイッチ制御部80に接続されている。
第1電子スイッチ41は、スイッチ制御部80からゲート端子に入力されるゲート信号に基づいて、ドレイン端子とソース端子との導通状態を開状態或いは閉状態に切り替える。即ち、第1電子スイッチ41は、スイッチ制御部80によって、第1平行線路21p1の他端(+X側)と第2接地導体32との間を導通状態又は遮断状態にする。
第2電子スイッチ42は、図2に示す通り、第4接続パッドP4の下側パッド33bと第2接地導体32とを開閉自在に接続するトランジスタである。本実施形態における第2電子スイッチ42は、図2に示す通り、例えばMOS型FETであり、ドレイン端子が第4接続パッドP4の下側パッド33bに接続され、ソース端子が第2接地導体32に接続され、またゲート端子がスイッチ制御部80に接続されている。
第2電子スイッチ42は、スイッチ制御部80からゲート端子に入力されるゲート信号に基づいて、ドレイン端子とソース端子との導通状態を開状態或いは閉状態に切り替える。即ち、第2電子スイッチ42は、スイッチ制御部80によって、第2平行線路22p2の他端(+X側)と第2接地導体32との間を導通状態又は遮断状態にする。
スイッチ制御部80は、上述した第1電子スイッチ41及び第2電子スイッチ42を制御する制御回路である。スイッチ制御部80は、2つの出力ポートを備えており、各出力ポートから第1電子スイッチ41及び第2電子スイッチ42の各ゲート端子にゲート信号を個別に出力する。即ち、スイッチ制御部80は、上記ゲート信号によって、第1電子スイッチ41及び第2電子スイッチ42を開状態又は閉状態にする。尚、スイッチ制御部80は、図1に示す可変コンデンサ101及び可変インダクタ302を制御してデジタル移相回路PS1の移相量を変化させる不図示の制御部に設けられる。
次に、以上のように構成された可変インダクタID1の作用について説明する。
本実施形態における可変インダクタID1は、第1電子スイッチ41及び第2電子スイッチ42の導通状態に応じて動作モードが切り替えられる。即ち、可変インダクタID1の動作モードには、スイッチ制御部80によって第1電子スイッチ41及び第2電子スイッチ42が閉状態に設定される低インダクタンスモードと、スイッチ制御部80によって第1電子スイッチ41及び第2電子スイッチ42が開状態に設定される高インダクタンスモードと、がある。
低インダクタンスモードにおいて、スイッチ制御部80は、第1電子スイッチ41及び第2電子スイッチ42を閉状態に設定する。
第1電子スイッチ41が閉状態に設定されることにより、第1平行線路21p1の他端(+X側)は、第3接続パッドP3を介して、第2接地導体32と接続される(図2参照)。一方、第1平行線路21p1の一端(-X側)は、第1接続パッドP1を介して、第1接地導体31と常時接続されている(図2及び図3参照)。従って、第1平行線路21p1は、他端(+X側)が第1電子スイッチ41を介して第2接地導体32に接続されることによって、一端(-X側)と他端(+X側)との間に電流が流れ得る第1通電経路を形成する。
また、第2電子スイッチ42が閉状態に設定されることにより、第2平行線路22p2の他端(+X側)は、第4接続パッドP4を介して、第2接地導体32と接続される(図2参照)。一方、第2平行線路22p2の一端(-X側)は、第2接続パッドP2を介して、第1接地導体31と常時接続されている(図2及び図3参照)。従って、第2平行線路22p2は、他端(+X側)が第2電子スイッチ42を介して第2接地導体32に接続されることによって、一端(-X側)と他端(+X側)との間に電流が流れ得る第2通電経路を形成する。
そして、第1平行線路21p1及び第2平行線路22p2の両端接続状態において、信号線路10に入力端から出力端に向けた信号電流が流れると、当該信号電流の伝播に起因して、第1平行線路21p1及び第2平行線路22p2にリターン電流が生じる。当該リターン電流は、第1平行線路21p1及び第2平行線路22p2を、他端(+X側)から一端(-X側)に向かって流れる。
即ち、第1通電経路を形成する第1平行線路21p1には、信号線路10における信号電流の通電によって、信号電流の通電の向きとは逆向きの第1リターン電流が流れる。また、第2通電経路を形成する第2平行線路22p2には、信号線路10における信号電流の通電によって、信号電流の通電の向きとは逆向き、つまり第1リターン電流と同じ向きの第2リターン電流が流れる。
ここで、第1平行線路21p1に流れる第1リターン電流及び第2平行線路22p2に流れる第2リターン電流は、何れも、信号電流の通電の向きとは逆向きである。従って、第1リターン電流及び第2リターン電流は、信号線路10と第1平行線路21p1との電磁気的な結合(相互誘導)及び信号線路10と第2平行線路22p2との電磁気的な結合(相互誘導)に起因して、可変インダクタID1の全体のインダクタンスを減少させるように作用する。信号線路10のインダクタンスをLslow、リターン経路(第1平行線路21p1及び第2平行線路22p2)のインダクタンスをLglow、信号線路10とリターン経路との相互インダクタンスをMlowとする。低インダクタンスモードにおける可変インダクタID1の全体のインダクタンスLlowは、Lslow+Lglow-Mlowとなる。
上述した通り、高インダクタンスモードでは、第1電子スイッチ41及び第2電子スイッチ42が開状態に設定される。よって、第1平行線路21p1には上述した第1導電経路が形成されず、また、第2平行線路22p2には上述した第2導電経路が形成されない。従って、第1平行線路21p1に流れる第1リターン電流は極めて小さくなり、また、第2平行線路22p2に流れる第2リターン電流は極めて小さくなる。
これに対して、第1交差線路22c1の手前側(-Y側)端部は、第2接続パッドP2を介して、第1接地導体31と常時接続されている(図3参照)。また、第2交差線路22c2の一端(-Y側)は、上述した通り、第2接地導体32と常時接続されている。従って、第1交差線路22c1、第3平行線路22p3、及び第2交差線路22c2には、第2交差線路22c2の一端(-Y側)から第1交差線路22c1の手前側(-Y側)端部との間に電流が流れ得る第3通電経路が予め形成されている。このため、高インダクタンスモードでは、信号線路10における信号電流に起因して、第2交差線路22c2の一端(-Y側)から第3平行線路22p3を経由して第1交差線路22c1の手前側(-Y側)端部に向かう第3リターン電流が流れる。
ここで、第3リターン電流は、信号線路10と平行な第3平行線路22p3において、信号線路10における信号電流の通電の向きとは逆向きに流れる。また、第3リターン電流が流れる第2交差線路22c2、第3平行線路22p3、及び第1交差線路22c1は、信号線路10とは反対側(+Y側)に凸となるU字状にループしたループ線路を構成している。従って、リターン経路(第3リターン電流が流れる経路)がループ線路を構成していない従来の構成と比較して、リターン経路のインダクタンスを増大させることができる。これにより、可変インダクタID1の全体のインダクタンスを増加させることができる。信号線路10のインダクタンスをLshigh、リターン経路(第2交差線路22c2、第3平行線路22p3、第1交差線路22c1)のインダクタンスをLghigh、信号線路10とリターン経路との相互インダクタンスをMhighとする。高インダクタンスモードにおける可変インダクタID1の全体のインダクタンスLhighは、Lshigh+Lghigh-Mhighとなる。ここで、明らかに、Lglow<Lghigh及びMlow>Mhighが成り立つから、Lhigh>Llowが成り立つ。
