JP7368400B2 - Current collector structure and secondary battery using it - Google Patents

Current collector structure and secondary battery using it Download PDF

Info

Publication number
JP7368400B2
JP7368400B2 JP2021005111A JP2021005111A JP7368400B2 JP 7368400 B2 JP7368400 B2 JP 7368400B2 JP 2021005111 A JP2021005111 A JP 2021005111A JP 2021005111 A JP2021005111 A JP 2021005111A JP 7368400 B2 JP7368400 B2 JP 7368400B2
Authority
JP
Japan
Prior art keywords
current collector
tab
external connection
electrode
connection tab
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021005111A
Other languages
Japanese (ja)
Other versions
JP2022109676A (en
Inventor
稔之 有賀
拓哉 谷内
正弘 大田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2021005111A priority Critical patent/JP7368400B2/en
Priority to CN202210037763.8A priority patent/CN114765257A/en
Publication of JP2022109676A publication Critical patent/JP2022109676A/en
Application granted granted Critical
Publication of JP7368400B2 publication Critical patent/JP7368400B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は、集電体構造及びそれを用いた二次電池に関する。 The present invention relates to a current collector structure and a secondary battery using the same.

従来、高エネルギー密度を有する二次電池として、リチウムイオン二次電池が幅広く普及している。液体のリチウムイオン二次電池は、正極と負極との間にセパレータを存在させ、液体の電解質(電解液)を充填したセル構造を有する。また、電解質が固体である固体電池の場合には、正極と負極との間に固体電解質が存在するセル構造を有する。この単セルが複数積層されてリチウムイオン二次電池を構成する。 Conventionally, lithium ion secondary batteries have been widely used as secondary batteries with high energy density. A liquid lithium ion secondary battery has a cell structure in which a separator is present between a positive electrode and a negative electrode, and a liquid electrolyte (electrolyte solution) is filled. Further, in the case of a solid-state battery in which the electrolyte is solid, the battery has a cell structure in which the solid electrolyte is present between a positive electrode and a negative electrode. A plurality of these single cells are stacked to form a lithium ion secondary battery.

正極および負極を構成する集電体として、金属多孔体を用いることが提案されている(例えば、特許文献1参照)。金属多孔体は、細孔を有した網目構造を有し、表面積が大きい。当該網目構造の内部に、電極活物質を含む電極合材を充填することで、電極層の単位面積あたりの電極活物質量を増加させることができる。 It has been proposed to use a porous metal body as a current collector constituting a positive electrode and a negative electrode (see, for example, Patent Document 1). A porous metal body has a network structure with pores and has a large surface area. By filling the inside of the network structure with an electrode mixture containing an electrode active material, the amount of electrode active material per unit area of the electrode layer can be increased.

特開2012-186139号公報Japanese Patent Application Publication No. 2012-186139

集電体として金属多孔体を用いる場合、正極タブ及び負極タブはそれぞれ集束された後に、タブ集束位置において、外部接続用タブと超音波や溶接などで接続され、接合部を形成している。 When a porous metal body is used as a current collector, the positive electrode tab and the negative electrode tab are each focused and then connected to an external connection tab by ultrasonic waves, welding, etc. at the tab focusing position to form a joint.

タブを構成する金属多孔体は、通常、90体積%以上の空孔を有する。このため、圧縮接合すると接合部において厚さが1/10程度に減少する。この場合、接合部とその周囲との間に大きな段差(厚み差)が発生することになり、接合部60の上部側において、タブが超音波ホーンなどの圧部材に押し切られる形になり、特に積層上部の正極タブが破断し易いという問題があった。 The metal porous body constituting the tab usually has pores of 90% or more by volume. Therefore, when compression bonding is performed, the thickness at the bonded portion is reduced to about 1/10. In this case, a large step (difference in thickness) will occur between the joint and its surroundings, and the tab will be pushed through by a pressure member such as an ultrasonic horn on the upper side of the joint 60, especially There was a problem in that the positive electrode tab at the top of the stack was easily broken.

また、外部接続用タブは接合部において、接合部を基点に回転し易く、このことも、タブの破断の原因となっていた。 In addition, the external connection tab tends to rotate around the joint at the joint, which also causes breakage of the tab.

