JP7372201B2 - Air conditioning control method and its system - Google Patents

Air conditioning control method and its system Download PDF

Info

Publication number
JP7372201B2
JP7372201B2 JP2020085883A JP2020085883A JP7372201B2 JP 7372201 B2 JP7372201 B2 JP 7372201B2 JP 2020085883 A JP2020085883 A JP 2020085883A JP 2020085883 A JP2020085883 A JP 2020085883A JP 7372201 B2 JP7372201 B2 JP 7372201B2
Authority
JP
Japan
Prior art keywords
temperature
virtual
compartment
value
section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020085883A
Other languages
Japanese (ja)
Other versions
JP2021179294A (en
Inventor
慎介 鈴木
浩一 新村
恵 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanki Engineering Co Ltd
Original Assignee
Sanki Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanki Engineering Co Ltd filed Critical Sanki Engineering Co Ltd
Priority to JP2020085883A priority Critical patent/JP7372201B2/en
Publication of JP2021179294A publication Critical patent/JP2021179294A/en
Application granted granted Critical
Publication of JP7372201B2 publication Critical patent/JP7372201B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Air Conditioning Control Device (AREA)

Description

本発明は、事務所ビルなどの大部屋の執務室内の空調制御に係り、特に中央の空調機を有する変風量単一ダクト方式にて空調対象室内の仮想区画ごとの温度に加えて当該領域の表面温度を簡単に計測できる構成を用いることで適切な予想平均温冷感申告が仮想区画ごとに得られる応答性の良い空調制御方法及びそのシステムに関する。 The present invention relates to air conditioning control in an office room of a large room such as an office building, and in particular, uses a variable air volume single duct method with a central air conditioner to control the temperature of each virtual section of the room to be air conditioned, as well as the temperature of the area concerned. The present invention relates to an air conditioning control method and system with good responsiveness in which an appropriate expected average thermal sensation report can be obtained for each virtual section by using a configuration that can easily measure surface temperature.

事務所ビル等の中規模大規模面積の居室である室内執務環境の空調には、一般的に変風量単一ダクト方式が採用されている。大空間となる執務室において、外壁や窓に近いペリメータエリア、内部であるインテリアエリアそれぞれを更に区分した仮想区画ごとに可変風量装置(VAV)を設け、空調機からは原則一定温度で空気を送給し、仮想区画ごとにその天井面などに設けた温度センサーを設置しVAVを操作器として、温度設定値と温度計測値との偏差に基づいて、VAVの風量可変部を開閉制御し、室内負荷に対応する給気風量の供給制御を行う。 A variable air volume single duct system is generally used for air conditioning in indoor office environments such as medium-sized and large-sized rooms in office buildings and the like. In the office, which is a large space, a variable air volume device (VAV) is installed in each virtual section, which is further divided into a perimeter area near the exterior walls and windows, and an interior area inside.The air conditioner sends air at a constant temperature in principle. Temperature sensors are installed on the ceiling of each virtual compartment, and the VAV is used as an operation device to control the opening and closing of the variable air volume section of the VAV based on the deviation between the temperature set value and the measured temperature value. Controls the supply air volume according to the load.

このように、仮想空間の代表温度を計測して制御するのが一般的であるが、この制御では不十分な場合がある。室内の居住者(執務者等)の体感温度は、室内温度、放射温度(室内表面からの輻射熱)、風速等々の要因(パラメータ)で左右されるため、室内温度のみで制御すると、室内温度が設定通りであったとしても居住者の温熱感覚は不快な傾向になる。 In this way, it is common to measure and control the representative temperature of the virtual space, but this control may be insufficient. The perceived temperature of indoor occupants (such as office workers) depends on factors (parameters) such as indoor temperature, radiant temperature (radiant heat from indoor surfaces), wind speed, etc. Therefore, if indoor temperature is controlled only, indoor temperature Even if the settings are correct, the occupant's thermal sensation tends to be uncomfortable.

この温熱感覚は人体が熱的に中立(熱平衡)であれば、快適な状態を感じることになる。すなわち、温度[℃]、湿度[%]、風速[m/s]、熱放射[℃]の環境側4要素に、人体の2要素である代謝当量[met]と着衣量[CLO]をもとに下記式で算出した予測平均温冷申告(Predicted Mean Vote: PMV)が0である状態を熱平衡が中立で最も快適であると称する。
PMV=(0.303e-0.036M+0.028)L
ただし、L:人体の熱負荷[W/m]、M:代謝量[W/m
This thermal sensation results in a comfortable state when the human body is thermally neutral (thermal equilibrium). In other words, in addition to the four environmental factors of temperature [°C], humidity [%], wind speed [m/s], and heat radiation [°C], we also include two human body elements, metabolic equivalent [met] and amount of clothing [CLO]. The state where the predicted mean vote (PMV) calculated using the following formula is 0 is called the state where the thermal balance is neutral and the most comfortable.
PMV=(0.303e -0.036M +0.028)L
However, L: heat load of human body [W/m 2 ], M: metabolic rate [W/m 2 ]

PMV(予測温冷感申告)は、前記したように人体の熱的快適感に影響する環境側4要素(室温、相対湿度、平均風速、平均放射温度)に人間側の2要素(着衣量、作業量)を加えた6つの要素で評価される(デンマーク工科大学ファンガー教授提唱)。 As mentioned above, PMV (predicted thermal sensation declaration) is based on four environmental factors (room temperature, relative humidity, average wind speed, and average radiant temperature) that affect the human body's thermal comfort, and two human factors (amount of clothing, amount of clothing, (proposed by Professor Fanger of the Technical University of Denmark), including the amount of work required.

これらの要素を前記した上式で算出した数値を7段階評価尺度で示したのが図8である。図9は、PMVを視覚的に説明するグラフで、横軸にPMVを、縦軸にPPDを取って示す。
図8において、0を中立として+3と-3の7段階で「快適」と「不快」を評価する。そして、図9に示したように、PMVが±0.5以内で、不快者率(何人が不快と感じるかの割合%、Predicted Percentage of Dissatisfied: PPD)は10%以下が推奨とされている。
FIG. 8 shows the numerical values calculated using the above-mentioned formula for these elements on a 7-step evaluation scale. FIG. 9 is a graph visually explaining PMV, with PMV plotted on the horizontal axis and PPD plotted on the vertical axis.
In FIG. 8, "comfortable" and "uncomfortable" are evaluated on a seven-point scale of +3 and -3, with 0 being neutral. As shown in Figure 9, it is recommended that the PMV is within ±0.5 and the discomfort rate (Predicted Percentage of Dissatisfied: PPD) is 10% or less. .

図10は、仮想区画に空気温度を計測する温度センサーだけを用いた既知の空調制御システムの説明図、図11は図10における空調制御方法の説明図である。図10の温度計測手段として温度センサー10を室内(オフィスルーム等)1の天井4に設置してある。天井4には空調の空気流の吹出口7が複数個設けられている。室内1の空調空間1aには居住者5に加えて発熱機器6などが収容されている。図10では簡単のため一つの仮想区画が室内全部を占めるように示されているが、実際は仮想区画が複数ある。参照符号2は側壁を示し、室内1が太陽光などの環境からの熱の影響を受けることを表している。 FIG. 10 is an explanatory diagram of a known air conditioning control system using only temperature sensors that measure air temperature in virtual compartments, and FIG. 11 is an explanatory diagram of the air conditioning control method in FIG. 10. A temperature sensor 10 is installed on the ceiling 4 of a room (such as an office room) 1 as a temperature measuring means in FIG. A plurality of air outlet ports 7 for air conditioning are provided on the ceiling 4. The air-conditioned space 1a of the room 1 accommodates a resident 5 as well as a heat generating device 6 and the like. In FIG. 10, for simplicity, one virtual compartment is shown occupying the entire room, but in reality there are multiple virtual compartments. Reference numeral 2 indicates a side wall, which indicates that the room 1 is affected by heat from the environment such as sunlight.

図10と図11において、居室外の機械室などには空調機9が設置されており、室内1の空調空間1aの仮想区画ごとの天井下に設置された温度センサー10の計測値に基づいて給気ダクトの途中に設置するVAV(可変風量装置)12により、給気は風量を調整されて、複数の吹出口7から空調空間1aに送風される。図10では仮想区画は1つだが、空調機9から給気を導くダクトは居室天井内で分岐して,VAV12は仮想区画分の数だけ設置される。空調還気は天井還気チャンバとなっている天井裏空間1bに設けた還気取入れ口8から空調機9に戻される。図示しないが還気の一部は、取入れ外気の分が排気される。なお、制御ループなどの計装詳細構成は図示を省略してある。 In FIGS. 10 and 11, an air conditioner 9 is installed in a machine room outside the living room, and the temperature sensor 10 is installed under the ceiling in each virtual section of the air-conditioned space 1a in the room 1. The air volume of the air supply is adjusted by a VAV (variable air volume device) 12 installed in the middle of the air supply duct, and the air is blown into the air-conditioned space 1a from the plurality of air outlets 7. Although there is one virtual compartment in FIG. 10, the duct that leads air supply from the air conditioner 9 branches within the ceiling of the living room, and VAVs 12 are installed as many as the number of virtual compartments. The air conditioner return air is returned to the air conditioner 9 from a return air intake 8 provided in the attic space 1b serving as a ceiling return air chamber. Although not shown in the drawings, a portion of the return air equal to the amount of outside air that is taken in is exhausted. Note that detailed instrumentation configurations such as control loops are omitted from illustration.

中央監視装置20aからの通信で初期に天井温度設定値T0を設定入力された可変風量装置コントローラ(VAVコントローラ)22は、自身が受け持つ仮想区画の天井温度設定値T0と温度センサー10の計測値T1との偏差に基づいて、VAV12の風量調整部の開閉を制御する。各VAVコントローラ22からは、VAV12の風量調整部の開閉度合いを信号にした要求風量比率が空調機コントローラ22へ出力される。各VAVコントローラ22から要求風量比率が入力された空調機コントローラ22は、各VAV12からの要求風量比率に対し重みづけなどを含む評価式によって合算し、台数で除した信号により、空調機9の給気風量を増減する信号として、給気風量調整信号の補正値Arを空調機コントローラ22にて生成し、空調機ファンの回転数制御の制御信号として使用する。また、各VAVコントローラ22とも要求風量比率が比較的小さくなり、空調機9からの給気温度が一定のままでは処理能力が大きすぎる場合に、ロードリセット制御として、給気温度調整信号の補正値Trが空調機コントローラ内で生成され、空調機のコイルの制御弁を制御して給気温度を変更することも行われる。 The variable air volume device controller (VAV controller) 22, which is initially set and inputted with the ceiling temperature set value T0 through communication from the central monitoring device 20a, sets the ceiling temperature set value T0 of the virtual section that it is in charge of and the measured value T1 of the temperature sensor 10. The opening/closing of the air volume adjustment section of the VAV 12 is controlled based on the deviation from the VAV 12. Each VAV controller 22 outputs a required air volume ratio to the air conditioner controller 22, which is a signal representing the degree of opening/closing of the air volume adjustment section of the VAV 12. The air conditioner controller 22 to which the required air volume ratio is input from each VAV controller 22 sums up the required air volume ratio from each VAV 12 using an evaluation formula including weighting, and divides by the number of units. As a signal for increasing or decreasing the air volume, a correction value Ar of the supply air volume adjustment signal is generated by the air conditioner controller 22, and is used as a control signal for controlling the rotation speed of the air conditioner fan. In addition, when the required air volume ratio of each VAV controller 22 becomes relatively small and the processing capacity is too large if the supply air temperature from the air conditioner 9 remains constant, a correction value of the supply air temperature adjustment signal is set as load reset control. Tr is generated within the air conditioner controller and also controls the control valve of the air conditioner coil to change the supply air temperature.

なお、事務所ビル等の室内執務環境の調整のための室内空調技術に関する従来技術を開示したものとして、特許文献1~5等を挙げることができる。 Note that Patent Documents 1 to 5 can be cited as examples of prior art related to indoor air conditioning technology for adjusting the indoor working environment of an office building or the like.

特許文献1は、対象室の室内温度を用いない代わりに各在室者から収集した在室者の上着温度に基づいて空調を制御するシステムと方法を開示する。 Patent Document 1 discloses a system and method for controlling air conditioning based on the jacket temperature of each person in the room, which is collected from each person in the room instead of using the indoor temperature of the target room.

また、特許文献2には、快適指数値の中の活動量に着目し、室内に設置したカメラ画像に基づいた在室者の活動量から快適指数を求め、制御パラメータとして予測PMV値を用いて空調動作を制御するシステムと方法が記載されている。特許文献3には、室内にて居住者の着衣表面温度及び身体の表面温度を中心に、赤外線監視カメラで検出した熱画像サーモグラフィを解析したデータに基づいて、抽象的な制御装置で空気温度と風量を自動的に制御する環境制御システムが記載されている。 Further, Patent Document 2 focuses on the amount of activity in the comfort index value, calculates the comfort index from the amount of activity of the occupants in the room based on the camera image installed in the room, and uses the predicted PMV value as a control parameter. A system and method for controlling air conditioning operation is described. Patent Document 3 describes an abstract control device that controls air temperature based on data analyzed from thermal image thermography detected by an infrared surveillance camera, focusing on the clothing surface temperature and body surface temperature of occupants indoors. An environmental control system that automatically controls air volume is described.