尚、第3リターン電流がリターン経路のインダクタンスを増加させるように作用する原理は次のように説明できる。つまり、第3リターン電流が第2交差線路22c2を流れる際に発生させる磁界、第3リターン電流が第3平行線路22p3を流れる際に発生させる磁界、及び第3リターン電流が第1交差線路22c1を流れる際に発生させる磁界は、何れも、上記ループ線路の中心O(図2参照)において同一の向き(+Zの向き)である。このため、これらの磁界は互いに強め合う。従って、第3リターン電流が流れる線路がループ線路を構成していない従来の構成と比較して、第3リターン電流が生じさせる磁界を大きくし、リターン経路のインダクタンスを増大させることができる。また、ループの高さ(即ち、第3平行線路22p3の交差方向Yにおける位置、ならびに、第1交差線路22c1及び第2交差線路22c2の長さ)を調整することにより、リターン経路のインダクタンスの値を大きく変化させることができる。
図5は、本発明の第1実施形態によるデジタル移相回路のシミュレーション結果を示す図である。図5(a),(b)に示すシミュレーション結果は何れも、デジタル移相回路PS1の通過位相特性及び反射係数の周波数特性を示すものである。但し、図5(b)に示すシミュレーション結果は、図2に示す可変インダクタID1の距離d1を、図5(a)に示すシミュレーション結果が得られた場合よりも大きく(例えば、8μm大きく)した場合に得られたものである。
図5(a),(b)に示すグラフでは、横軸に周波数[GHz]をとり、紙面左側の縦軸に位相[度]をとり、紙面右側の縦軸に反射係数[dB]をとってある。図5(a),(b)において、符号G11が付された曲線は可変インダクタID1が低インダクタンスモードに設定された場合の、デジタル移相回路PS1の位相の周波数特性を示す曲線である。符号G12が付された曲線は可変インダクタID1が高インダクタンスモードに設定された場合の、デジタル移相回路PS1の位相の周波数特性を示す曲線である。また、符号G21が付された曲線は可変インダクタID1が低インダクタンスモードに設定された場合の、デジタル移相回路PS1の反射係数の周波数特性を示す曲線である。符号G22が付された曲線は可変インダクタID1が高インダクタンスモードに設定された場合の、デジタル移相回路PS1の反射係数の周波数特性を示す曲線である。
まず、図5(a)を参照すると、周波数が24[GHz]である場合において、可変インダクタID1が低インダクタンスモードに設定されたときと、高インダクタンスモードに設定されたときとで、約46.4[度]の移相量Δθが実現できることが分かる。尚、移相量Δθは、可変インダクタID1が低インダクタンスモードに設定されたときのデジタル移相回路PS1の位相(第1の位相θL)と、可変インダクタID1が高インダクタンスモードに設定されたときのデジタル移相回路PS1の位相(第2の位相θH)との差の絶対値である。また、可変インダクタID1が低インダクタンスモードに設定された場合及び高インダクタンスモードに設定された場合の何れの場合であっても、デジタル移相回路PS1の反射係数が-15[dB]以下であることから、インピーダンス整合が良好であることが分かる。
次に、図5(b)を参照すると、周波数が24[GHz]である場合において、可変インダクタID1が低インダクタンスモードに設定されたときと、高インダクタンスモードに設定されたときとで、約60[度]の移相量Δθが実現できることが分かる。このように、図2に示す可変インダクタID1の距離d1を大きくすることで、移相量Δθをより大きくできることが判明した。尚、可変インダクタID1が低インダクタンスモードに設定された場合及び高インダクタンスモードに設定された場合の何れの場合であっても、デジタル移相回路PS1の反射係数が-15[dB]以下であることから、インピーダンス整合が良好であることが分かる。
以上の通り、可変インダクタID1は、信号線路10と、信号線路10と平行に延びる第1平行線路21p1を含む第1線路21と、信号線路10と平行に延びる第2平行線路22p2と、第2平行線路22p2の一方の端部(-X側)から交差方向Yにおいて信号線路10から遠ざかるように延びる第1交差線路22c1と、第1交差線路22c1の一方の端部(+Y側)から信号線路10と平行に延びる第3平行線路22p3と、第3平行線路22p3の一方の端部(+X側)から交差方向Yにおいて信号線路10に近づくように延びる第2交差線路22c2と、を含む第2線路22とを備える。第1平行線路21p1の一方の端部(-X側)及び第2平行線路22p2の一方の端部(-X側)は第1接地導体31に電気的に接続され、第2線路22の一方の端部(第2交差線路22c2の一方の端部(-Y側))は第2接地導体32に電気的に接続されている。そして、第1平行線路21p1の他方の端部(+X側)と第2接地導体32との間は第1電子スイッチ41によって導通状態又は遮断状態に設定される。また、第2平行線路22p2の他端(+X端)と第2接地導体32との間は第2電子スイッチ42によって導通状態又は遮断状態に設定される。
この構成によれば、第1電子スイッチ41及び第2電子スイッチ42を閉状態に設定すると、第1平行線路21p1に第1リターン電流が流れ、第2平行線路22p2に第2リターン電流が流れる。これにより、可変インダクタID1の全体のインダクタンスが低減される。これに対し、第1電子スイッチ41及び第2電子スイッチ42を開状態に設定すると、第2交差線路22c2の一端(-Y側)から第3平行線路22p3を経由して第1交差線路22c1の手前側(-Y側)端部に向かう第3リターン電流が流れる。これにより、リターン経路(第3リターン電流が流れる経路)がループ線路を構成していない従来の構成と比較して、リターン経路のインダクタンスを増大させることができる。これにより、可変インダクタID1の全体のインダクタンスを増加させることができる。このようにして、可変インダクタID1のインダクタンスを変化させることができる。
図1に示す本実施形態のデジタル移相回路PS1は、可変コンデンサ101に加えて可変インダクタ302を備えている。このため、可変コンデンサ101の容量とともに、可変インダクタ302のインダクタンスを変えることができる。従って、本実施形態のデジタル移相回路PS1は、所望の移相特性を有しつつ移相量を動的に変更することができる。
〔第2実施形態〕
〈デジタル移相回路〉
図6は、本発明の第2実施形態によるデジタル移相回路の構成を示す回路図である。尚、図6においては、図1に示す構成に相当する構成については同一の符号を付してある。図6に示す通り、本実施形態のデジタル移相回路PS2は、図1に示すデジタル移相回路PS1の第2回路200を第2回路200Aに替え、第3回路300を第3回路300Aに替えた構成である。このようなデジタル移相回路PS2は、図1に示すデジタル移相回路PS1よりも大きな移相量Δθを実現するものである。
第2回路200Aは、直列接続された第1可変インダクタ回路210Aと第2可変インダクタ回路220Aとを備える。第1可変インダクタ回路210Aは、固定インダクタ211と可変インダクタ212とが直列接続された回路であり、第2可変インダクタ回路220Aは、固定インダクタ221と可変インダクタ222とが直列接続された回路である。つまり、第1可変インダクタ回路210Aは、図1に示す第1固定インダクタ回路210に可変インダクタ212を追加した構成であり、第2可変インダクタ回路220Aは、図1に示す第2固定インダクタ回路220に可変インダクタ222を追加した構成である。