本発明は、上記の課題に鑑みてなされたものであり、集電体タブを集束接合する際の接合部破断を防止することを目的とする。 The present invention has been made in view of the above-mentioned problems, and an object of the present invention is to prevent breakage of the bonded portion when bonding current collector tabs in a focused manner.

本発明者等は、複数のタブを、外部接続用タブの上下から挟み込むように配置し、しかも、タブの幅を外部接続用タブの幅より広くして、外部接続用タブを覆うように配置することで、上記の課題を解決できることを見出し、本発明を完成するに至った。すなわち、本発明は以下のものを提供する。 The inventors arranged a plurality of tabs to sandwich the external connection tab from above and below, and made the width of the tab wider than the width of the external connection tab, and arranged the tabs so as to cover the external connection tab. The inventors have discovered that the above problems can be solved by doing so, and have completed the present invention. That is, the present invention provides the following.

(1) 金属多孔体で構成される複数の電極集電体と、
それぞれの前記電極集電体において前記金属多孔体の一端から延出される集電体タブと、を備え、
複数の前記集電体タブが集束されるタブ集束位置において、外部接続用タブと接合される接合部を形成しており、
複数の前記集電体タブは、前記外部接続用タブの上下から挟み込むように配置されており、
複数の前記集電体タブの幅は、前記外部接続用タブの幅より広く、
前記接合部の幅は、少なくとも前記外部接続用タブの幅以上である、集電体構造。
(1) A plurality of electrode current collectors made of porous metal bodies,
a current collector tab extending from one end of the metal porous body in each of the electrode current collectors;
A joint portion is formed to be joined to an external connection tab at a tab collection position where the plurality of current collector tabs are collected;
The plurality of current collector tabs are arranged to sandwich the external connection tab from above and below,
The width of the plurality of current collector tabs is wider than the width of the external connection tab,
In the current collector structure, the width of the joint portion is at least greater than the width of the external connection tab.

(1)の発明によれば、複数の集電体タブを上下に分散し、外部接続用タブの上下から挟み込むように配置し、更に、集電体タブの幅を外部接続用タブの幅より広くすることで、外部接続用タブを、集電体タブで包み込んで覆うように構成することができる。これにより、外部接続用タブが動いたり回転したりするのを防止でき、集電体タブの破断を防止できる。 According to the invention (1), the plurality of current collector tabs are distributed vertically and arranged to sandwich the external connection tab from above and below, and further, the width of the current collector tab is set to be smaller than the width of the external connection tab. By making it wider, the external connection tab can be configured to be wrapped and covered by the current collector tab. This can prevent the external connection tab from moving or rotating, and can prevent the current collector tab from breaking.

(2) 前記接合部は、前記外部接続用タブの幅を跨いで形成されており、
前記外部接続用タブの幅を超える両側には、上下に配置された前記集電体タブ同士が圧縮接合されている圧縮接合部を有する、(1)に記載の集電体構造。
(2) the joint portion is formed across the width of the external connection tab;
The current collector structure according to (1), wherein both sides exceeding the width of the external connection tab have compression joints in which the current collector tabs arranged above and below are compressed and joined to each other.

(2)の発明によれば、外部接続用タブの両側縁の外側で、上下の金属多孔体同士が絡まった状態で圧縮接合されることで、外部接続用タブが動いたり回転したりするのを更に抑制できる。 According to the invention (2), the upper and lower metal porous bodies are compressed and joined in a tangled state on the outside of both side edges of the external connection tab, thereby preventing the external connection tab from moving or rotating. can be further suppressed.

(3) 前記圧縮接合部において、上下の前記集電体タブの間には、前記外部接続用タブの両側縁から幅方向に延びる突出部がそれぞれ配置されている、(2)に記載の集電体構造。 (3) The collector according to (2), wherein in the compression joint, protrusions extending in the width direction from both side edges of the external connection tab are arranged between the upper and lower current collector tabs. Electric structure.

(3)の発明によれば、外部接続用タブから伸びる突出部の配置によって、外部接続用タブの回転を効果的に抑制できる。 According to the invention (3), the rotation of the external connection tab can be effectively suppressed by the arrangement of the protrusion extending from the external connection tab.