そして、特許文献4は、室内の天井に設置した輻射温度測定器の測定面角度を変化させ、測定値で生成したPMVに応じて空調バランスを制御する室内温熱環境の制御方法を開示する。この場合、PMVの要素の定義である、在室者が周囲環境と放射熱交換を行うのと同量の放射熱交換を行える均一温度の仮想閉鎖空間の表面温度を、天井の小さな平板で検知される輻射温度に置き換えていて、その誤差を少なくするため測定面角度を変化させ小さな平板への輻射偏りを均している。そして、特許文献5は、室内を複数のゾーンに分割し、各ゾーンのPMV値に応じて各ゾーンごとに設置される風向変更手段により噴き出す風の向きと量を制御する空気調和機を開示する。 Patent Document 4 discloses a method for controlling an indoor thermal environment in which the angle of the measurement surface of a radiant temperature measuring device installed on the ceiling of the room is changed and the air conditioning balance is controlled according to the PMV generated from the measured value. In this case, a small flat plate on the ceiling detects the surface temperature of a virtual closed space with a uniform temperature in which the occupants can exchange the same amount of radiant heat with the surrounding environment, which is the definition of the PMV element. In order to reduce the error, the angle of the measurement surface is changed to equalize the radiation bias toward a small flat plate. Patent Document 5 discloses an air conditioner that divides a room into a plurality of zones and controls the direction and amount of wind blown out by a wind direction changing means installed in each zone according to the PMV value of each zone. .

特開2017-227409号公報JP 2017-227409 Publication 特許第5085670号公報Patent No. 5085670 特開平07-55227号公報Japanese Patent Application Publication No. 07-55227 特開平06-229609号公報Japanese Patent Application Publication No. 06-229609 特許第2912754号公報Patent No. 2912754

図10、図11に示す従来技術では、室内温度が設定どおりであっても、放射環境(輻射がある環境)に居住者が晒されている場合はPMVが上昇(暑く感じる傾向になる)してしまうことがある。室内にある物体(OA設備、日射を受けた什器、人間等)の発熱(表面温度)が室内空気の温度を温めるまでに時間遅れがあるため、室内温度を計測する温度センサーが空気温度の上昇を捉えた時点では既に日射などの輻射を受けた居住者の着衣表面温度や居住者の放射温度という居住者周辺の温度が高くなっていることから、その室内温度とPMVからの最適温度とのズレや、人手による室内温度変更の時間遅れによる室内温度の乱れがあった。
また、室内のPMVを快適に保つにあたって、正確なPMVの算出に必要な放射温度を測定するために、グローブ温度計を居住空間の視覚的に目立つ高さに複数設置させる必要があり、グローブ温度計に人がぶつからないよう配慮する必要があった。正確なPMVの算出には居住空間に多くのグローブ温度計を配置させる必要があるが、実際には人との接触が懸念されるため一般的に常時配置されることはなかった。
前記した特許文献1乃至5に開示の先行技術には、上着表面温度に着目したり、活動量に着目したりして、これらを模擬的に計測して要素の一つとして快適方程式に代入して最適PMVを求め、これに基づいて空調を制御するシステムや方法が記載されている。しかしながら、これらの先行技術では、模擬的にPMVが演算できたとしても空調設備制御にどのように取り入れて制御するのかの具体策の提示がない。つまりこれらには、変風量単一ダクト方式において、室内に設けられる複数のVAV等の空調機器の空調の割り当て区画を任意に設定して、実際にVAVの計測信号である室内空気温度としてPMVを反映する補正を行って、室内に散在する輻射熱源の熱負荷を該当する各区画において正確に検知し即応的に制御することでそれぞれ仮想区画での実際のPMVを最適化するという技術思想は開示がなく、また、室内の全ての領域における表面温度を隈なく、かつ当該室内に存在する高さ方向の設備についての熱負荷をPMVに反映させるという技術思想は開示がなく、室内の熱負荷を正確に測定し、精密なPMVの処理を行うという技術思想を想到するに足る記載はない。
In the conventional technology shown in FIGS. 10 and 11, even if the indoor temperature is as set, if the occupant is exposed to a radiant environment (an environment with radiation), the PMV increases (tends to feel hot). Sometimes it happens. Because there is a time delay before the heat generated (surface temperature) of indoor objects (OA equipment, fixtures exposed to sunlight, humans, etc.) warms the temperature of the indoor air, the temperature sensor that measures indoor temperature detects the rise in air temperature. By the time the temperature is captured, the temperature around the occupants, including the surface temperature of the occupant's clothes and the radiant temperature of the occupants who have received radiation such as solar radiation, is already high, so the indoor temperature and the optimal temperature from PMV are already high. There were disturbances in the indoor temperature due to discrepancies and delays in manually changing the indoor temperature.
In addition, in order to maintain a comfortable indoor PMV, it is necessary to install multiple globe thermometers at visually noticeable heights in the living space in order to measure the radiation temperature required for accurate PMV calculation. Care had to be taken to prevent people from colliding with the meter. To accurately calculate PMV, it is necessary to place many glove thermometers in a living space, but in reality, they are generally not always placed because of concerns about contact with people.
The prior art disclosed in Patent Documents 1 to 5 mentioned above focuses on the surface temperature of the jacket or the amount of activity, measures these in a simulated manner, and substitutes them into the comfort equation as one of the elements. A system and method for determining the optimum PMV and controlling air conditioning based on the optimum PMV are described. However, in these prior art techniques, even if the PMV can be calculated in a simulated manner, there is no suggestion as to how to incorporate it into air conditioning equipment control. In other words, in these variable air volume single duct systems, the air conditioning allocation sections of multiple VAVs and other air conditioners installed indoors are set arbitrarily, and the PMV is actually used as the indoor air temperature, which is the measurement signal of the VAV. The technical idea is to optimize the actual PMV in each virtual compartment by accurately detecting the heat load of the radiant heat sources scattered in the room in each relevant compartment, and controlling it immediately by making corrections to reflect it. In addition, there is no disclosure of the technical idea of reflecting the surface temperature in all areas of the room and the heat load of the equipment in the height direction in the room in the PMV. There is no description sufficient to conceive of the technical idea of accurately measuring and processing PMV accurately.

本発明の目的は、空調対象の室内の温度測定値に加えて室内の全ての領域における表面温度をグローブ温度計を用いることなく隈なく取得して、仮想区画ごとのPMV推測値として演算し、PMVに基づく目標設定地と現状推測値との差を収束演算して仮想区画ごとの補正設定温度値としてカスケード制御することで、居住空間内の位置によって偏らない快適性のあるPMVを得ることができる空調制御方法及びそのシステムを提供することにある。 The purpose of the present invention is to obtain the surface temperature in all areas of the room without using a globe thermometer in addition to the measured temperature in the room to be air-conditioned, and calculate the estimated PMV value for each virtual section. By converging the difference between the target setting point based on PMV and the estimated current value and performing cascade control as a corrected set temperature value for each virtual section, it is possible to obtain a comfortable PMV that is not biased depending on the position in the living space. The purpose of the present invention is to provide an air conditioning control method and a system thereof.

上記目的を達成するための本発明の構成例を下記に列挙する。以下では、本発明を明確に理解するために、各構成に後述する実施例の参照符号を付してあるが、本発明はこの参照符号で特定される構成に限定されるものではない。なお、本発明において高さ方向を含めた表面温度を計測するとは、室内の床、内壁、室内に置かれた様々な家具類、什器、各種電気・電子機器および居住者(人間、執務者)の表面から輻射される熱を測定することである。 Configuration examples of the present invention for achieving the above object are listed below. Hereinafter, in order to clearly understand the present invention, reference numerals of the embodiments described below are given to each structure, but the present invention is not limited to the structures specified by these reference numerals. In addition, in the present invention, measuring the surface temperature including the height direction refers to the indoor floor, inner wall, various furniture placed in the room, fixtures, various electric/electronic equipment, and occupants (humans, office workers). The method is to measure the heat radiated from the surface of the

大空間である室に対して中央空調機を備える変風量単一ダクト方式であって、室を区分した仮想区画ごとに温度センサを設け仮想区画内設定温度になるよう仮想区画ごとの変風量装置によって仮想区画内の熱負荷に応じて送風量を変えて空調能力制御する本発明に係る空調制御方法は、
(1)仮想区画ごとのPMV推測手段を有し、
当該仮想区画ごとのPMV推測手段では、
空調機還気温度と、空調機還気温度と空調機還気相対湿度とから算出した室内絶対湿度並びに仮想区画毎の仮想区画内温度とから算出した仮想区画毎の相対湿度と、clo値と、met値と、風速(仮想区画内平均風速)と、仮想区画内設定温度と、仮想区画内計測温度と、仮想区画毎の表面温度計測手段の検知温度とから仮想区画毎の現状のPMV推測値を演算し、
仮想区画内設定温度の補正値計算手段を有し、
当該仮想区画内設定温度の補正値計算手段では、仮想区画毎に任意に設定する目標PMV設定値と現状のPMV推測値との差を計算し、当該目標PMV設定値と現状のPMV推測値との差がゼロとなるように、仮想区画内設定温度を変更して仮想区画ごとのPMV推測演算値を演算し続けて仮想区画の補正設定温度を収束計算し、前記収束計算で得られた仮想区画の補正設定温度値と元の仮想区画内設定温度との差を設定温度の補正値として仮想区画内設定温度更新手段へ出力し、
前記仮想区画内設定温度更新手段では、前記設定温度の補正値として入力され元の仮想空間内設定温度に加減算されて求められ続ける前記仮想区画の補正設定温度を仮想区画ごとの変風量装置に出力し続け、
仮想区画ごとの変風量装置では、入力され続ける前記仮想区画の補正設定温度と、仮想区画内計測温度との偏差に基づいて、逐一補正される各仮想区画の補正設定温度となるように給気風量を操作するカスケード制御を行うことを特徴とする。
It is a variable air volume single duct system that is equipped with a central air conditioner for a room that is a large space, and a temperature sensor is installed in each virtual section where the room is divided, and a variable air volume device for each virtual section is installed to maintain the set temperature within the virtual section. The air conditioning control method according to the present invention controls the air conditioning capacity by changing the amount of air blowing according to the heat load in the virtual compartment.
(1) Has a PMV estimation means for each virtual partition,
In the PMV estimation means for each virtual partition,
The air conditioner return air temperature, the indoor absolute humidity calculated from the air conditioner return air temperature and the air conditioner return air relative humidity, the relative humidity for each virtual section calculated from the temperature in the virtual section for each virtual section, and the clo value. , the current PMV of each virtual compartment is estimated from the met value, the wind speed (average wind speed within the virtual compartment), the set temperature within the virtual compartment, the measured temperature within the virtual compartment, and the temperature detected by the surface temperature measuring means for each virtual compartment. calculate the value,
It has a correction value calculation means for a set temperature in the virtual compartment,
The correction value calculation means for the set temperature in the virtual section calculates the difference between the target PMV set value arbitrarily set for each virtual section and the current estimated PMV value, and calculates the difference between the target PMV set value and the current estimated PMV value. The set temperature in the virtual compartment is changed and the PMV estimated calculation value for each virtual compartment is continuously calculated so that the difference between outputting the difference between the corrected set temperature value of the compartment and the original set temperature in the virtual compartment to the virtual compartment set temperature update means as a set temperature correction value;
The virtual compartment set temperature update means outputs the corrected set temperature of the virtual compartment, which is input as a correction value of the set temperature and continues to be determined by adding or subtracting from the original virtual space set temperature, to the variable air volume device for each virtual compartment. keep doing it,
The variable air volume device for each virtual compartment adjusts the air supply so that the corrected set temperature of each virtual compartment is corrected one by one based on the deviation between the corrected set temperature of the virtual compartment that is continuously inputted and the measured temperature within the virtual compartment. It is characterized by cascade control that manipulates air volume.

(2)上記(1)において、前記表面温度計測手段の検知温度から[式1]、[式2]を使って平均放射温度を算出してPMV値を推測し、
Tr=Tg+2.37v1/2(Tg-Ta)・・・[式1]
ただし、Tr:平均放射温度
v:風速
Ta:仮想区画内測定温度
Tg=αTp+(1-α)Ta ・・・[式2]
ただし、 α:表面温度影響係数
Tp:表面温度計測手段の検知温度
各仮想区画の輻射状況に応じて表面温度影響係数αを決めることを特徴とする。
(2) In (1) above, calculate the average radiant temperature from the temperature detected by the surface temperature measuring means using [Formula 1] and [Formula 2] to estimate the PMV value,
Tr=Tg+2.37v 1/2 (Tg-Ta)...[Formula 1]
However, Tr: average radiant temperature
v: Wind speed
Ta: Measured temperature in virtual compartment Tg=αTp+(1-α)Ta...[Formula 2]
However, α: surface temperature influence coefficient
Tp: Temperature detected by surface temperature measuring means The surface temperature influence coefficient α is determined according to the radiation situation of each virtual section.

(3)また、本発明に係る空調制御方法では、前記仮想区画毎の表面温度計測手段の検知温度として、当該仮想区画内の床と当該床より高い位置に存在する表面の表面温度を含めた二次元分布値を平均処理して用いることを特徴とする。 (3) In addition, in the air conditioning control method according to the present invention, the temperature detected by the surface temperature measuring means for each virtual compartment includes the surface temperature of the floor in the virtual compartment and the surface located at a position higher than the floor. It is characterized in that two-dimensional distribution values are averaged and used.

(4)上記(3)における前記表面温度の二次元分布値は、視野範囲の温度分布を細分化したサーモパターンを得るサーモグラフィカメラを、当該室内の表面を俯瞰する位置に、仮想区画に対して複数設置し前記室内の表面温度を計測して得ることを特徴とする。 (4) The two-dimensional distribution value of the surface temperature in (3) above is determined by placing a thermography camera that obtains a thermo pattern that subdivides the temperature distribution in the field of view in a position overlooking the surface of the room, relative to the virtual compartment. The feature is that a plurality of devices are installed and the surface temperature inside the room is measured and obtained.

(5)上記(4)において、前記仮想区画の表面を複数のサーモグラフィカメラの視野範囲でカバーする領域をオーバーラップさせて計測することより、前記仮想空間内で高さ方向に存在する表面温度も測定可能とすることを特徴とする。 (5) In (4) above, by measuring the surface of the virtual section by overlapping the area covered by the field of view of a plurality of thermography cameras, the surface temperature existing in the height direction within the virtual space can also be measured. It is characterized by being measurable.