可変インダクタ212の一端は第1ポートP100に接続されており、他端は固定インダクタ211の一端に接続されている。固定インダクタ211の一端は可変インダクタ212の他端に接続されており、他端は固定インダクタ221の一端に接続されている。固定インダクタ221の一端は固定インダクタ211の他端に接続されており、他端は可変インダクタ222の一端に接続されている。可変インダクタ222の一端は固定インダクタ221の他端に接続されており、他端は第2ポートP200に接続されている。尚、第1可変インダクタ回路210Aにおける固定インダクタ211と可変インダクタ212との接続関係、及び、第2可変インダクタ回路220Aにおける固定インダクタ221と可変インダクタ222との接続関係は入れ替えられていてもよい。
図1に示す可変インダクタ302と同様に、図2~4に示す構成の可変インダクタID1が可変インダクタ212,222として用いられる。つまり、可変インダクタ212,222は、図1に示す可変インダクタ302と同様に、図4に示す第1電子スイッチ41及び第2電子スイッチ42の閉状態と開状態とを切り替えることにより、インダクタンスを変化させることができる。可変インダクタ212,222は、可変コンデンサ101及び可変インダクタ302と同様に、デジタル移相回路PS2の移相量を変化させる際に、不図示の制御部によって制御される。
第3回路300Aは、直列接続された可変インダクタ302と可変コンデンサ303(第2可変コンデンサ)とを備えており、第2回路200Aに設けられた第1可変インダクタ回路210Aと第2可変インダクタ回路220Aとの接続点Qに接続されている。可変インダクタ302の一端は接続点Qに接続されており、他端は可変コンデンサ303の一方の電極に接続されている。可変コンデンサ303の一方の電極は可変インダクタ302の他端に接続されており、他方の電極は共通帰線L0に接続されている。つまり、第3回路300Aは、図1に示す第3回路300のコンデンサ301を可変コンデンサ303に替え、可変インダクタ302と可変コンデンサ303との接続順を入れ替えたものである。可変コンデンサ303は、可変コンデンサ101と同様に、デジタル移相回路PS1の移相量を変化させる際に、不図示の制御部によって制御される。
上記構成において、不図示の制御部が、可変コンデンサ101,303及び可変インダクタ212,222,302を制御し、可変コンデンサ101,303の容量の大きさ及び可変インダクタ212,222,302のインダクタンスの大きさを変える。これにより、デジタル移相回路PS2の移相量が変化する。
図7は、本発明の第2実施形態によるデジタル移相回路のシミュレーション結果を示す図である。図7に示すシミュレーション結果は、図5に示すシミュレーション結果と同様に、デジタル移相回路PS2の位相特性及び反射係数の周波数特性を示すものである。図7に示すグラフでは、図5(a),(b)に示すグラフと同様に、横軸に周波数[GHz]をとり、紙面左側の縦軸に位相[度]をとり、紙面右側の縦軸に反射係数[dB]をとってある。
図7において、符号G31が付された曲線は可変インダクタ212,222,302が低インダクタンスモードに設定された場合の、デジタル移相回路PS2の位相の周波数特性を示す曲線である。符号G32が付された曲線は可変インダクタ212,222,302が高インダクタンスモードに設定された場合の、デジタル移相回路PS2の位相の周波数特性を示す曲線である。また、符号G41が付された曲線は可変インダクタ212,222,302が低インダクタンスモードに設定された場合の、デジタル移相回路PS2の反射係数の周波数特性を示す曲線である。符号G42が付された曲線は可変インダクタ212,222,302が高インダクタンスモードに設定された場合の、デジタル移相回路PS2の反射係数の周波数特性を示す曲線である。
図7を参照すると、周波数が28[GHz]である場合において、可変インダクタ212,222,302が低インダクタンスモードに設定されたときと、高インダクタンスモードに設定されたときとで、約100[度]の移相量Δθが実現できることが分かる。また、可変インダクタ212,222,302が低インダクタンスモードに設定された場合及び高インダクタンスモードに設定された場合の何れの場合であっても、デジタル移相回路PS2の反射係数が-28[dB]以下であることが分かる。
以上から、本実施形態のデジタル移相回路PS2は、第1実施形態のデジタル移相回路PS1よりも大きな移相量Δθを実現できているにも拘わらず、第1実施形態のデジタル移相回路PS1よりもインピーダンス整合が良好である。これは、第2回路200Aにおいてインダクタンスを可変にし、且つ、第3回路300Aにおいて容量を可変にしたことによる効果であると考えられる。
図6に示す本実施形態のデジタル移相回路PS2は、第1回路100の可変コンデンサ101に加えて、第3回路300Aの可変コンデンサ303を備えている。また、第3回路300Aの可変インダクタ302に加えて、第2回路200Aの可変インダクタ212,222を備えている。このため、可変コンデンサ101,303の容量とともに、可変インダクタ212,222,302のインダクタンスを変えることができる。従って、本実施形態のデジタル移相回路PS2は、所望の移相特性を有しつつ移相量を動的に変更することができる。
〔第3実施形態〕
次に、本発明の第3実施形態によるデジタル移相回路について説明する。本実施形態のデジタル移相回路は、第1実施形態のデジタル移相回路PS1における可変インダクタ302として用いられていた可変インダクタID1を、図8に示す可変インダクタID2に変更したものである。このようなデジタル移相回路は、高周波信号の損失を低減するようにしたものである。
図8は、本発明の第3実施形態における可変インダクタの要部構成を示す平面図である。尚、図8に示す可変インダクタID2の基本的な構成は、図2に示す可変インダクタID1と同様である。このため、同様の構成には同一の符号を付してその説明は省略し、異なる点についてのみ説明する。
図8に示す通り、可変インダクタID2は、図2に示す可変インダクタID1とは、第2線路22の構成が異なる。具体的に、第2線路22は、第2平行線路22p2と、第1交差線路22c1と、第3平行線路22p3と、第2交差線路22c2′と、第4平行線路22p4と、第3交差線路22c3と、上側パッド22dと、を含む。
第2交差線路22c2′は、図2に示す第2交差線路22c2に替えて設けられる。本実施形態では、第3平行線路22p3の右端(+X側)が第2平行線路22p2の右端(+X側)よりも左方に位置する。また、本実施形態における第2交差線路22c2´は、図2に示す第2交差線路22c2とは異なり、平面視において第2平行線路22p2、信号線路10、及び第1平行線路21p1と交差するように延びている。
第2交差線路22c2′は、第2平行線路22p2、信号線路10、及び第1平行線路21p1と接触しないよう、これら第2平行線路22p2、信号線路10、及び第1平行線路21p1よりも上方に位置している。より具体的に、第2交差線路22c2′は、これら第2平行線路22p2、信号線路10、及び第1平行線路21p1が形成された導電層と絶縁層を挟んで対向する別の導電層に形成される。また、第2交差線路22c2′は、第3平行線路22p3よりも上方に位置し、第2交差線路22c2′の他端(+Y側)と第3平行線路22p3の右端(+X側)とは、不図示の導体(例えば、ビア)によって電気的に接続されている。尚、第2交差線路22c2′は、第2平行線路22p2、信号線路10、及び第1平行線路21p1よりも下方に位置していてもよい。但し、第2交差線路22c2′が第2平行線路22p2、信号線路10、及び第1平行線路21p1よりも上方に位置する構成は、配線を太くしやすく、これにより配線の抵抗値を下げやすいという点で好適である。