(6)上記(4)又は(5)における前記仮想区画に対応する複数の前記サーモグラフィカメラの視野範囲をオーバーラップさせ、オーバーラップした領域では、一方のサーモグラフィカメラのデータのみを有効とすることを特徴とする。 (6) The field of view ranges of the plurality of thermography cameras corresponding to the virtual section in (4) or (5) above are made to overlap, and in the overlapping area, only data from one thermography camera is valid. Features.

大空間である室に対して中央空調機を備える変風量単一ダクト方式であって、室を区分した仮想区画ごとに温度センサと、仮想区画内設定温度になるよう送風量を変える変風量装置と、該変風量装置を仮想区画ごとの温度センサの計測値と仮想区画ごとの設定値との偏差に基づいて送風量を制御するVAVコントローラとを設けて、仮想区画内の熱負荷に応じて送風量を変え室全体の空調能力を制御する空調システムは、
(7)空調機還気温度計と、空調機還気相対湿度計と、仮想区画ごとに表面温度計測手段と、仮想区画ごとに仮想区画内温度計とを備え、
空調機還気温度と、空調機還気温度と空調機還気相対湿度とから算出した室内絶対湿度並びに仮想区画毎の仮想区画内温度とから算出した仮想区画毎の相対湿度と、clo値と、met値と、風速(仮想区画内平均風速)と、仮想区画内設定温度と、仮想区画内計測温度と、仮想区画毎の表面温度計測手段の検知温度とから仮想区画毎の現状のPMV推測値を演算する仮想区画ごとのPMV推測手段を有し、
仮想区画毎に任意に設定する目標PMV設定値と現状のPMV推測値との差を計算し、当該目標PMV設定値と現状のPMV推測値との差がゼロとなるように、仮想区画内設定温度を変更して仮想区画ごとのPMV推測演算値を演算し続けて仮想区画の補正設定温度を収束計算し、
前記収束計算で得られた仮想区画の補正設定温度値と元の仮想区画内設定温度との差を設定温度の補正値として仮想区画内設定温度更新手段へ出力する仮想空間内設定温度の補正値計算手段を有し、
前記設定温度の補正値として入力され元の仮想空間内設定温度に加減算されて求められ続ける前記仮想区画の補正設定温度を仮想区画ごとの変風量装置のVAVコントローラに出力し続ける仮想区画内設定温度更新手段を有し、
前記仮想区画内設定温度更新手段では、入力され続ける前記仮想区画の補正設定温度と、仮想区画内計測温度との偏差に基づいて、逐一補正される各仮想区画の補正設定温度となるように給気風量を操作するカスケード制御を行う仮想区画ごとのVAVコントローラを有することを特徴とする。
A variable air volume single duct system equipped with a central air conditioner for a large room, with a temperature sensor for each virtual division of the room, and a variable air volume device that changes the air volume to reach the set temperature in the virtual compartment. and a VAV controller that controls the air flow rate based on the deviation between the measured value of the temperature sensor for each virtual section and the set value for each virtual section, and the variable air amount device Air conditioning systems that control the air conditioning capacity of the entire room by changing the amount of air blown are
(7) Equipped with an air conditioner return air thermometer, an air conditioner return air relative hygrometer, a surface temperature measuring means for each virtual section, and a virtual in-section thermometer for each virtual section,
The air conditioner return air temperature, the indoor absolute humidity calculated from the air conditioner return air temperature and the air conditioner return air relative humidity, the relative humidity for each virtual section calculated from the temperature in the virtual section for each virtual section, and the clo value. , the current PMV of each virtual compartment is estimated from the met value, the wind speed (average wind speed within the virtual compartment), the set temperature within the virtual compartment, the measured temperature within the virtual compartment, and the temperature detected by the surface temperature measuring means for each virtual compartment. It has a PMV estimation means for each virtual partition that calculates a value,
The difference between the target PMV setting value arbitrarily set for each virtual partition and the current estimated PMV value is calculated, and the settings within the virtual partition are set so that the difference between the target PMV setting value and the current estimated PMV value is zero. Convergently calculate the corrected set temperature of the virtual section by changing the temperature and continuing to calculate the estimated PMV value for each virtual section,
A correction value for the set temperature in the virtual space, which outputs the difference between the corrected set temperature value of the virtual compartment obtained by the convergence calculation and the original set temperature in the virtual compartment as a correction value of the set temperature to the set temperature in the virtual compartment update means. has calculation means,
A set temperature in the virtual compartment that continues to output the corrected set temperature of the virtual compartment that is input as a correction value of the set temperature and continues to be determined by being added or subtracted from the original set temperature in the virtual space to the VAV controller of the variable air volume device for each virtual compartment. Has update means,
The virtual section set temperature updating means updates the temperature so that the corrected set temperature of each virtual section is corrected one by one based on the deviation between the corrected set temperature of the virtual section that is continuously inputted and the measured temperature inside the virtual section. It is characterized by having a VAV controller for each virtual section that performs cascade control to manipulate the air flow rate.

(8)上記(6)における前記仮想区画ごとのPMV推測手段では、
前記表面温度計測手段の検知温度から下記[式1]、[式2]を使って平均放射温度を算出してPMV値を推測し、
Tr=Tg+2.37v1/2(Tg-Ta)・・・[式1]
ただし、Tr:平均放射温度
v:風速
Ta:仮想区画内計測温度
Tg=αTp+(1-α)Ta ・・・[式2]
ただし、 α:表面温度影響係数
Tp:表面温度計測手段の検知温度
各仮想区画の輻射状況に応じて表面温度影響係数αを決めることを特徴とする。
(8) In the PMV estimation means for each virtual partition in (6) above,
Calculate the average radiant temperature from the detected temperature of the surface temperature measuring means using the following [Formula 1] and [Formula 2] to estimate the PMV value,
Tr=Tg+2.37v 1/2 (Tg-Ta)...[Formula 1]
However, Tr: average radiant temperature
v: Wind speed
Ta: Measured temperature in virtual compartment Tg=αTp+(1-α)Ta...[Formula 2]
However, α: surface temperature influence coefficient
Tp: Temperature detected by surface temperature measuring means The surface temperature influence coefficient α is determined according to the radiation situation of each virtual section.

(9)上記(7)又は(8)における、前記仮想区画ごとの表面温度計測手段は、前記仮想区画毎の表面温度計測手段の検知温度として、当該仮想区画内の床と当該床より高い位置に存在する表面の表面温度を含めた二次元分布値を平均処理して用いることを特徴とする。 (9) In (7) or (8) above, the surface temperature measuring means for each virtual compartment may detect a floor in the virtual compartment and a position higher than the floor as the detected temperature of the surface temperature measuring unit for each virtual compartment. It is characterized in that two-dimensional distribution values including the surface temperature existing on the surface are averaged and used.

(10)上記(9)における前記仮想区画ごとの表面温度計測手段は、サーモグラフィカメラであり、前記表面温度の二次元分布値は、当該室内の表面を俯瞰する位置に前記サーモグラフィカメラを設置して前記室内の表面温度を計測する視野範囲の温度分布を細分化したサーモパターンを得ることを特徴とする。
(11)上記(10)における当該室内の前記仮想区画ごとに設置する表面温度計測手段は、複数のサーモグラフィカメラであり、前記仮想区画の表面を複数のサーモグラフィカメラの視野範囲でカバーする領域をオーバーラップさせて計測することより、前記仮想空間内で高さ方向に存在する表面温度も測定可能とすることを特徴とする。
(12)上記(11)における前記仮想区画に対応する複数の前記サーモグラフィカメラの視野範囲をオーバーラップさせ、オーバーラップした領域では、一方のサーモグラフィカメラのデータのみを有効とすることを特徴とする。
(10) The surface temperature measurement means for each virtual compartment in (9) above is a thermography camera, and the two-dimensional distribution value of the surface temperature is determined by installing the thermography camera at a position overlooking the surface of the room. The present invention is characterized in that a thermo pattern is obtained by subdividing the temperature distribution in the field of view in which the indoor surface temperature is measured.
(11) The surface temperature measurement means installed in each of the virtual compartments in the room in (10) above is a plurality of thermography cameras, and the surface temperature measuring means installed in each of the virtual compartments in the room exceeds the area covered by the field of view of the plurality of thermography cameras on the surface of the virtual compartment. It is characterized in that it is possible to measure the surface temperature existing in the height direction within the virtual space by wrapping the measurement.
(12) The field of view ranges of the plurality of thermography cameras corresponding to the virtual section in (11) above are overlapped, and in the overlapping area, only data from one thermography camera is valid.

なお、本発明は上記の構成及び後述する実施例における構成に限定されるものではなく、本発明の技術思想の範囲内で種々の変更が可能であることは言うまでも無い。 It goes without saying that the present invention is not limited to the configurations described above and the configurations in the embodiments described later, and that various changes can be made within the scope of the technical idea of the present invention.

従来の空調では、基本的には室内温度に基づいて制御されているが、居住者の体感温度は、室内温度、放射温度(輻射温度)、風速などの要因で左右されるため、室内温度のみで制御されると、その室内温度が設定値どおりであっても居住者の体感温度は不快なものになる。
本発明では、目標とするPMVになるようにVAVの設定温度を補正する方法としたことで、最適なPMV、すなわちPMV=0を中心とした国際標準化機構の基準である-0.5<PMV<+0.5の範囲に調整することができる。
Conventional air conditioning is basically controlled based on the indoor temperature, but since the perceived temperature of the occupants is affected by factors such as indoor temperature, radiant temperature, and wind speed, only the indoor temperature is controlled. If the indoor temperature is controlled by the set value, the temperature perceived by the occupants will be uncomfortable even if the indoor temperature is as per the set value.
In the present invention, by using a method of correcting the VAV set temperature so as to achieve the target PMV, the optimum PMV, that is, the International Organization for Standardization standard centered on PMV = 0 -0.5 < PMV It can be adjusted within the range <+0.5.

なお、VAVは通常の(室内空気)温度センサーの計測値と設定温度の偏差ΔTに基づいた通常のフィードバック制御を用いて供給風量を調整する。
その際、放射センサー(本発明の実施例ではサーモグラフィカメラを用いたが、他に同様な機能を有するマクロボロメータ、CCD、CMOSイメージセンサーを用いた赤外線カメラなどの輻射測定手段なども可)で得られた仮想区画内表面温度から推定される放射温度、空調機還気温湿度、仮想区画内温湿度、気流風速、CLO値(着衣量)および代謝当量[met]から、予め任意に設定したPMV目標値になるようにPMV推定値を演算し代入されるべき仮想区画内設定温度を求めることで仮想区画内温度補正値を演算する。この演算のためにサーモデータ処理装置がシステムに組み込まれている。
Note that the VAV adjusts the supply air volume using normal feedback control based on the deviation ΔT between the measured value of the normal (indoor air) temperature sensor and the set temperature.
In this case, a radiation sensor (a thermography camera was used in the embodiment of the present invention, but other radiation measuring means such as a macrobolometer, CCD, or infrared camera using a CMOS image sensor having similar functions may also be used). A PMV target arbitrarily set in advance from the radiant temperature estimated from the surface temperature inside the virtual compartment, the air conditioner return temperature and humidity, the temperature and humidity inside the virtual compartment, the air flow velocity, the CLO value (clothing amount), and the metabolic equivalent [met]. The virtual compartment temperature correction value is calculated by calculating the PMV estimated value so as to obtain the virtual compartment temperature and calculating the virtual compartment set temperature to be substituted. A thermodata processing device is incorporated into the system for this calculation.

上記の演算結果で得られた仮想区画内温度補正値を定期的に統括制御装置に出力してAHU/VAVコントローラ22で各仮想区画内の設定温度を変更させる。統括制御装置は、システム全体の稼働状態を監視する中央監視装置と信号をやり取りしている。上記の各仮想区画内温度補正値は定期的(例えば、1~10分毎)にサーモデータ処理装置24から統括制御装置に出力される。 The temperature correction value within the virtual compartment obtained from the above calculation result is periodically output to the integrated control device, and the AHU/VAV controller 22 changes the set temperature within each virtual compartment. The central control device exchanges signals with a central monitoring device that monitors the operating status of the entire system. The above-mentioned temperature correction values within each virtual section are outputted from the thermodata processing device 24 to the overall control device periodically (for example, every 1 to 10 minutes).

上記構成とした本発明によれば、室内温度が設定どおりであっても、放射環境(輻射がある環境)に晒されている場合はPMVが上昇する(暑く感じる傾向になる)が、PMVを適切に保つため、室内の設定温度を変更させることで従来の制御よりも快適な環境を提供できる。 According to the present invention configured as described above, even if the indoor temperature is as set, when exposed to a radiant environment (an environment with radiation), the PMV increases (tends to feel hot); By changing the set temperature in the room to maintain the appropriate temperature, it is possible to provide a more comfortable environment than conventional control.

また、室内の表面温度をリアルタイムで検知できるため、内部発熱の急激な増減も把握し易く、熱負荷の増減に応じて予め温度設定値を上下させる制御も可能となる。 Furthermore, since the indoor surface temperature can be detected in real time, it is easy to grasp sudden increases and decreases in internal heat generation, and it is also possible to control the temperature setting value to be raised or lowered in advance according to increases or decreases in the heat load.

室内にある物体(OA設備、日射にさらされる什器、人間等)の発熱(表面温度)が室内空気の温度を温めるまでに時間遅れがあるため、室内温度を計測する温度センサーが空気温度の上昇を捉えた時点では既に居住者周辺の空気温度が高くなっている。その時間遅れによる室内温度の乱れを抑制することが期待できる。 Because there is a time delay before the heat generated (surface temperature) of indoor objects (OA equipment, fixtures exposed to sunlight, humans, etc.) warms the indoor air temperature, the temperature sensor that measures indoor temperature detects the rise in air temperature. By the time the image is captured, the air temperature around the occupants is already high. It is expected that disturbances in indoor temperature due to the time delay will be suppressed.

本発明によれば、放射温度は室内の床、天井、壁、窓、熱負荷の輻射体の影響を受けるが、従来の小さな面積の表面温度計測手段で検知しにくい壁等の影響を簡易的に決定できるように、サーモグラフィ検知温度の他、輻射体の表面温度が影響する程度を表す表面温度影響係数と室内温度とから放射温度を算出するための各仮想区画の輻射状況に応じた表面温度影響係数を決めることで、サーモグラフィでの表面温度の検知だけに頼らず、室内全体にわたる輻射の影響を正確に捉え、かつ、輻射の影響を正確に抑えるための精緻な計算を省略して簡易的に放射温度を算出することが可能である。 According to the present invention, radiant temperature is influenced by indoor floors, ceilings, walls, windows, and heat load radiators, but the influence of walls, etc., which is difficult to detect with conventional small-area surface temperature measuring means, can be easily eliminated. In addition to the temperature detected by thermography, the surface temperature according to the radiation situation of each virtual section is calculated from the surface temperature influence coefficient, which indicates the degree of influence of the surface temperature of the radiator, and the indoor temperature. By determining the influence coefficient, it is possible to accurately capture the influence of radiation throughout the room without relying solely on surface temperature detection with thermography, and to simplify and omit the elaborate calculations required to accurately suppress the influence of radiation. It is possible to calculate the radiant temperature.

本発明によれば、サーモグラフィの検知範囲を隣り合う仮想区画を境として仮想区画の表面温度を算出することで、サーモグラフィ毎に重複する検知エリアの表面温度による熱負荷を重複することなく算出できるので、正確に室内の熱負荷を算出することが可能となるうえに、サーモグラフィの設置位置を仮想区画内に自由に決めることが可能となる。 According to the present invention, by calculating the surface temperature of a virtual section using the detection range of the thermography as a boundary between adjacent virtual sections, it is possible to calculate the heat load due to the surface temperature of the overlapping detection area for each thermography without duplication. In addition to making it possible to accurately calculate the indoor heat load, it also becomes possible to freely determine the installation position of the thermograph within the virtual compartment.

本発明によれば、天井面に複数設置されたサーモグラフィにより、各サーモグラフィの検知範囲を重複させ、検知範囲が重複しないエリアの表面温度と、重複エリアの表面温度とを検知することで、重複しないエリアのみならず、重複するエリアの室内に存在する高さ方向の設備についての表面温度が把握可能となる。検知範囲の重複するエリアにおいて、重複が狭いと、重複が広いときよりも高さ方向の表面温度を検知しづらくなってしまうので、高さ方向の表面温度を検知しやすくするように重複させるようにする。表面温度から放射温度が推定され、放射温度の他、空調機還気温湿度、仮想区画内温湿度、気流風速、CLO値(着衣量)および代謝当量[met]をもとに算出するPMVを、予め任意に設定したPMV目標値になるようにPMV推定値を演算し代入されるべき仮想区画内設定温度を求めることで仮想区画温度補正値を内仮想区画毎に算出して各VAV区画の仮想区画内温度設定値と仮想区画内温度測定値との偏差に基づいてVAVを制御することで、目標PMVとの偏差を低減する空調制御方法及びそのシステムを提供可能である。 According to the present invention, the detection range of each thermograph is overlapped by multiple thermographs installed on the ceiling surface, and the surface temperature in the area where the detection range does not overlap and the surface temperature in the overlapping area are detected so that the detection range does not overlap. It becomes possible to grasp the surface temperature of not only the area but also the equipment in the height direction that exists indoors in the overlapping area. In areas where the detection ranges overlap, if the overlap is narrow, it will be more difficult to detect the surface temperature in the height direction than if the overlap is wide. Make it. The radiant temperature is estimated from the surface temperature, and in addition to the radiant temperature, the PMV is calculated based on the air conditioner return temperature and humidity, the virtual compartment temperature and humidity, the air flow velocity, the CLO value (clothing amount), and the metabolic equivalent [met]. By calculating the PMV estimated value so that it becomes the PMV target value arbitrarily set in advance and finding the set temperature in the virtual compartment to be substituted, a virtual compartment temperature correction value is calculated for each virtual compartment, and the virtual compartment temperature correction value for each VAV compartment is calculated. By controlling VAV based on the deviation between the compartment temperature setting value and the virtual compartment temperature measurement value, it is possible to provide an air conditioning control method and system that reduce the deviation from the target PMV.

本発明によれば、複数のサーモグラフィを仮想区画の境界近傍をカバーする如く、室内を平面でみた場合には床面を二次元で隙間なく検知範囲をカバーするように設置しており、隣接するサーモグラフィでカバーする検知範囲が重複する領域で計測される表面温度は、その一方のサーモグラフィの出力のみを採用するようにしているので、仮想区画毎に正確な表面温度を検知できる。 According to the present invention, a plurality of thermographs are installed so as to cover the vicinity of the boundary of the virtual section, and to cover the detection range without gaps in two dimensions on the floor when the interior of the room is viewed on a plane. For surface temperatures measured in areas where the detection ranges covered by thermography overlap, only the output of one of the thermography is used, so accurate surface temperature can be detected for each virtual section.

本発明に係る空調制御方法及びそのシステムの1実施例を説明する構成図A configuration diagram illustrating an embodiment of an air conditioning control method and system according to the present invention. 図1の制御系統図Control system diagram in Figure 1 本発明の実施例1の制御手順を図解して説明する流れ図Flowchart illustrating the control procedure of Embodiment 1 of the present invention 本発明の実施例1である室内を等間隔の仮想区画に分画して各仮想区画毎にサーモグラフィカメラを設置した場合の室内の表面温度の計測例の模式図A schematic diagram of an example of measuring the indoor surface temperature when the room is divided into equally spaced virtual sections and a thermography camera is installed in each virtual section, which is Embodiment 1 of the present invention. 図4に対応したサーモデータ処理装置のモニター上に表示された室内のサーモパターンの説明図An explanatory diagram of the indoor thermo pattern displayed on the monitor of the thermo data processing device corresponding to Fig. 4 本発明の実施例2を説明する仮想区画の設定例の説明図An explanatory diagram of a setting example of virtual partitions explaining Embodiment 2 of the present invention 図6に対応したサーモデータ処理装置のモニター上に表示された室内のサーモパターンの説明図An explanatory diagram of the indoor thermo pattern displayed on the monitor of the thermo data processing device corresponding to Fig. 6 PMVの適用範囲とPMVの7段階評価尺度の説明図Explanatory diagram of PMV application range and PMV 7-level evaluation scale PMVを視覚的に説明するグラフ図Graph diagram to visually explain PMV 温度センサーを用いた従来の空調制御システムの説明図Illustration of a conventional air conditioning control system using a temperature sensor 図10における空調制御方法の説明図An explanatory diagram of the air conditioning control method in FIG.

以下、本発明に係る空調制御方法及びそのシステムの実施形態について、実施例を参照して詳細に説明する。 EMBODIMENT OF THE INVENTION Hereinafter, embodiments of the air conditioning control method and its system according to the present invention will be described in detail with reference to Examples.

図1は、本発明に係る空調制御方法及びそのシステムの1実施例を説明する構成図である。また、図2は、図1の制御系統図である。図1において、空調対象である室内1は、例えばオフィスルームで、床3と天井4の間に空調空間1aが形成される。そして、この空調空間1aはVAV区画(仮想区画)1cに区画されており、各VAV区画1cの天井4に1つ又は複数の空気吹出口7が設けてある。空気吹出口7へ給気を導く給気ダクトは可変風量装置(VAV:バリアブルエアーボリューム装置)12を介して空調機(AHU:エアーハンドリングユニット)9に接続されている。給気され熱負荷の処理に用いた空気は天井裏1bに設置された還気吸込口8で吸い込まれ還気ダクトを介してAHU9に戻される。空調機9から可変風量装置12に至る給気ダクトは室内1の規模に応じて分岐されn本配管される(n=1、2、3、・・・)。なお、還気チャンバとして機能する天井裏1bへ空調空間1aからの還気を導くため、天井4には吸込スリットなど吸込口が設けられており、空調空間1aから天井裏1bへ還気されるようになっている。 FIG. 1 is a configuration diagram illustrating an embodiment of an air conditioning control method and system according to the present invention. Further, FIG. 2 is a control system diagram of FIG. 1. In FIG. 1, a room 1 to be air-conditioned is, for example, an office room, and an air-conditioned space 1a is formed between a floor 3 and a ceiling 4. This air-conditioned space 1a is divided into VAV sections (virtual sections) 1c, and one or more air outlets 7 are provided in the ceiling 4 of each VAV section 1c. An air supply duct that guides air supply to the air outlet 7 is connected to an air conditioner (AHU: air handling unit) 9 via a variable air volume device (VAV: variable air volume device) 12 . The air supplied and used to process the heat load is sucked in by a return air suction port 8 installed in the attic 1b and returned to the AHU 9 via a return air duct. The air supply duct from the air conditioner 9 to the variable air volume device 12 is branched depending on the size of the room 1 and is arranged into n pipes (n=1, 2, 3, . . . ). In addition, in order to guide the return air from the air conditioned space 1a to the attic space 1b which functions as a return air chamber, a suction port such as a suction slit is provided in the ceiling 4, and the return air is guided from the air conditioned space 1a to the attic space 1b. It looks like this.

各VAV区画1cの天井4には仮想区画内(空気)温度を計測する温度センサー10と、サーモグラフィカメラとしてマイクロボロメータ11が設置されている。温度センサー10はVAV区画1cの仮想区画内温度を計測するものでVAVコントローラ22aに信号線を介して接続されている。VAVコントローラ22aは温度センサーの計測値と設定値との偏差に応じて要求風量比率である風量調整信号を統合コントローラ23へ送り、統合コントローラ23から、全VAV区画に必要な給気風量となるようにAHUコントローラ22bに指令する。なお、図2では、VAVコントローラ22aとAHUコントローラ22bを纏めてAHU/VAVコントローラ22と表記している。 A temperature sensor 10 for measuring the (air) temperature within the virtual compartment and a microbolometer 11 as a thermography camera are installed on the ceiling 4 of each VAV compartment 1c. The temperature sensor 10 measures the virtual internal temperature of the VAV section 1c, and is connected to the VAV controller 22a via a signal line. The VAV controller 22a sends an air volume adjustment signal, which is a required air volume ratio, to the integrated controller 23 in accordance with the deviation between the measured value of the temperature sensor and the set value, and the integrated controller 23 sends an air volume adjustment signal that is the required air volume ratio to the integrated controller 23, so that the air volume is adjusted to the required air volume for all VAV sections. command to the AHU controller 22b. In addition, in FIG. 2, the VAV controller 22a and the AHU controller 22b are collectively referred to as the AHU/VAV controller 22.

そして、室内1の天井4には仮想区画内の表面温度を計測するためのサーモグラフィカメラであるマイクロボロメータ11が設置されている。このマイクロボロメータ11はVAV区画内の放射面をなす表面を隈なくカバーするように、仮想区画ごとに複数個設けてある。一個のマイクロボロメータの表面温度計測範囲から漏れる領域は隣接するVAV区画との境界が殆どなので、図1に示したように、VAV区画の境界近辺にもマイクロボロメータ11を設置している。マイクロボロメータは二次元画素からなるデジタルサーモイメージセンサーでもある。 A microbolometer 11, which is a thermographic camera, is installed on the ceiling 4 of the room 1 to measure the surface temperature within the virtual compartment. A plurality of microbolometers 11 are provided for each virtual section so as to completely cover the surface forming the radiation surface within the VAV section. Since most of the area leaking from the surface temperature measurement range of one microbolometer is at the boundary between adjacent VAV sections, microbolometers 11 are also installed near the boundaries of VAV sections, as shown in FIG. A microbolometer is also a digital thermoimage sensor consisting of two-dimensional pixels.

図1は室内の縦断面を示しているので、VAV区画の境界近傍をカバーする如くマイクロボロメータを追加した状態を示すが、仮想区画内を平面でみた場合には床面を二次元で隙間なくカバーするように設置する。なお、隣接するマイクロボロメータ11のカバー範囲が重複する領域で計測される表面温度は、その一方のマイクロボロメータの出力のみを採用するように、サーモデータ処理装置に搭載されたソフトウエアで処理してもよいし、両方のマイクロボロメータの出力を単純平均等して得たデータを採用してソフトウエアで処理することもできる。 Figure 1 shows a vertical section of the room, so it shows the state in which microbolometers have been added to cover the vicinity of the boundaries of the VAV compartment, but when looking at the inside of the virtual compartment in a plane, the floor surface can be seen in two dimensions without any gaps. Install to cover. Note that the surface temperature measured in a region where the coverage ranges of adjacent microbolometers 11 overlap is processed by software installed in the thermodata processing device so that only the output of one of the microbolometers is adopted. Alternatively, data obtained by simply averaging the outputs of both microbolometers can be used and processed by software.