第4平行線路22p4及び第3交差線路22c3は、上下方向Zにおいて第2平行線路22p2、第1交差線路22c1、及び第3平行線路22p3と同じ位置にある。つまり、第4平行線路22p4及び第3交差線路22c3は、第2平行線路22p2、第1交差線路22c1及び第3平行線路22p3と同じ導電層に形成される。
第4平行線路22p4は、第2交差線路22c2′の一端(-Y側)に接続された直線状の帯状導体である。第4平行線路22p4は、一定の幅、一定の厚さ、及び所定の長さを有する長尺板状の導体である。第4平行線路22p4は、第2交差線路22c2′の一端(-Y側)から、信号線路10と平行(長手方向X)に延びている。つまり、本実施形態における第4平行線路22p4は、第2交差線路22c2′の一端(-Y側)から右側(+X側)に向けて延びている。第2交差線路22c2′の一端(-Y側)と第4平行線路22p4の左端(-X側)とは、不図示の導体(例えば、ビア)によって電気的に接続されている。
第4平行線路22p4は、信号線路10の他方側(-Y側)において、第1平行線路21p1よりも信号線路10から遠い位置に設けられている。言い換えれば、第4平行線路22p4は、第1平行線路21p1が交差方向Yにおいて信号線路10と第4平行線路22p4との間に位置するように、配置されている。また、第4平行線路22p4の右端(+X側)は、第1線路21の上側パッド21d2の右側(+X側)長辺よりも右方(+X側)に位置する。
第3交差線路22c3は、第4平行線路22p4の一端(+X側)に接続された直線状の帯状導体である。第3交差線路22c3は、一定の幅、一定の厚さ、及び所定の長さを有する長尺板状の導体である。第3交差線路22c3は、第4平行線路22p4の一端(+X側)から、交差方向Yにおいて信号線路10に近づくように延びている。つまり、本実施形態における第3交差線路22c3は、第4平行線路22p4の一端(+X側)から奥側(+Y側)に向けて延びている。
また、上側パッド21d2と第3交差線路22c3とは、長手方向Xにおいて間隔を空けて配されている。また、本実施形態における第3交差線路22c3の一端(+Y側)は、不図示の導体によって、第2接地導体32と常時電気的に接続されている。言い換えれば、第2線路22の一端は、不図示の導体によって、第2接地導体32と常時電気的に接続されている。
本実施形態における可変インダクタID2では、第1実施形態における可変インダクタID1と同様に、第1交差線路22c1、第3平行線路22p3、及び第2交差線路22c2′が、奥側(+Y側)に凸となるU字状にループしたループ線路を構成する。これに加えて、本実施形態における可変インダクタID2では、第2交差線路22c2′、第4平行線路22p4、及び第3交差線路22c3が、手前側(-Y側)に凸となるU字状にループしたループ線路を構成する。つまり、高インダクタンスモード時におけるリターン経路(第3リターン電流が流れる線路)が、2つのループ線路を含んでいる。このため、第3リターン電流が生じさせる磁界をより大きくし、リターン経路のインダクタンス(可変インダクタID2の全体のインダクタンス)をより増大させることができる。
以上説明した通り、本実施形態に係る可変インダクタID2において、第2交差線路22c2′は、平面視において第2平行線路22p2及び第1平行線路21p1と交差するように延びており、第2線路22は、第2交差線路22c2′の一方の端部から信号線路10と平行に延びる第4平行線路22p4と、第4平行線路22p4の一方の端部から交差方向Yにおいて信号線路10に近づくように延びる第3交差線路22c3と、を更に含む。この構成によれば、高インダクタンスモード時におけるリターン経路のインダクタンス(可変インダクタID2の全体のインダクタンス)の値をより増大させることができる。このため、可変インダクタID2が低インダクタンスモードに設定されたときのデジタル移相回路PS1の位相θLと、可変インダクタID2が高インダクタンスモードに設定されたときのデジタル移相回路PS1の位相θHとの差(移相量)をより大きくすることができる。
尚、本実施形態では、第1実施形態のデジタル移相回路PS1における可変インダクタ302として用いられていた可変インダクタID1を、図8に示す可変インダクタID2に変更した形態を例に挙げて説明した。しかしながら、第2実施形態のデジタル移相回路PS2における可変インダクタ212,222,302として用いられていた可変インダクタID1を、図8に示す可変インダクタID2に変更することも可能である。
以上、本発明の実施形態によるデジタル移相回路について説明したが、本発明は上記実施形態に制限されることなく、本発明の範囲内で自由に変更が可能である。例えば、本発明は、図1に示すデジタル移相回路PS1及び図6に示すデジタル移相回路PS2以外に、図9に示すデジタル移相回路PS3に適用することも可能である。
図9は、デジタル移相回路の他の構成例を示す回路図である。尚、図9においては、図1,6に示す構成に相当する構成については同一の符号を付してある。図9に示すデジタル移相回路PS3は、デジタル移相回路PS1,PS2と同様に、第1回路100、第2回路200、及び第3回路300を備えるが、第1回路100及び第2回路200の内部構成が異なる。
具体的に、第1回路100は固定インダクタ102を備える。固定インダクタ102の一端は第1ポートP100に接続されており、他端は第2ポートP200に接続されている。第2回路200は、直列接続された第1コンデンサ回路230と第2コンデンサ回路240とを備える。第1コンデンサ回路230は可変コンデンサ231を備えており、第2コンデンサ回路240は可変コンデンサ241を備えている。可変コンデンサ231の一方の電極は第1ポートP100に接続されており、他方の電極は可変コンデンサ241の一方の電極に接続されている。可変コンデンサ241の一方の電極は可変コンデンサ231の他方の電極に接続されており、他方の電極は第2ポートP200に接続されている。尚、第3回路300は、図1に示すデジタル移相回路PS1に設けられる第3回路300と同様に、直列接続されたコンデンサ301と可変インダクタ302とを備える。
上記構成において、不図示の制御部が、可変コンデンサ231,241及び可変インダクタ302を制御し、可変コンデンサ231,241の容量の大きさ及び可変インダクタ302のインダクタンスの大きさを変える。これにより、デジタル移相回路PS3の移相量が変化する。このような構成のデジタル移相回路PS3においても、所望の移相特性を有しつつ移相量を動的に変更することができる。
尚、図1,図6,図9に示すデジタル移相回路PS1~PS3は、以下に示す構成(変形例)であってもよい。図1に示すデジタル移相回路PS1は、第2回路200の固定インダクタ211に替えて可変インダクタが設けられ、且つ、固定インダクタ221に替えて可変インダクタが設けられた構成であってもよい。また、図1に示すデジタル移相回路PS1は、第3回路300のコンデンサ301に替えて可変コンデンサが設けられた構成であってもよい。また、図1に示すデジタル移相回路PS1は、第3回路300のコンデンサ301が省略された構成であってもよい。
図6に示すデジタル移相回路PS2は、第3回路300Aの可変インダクタ302が省略された構成であってもよい。また、図6に示すデジタル移相回路PS2は、第2回路200Aの固定インダクタ211,221が省略された構成であってもよい。