例えば、隣接する2台のマイクロボロメータの重複する視野の画素の出力信号は両者の加算となるため、1台のマイクロボロメータだけがカバーする視野画素の周囲に階段状に大きな信号からなる輪郭パターンとなる。この輪郭パターンの信号から一方のマイクロボロメータの信号を減算することで、正確な表面温度を得ることができる。一旦輪郭パターンの内側と外側では異なる温度を異なるカラーの濃淡(色相、明度等)で表示してから前記信号を減算することで誤りなく正確な表面温度演算結果の表示ができる。あるいは、隣接する2台のマイクロボロメータの重複する視野の画素の出力信号は両者の加算となるため、前記の階段状に大きな信号からなる輪郭パターン部分を平均化処理した場合、平坦な床しかない場合は1台のマイクロボロメータからの信号と同じレベルになるはずだが、高さ方向の面を検知していると面積が増えているので平均化処理した信号は1台からの信号とは異なる高いレベルになり、重複部分に高さ方向に反射する面が存在することがわかる。 For example, the output signals of pixels in overlapping fields of view of two adjacent microbolometers are the sum of the two, so a contour pattern consisting of large signals in a step-like manner is created around a field of view pixel covered by only one microbolometer. Become. By subtracting the signal of one of the microbolometers from the signal of this contour pattern, an accurate surface temperature can be obtained. By once displaying different temperatures inside and outside the contour pattern with different color shading (hue, brightness, etc.) and then subtracting the signal, it is possible to display accurate surface temperature calculation results without errors. Alternatively, since the output signals of pixels in the overlapping field of view of two adjacent microbolometers are the sum of both, if the contour pattern portion consisting of large step-like signals is averaged, only a flat floor will be obtained. In this case, the signal should be at the same level as the signal from one microbolometer, but since the area is increasing when detecting a surface in the height direction, the averaged signal will be at a higher level than the signal from one microbolometer. It can be seen that there is a surface that reflects in the height direction in the overlapped part.

サーモデータ処理装置24は、マイクロボロメータ11で取得した二次元温度データを可視表示するモニターを備え、マイクロボロメータ11で得たVAV区画(仮想区画)1cの表面温度のデータを解析して、仮想区画ごとのPMV推測手段での他の諸数値から現状のPMV推測値を演算し、仮想区画内設定温度の補正値計算手段による収束計算から、当該仮想区画1cの設定温度の補正値を生成する。 The thermodata processing device 24 is equipped with a monitor that visually displays the two-dimensional temperature data acquired by the microbolometer 11, and analyzes the surface temperature data of the VAV compartment (virtual compartment) 1c obtained by the microbolometer 11 to create a virtual compartment. The current PMV estimated value is calculated from other numerical values by the PMV estimating means for each virtual section, and a correction value for the set temperature of the virtual section 1c is generated from the convergence calculation by the correction value calculation means for the set temperature in the virtual section.

そして、マイクロボロメータ11で得た二次元表面温度等を含む諸数値から現状のPMV推測値を演算しさらに収束計算して生成した各仮想区画の温度設定補正値を統括制御装置20に与える。統括制御装置20は統合コントローラ23を介して各VAVコントローラ22aに仮想区画の設定温度の補正値をもとに、各仮想区画の補正設定温度を演算した結果を出力として与えて、VAVの設定値を変えながらVAVコントローラ22a側でフィードバック制御するとともに、前述したように、VAVコントローラ22aが温度センサーの逐時変化する設定値と計測値との偏差に応じて要求風量比率である風量調整信号を統合コントローラ23へ送り、統合コントローラ23から、全VAV区画に必要な給気風量となるようにAHUコントローラ22bへ指令を与え、エアーハンドリングユニット9の空調機ファンの回転数を制御して給気ダクトからの給気風量を各仮想区画1cを統合した最適風量に最適化する。 Then, the current PMV estimated value is calculated from various values including the two-dimensional surface temperature etc. obtained by the microbolometer 11, and a temperature setting correction value for each virtual section generated by further convergence calculation is provided to the integrated control device 20. The central control device 20 provides as an output the result of calculating the corrected set temperature of each virtual section based on the corrected value of the set temperature of the virtual section to each VAV controller 22a via the integrated controller 23, and calculates the set value of VAV. The VAV controller 22a performs feedback control while changing the temperature, and as described above, the VAV controller 22a integrates the air volume adjustment signal, which is the required air volume ratio, according to the deviation between the constantly changing set value of the temperature sensor and the measured value. The integrated controller 23 sends a command to the AHU controller 22b so that the amount of air supply necessary for all VAV compartments is reached, controls the rotation speed of the air conditioner fan of the air handling unit 9, and sends the air from the air supply duct to the controller 23. The supply air volume is optimized to the optimal air volume that integrates each virtual section 1c.

図2において、図1と同じ参照符号は同じ機能部分に対応する。統括制御装置20は、別に設置される中央監視装置から当初、各仮想区画毎に一つ天井に設置される各温度センサー10の温度設定値(SP)が遠隔でセットされる。この設定値SPは、後述するPMV目標値とVAV区画毎のPMV推測値とから計算されるVAV区画毎の設定温度の補正値がサーモデータ処理装置24内で生成されて出力され、統合制御装置20内で設定温度として演算され逐一補正されて入力される先である、天井(空気)温度(設定値)の更新手段27に当初は外部にある中央監視装置から与えられる。天井温度の更新手段27では各仮想区画ごとの設定値SPが、VAV区画毎の設定温度の補正値として入力され統括制御装置20内で設定温度として生成され、この補正された設定温度更新値として出力されつづける。天井温度の更新手段27とAHU/VAVコントローラ22の間に比較手段21が設けられており、温度センサー10の計測値と更新値を比較し、その偏差をAHU/VAVコントローラ22に与える。AHU/VAVコントローラ22は比較手段21から得られた比較結果(差分)に基づいてVAVに内蔵する風量調整機構をフィードバック制御して各仮想区画への給気風量を制御する。なお、AHU/VAVコントローラ22のうちAHUコントローラ22bでは、各VAVコントローラ22aとも要求風量比率が比較的小さくなり、空調機9からの給気温度が一定のままでは処理能力が大きすぎる場合に、ロードリセット制御として、給気温度調整信号の補正値がAHUコントローラ22b内で生成され、空調機のコイルの制御弁を制御する給気温度調整も併せて行う。 In FIG. 2, the same reference numerals as in FIG. 1 correspond to the same functional parts. In the overall control device 20, the temperature set value (SP) of each temperature sensor 10 installed on the ceiling, one for each virtual section, is remotely set from a central monitoring device installed separately. This set value SP is a correction value of the set temperature for each VAV section calculated from the PMV target value described later and a PMV estimated value for each VAV section, which is generated in the thermo data processing device 24 and outputted to the integrated control device. The ceiling (air) temperature (set value) is initially supplied from an external central monitoring device to the update means 27 for the ceiling (air) temperature (set value), which is calculated as a set temperature in the unit 20, corrected point by point, and inputted. In the ceiling temperature updating means 27, the set value SP for each virtual section is input as a correction value for the set temperature for each VAV section, and is generated as a set temperature in the central control device 20, and as the corrected set temperature update value. It continues to be output. A comparison means 21 is provided between the ceiling temperature updating means 27 and the AHU/VAV controller 22, and compares the measured value of the temperature sensor 10 with the updated value, and provides the deviation thereof to the AHU/VAV controller 22. The AHU/VAV controller 22 performs feedback control on the air volume adjustment mechanism built into the VAV based on the comparison result (difference) obtained from the comparison means 21 to control the air volume supplied to each virtual section. Note that in the AHU controller 22b of the AHU/VAV controllers 22, the required air volume ratio of each VAV controller 22a becomes relatively small, and if the processing capacity is too large if the supply air temperature from the air conditioner 9 remains constant, the load As reset control, a correction value for the supply air temperature adjustment signal is generated within the AHU controller 22b, and supply air temperature adjustment for controlling the control valve of the coil of the air conditioner is also performed.

サーモデータ処理装置24は、空調空間1aの温度を示すAHU還気温度、空調空間1aの湿度を示すAHU還気湿度、VAV区画毎の天井空気温度、VAV区画毎の天井空気相対湿度、マイクロボロメータ検知の表面温度、および固定値として、met、CLO値、(仮想区画内の平均)風速を代入して演算することで、VAV区画毎のPMV値を推測する、仮想区画ごとのPMV推測手段を有している。サーモデータ処理装置24は、このうちのマイクロボロメータ検知の表面温度、つまり簡易演算する放射温度を演算処理して、PMV推測手段へ出力する前段部分のサーモパイル計測値演算部も受け持つ。 The thermodata processing device 24 includes AHU return air temperature indicating the temperature of the air-conditioned space 1a, AHU return air humidity indicating the humidity of the air-conditioned space 1a, ceiling air temperature for each VAV compartment, ceiling air relative humidity for each VAV compartment, and a microbolometer. The PMV estimation means for each virtual section estimates the PMV value for each VAV section by substituting and calculating the detected surface temperature and the fixed value, met, CLO value, and (average within the virtual section) wind speed. have. The thermodata processing device 24 also takes charge of a thermopile measurement value calculation section in the former stage that processes the surface temperature detected by the microbolometer, that is, the radiation temperature that is simply calculated, and outputs it to the PMV estimation means.

なお、実際には、マイクロボロメータ検知温度から次の[式1]、「式2」を使って放射温度を算出し、前述するPMV推測手段へ出力する。
Tr=Tg+2.37v1/2(Tg-Ta) ・・・〔式1〕
ただし、Tr:平均放射温度[K]
Tg:グローブ温度[K]
v:風速[m/s]
Ta:仮想区画内(天井)温度[K]
(参考文献:空気調和衛生工学便覧・基礎篇 空気調和衛生工学会)
Tgは表面を艶消しにした黒色のグローブ球を利用した測定器の測定温度であり、放射温度の算出に用いられるが、本発明ではこの測定器を使わずに次の[式2]によりグローブ温度を算出する。
Tg=αTp+(1-α)Ta ・・・〔式2〕
ただし、 α:表面温度影響係数
Tp:マイクロボロメータ検知温度[K]
In fact, the radiation temperature is calculated from the temperature detected by the microbolometer using the following [Formula 1] and "Formula 2", and is output to the PMV estimating means described above.
Tr=Tg+2.37v 1/2 (Tg-Ta) ... [Formula 1]
However, Tr: average radiant temperature [K]
Tg: Globe temperature [K]
v: Wind speed [m/s]
Ta: Virtual compartment (ceiling) temperature [K]
(Reference: Air Conditioning and Sanitary Engineering Handbook, Basic Edition, Society of Air Conditioning and Sanitary Engineers)
Tg is the temperature measured by a measuring device that uses a black globe with a matte surface, and is used to calculate the radiant temperature. Calculate temperature.
Tg=αTp+(1-α)Ta... [Formula 2]
However, α: surface temperature influence coefficient
Tp: Microbolometer detection temperature [K]

放射温度は室内の床、天井、壁、窓、熱負荷の輻射体の影響を受けるが、マイクロボロメータで検知しにくい壁等の影響を簡易的に決定できるように、マイクロボロメータ検知温度の他、輻射体の表面温度が影響する程度を表す表面温度影響係数と室内温度とからグローブ温度を算出する。各VAV区画の輻射状況に応じてαを決めることで、マイクロボロメータでの表面温度の検知だけに頼らず、室内全体にわたる輻射の影響を正確に捉え、かつ、輻射の影響を正確に抑えるための精緻な計算を省略して簡易的に放射温度を算出することが可能である。サーモデータ処理装置24では、この各VAV区画ごとの輻射状況に応じたαを入力できるようになっている。 Radiant temperature is affected by indoor floors, ceilings, walls, windows, and heat load radiators, but in order to easily determine the effects of walls, etc., which are difficult to detect with a microbolometer, in addition to the microbolometer detection temperature, The globe temperature is calculated from the surface temperature influence coefficient, which indicates the degree of influence of the surface temperature of the radiator, and the room temperature. By determining α according to the radiation status of each VAV compartment, it is possible to accurately capture the influence of radiation throughout the room without relying solely on surface temperature detection with a microbolometer, and to accurately suppress the influence of radiation. It is possible to simply calculate the radiant temperature without elaborate calculations. In the thermodata processing device 24, it is possible to input α according to the radiation situation of each VAV section.

サーモデータ処理装置24は、演算された放射温度を快適方程式の演算代入値として利用し、ほかの諸数値も代入することで内蔵するPMV推測手段25によりVAV区画毎のPMVを推定する。任意に設定できる目標PMVにするため、目標PMVと各VAV区画ごとのPMV推測値との差分がゼロにそれぞれなるように、代入する各VAV区画ごとの仮想区画内設定温度を変化させて代入し続けて収束計算する、仮想区画内設定温度の補正値計算手段26において、推定したVAV区画毎のPMVから各VAV区画ごとの仮想区画内設定温度を変化させて代入し続けて収束計算する。この計算された補正値は、例えば1分周期で統括制御装置20の天井温度更新手段27に出力され、以下、同様のループ制御が実行される。 The thermodata processing device 24 uses the calculated radiant temperature as a calculation substitution value for the comfort equation, and also substitutes other numerical values to estimate the PMV for each VAV section using the built-in PMV estimation means 25. In order to obtain a target PMV that can be set arbitrarily, the set temperature in the virtual section for each VAV section to be substituted is changed and substituted so that the difference between the target PMV and the estimated PMV value for each VAV section becomes zero. Continuously, in the correction value calculation means 26 for the virtual compartment set temperature, which performs convergence calculation, the virtual compartment set temperature for each VAV compartment is changed and substituted from the estimated PMV for each VAV compartment, and convergence calculation is performed. This calculated correction value is outputted to the ceiling temperature updating means 27 of the central control device 20, for example, every minute, and the same loop control is executed thereafter.