図9に示すデジタル移相回路PS3は、第1回路100の固定インダクタ102に替えて可変インダクタが設けられた構成であってもよい。また、図9に示すデジタル移相回路PS3は、第1回路100が、固定インダクタ102と図2~4に示す可変インダクタID1とを直列接続した回路、又は、固定インダクタ102と図8に示す可変インダクタID2とを直列接続した回路であってもよい。或いは、図9に示すデジタル移相回路PS3は、固定インダクタ102と図10~13に示す可変インダクタID3~ID6(詳細は後述する)とを直列接続した回路であってもよい。また、図9に示すデジタル移相回路PS3は、第3回路300のコンデンサ301に替えて可変コンデンサが設けられた構成であってもよい。また、図9に示すデジタル移相回路PS3は、第3回路300のコンデンサ301が省略された構成であってもよい。
また、図1,6,9に示すデジタル移相回路PS1~PS3及び上述した変形例を構成する素子(コンデンサ、インダクタ)のうち、何れの素子の素子値(容量、インダクタンス)を固定とするか可変とするかは適宜選択して決めてよい。但し、図6に示すデジタル移相回路PS2及びその変形例については、第1可変インダクタ回路210A及び第2可変インダクタ回路220Aを構成する素子を除く。
また、図1,6,9に示す可変インダクタ302及び図6に示す可変インダクタ212,222として用いられる可変インダクタは、図2~4に示す可変インダクタID1又は図8に示す可変インダクタID2に制限される訳ではない。例えば、図10~13に示す可変インダクタID3~ID6を用いることもできる。
図10は、可変インダクタの他の構成例を示す平面図である。図10に示す可変インダクタID3は、図2~4を用いて説明した可変インダクタID1を変形したものである。図10に示す可変インダクタID3は、図2~4を用いて説明した可変インダクタID1とは第1線路21の構成が異なる。具体的に、図10に示す可変インダクタID3の第1線路21は、第1平行線路21p1及び上側パッド21d2に加えて、第4交差線路21c1と、第5平行線路21p2と、第5交差線路21c2と、を備える。尚、上側パッド21d1は省略されている。
第4交差線路21c1は、第1平行線路21p1の一端(-X側)に接続された直線状の帯状導体である。第4交差線路21c1は、一定の幅、一定の厚さ、及び所定の長さを有する長尺板状の導体である。第4交差線路21c1は、第1平行線路21p1の一端(-X側)から、交差方向Yにおいて信号線路10から遠ざかるように延びている。つまり、本実施形態における第4交差線路21c1は、第1平行線路21p1の一端(-X側)から手前側(-Y側)に向けて延びている。第4交差線路21c1の奥側の端縁(+Y側)は、第1平行線路21p1の他方の側縁(+Y側)と略同一の位置にある。
第5平行線路21p2は、第4交差線路21c1の一端(-Y端)に接続された直線状の帯状導体である。第5平行線路21p2は、一定の幅、一定の厚さ、及び所定の長さを有する長尺板状の導体である。第5平行線路21p2は、第4交差線路21c1の一方の端部(-Y側)から、信号線路10と平行(長手方向X)に延びている。つまり、本実施形態における第5平行線路21p2は、第4交差線路21c1の一方の端部(-Y側)から右側(+X側)に向けて延びている。
第5平行線路21p2は、信号線路10の他方側(-Y側)において、第1平行線路21p1よりも信号線路10から遠い位置に設けられている。言い換えれば、第5平行線路21p2は、第1平行線路21p1が交差方向Yにおいて信号線路10と第5平行線路21p2との間に位置するように、配置されている。
図10に示す通り、交差方向Yにおいて、第1平行線路21p1の中心線と第5平行線路21p2の中心線との間の距離は、第2平行線路22p2の中心線と第3平行線路22p3の中心線との間の距離d1(図2参照)と同じ(又は、同程度)である。尚、第5平行線路21p2の右端(+X側)は、上側パッド21d2の右側(+X側)長辺よりも右方(+X側)に位置する。
第5交差線路21c2は、第5平行線路21p2の一端(+X側)に接続された直線状の帯状導体である。第5交差線路21c2は、一定の幅、一定の厚さ、及び所定の長さを有する長尺板状の導体である。第5交差線路21c2は、第5平行線路21p2の一端(+X側)から、交差方向Yにおいて信号線路10に近づくように延びている。つまり、本実施形態における第5交差線路21c2は、第5平行線路21p2の一端(+X端)から奥側(+Y側)に向けて延びている。
本実施形態における第5交差線路21c2の他端縁(+Y側)は、上側パッド21d2の他方の短辺(+Y側)及び第1平行線路21p1の他方の側縁(+Y側)と交差方向Yにおいて略同一の位置にある。また、上側パッド21d2と第5交差線路21c2とは、長手方向Xにおいて間隔を空けて配されている。また、本実施形態における第5交差線路の左側縁(-X側)は、信号線路10の右端縁(+X側)と長手方向Xにおいて略同一の位置にある。
また、本実施形態における第5交差線路21c2の他端(+Y側)は、不図示の導体によって、第2接地導体32と常時電気的に接続されている。言い換えれば、第1線路21の一端は、不図示の導体によって、第2接地導体32と常時電気的に接続されている。
以上説明した第4交差線路21c1、第5平行線路21p2、及び第5交差線路21c2は、手前側(-Y側)に凸となるU字状にループしたループ線路を構成している。
図11~13は、可変インダクタの他の構成例を示す斜視図である。図11に示す可変インダクタID4は、信号線路1、2つの内側線路2(内側線路2a,2b)、2つの外側線路3(外側線路3a,3b)、2つの接地導体4(接地導体4a,4b)、複数の接続導体6、2つの電子スイッチ7(電子スイッチ7a,7b)、及びスイッチ制御部8を備える。
信号線路1は、所定方向に延在する直線状の帯状導体である。即ち、信号線路1は、一定幅、一定厚、及び所定長さを有する長尺板状の導体である。図11に示す例では、信号線路1には、手前側から奥側に向かって信号電流が流れる。尚、信号電流は、信号線路1の奥側から手前側に流れても良い。
内側線路2は、直線状の帯状導体である。即ち、内側線路2は、一定幅、一定厚、及び所定長さを有する長尺板状の導体である。内側線路2は、信号線路1の延在方向と同一な方向に延在する。内側線路2は、信号線路1と平行に設けられている。内側線路2aは、信号線路1の一方側に所定の距離Mだけ離間して配置されており、内側線路2bは、信号線路1の他方側に所定の距離Mだけ離間して配置されている。所定の距離Mは、10μm未満に設定されている。より好ましくは、所定の距離Mは、例えば2μm以下であり、信号線路1に対して内側線路2を可能な限り接近させることが望ましい。例えば、信号線路1に対して内側線路2を製造限界又は製造限界近くまで接近させるのが望ましい。
外側線路3は、内側線路2よりも信号線路1から遠い位置に設けられる直線状の帯状導体である。即ち、外側線路3は、一定幅、一定厚、及び所定長さを有する長尺板状の導体である。外側線路3は、内側線路2と同様に、信号線路1の延在方向と同一な方向に延在する。外側線路3は、信号線路1と平行に設けられている。外側線路3aは、信号線路1の一方側において、内側線路2aよりも信号線路1から遠い位置に設けられており、外側線路3bは、信号線路1の他方側において、内側線路2bよりも信号線路1から遠い位置に設けられている。
接地導体4は、内側線路2及び外側線路3から所定距離を隔てた下方に配置され、内側線路2及び外側線路3に直交するように設けられている直線状の帯状導体である。即ち、接地導体4は、一定幅、一定厚、及び、所定長さを有する長尺板状の導体である。接地導体4a(第1接地導体)は、内側線路2a、内側線路2b、外側線路3a、及び外側線路3bの各一端側に設けられ、これら内側線路2a、内側線路2b、外側線路3a、及び外側線路3bの各一端に電気的に接続されている。接地導体4b(第2接地導体)は、内側線路2a、内側線路2b、外側線路3a、及び外側線路3bの各他端側に設けられ、外側線路3a及び外側線路3bの各他端に電気的に接続されている。尚、接地導体4bは、接地導体4aに対して平行に配置されている。
複数の接続導体6は、少なくとも接続導体6a~6fを含む。接続導体6aは、内側線路2aの一端と接地導体4aとを電気的且つ機械的に接続する導体である。接続導体6bは、内側線路2bの一端と接地導体4aとを電気的且つ機械的に接続する導体である。接続導体6cは、外側線路3aの一端と接地導体4aとを電気的且つ機械的に接続する導体である。接続導体6dは、外側線路3aの他端と接地導体4bとを電気的且つ機械的に接続する導体である。接続導体6eは、外側線路3bの一端と接地導体4aとを電気的且つ機械的に接続する導体である。接続導体6fは、外側線路3bの他端と接地導体4bとを電気的且つ機械的に接続する導体である。
電子スイッチ7は、例えばMOS型FET(電界効果トランジスタ)であり、スイッチ制御部8からゲート端子に入力されるゲート信号に基づいて閉状態又は開状態に制御される。閉状態とは、ドレイン端子及びソース端子が導通している状態である。開状態とは、ドレイン端子及びソース端子が導通しておらず、電気的な接続が遮断している状態である。
電子スイッチ7a(第1電子スイッチ)は、内側線路2aの他端と接地導体4bとの間に接続される。具体的に、電子スイッチ7aは、ドレイン端子が内側線路2aの他端に電気的に接続され、ソース端子が接地導体4bに電気的に接続され、ゲート端子がスイッチ制御部8に電気的に接続されている。電子スイッチ7aは、スイッチ制御部8の制御によって、内側線路2aの他端及び接地導体4bを電気的に接続した導通状態又はその電気的な接続を遮断した遮断状態にする。尚、電子スイッチ7aのサイズは、例えば、接地導体4bの幅以上である。
電子スイッチ7b(第2電子スイッチ)は、内側線路2bの他端と接地導体4bとの間に接続される。具体的に、電子スイッチ7bは、ドレイン端子が内側線路2bの他端に電気的に接続され、ソース端子が接地導体4bに電気的に接続され、ゲート端子がスイッチ制御部8に電気的に接続されている。電子スイッチ7bは、スイッチ制御部8の制御によって、内側線路2bの他端及び接地導体4bを電気的に接続した導通状態又はその電気的な接続を遮断した遮断状態にする。尚、電子スイッチ7bのサイズは、例えば、接地導体4bの幅以上である。
スイッチ制御部8は、電子スイッチ7(電子スイッチ7a及び電子スイッチ7b)を制御する制御回路である。例えば、スイッチ制御部8は、2つの出力ポートを備えている。スイッチ制御部8は、各出力ポートから個別のゲート信号を出力して複数の電子スイッチ7の各ゲート端子に供給することにより複数の電子スイッチ7のそれぞれを個別に開状態又は閉状態に制御する。尚、スイッチ制御部8は、図2,8に示すスイッチ制御部80に相当するものである。
上記構成において、スイッチ制御部8により、電子スイッチ7a及び電子スイッチ7bが閉状態に制御されると可変インダクタID4は低インダクタンスモードになる。これに対し、スイッチ制御部8により、電子スイッチ7a及び電子スイッチ7bが開状態に制御されると可変インダクタID4は高インダクタンスモードになる。
低インダクタンスモードでは、内側線路2(内側線路2a,2b)を流れるリターン電流に起因して可変インダクタID4のインダクタンスが低減される。これに対し、高インダクタンスモードでは、リターン電流が外側線路3(外側線路3a,3b)を流れるため、低インダクタンスモードと比較して、可変インダクタID4のインダクタンスが増大する。このように、図11に示す可変インダクタID4は、電子スイッチ7a,7bの閉状態と開状態とを切り替えることにより、インダクタンスを変化させることができる。
図12に示す可変インダクタID5は、図11に示す可変インダクタID4とは、外側線路3と内側線路2との間において、接地導体4a及び接地導体4bが多層構造で形成されている点が異なる。尚、接地導体4a及び接地導体4bは、内側線路2aと内側線路2bとの間も多層構造で形成されてよい。
多層構造で形成された接地導体4aは、複数のビアホール(接続導体6a,6b,6c,6e)で互いに連結されている。多層構造で形成された接地導体4bは、複数のビアホール(接続導体6d,6f,6h,6i)で互いに連結されている。
このような構成により、外側線路3と内側線路2との間の接地導体4の抵抗値を下げることができ、高インダクタンスモードにおける高周波信号の損失を低減することができる。従って、高インダクタンスモードと低インダクタンスモードとにおける信号振幅のアンバランスを低減することができる。尚、図12に示す可変インダクタID5も、電子スイッチ7a,7bの閉状態と開状態とを切り替えることにより、可変インダクタID5のインダクタンスを変化させることができる。
図13に示す可変インダクタID6は、図11に示す可変インダクタID4とは、外側線路3bが省略されており、外側線路3が内側線路2の幅よりも広く形成されており、外側線路3と接地導体4a及び接地導体4bとが多層構造で形成されている点が異なる。尚、接地導体4a,4bの多層化と外側線路3の幅広化及び多層化とは、必要に応じていずれか一方のみが行われていてもよい、つまり、接地導体4a,4bの多層化のみが行われてもよく、外側線路3の幅広化及び多層化のみが行われてもよい。
このような構成により、可変インダクタID6の小型化を図ることができる。また、接地導体4a,4bのインピーダンスを低下させることができるため、可変インダクタID6の全体的な損失の低減を図ることができる。また、外側線路3のインピーダンスを低下させることができるため、低インダクタンスモードにおける可変インダクタID6の損失と高インダクタンスモードにおける可変インダクタID6の損失との差を縮小させることができる。尚、図13に示す可変インダクタID6も、電子スイッチ7a,7bの閉状態と開状態とを切り替えることにより、可変インダクタID6のインダクタンスを変化させることができる。
PS1~PS3…デジタル移相回路、1…信号線路、2a,2b…内側線路、3,3a,3b…外側線路、4a,4b…接地導体、7a,7b…電子スイッチ、10…信号線路、21…第1線路、21c1…第4交差線路、21c2…第5交差線路、21p1…第1平行線路、21p2…第5平行線路、22…第2線路、22c1…第1交差線路、22c2,22c2′…第2交差線路、22c3…第3交差線路、22p2…第2平行線路、22p3…第3平行線路、22p4…第4平行線路、31…第1接地導体、32…第2接地導体、41…第1電子スイッチ、42…第2電子スイッチ、100…第1回路、101…可変コンデンサ、200…第2回路、210…第1固定インダクタ回路、210A…第1可変インダクタ回路、211,221…固定インダクタ、212,222…可変インダクタ、220…第2固定インダクタ回路、220A…第2可変インダクタ回路、300…第3回路、302…可変インダクタ、303…可変コンデンサ、ID1~ID6…可変インダクタ、L0…共通帰線、P100…第1ポート、P200…第2ポート、Q…接続点