図3は本発明の実施例1の制御手順を図解して説明する流れ図である。サーモデータ処理装置24では、当初、目標PMVと、任意設定値であるCLO値(固定値)、met値(固定値)、風速[m/s](固定値)を設定する。また、サーモデータ処理装置24では空調機還気湿度[%]と空調機還気温度[℃]から求めた室内絶対温度[kg/kg’]、並びに当該VAV区画の乾球温度(センサの天井温度計測値)[℃]から当該VAV区画の相対湿度[%]を計算する。サーモデータ処理装置24は、CLO値(固定値)、met値(固定値)、風速[m/s](固定値)、当該VAV区画の相対湿度[%]や、当該VAV区画の乾球温度「℃」は各センサーからの計測値や演算結果値として入力され、前段の放射温度演算部によって演算された当該VAV区画のマイクロボロメータ(表面温度計測手段)の検知温度[℃]から当該VAV区画の放射温度として演算された値も入力されて、現状のPMVを算出する。 FIG. 3 is a flowchart illustrating the control procedure of the first embodiment of the present invention. In the thermo data processing device 24, initially, a target PMV, arbitrary setting values such as a CLO value (fixed value), a met value (fixed value), and a wind speed [m/s] (fixed value) are set. In addition, the thermodata processing device 24 calculates the indoor absolute temperature [kg/kg'] obtained from the air conditioner return air humidity [%] and the air conditioner return air temperature [°C], as well as the dry bulb temperature of the VAV section (sensor ceiling Calculate the relative humidity [%] of the VAV section from the temperature measurement value) [°C]. The thermodata processing device 24 inputs CLO value (fixed value), met value (fixed value), wind speed [m/s] (fixed value), relative humidity [%] of the relevant VAV compartment, and dry bulb temperature of the relevant VAV compartment. "°C" is input as the measured value or calculation result value from each sensor, and is calculated from the detected temperature [°C] of the microbolometer (surface temperature measuring means) of the VAV compartment in the VAV compartment calculated by the radiation temperature calculation unit in the previous stage. The value calculated as the radiant temperature is also input, and the current PMV is calculated.

設定温度計算手段26(図2)はサーモデータ処理装置24に内蔵され、仮想区画ごとのPMV推測手段での他の諸数値から現状のPMV推測値を演算し、仮想区画内設定温度の補正値計算手段による収束計算から、当該仮想区画1cの設定温度の補正値を生成計算する。そして、当初の各VAV区画ごとの天井温度の設定値を取得し、目標PMVとPMV推測値との差がゼロになるように、仮想区画内温度の設定温度を収束計算して求めた補正値により天井温度の設定値を補正する。算出した差を設定基準温度の増減値(補正値)として統合制御装置20を介して統合コントローラ23に出力する。 The set temperature calculation means 26 (FIG. 2) is built in the thermodata processing device 24, and calculates the current estimated PMV value from other values in the PMV estimating means for each virtual section, and calculates the corrected value for the set temperature in the virtual section. From the convergence calculation by the calculation means, a correction value for the set temperature of the virtual section 1c is generated and calculated. Then, the initial set value of the ceiling temperature for each VAV compartment is obtained, and a correction value is obtained by convergent calculation of the set temperature of the virtual compartment temperature so that the difference between the target PMV and the estimated PMV value becomes zero. Correct the ceiling temperature set value. The calculated difference is output to the integrated controller 23 via the integrated control device 20 as an increase/decrease value (correction value) of the set reference temperature.

図示しない中央監視装置からの当初天井温度の設定温度と設定温度計算手段26からの補正値が、統合コントローラ23が有する天井温度設定手段27に逐一与えられて設定温度の更新値が算出された後、天井温度センサー10の測定値と比較され、更新された設定温度と測定温度との偏差に基づいて、当該VAV区画を受け持つVAVの風量調整機構がフィードバック制御され、更新後の設定温度となるように、当該VAVが給気風量を制御する。 After the initial ceiling temperature setting from a central monitoring device (not shown) and the correction value from the setting temperature calculation means 26 are given one by one to the ceiling temperature setting means 27 of the integrated controller 23, and an updated value of the setting temperature is calculated. is compared with the measured value of the ceiling temperature sensor 10, and based on the deviation between the updated set temperature and the measured temperature, the air volume adjustment mechanism of the VAV in charge of the VAV section is feedback-controlled so that the updated set temperature is achieved. Then, the VAV controls the supply air volume.

図4は、本発明の実施例1である室内を等間隔の表面温度計測区画に分画して各区画毎にマイクロボロメータ11を1個ずつ設置した場合の室内の表面温度の計測例の模式図である。図中、2aは壁面、2bは窓、室内に事務机や書棚などの配置を透視的に示してある。この表面温度計測区画毎に設置したマイクロボロメータで計測したサーモグラフィで表面温度が計測される。計測されたデータは、図1のサーモデータ処理装置24のモニター上にパターン表示される。 FIG. 4 is a schematic diagram of an example of measuring the indoor surface temperature when the room is divided into equally spaced surface temperature measurement sections and one microbolometer 11 is installed in each section according to the first embodiment of the present invention. It is a diagram. In the figure, 2a is a wall surface, 2b is a window, and the arrangement of an office desk, bookshelf, etc. in the room is transparently shown. The surface temperature is measured by thermography using a microbolometer installed in each surface temperature measurement section. The measured data is displayed in a pattern on the monitor of the thermodata processing device 24 in FIG.

図5は、図4に対応したサーモデータ処理装置24のモニター上に表示された室内のサーモパターン(温度の違いを異なるカラーで表示)の説明図である。雲形のパターン(不定形曲線)は相違する表面温度の境界付近を示し、このパターンの内側と外側は異なるカラーで表示される。カラー表示は表面温度の高低がカラーの色相/彩度の違いで視覚的に識別できるように表示される。 FIG. 5 is an explanatory diagram of an indoor thermo pattern (differences in temperature are displayed in different colors) displayed on the monitor of the thermo data processing device 24 corresponding to FIG. A cloud-shaped pattern (irregular curve) indicates the vicinity of the boundary between different surface temperatures, and the inside and outside of this pattern are displayed in different colors. The color display allows you to visually identify high and low surface temperatures by differences in color hue/saturation.

本実施例では、各表面温度計測区画はそれぞれm×nの画素数でモニター上に表わされる。この画素構成はマイクロボロメータの光電変換素子の二次元配列に相当する。 In this embodiment, each surface temperature measurement section is represented on the monitor by m×n pixels. This pixel configuration corresponds to a two-dimensional array of photoelectric conversion elements of a microbolometer.

なお、表面温度計測区画を一台のマイクロボロメータの視野でカバーし切れない場合には区画の境界付近を視野角とする追加のマイクロボロメータを設置することは前記した通りである。このような放射温度を計測するためのマイクロボロメータを、VAVが受け持つVAV区画である仮想区画の天井に複数台を設置することで、各仮想区画内の放射温度が正しく計測でき、ひいてはPMV推測値が正確に演算できるので、PMVに即した仮想区画内空気温度設定値が収束演算できる。 As described above, if the field of view of one microbolometer cannot cover the surface temperature measurement section, an additional microbolometer whose viewing angle is near the boundary of the section is installed. By installing multiple microbolometers for measuring such radiant temperature on the ceiling of the virtual compartment, which is the VAV compartment that VAV is in charge of, the radiant temperature in each virtual compartment can be accurately measured, and the estimated PMV value can be calculated. can be calculated accurately, so that a virtual compartment air temperature setting value corresponding to PMV can be calculated convergently.

本実施例により、従来の室内温度のフィードバックによる空調制御ではPMVによる快適性を担保できなかったが、室内を等間隔の表面温度計測区画に分画して各区画毎にマイクロボロメータ11を1個ずつ設置した場合に、計測区画、これを複数集めた仮想区画(VAV区画)の表面温度の計測が簡便に可能となり、PMV推測値が仮想区画ごとに演算算出できることとなる。
仮想区画毎の現状のPMV推測値を演算し、仮想区画毎に任意に設定する目標PMV設定値と現状のPMV推測値との差を計算し、当該目標PMV設定値と現状のPMV推測値との差がゼロとなるように、仮想区画内設定温度を変更して仮想区画ごとのPMV推測演算値を演算し続けて仮想区画の補正設定温度を収束計算し、収束計算で得られた仮想区画の補正設定温度値と元の仮想区画内設定温度との差を設定温度の補正値として、元の仮想空間内設定温度に加減算されて求められ続ける前記仮想区画の補正設定温度を仮想区画ごとの変風量装置に入力され続ける前記仮想区画の補正設定温度と、仮想区画内計測温度との偏差に基づいて、逐一補正される各仮想区画の補正設定温度となるように給気風量を操作するカスケード制御することで、快適性のあるPMVを保った室内環境を実現できる。また、室内の表面温度をリアルタイムで検知できるため、内部発熱の急激な増減も把握し易く、熱負荷の増減に応じて予め温度設定値を上下させる制御も可能となる。室内にある物体(OA設備、什器、人間等)の発熱(表面温度)が室内空気の温度を温めるまでに時間遅れがあるため、室内温度を計測する温度センサーが空気温度の上昇を捉えた時点では既に居住者周辺の空気温度が高くなっている。その時間遅れによる室内温度の乱れを抑制することが期待できる。
With this embodiment, although conventional air conditioning control using indoor temperature feedback could not guarantee comfort due to PMV, the room is divided into equally spaced surface temperature measurement sections, and one microbolometer 11 is installed in each section. When installed separately, it becomes possible to easily measure the surface temperature of a measurement section and a virtual section (VAV section) in which a plurality of measurement sections are collected, and an estimated PMV value can be calculated for each virtual section.
Calculate the current estimated PMV value for each virtual partition, calculate the difference between the target PMV setting value arbitrarily set for each virtual partition and the current estimated PMV value, and calculate the difference between the target PMV setting value and the current estimated PMV value. The set temperature in the virtual compartment is changed and the PMV estimated calculation value is continued to be calculated for each virtual compartment so that the difference between The difference between the corrected set temperature value and the original set temperature in the virtual compartment is used as the set temperature correction value, and the corrected set temperature of the virtual compartment, which is continuously calculated by adding or subtracting the difference from the original set temperature in the virtual space, is calculated for each virtual compartment. A cascade for manipulating the supply air volume so that the corrected set temperature of each virtual compartment is corrected one by one based on the deviation between the corrected set temperature of the virtual compartment that is continuously input to the variable air volume device and the measured temperature within the virtual compartment. By controlling this, it is possible to create an indoor environment that maintains a comfortable PMV. Furthermore, since the indoor surface temperature can be detected in real time, it is easy to grasp sudden increases and decreases in internal heat generation, and it is also possible to control the temperature setting value to be raised or lowered in advance according to increases or decreases in the heat load. Because there is a time delay before the heat generated (surface temperature) of objects in the room (OA equipment, fixtures, people, etc.) warms the temperature of the indoor air, the temperature sensor that measures the indoor temperature detects the rise in air temperature. The air temperature around the residents is already high. It is expected that disturbances in indoor temperature due to the time delay will be suppressed.

本実施例により、放射温度は室内の床、天井、壁、窓、熱負荷の輻射体の影響を受けるが、マイクロボロメータで検知しにくい壁等の影響を簡易的に決定できるように、マイクロボロメータ検知温度の他、輻射体の表面温度が影響する程度を表す表面温度影響係数と室内温度とから放射温度を算出するための各VAV区画の輻射状況に応じた表面温度影響係数を決めることで、マイクロボロメータでの表面温度の検知だけに頼らず、室内全体にわたる輻射の影響を正確に捉え、かつ、輻射の影響を正確に抑えるための精緻な計算を省略して簡易的に放射温度を算出することが可能である。 According to this example, the radiant temperature is affected by indoor floors, ceilings, walls, windows, and heat load radiators, but the microbolometer is used to easily determine the effects of walls, etc., which are difficult to detect with a microbolometer. In addition to the detected temperature, by determining the surface temperature influence coefficient according to the radiation situation of each VAV section to calculate the radiant temperature from the surface temperature influence coefficient indicating the degree of influence by the surface temperature of the radiator and the indoor temperature, Rather than relying solely on surface temperature detection with a microbolometer, it accurately captures the effects of radiation throughout the room and simply calculates the radiation temperature by omitting the elaborate calculations needed to accurately suppress the effects of radiation. Is possible.

本実施例により、マイクロボロメータの検知範囲を隣り合うVAV区画を境としてVAV区画の表面温度を算出することで、マイクロボロメータ毎に重複する検知エリアの表面温度による熱負荷を重複することなく算出できるので、正確に室内の熱負荷を算出することが可能となるうえに、マイクロボロメータの設置位置をVAV区画内に自由に決めることが可能となる。
本実施例により、天井面に複数設置されたマイクロボロメータにより、各マイクロボロメータの検知範囲を重複させ、検知範囲が重複しないエリアの表面温度と、重複エリアの表面温度とを検知することで、重複しないエリアのみならず、重複するエリアの室内に存在する高さ方向の設備についての表面温度が把握可能となる。検知範囲の重複するエリアにおいて、重複が狭いと、重複が広いときよりも高さ方向の表面温度を検知しづらくなってしまうので、高さ方向の表面温度を検知しやすくするように重複させるようにする。表面温度から放射温度が推定され、放射温度の他、室内温湿度、気流風速、CLO値(着衣量)および代謝当量[met]をもとに算出するPMVを、VAV区画毎に算出して各VAVを制御することで、目標PMVとの偏差を低減する空調制御方法及びそのシステムを提供可能である。
According to this embodiment, by calculating the surface temperature of the VAV section using the detection range of the microbolometer as a boundary between adjacent VAV sections, it is possible to calculate the heat load due to the surface temperature of the overlapping detection area for each microbolometer without duplication. Therefore, it is possible to accurately calculate the indoor heat load, and the installation position of the microbolometer can be freely determined within the VAV compartment.
In this example, multiple microbolometers are installed on the ceiling surface, and the detection ranges of each microbolometer overlap, and the surface temperature in areas where the detection ranges do not overlap and the surface temperature in the overlapping areas are detected. It becomes possible to grasp the surface temperature of equipment in the height direction that exists indoors, not only in areas that are not covered, but also in overlapping areas. In areas where the detection ranges overlap, if the overlap is narrow, it will be more difficult to detect the surface temperature in the height direction than if the overlap is wide. Make it. Radiant temperature is estimated from the surface temperature, and in addition to the radiant temperature, PMV is calculated based on indoor temperature and humidity, air flow velocity, CLO value (clothing amount), and metabolic equivalent [met], and is calculated for each VAV compartment. By controlling VAV, it is possible to provide an air conditioning control method and system that reduce the deviation from the target PMV.

本実施例により、複数のマイクロボロメータをVAV区画の境界近傍をカバーする如く、室内を平面でみた場合には床面を二次元で隙間なく検知範囲をカバーするように設置しており、隣接するマイクロボロメータでカバーする検知範囲が重複する領域で計測される表面温度は、その一方のマイクロボロメータの出力のみを採用するようにしているので、VAV区画毎に正確な表面温度を検知できる。 According to this embodiment, a plurality of microbolometers are installed so as to cover the vicinity of the boundaries of the VAV compartments, and to cover the detection range without gaps in two dimensions on the floor when the room is viewed from above. Since the surface temperature measured in the area where the detection ranges covered by the microbolometers overlap, only the output of one of the microbolometers is used, accurate surface temperature can be detected for each VAV section.

次に、本発明の実施例2を説明する。実施例2の空調制御構成と制御系統図は実施例1と同様であり、仮想空間の設定が異なる。図6は、本発明の実施例2を説明する仮想区画の設定例の説明図で、室内を異なる広さで仮想区画、つまりVAV区画することでVAV制御とした仮想区画に分画して仮想区画毎に複数のマイクロボロメータを設置した場合の室内の表面温度の計測例の模式図である。本実施例は、例えば、頻繁な温度変化が無いような領域は広く、ペリメータで方位による日射変化などで温度変化が激しい、あるいは人間の出入が多い領域などで温度変化が激しいと考えられる領域はより狭くVAV区画の設定を行うようにしたものである。 Next, a second embodiment of the present invention will be described. The air conditioning control configuration and control system diagram of the second embodiment are the same as those of the first embodiment, except for the setting of the virtual space. FIG. 6 is an explanatory diagram of an example of setting a virtual partition to explain the second embodiment of the present invention. FIG. 2 is a schematic diagram of an example of measuring indoor surface temperature when a plurality of microbolometers are installed in each section. In this embodiment, for example, areas where there are no frequent temperature changes are wide, and areas where temperature changes are large due to changes in solar radiation due to orientation on the perimeter, or areas where there are many people coming in and out are areas where temperature changes are considered to be large. The VAV section is set more narrowly.

図中、2は室内外周部材で、2aは壁面、2bは窓を示し、室内に事務机や書棚などの配置も図4と同様に透視的に示してある。この仮想区画は面積が異なる7区画(VAV1~VAV7)に分画され、それぞれの区画毎に複数設置したマイクロボロメータで計測したサーモグラフィ(カメラ)で表面温度が計測される。複数設置される形態は、例えば図4のように方眼的に細かく設置されても良い。計測されたデータは、図1のサーモデータ処理装置24のモニター上にパターン表示される。 In the figure, 2 is an indoor outer peripheral member, 2a is a wall surface, 2b is a window, and the arrangement of an office desk, a bookshelf, etc. in the room is also shown in a transparent manner as in FIG. 4. This virtual section is divided into seven sections (VAV1 to VAV7) with different areas, and the surface temperature is measured by a thermography (camera) using a plurality of microbolometers installed in each section. The configuration in which a plurality of units are installed may be arranged in a grid pattern, for example, as shown in FIG. The measured data is displayed in a pattern on the monitor of the thermodata processing device 24 in FIG.

図7は、図6に対応したサーモデータ処理装置24のモニター上に表示された室内のサーモパターンの説明図である。各仮想区画は光学的に視野角を拡大したマイクロボロメータ、あるいは一つの仮想区画に複数のマイクロボロメータを配置するなどして、仮想区画それぞれの表面温度パターンを(サーモグラフィ)を計測してモニターに表示する。 FIG. 7 is an explanatory diagram of an indoor thermo pattern displayed on the monitor of the thermo data processing device 24 corresponding to FIG. Each virtual section uses a microbolometer with an optically expanded viewing angle, or multiple microbolometers are placed in one virtual section to measure the surface temperature pattern (thermography) of each virtual section and display it on a monitor. do.

本実施例により、頻繁な温度変化が無いような領域は広く、人間の出入が多い領域などで温度変化が激しいと考えられる領域はより狭くVAV区画の設定を行うことができ、実施例1と同様の快適性のあるPMVを得ることができる空調制御方法及びそのシステムを提供可能である。 According to this embodiment, the VAV section can be set wide for areas where there are no frequent temperature changes, and narrower for areas where temperature changes are expected to be severe, such as areas where many people come and go. It is possible to provide an air conditioning control method and system that can obtain PMV with similar comfort.

上記した各実施例におけるサーモグラフィ取得手段にマイクロボロメータ(マイクロボロメータカメラ)を用いたが、本発明はこれに限るものではなく、CCDイメージセンサーやCMOSイメージセンサー型の光電変換素子を用いた赤外線カメラなども採用できる。 Although a microbolometer (microbolometer camera) was used as the thermography acquisition means in each of the above embodiments, the present invention is not limited to this, and may include an infrared camera using a CCD image sensor or a CMOS image sensor type photoelectric conversion element. can also be adopted.

仮想区画の大きさは対象とする室内の広さ、発熱体の発熱量、室内オフィス家具、什器などの数を考慮して柔軟に設定する。サーモグラフィ取得手段の設置数も同様である。 The size of the virtual section is set flexibly, taking into consideration the size of the target room, the amount of heat generated by the heating element, and the number of indoor office furniture and fixtures. The same applies to the number of thermography acquisition means installed.

1・・・室内(空調対象区画)
1a・・・空調空間
1b・・・天井裏空間
1c・・・VAV区画(仮想区画)
2・・・側壁
2a・・・壁
2b・・・窓
3・・・床
4・・・天井
5・・・居住者(人間、執務者等)
6・・・発熱機器
7・・・吹出口
8・・・排気フィルタ
9・・・空調機、エアーハンドリングユニット(AHU)
10・・・温度センサー
11・・・表面温度計測手段(サーモグラフィカメラ、マイクロボロメータ等)
12・・・可変風量装置(VAV)
20・・・統括制御装置(中央監視装置)
21・・・比較手段
22・・・AHU/VAVコントローラ
23・・・統合コントローラ
24・・・サーモデータ処理装置
25・・・PMV推測手段
26・・・設定温度計算手段
27・・・温度更新手段
30・・・サーモパターン
1...Indoor (air-conditioned section)
1a...Air conditioned space 1b...Attic space 1c...VAV section (virtual section)
2... Side wall 2a... Wall 2b... Window 3... Floor 4... Ceiling 5... Resident (human being, office worker, etc.)
6... Heat generating equipment 7... Air outlet 8... Exhaust filter 9... Air conditioner, air handling unit (AHU)
10...Temperature sensor 11...Surface temperature measurement means (thermography camera, microbolometer, etc.)
12...Variable air volume device (VAV)
20... General control device (central monitoring device)
21... Comparison means 22... AHU/VAV controller 23... Integrated controller 24... Thermo data processing device 25... PMV estimation means 26... Set temperature calculation means 27... Temperature updating means 30...Thermo pattern

Claims (12)