Claims (13)

  1. 固定インダクタと第1可変インダクタとを直列接続した可変インダクタ回路を備え
    前記第1可変インダクタは、
    信号線路と、
    前記信号線路と平行に延びる第1平行線路を含む第1線路と、
    前記信号線路と平行に延びる第2平行線路と、前記第2平行線路の一方の端部から前記信号線路の長手方向と交差する交差方向において前記信号線路から遠ざかるように延びる第1交差線路と、前記第1交差線路の一方の端部から前記信号線路と平行に延びる第3平行線路と、前記第3平行線路の一方の端部から前記交差方向において前記信号線路に近づくように延びる第2交差線路と、を含む第2線路と、
    前記第1平行線路の一方の端部及び前記第2平行線路の一方の端部に電気的に接続された第1接地導体と、
    前記第2線路の一方の端部に接続された第2接地導体と、
    前記第1平行線路の他方の端部と前記第2接地導体との間に設けられた第1電子スイッチと、
    前記第2平行線路の他方の端部と前記第2接地導体との間に設けられた第2電子スイッチと、を備え、
    前記第1平行線路と前記第2平行線路との間に前記信号線路が位置する、
    ジタル移相回路。
  2. 前記第2交差線路は、平面視において前記第2平行線路、前記信号線路、及び前記第1平行線路と交差するように延びており、
    前記第2線路は、前記第2交差線路の一方の端部から前記信号線路と平行に延びる第4平行線路と、前記第4平行線路の一方の端部から前記交差方向において前記信号線路に近づくように延びる第3交差線路と、を更に含む、
    請求項1記載のデジタル移相回路。
  3. 前記第1線路は、前記第1平行線路の一方の端部から前記交差方向において前記信号線路から遠ざかるように延びる第4交差線路と、前記第4交差線路の一方の端部から前記信号線路と平行に延びる第5平行線路と、前記第5平行線路の一方の端部から前記交差方向において前記信号線路に近づくように延びる第5交差線路と、を更に含む、
    請求項1記載のデジタル移相回路。
  4. 前記第1可変インダクタは、
    信号線路と、
    前記信号線路の両側に設けられた内側線路と、
    前記信号線路の一方側及び他方側の少なくとも一つの側において、前記内側線路よりも前記信号線路から遠い位置に設けられた外側線路と、
    前記内側線路及び前記外側線路の一方の端部に接続された第1接地導体と、
    前記外側線路の他方の端部に接続された第2接地導体と、
    前記信号線路の一方側に設けられた前記内側線路の他方の端部と前記第2接地導体との間に設けられた第1電子スイッチと、
    前記信号線路の他方側に設けられた前記内側線路の他方の端部と前記第2接地導体との間に設けられた第2電子スイッチと、
    を有する、
    請求項1記載のデジタル移相回路。
  5. 第1ポートと第2ポートとの間に接続された第1回路と、
    前記第1回路に並列接続された第2回路と、
    前記第2回路と共通帰線との間に接続された第3回路と、
    を備え、
    前記第2回路は、前記可変インダクタ回路である第1可変インダクタ回路と、前記可変インダクタ回路である第2可変インダクタ回路とが直列接続された回路を備える、
    請求項1から請求項4の何れか一項に記載のデジタル移相回路。
  6. 固定インダクタと第1可変インダクタとを直列接続した可変インダクタ回路を備え、
    第1ポートと第2ポートとの間に接続された第1回路と、
    前記第1回路に並列接続された第2回路と、
    前記第2回路と共通帰線との間に接続された第3回路と、
    を備え、
    前記第2回路は、前記可変インダクタ回路である第1可変インダクタ回路と、前記可変インダクタ回路である第2可変インダクタ回路とが直列接続された回路を備え、
    前記第1回路は、第1可変コンデンサを備え、
    前記第3回路は、第2可変インダクタと第2可変コンデンサとが直列接続された回路を備え、前記第1可変インダクタ回路と前記第2可変インダクタ回路との接続点に接続される、
    デジタル移相回路。
  7. 第1ポートと第2ポートとの間に接続された第1回路と、
    前記第1回路に並列接続された第2回路と、
    前記第2回路と共通帰線との間に接続された第3回路と、
    を備え、
    前記第1回路、前記第2回路、及び前記第3回路の少なくとも1つは、可変インダクタを備え
    前記可変インダクタは、
    信号線路と、
    前記信号線路と平行に延びる第1平行線路を含む第1線路と、
    前記信号線路と平行に延びる第2平行線路と、前記第2平行線路の一方の端部から前記信号線路の長手方向と交差する交差方向において前記信号線路から遠ざかるように延びる第1交差線路と、前記第1交差線路の一方の端部から前記信号線路と平行に延びる第3平行線路と、前記第3平行線路の一方の端部から前記交差方向において前記信号線路に近づくように延びる第2交差線路と、を含む第2線路と、
    前記第1平行線路の一方の端部及び前記第2平行線路の一方の端部に電気的に接続された第1接地導体と、
    前記第2線路の一方の端部に接続された第2接地導体と、
    前記第1平行線路の他方の端部と前記第2接地導体との間に設けられた第1電子スイッチと、
    前記第2平行線路の他方の端部と前記第2接地導体との間に設けられた第2電子スイッチと、を備え、
    前記第1平行線路と前記第2平行線路との間に前記信号線路が位置する、
    ジタル移相回路。
  8. 前記第2交差線路は、平面視において前記第2平行線路、前記信号線路、及び前記第1平行線路と交差するように延びており、
    前記第2線路は、前記第2交差線路の一方の端部から前記信号線路と平行に延びる第4平行線路と、前記第4平行線路の一方の端部から前記交差方向において前記信号線路に近づくように延びる第3交差線路と、を更に含む、
    請求項7記載のデジタル移相回路。
  9. 前記第1線路は、前記第1平行線路の一方の端部から前記交差方向において前記信号線路から遠ざかるように延びる第4交差線路と、前記第4交差線路の一方の端部から前記信号線路と平行に延びる第5平行線路と、前記第5平行線路の一方の端部から前記交差方向において前記信号線路に近づくように延びる第5交差線路と、を更に含む、
    請求項7記載のデジタル移相回路。
  10. 前記可変インダクタは、
    信号線路と、
    前記信号線路の両側に設けられた内側線路と、
    前記信号線路の一方側及び他方側の少なくとも一つの側において、前記内側線路よりも前記信号線路から遠い位置に設けられた外側線路と、
    前記内側線路及び前記外側線路の一方の端部に接続された第1接地導体と、
    前記外側線路の他方の端部に接続された第2接地導体と、
    前記信号線路の一方側に設けられた前記内側線路の他方の端部と前記第2接地導体との間に設けられた第1電子スイッチと、
    前記信号線路の他方側に設けられた前記内側線路の他方の端部と前記第2接地導体との間に設けられた第2電子スイッチと、
    を有する、
    請求項7記載のデジタル移相回路。
  11. 第1ポートと第2ポートとの間に接続された第1回路と、
    前記第1回路に並列接続された第2回路と、
    前記第2回路と共通帰線との間に接続された第3回路と、
    を備え、
    前記第1回路、前記第2回路、及び前記第3回路の少なくとも1つは、可変インダクタを備え、
    前記第1回路は、可変コンデンサを備え、
    前記第2回路は、第1固定インダクタと第2固定インダクタとが直列接続された回路を備え、
    前記第3回路は、前記可変インダクタと固定コンデンサとが直列接続された回路を備え、前記第1固定インダクタと前記第2固定インダクタとの接続点に接続される
    ジタル移相回路。
  12. 第1ポートと第2ポートとの間に接続された第1回路と、
    前記第1回路に並列接続された第2回路と、
    前記第2回路と共通帰線との間に接続された第3回路と、
    を備え、
    前記第1回路、前記第2回路、及び前記第3回路の少なくとも1つは、可変インダクタを備え、
    前記第1回路は、固定インダクタを備え、
    前記第2回路は、第1可変コンデンサと第2可変コンデンサとが直列接続された回路を備え、
    前記第3回路は、前記可変インダクタと固定コンデンサとが直列接続された回路を備え、前記第1可変コンデンサと前記第2可変コンデンサとの接続点に接続される
    ジタル移相回路。
  13. 固定インダクタと第1可変インダクタとを直列接続した可変インダクタ回路を備え、
    第1ポートと第2ポートとの間に接続された第1回路と、
    前記第1回路に並列接続された第2回路と、
    前記第2回路と共通帰線との間に接続された第3回路と、
    を備え、
    前記第1回路は、前記可変インダクタ回路を備え、
    前記第2回路は、第1可変コンデンサと第2可変コンデンサとが直列接続された回路を備え、
    前記第3回路は、可変インダクタと固定コンデンサとが直列接続された回路を備え、前記第1可変コンデンサと前記第2可変コンデンサとの接続点に接続される
    ジタル移相回路。
JP2022203323A 2022-12-20 2022-12-20 デジタル移相回路 Active JP7383783B1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022203323A JP7383783B1 (ja) 2022-12-20 2022-12-20 デジタル移相回路
PCT/JP2023/038949 WO2024135099A1 (ja) 2022-12-20 2023-10-27 デジタル移相回路

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022203323A JP7383783B1 (ja) 2022-12-20 2022-12-20 デジタル移相回路

Publications (2)

Publication Number Publication Date
JP7383783B1 true JP7383783B1 (ja) 2023-11-20
JP2024088247A JP2024088247A (ja) 2024-07-02

Family

ID=88833503

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022203323A Active JP7383783B1 (ja) 2022-12-20 2022-12-20 デジタル移相回路

Country Status (2)

Country Link
JP (1) JP7383783B1 (ja)
WO (1) WO2024135099A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006011198A1 (ja) 2004-07-27 2006-02-02 Mitsubishi Denki Kabushiki Kaisha 移相回路および多ビット移相器
JP2007532060A (ja) 2004-03-31 2007-11-08 エックスコム ワイアレス インコーポレイテッド 電子制御されたデジタル/アナログ混載移相器
US20110267119A1 (en) 2010-05-03 2011-11-03 Michael Koechlin Wideband analog phase shifter
US20130222075A1 (en) 2008-02-28 2013-08-29 Ronald Eugene Reedy Methods and Apparatuses for use in Tuning Reactance in a Circuit Device
US10734972B1 (en) 2019-11-28 2020-08-04 Industrial Technology Research Institute Switch-type phase shifter
JP7111880B1 (ja) 2021-12-24 2022-08-02 株式会社フジクラ デジタル移相回路及びデジタル移相器

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10200302A (ja) * 1997-01-14 1998-07-31 Mitsubishi Electric Corp 可変移相器
US9660612B2 (en) * 2015-07-27 2017-05-23 Nokia Technologies Oy Phase shifted resonator
JP6969190B2 (ja) * 2017-07-26 2021-11-24 株式会社豊田中央研究所 可変移相器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007532060A (ja) 2004-03-31 2007-11-08 エックスコム ワイアレス インコーポレイテッド 電子制御されたデジタル/アナログ混載移相器
WO2006011198A1 (ja) 2004-07-27 2006-02-02 Mitsubishi Denki Kabushiki Kaisha 移相回路および多ビット移相器
US20130222075A1 (en) 2008-02-28 2013-08-29 Ronald Eugene Reedy Methods and Apparatuses for use in Tuning Reactance in a Circuit Device
US20110267119A1 (en) 2010-05-03 2011-11-03 Michael Koechlin Wideband analog phase shifter
US10734972B1 (en) 2019-11-28 2020-08-04 Industrial Technology Research Institute Switch-type phase shifter
JP7111880B1 (ja) 2021-12-24 2022-08-02 株式会社フジクラ デジタル移相回路及びデジタル移相器

Also Published As

Publication number Publication date
JP2024088247A (ja) 2024-07-02
WO2024135099A1 (ja) 2024-06-27

Similar Documents

Publication Publication Date Title
US8581677B2 (en) Variable resonator, variable bandwidth filter, and electric circuit device
JP2656000B2 (ja) ストリップライン型高周波部品
EP1143558B1 (en) Surface-mounted type antenna, method for adjusting and setting dual-resonance frequency thereof, and communication device including the surface-mounted type antenna
JP4029173B2 (ja) 伝送線路接続構造および送受信装置
US9484611B2 (en) Coupled line system with controllable transmission behaviour
US7936230B2 (en) Non-reciprocal component and method for making and using the component in a mobile terminal
JP4733675B2 (ja) 可変共振器、帯域幅可変フィルタ、電気回路装置
JP7383783B1 (ja) デジタル移相回路
JP4645603B2 (ja) アンテナ構造およびそれを備えた無線通信装置
JP7362964B1 (ja) デジタル移相回路及びデジタル移相器
WO2011067942A1 (ja) 無線通信端末
JP4724152B2 (ja) 非可逆回路素子
JP7387862B1 (ja) デジタル移相器
JP7314385B1 (ja) デジタル移相回路およびデジタル移相器
JP7382481B1 (ja) デジタル移相回路
US6621385B1 (en) Bias feed network arrangement for balanced lines
JP6337879B2 (ja) 方向性結合器及び高周波回路
JP7425920B1 (ja) 出力整合回路
JP7436733B1 (ja) 移相装置
JP2005244932A (ja) 周波数可変型高周波フィルタ
CN116111311A (zh) 一种功分器
Yuan Reconfigurable Varactor-Based Microwave Components for Low-Cost Antenna Array Design: Phase Shifters, Attenuators and Diplexers
EP1267481B1 (en) Multi-frequency dielectric resonator oscillator
KR100769535B1 (ko) 전송 선로 접속 구조 및 송수신 장치
US20160336634A1 (en) Non-reciprocal circuit element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230414

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20230414

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230711

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230803

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231031

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231108

R151 Written notification of patent or utility model registration

Ref document number: 7383783

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151