大空間である室に対して中央空調機を備える変風量単一ダクト方式であって、室を区分した仮想区画ごとに温度センサを設け仮想区画内設定温度になるよう仮想区画ごとの変風量装置によって仮想区画内の熱負荷に応じて送風量を変えて空調能力制御する空調制御方法において、
仮想区画ごとのPMV推測手段を有し、
当該仮想区画ごとのPMV推測手段では、
空調機還気温度と、
空調機還気温度と空調機還気相対湿度とから算出した室内絶対湿度並びに仮想区画毎の仮想区画内温度とから算出した仮想区画毎の相対湿度と、
clo値と、
met値と、
風速(仮想区画内平均風速)と、
仮想区画内設定温度と、
仮想区画内計測温度と、
仮想区画毎の表面温度計測手段の検知温度と
から仮想区画毎の現状のPMV推測値を演算し、
仮想区画内設定温度の補正値計算手段を有し、
当該仮想区画内設定温度の補正値計算手段では、仮想区画毎に任意に設定する目標PMV設定値と現状のPMV推測値との差を計算し、
当該目標PMV設定値と現状のPMV推測値との差がゼロとなるように、仮想区画内設定温度を変更して仮想区画ごとのPMV推測演算値を演算し続けて仮想区画の補正設定温度を収束計算し、
前記収束計算で得られた仮想区画の補正設定温度値と元の仮想区画内設定温度との差を設定温度の補正値として仮想区画内設定温度更新手段へ出力し、
前記仮想区画内設定温度更新手段では、
前記設定温度の補正値として入力され元の仮想区画内設定温度に加減算されて求められ続ける前記仮想区画の補正設定温度を仮想区画ごとの変風量装置に出力し続け、
仮想区画ごとの変風量装置では、入力され続ける前記仮想区画の補正設定温度と、仮想区画内計測温度との偏差に基づいて、逐一補正される各仮想区画の補正設定温度となるように給気風量を操作するカスケード制御を行うことを特徴とする空調制御方法。
It is a variable air volume single duct system that is equipped with a central air conditioner for a room that is a large space, and a temperature sensor is installed in each virtual section where the room is divided, and a variable air volume device for each virtual section is installed to maintain the set temperature within the virtual section. In an air conditioning control method that controls air conditioning capacity by changing the amount of air blowing according to the heat load in a virtual compartment,
It has a PMV estimation means for each virtual partition,
In the PMV estimation means for each virtual partition,
Air conditioner return air temperature,
The indoor absolute humidity calculated from the air conditioner return air temperature and the air conditioner return air relative humidity, and the relative humidity for each virtual compartment calculated from the temperature in the virtual compartment for each virtual compartment,
clo value and
met value and
Wind speed (average wind speed within the virtual section),
Virtual section temperature setting,
The measured temperature in the virtual compartment,
Calculating the estimated current PMV value for each virtual section from the temperature detected by the surface temperature measuring means for each virtual section,
It has a correction value calculation means for a set temperature in the virtual compartment,
The correction value calculation means for the set temperature in the virtual section calculates the difference between the target PMV set value arbitrarily set for each virtual section and the current estimated PMV value,
Change the set temperature in the virtual compartment and continue to calculate the PMV estimated calculation value for each virtual compartment so that the difference between the target PMV set value and the current estimated PMV value becomes zero, and then set the corrected set temperature for the virtual compartment. Calculate convergence,
Outputting the difference between the corrected set temperature value of the virtual compartment obtained by the convergence calculation and the original set temperature in the virtual compartment as a correction value of the set temperature to the set temperature update means in the virtual compartment;
The virtual in-section temperature setting updating means includes:
continues to output the corrected set temperature of the virtual compartment , which is input as a correction value of the set temperature and continues to be determined by being added or subtracted from the original set temperature in the virtual compartment, to a variable air volume device for each virtual compartment;
The variable air volume device for each virtual compartment adjusts the air supply so that the corrected set temperature of each virtual compartment is corrected one by one based on the deviation between the corrected set temperature of the virtual compartment that is continuously inputted and the measured temperature within the virtual compartment. An air conditioning control method characterized by performing cascade control to manipulate air volume.
前記表面温度計測手段の検知温度から下記[式1]、[式2]を使って平均放射温度を算出してPMV値を推測し、
Tr=Tg+2.37v1/2(Tg-Ta)・・・[式1]
ただし、Tr:平均放射温度
v:風速
Ta:仮想区画内計測温度
Tg=αTp+(1-α)Ta ・・・[式2]
ただし、 α:表面温度影響係数
Tp:表面温度計測手段の検知温度
各仮想区画の輻射状況に応じて表面温度影響係数αを決めることを特徴とする請求項1に記載の空調制御方法。
Calculate the average radiant temperature from the detected temperature of the surface temperature measuring means using the following [Formula 1] and [Formula 2] to estimate the PMV value,
Tr=Tg+2.37v 1/2 (Tg-Ta)...[Formula 1]
However, Tr: average radiant temperature
v: Wind speed
Ta: Measured temperature in virtual compartment Tg=αTp+(1-α)Ta...[Formula 2]
However, α: surface temperature influence coefficient
Tp: temperature detected by the surface temperature measuring means The air conditioning control method according to claim 1, characterized in that the surface temperature influence coefficient α is determined according to the radiation situation of each virtual section.
前記仮想区画毎の表面温度計測手段の検知温度として、当該仮想区画内の床と当該床より高い位置に存在する表面の表面温度を含めた二次元分布値を平均処理して用いることを特徴とする請求項1又は2に記載の空調制御方法。 The two-dimensional distribution value including the surface temperature of the floor in the virtual compartment and the surface located at a position higher than the floor is averaged and used as the temperature detected by the surface temperature measuring means for each virtual compartment. The air conditioning control method according to claim 1 or 2. 前記表面温度の二次元分布値は、視野範囲の温度分布を細分化したサーモパターンを得るサーモグラフィカメラを、当該室内の表面を俯瞰する位置に、仮想区画に対して複数設置し前記室内の表面温度を計測して得ることを特徴とする請求項3に記載の空調制御方法。 The two-dimensional distribution value of the surface temperature is determined by installing a plurality of thermography cameras for each virtual compartment at positions that provide a bird's-eye view of the surface of the room to obtain a thermo pattern that subdivides the temperature distribution in the viewing range. 4. The air conditioning control method according to claim 3, wherein the air conditioning control method is obtained by measuring. 前記仮想区画の表面を複数のサーモグラフィカメラの視野範囲でカバーする領域をオーバーラップさせて計測することより、前記仮想区画内で高さ方向に存在する表面温度も測定可能とすることを特徴とする請求項4に記載の空調制御方法。 By measuring the surface of the virtual section by overlapping the areas covered by the viewing ranges of a plurality of thermography cameras, it is possible to also measure the surface temperature existing in the height direction within the virtual section . The air conditioning control method according to claim 4. 前記仮想区画に対応する複数の前記サーモグラフィカメラの視野範囲をオーバーラップさせ、オーバーラップした領域では、一方のサーモグラフィカメラのデータのみを有効とすることを特徴とする請求項5に記載の空調制御方法。 The air conditioning control method according to claim 5, wherein the field of view ranges of the plurality of thermography cameras corresponding to the virtual division are made to overlap, and in the overlapping area, only data from one thermography camera is valid. . 大空間である室に対して中央空調機を備える変風量単一ダクト方式であって、室を区分した仮想区画ごとに温度センサと、仮想区画内設定温度になるよう送風量を変える変風量装置と、該変風量装置を仮想区画ごとの温度センサの計測値と仮想区画ごとの設定値との偏差に基づいて送風量を制御するVAVコントローラとを設けて、仮想区画内の熱負荷に応じて送風量を変え室全体の空調能力を制御する空調システムにおいて、
空調機還気温度計と、空調機還気相対湿度計と、仮想区画ごとに表面温度計測手段と、仮想区画ごとに仮想区画内温度計とを備え、
空調機還気温度と、
空調機還気温度と空調機還気相対湿度とから算出した室内絶対湿度並びに仮想区画毎の仮想区画内温度とから算出した仮想区画毎の相対湿度と、
clo値と、
met値と、
風速(仮想区画内平均風速)と、
仮想区画内設定温度と、
仮想区画内計測温度と、
仮想区画毎の表面温度計測手段の検知温度と
から仮想区画毎の現状のPMV推測値を演算する仮想区画ごとのPMV推測手段を有し、
仮想区画毎に任意に設定する目標PMV設定値と現状のPMV推測値との差を計算し、当該目標PMV設定値と現状のPMV推測値との差がゼロとなるように、仮想区画内設定温度を変更して仮想区画ごとのPMV推測演算値を演算し続けて仮想区画の補正設定温度を収束計算し、
前記収束計算で得られた仮想区画の補正設定温度値と元の仮想区画内設定温度との差を設定温度の補正値として仮想区画内設定温度更新手段へ出力する仮想区画内設定温度の補正値計算手段を有し、
前記設定温度の補正値として入力され元の仮想区画内設定温度に加減算されて求められ続ける前記仮想区画の補正設定温度を仮想区画ごとの変風量装置のVAVコントローラに出力し続ける仮想区画内設定温度更新手段を有し、
前記仮想区画内設定温度更新手段では、入力され続ける前記仮想区画の補正設定温度と、仮想区画内計測温度との偏差に基づいて、逐一補正される各仮想区画の補正設定温度となるように給気風量を操作するカスケード制御を行う仮想区画ごとのVAVコントローラを有する
ことを特徴とする空調制御システム。
A variable air volume single duct system equipped with a central air conditioner for a large room, with a temperature sensor for each virtual division of the room, and a variable air volume device that changes the air volume to reach the set temperature in the virtual compartment. and a VAV controller that controls the air flow rate based on the deviation between the measured value of the temperature sensor for each virtual section and the set value for each virtual section, and the variable air amount device In air conditioning systems that control the air conditioning capacity of the entire room by changing the amount of air blown,
Equipped with an air conditioner return air thermometer, an air conditioner return air relative humidity meter, a surface temperature measuring means for each virtual section, and a virtual in-section thermometer for each virtual section,
Air conditioner return air temperature,
The indoor absolute humidity calculated from the air conditioner return air temperature and the air conditioner return air relative humidity, and the relative humidity for each virtual compartment calculated from the temperature in the virtual compartment for each virtual compartment,
clo value and
met value and
Wind speed (average wind speed within the virtual section),
Virtual section temperature setting,
The measured temperature in the virtual compartment,
It has a PMV estimating means for each virtual section that calculates a current estimated PMV value for each virtual section from the temperature detected by the surface temperature measuring means for each virtual section,
The difference between the target PMV setting value arbitrarily set for each virtual partition and the current estimated PMV value is calculated, and the settings within the virtual partition are set so that the difference between the target PMV setting value and the current estimated PMV value is zero. Convergently calculate the corrected set temperature of the virtual section by changing the temperature and continuing to calculate the estimated PMV value for each virtual section,
A correction value for the virtual compartment set temperature that outputs the difference between the corrected set temperature value of the virtual compartment obtained by the convergence calculation and the original virtual compartment set temperature as a set temperature correction value to the virtual compartment set temperature update means. has calculation means,
A set temperature in a virtual compartment that continues to output the corrected set temperature of the virtual compartment, which is input as a correction value of the set temperature and continues to be determined by being added to or subtracted from the original set temperature in the virtual compartment, to the VAV controller of the variable air volume device for each virtual compartment. Has update means,
The virtual section set temperature updating means updates the temperature so that the corrected set temperature of each virtual section is corrected one by one based on the deviation between the corrected set temperature of the virtual section that is continuously inputted and the measured temperature inside the virtual section. An air conditioning control system characterized by having a VAV controller for each virtual compartment that performs cascade control for manipulating airflow volume.
前記仮想区画ごとのPMV推測手段では、
前記表面温度計測手段の検知温度から下記[式1]、[式2]を使って平均放射温度を算出してPMV値を推測し、
Tr=Tg+2.37v1/2(Tg-Ta)・・・[式1]
ただし、Tr:平均放射温度
v:風速
Ta:仮想区画内計測温度
Tg=αTp+(1-α)Ta ・・・[式2]
ただし、 α:表面温度影響係数
Tp:表面温度計測手段の検知温度
各仮想区画の輻射状況に応じて表面温度影響係数αを決めることを特徴とする請求項7に記載の空調制御システム。
In the PMV estimation means for each virtual partition,
Calculate the average radiant temperature from the detected temperature of the surface temperature measuring means using the following [Formula 1] and [Formula 2] to estimate the PMV value,
Tr=Tg+2.37v 1/2 (Tg-Ta)...[Formula 1]
However, Tr: average radiant temperature
v: Wind speed
Ta: Measured temperature in virtual compartment Tg=αTp+(1-α)Ta...[Formula 2]
However, α: surface temperature influence coefficient
Tp: temperature detected by the surface temperature measuring means The air conditioning control system according to claim 7, wherein the surface temperature influence coefficient α is determined according to the radiation situation of each virtual section.
前記仮想区画ごとの表面温度計測手段は、
前記仮想区画毎の表面温度計測手段の検知温度として、当該仮想区画内の床と当該床より高い位置に存在する表面の表面温度を含めた二次元分布値を平均処理して用いることを特徴とする請求項7又は8に記載の空調制御システム。
The surface temperature measuring means for each virtual section includes:
The two-dimensional distribution value including the surface temperature of the floor in the virtual compartment and the surface located at a position higher than the floor is averaged and used as the temperature detected by the surface temperature measuring means for each virtual compartment. The air conditioning control system according to claim 7 or 8.
前記仮想区画ごとの表面温度計測手段は、サーモグラフィカメラであり、
前記表面温度の二次元分布値は、当該室内の表面を俯瞰する位置に前記サーモグラフィカメラを設置して前記室内の表面温度を計測する視野範囲の温度分布を細分化したサーモパターンを得ることを特徴とする請求項9に記載の空調制御システム。
The surface temperature measuring means for each virtual section is a thermography camera,
The two-dimensional distribution value of the surface temperature is obtained by installing the thermography camera at a position overlooking the surface of the room to obtain a thermo pattern that subdivides the temperature distribution in a viewing range for measuring the surface temperature of the room. The air conditioning control system according to claim 9.
当該室内の前記仮想区画ごとに設置する表面温度計測手段は複数のサーモグラフィカメラであり、
前記仮想区画の表面を複数のサーモグラフィカメラの視野範囲でカバーする領域をオーバーラップさせて計測することより、前記仮想区画内で高さ方向に存在する表面温度も測定可能とすることを特徴とする請求項10に記載の空調制御システム。
The surface temperature measuring means installed in each of the virtual compartments in the room is a plurality of thermography cameras,
By measuring the surface of the virtual section by overlapping the areas covered by the viewing ranges of a plurality of thermography cameras, it is possible to also measure the surface temperature existing in the height direction within the virtual section . The air conditioning control system according to claim 10.
前記仮想区画に対応する複数の前記サーモグラフィカメラの視野範囲をオーバーラップさせ、オーバーラップした領域では、一方のサーモグラフィカメラのデータのみを有効とすることを特徴とする請求項11に記載の空調制御システム。

The air conditioning control system according to claim 11, wherein the field of view ranges of the plurality of thermography cameras corresponding to the virtual division overlap, and in the overlapping area, only data from one thermography camera is valid. .

JP2020085883A 2020-05-15 2020-05-15 Air conditioning control method and its system Active JP7372201B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020085883A JP7372201B2 (en) 2020-05-15 2020-05-15 Air conditioning control method and its system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020085883A JP7372201B2 (en) 2020-05-15 2020-05-15 Air conditioning control method and its system

Publications (2)

Publication Number Publication Date
JP2021179294A JP2021179294A (en) 2021-11-18
JP7372201B2 true JP7372201B2 (en) 2023-10-31

Family

ID=78511421

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020085883A Active JP7372201B2 (en) 2020-05-15 2020-05-15 Air conditioning control method and its system

Country Status (1)

Country Link
JP (1) JP7372201B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102455042B1 (en) * 2022-01-04 2022-10-14 류구환 Multi-air conditioning management system for indoors with electronic equipment installed

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002263434A (en) 2001-03-09 2002-09-17 Osaka Gas Co Ltd Dehumidifier
JP2011190972A (en) 2010-03-12 2011-09-29 Mitsubishi Electric Corp Air conditioning control system
JP2015040691A (en) 2013-08-23 2015-03-02 株式会社東芝 Air-conditioning control device, air-conditioning system, air-conditioning control method and program
JP2017078556A (en) 2015-10-21 2017-04-27 株式会社デンソー Radiation type air conditioner
JP2017194335A (en) 2016-04-20 2017-10-26 アズビル株式会社 Temperature distribution detection system
JP2017227409A (en) 2016-06-24 2017-12-28 アズビル株式会社 Air-conditioning control system and method
JP2019028006A (en) 2017-08-03 2019-02-21 アズビル株式会社 Radiation environmental assessment system and radiation environment assessment method
JP2019095423A (en) 2017-11-22 2019-06-20 ザ・ボーイング・カンパニーThe Boeing Company Thermographic inspection for near-surface inconsistencies of composite structures

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3290853B2 (en) * 1995-06-28 2002-06-10 株式会社竹中工務店 Air conditioning system
JPH11257721A (en) * 1998-03-13 1999-09-24 Toshiba Corp Air-conditioning control device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002263434A (en) 2001-03-09 2002-09-17 Osaka Gas Co Ltd Dehumidifier
JP2011190972A (en) 2010-03-12 2011-09-29 Mitsubishi Electric Corp Air conditioning control system
JP2015040691A (en) 2013-08-23 2015-03-02 株式会社東芝 Air-conditioning control device, air-conditioning system, air-conditioning control method and program
JP2017078556A (en) 2015-10-21 2017-04-27 株式会社デンソー Radiation type air conditioner
JP2017194335A (en) 2016-04-20 2017-10-26 アズビル株式会社 Temperature distribution detection system
JP2017227409A (en) 2016-06-24 2017-12-28 アズビル株式会社 Air-conditioning control system and method
JP2019028006A (en) 2017-08-03 2019-02-21 アズビル株式会社 Radiation environmental assessment system and radiation environment assessment method
JP2019095423A (en) 2017-11-22 2019-06-20 ザ・ボーイング・カンパニーThe Boeing Company Thermographic inspection for near-surface inconsistencies of composite structures

Also Published As

Publication number Publication date
JP2021179294A (en) 2021-11-18

Similar Documents

Publication Publication Date Title
US11169499B2 (en) Apparatus and method for controlling comfort temperature of air conditioning device or air conditioning system
CN107525237B (en) Intelligent air conditioner control method and intelligent air conditioner
JP5238679B2 (en) Air conditioning control device, air conditioning control method, and radiation temperature measuring device
CN107631423B (en) A kind of air-conditioner control method and air conditioner based on position of human body
US10136549B2 (en) Fan speed control device
KR20190062307A (en) Apparatus for evaluating indoor thermal environment using thermal camera and method thereof
JP7372201B2 (en) Air conditioning control method and its system
CN107036058A (en) The lighting controller of camera auxiliary
JPWO2020250347A1 (en) Air conditioning control device and air conditioning control system
CA2588422A1 (en) Auto-balancing damper control
WO2021117343A1 (en) Spatial temperature estimation system, warm/cold sensation estimation system, spatial temperature estimation method, warm/cold sensation estimation method, and program
EP4317818A1 (en) Information processing device, air conditioning system, and program
JP2011122802A (en) Air conditioning control device, air conditioning control method and radiation temperature measuring device
AU2018411164A1 (en) Air-conditioning apparatus
JP2016205633A (en) Air-conditioning control device
JP2019011905A (en) VAV system and air conditioning control method
JPH08128704A (en) Air conditioning control
JP2013064594A (en) Air conditioner
JPH04142A (en) Hot heat environment control system
KR102246575B1 (en) Apparatus for measuring indoor surface temperature using infrared thermal imaging camera and method thereof
KR20140103194A (en) Temperature customized air conditioning system and method of operation the same
JPH06347077A (en) Indoor environment control device
JPH06147600A (en) Indoor environment measuring device and air conditioning device equipped with the same
JP2015090232A (en) Air conditioning system, and program
JP2022149774A (en) Information processing device and program

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221020

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230726

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230818

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231003

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231016

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231019

R150 Certificate of patent or registration of utility model

Ref document number: 7372201

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150