(4) (1)から(3)のいずれか一つに記載の集電体構造を備える二次電池であって、
前記電極集電体の前記金属多孔体の内部に電極合材が充填されている合材充填領域と、前記電極合材が充填されていない合材未充填領域と、を有する正極及び/又は負極と、
両電極間に配置される電解質と、を備え、
前記電極集電体の前記合材未充填領域が、前記集電体タブを構成する、二次電池。
(4) A secondary battery comprising the current collector structure according to any one of (1) to (3),
A positive electrode and/or a negative electrode having a composite material-filled region in which the inside of the metal porous body of the electrode current collector is filled with an electrode composite material, and a composite material-unfilled region in which the electrode composite material is not filled. and,
an electrolyte disposed between both electrodes,
A secondary battery, wherein the region of the electrode current collector that is not filled with the composite material constitutes the current collector tab.

(4)の発明によれば、(1)から(3)の効果を奏する二次電池が得られる。 According to the invention (4), a secondary battery exhibiting the effects (1) to (3) can be obtained.

本発明の集電体構造の実施形態を示す断面模式図である。FIG. 1 is a schematic cross-sectional view showing an embodiment of a current collector structure of the present invention. 図1のタブ集束位置Pの拡大平面図である。FIG. 2 is an enlarged plan view of the tab focusing position P in FIG. 1; 図2におけるX-X断面図である。3 is a sectional view taken along line XX in FIG. 2. FIG. 図3の変形例を示す断面図である。4 is a sectional view showing a modification of FIG. 3. FIG. 図2の変形例を示す平面図である。FIG. 3 is a plan view showing a modification of FIG. 2; 図5におけるY-Y断面図である。6 is a sectional view taken along YY line in FIG. 5. FIG.

以下、本発明の一実施形態について図面を参照しながら説明する。本発明の内容は以下の実施形態の記載に限定されない。なお、以下の実施形態においては、固体電池のリチウムイオン電池を例に説明するが、本発明は固体電池に限定されず、液体の電解質とセパレータとを備える二次電池にも適用できる。また、リチウムイオン電池以外の電池にも適用できる。 Hereinafter, one embodiment of the present invention will be described with reference to the drawings. The content of the present invention is not limited to the description of the embodiments below. In the following embodiments, a lithium ion battery as a solid battery will be described as an example, but the present invention is not limited to solid batteries, but can also be applied to secondary batteries including a liquid electrolyte and a separator. Moreover, it can be applied to batteries other than lithium ion batteries.

<集電体構造の全体構成>
図1に示すように、本実施形態に係る集電体構造100は、正極10を構成する集電体の一端から正極タブ11が複数延出された後に、タブ集束位置において集束され、外部接続用タブ50と接合部60において電気的に接合されている。特に接合部60の詳細については後述する。なお、図示しない負極も正極と同様の構成である。集電体構造100を備える固体電池は、正極10と、固体電解質層(図示せず)と、負極(図示せず)と、が交互に積層配置された電極積層体と、集電体構造100とで固体電池を構成する。
<Overall configuration of current collector structure>
As shown in FIG. 1, in the current collector structure 100 according to the present embodiment, after a plurality of positive electrode tabs 11 are extended from one end of the current collector constituting the positive electrode 10, the positive electrode tabs 11 are collected at a tab collection position, and external connections are made. It is electrically connected to the tab 50 at the joint 60. In particular, details of the joint portion 60 will be described later. Note that the negative electrode (not shown) also has the same configuration as the positive electrode. A solid battery including a current collector structure 100 includes an electrode stack in which a positive electrode 10, a solid electrolyte layer (not shown), and a negative electrode (not shown) are alternately stacked, and a current collector structure 100. and constitute a solid-state battery.

以下、電極積層体を構成する部材について説明する。
<正極及び負極>
この実施形態においては、正極と負極は、それぞれ、互いに連続した孔部(連通孔部)を有する金属多孔体により集電体を構成している。
The members constituting the electrode laminate will be described below.
<Positive electrode and negative electrode>
In this embodiment, the positive electrode and the negative electrode each constitute a current collector made of a metal porous body having mutually continuous holes (communicating holes).

それぞれの集電体の孔部には、電極活物質を含む電極合材(正極合材、負極合材)がそれぞれ充填配置されている合材充填領域である。逆に言うと、正極タブ11と負極タブは電極合材が充填配置されていない合材未充填領域である。 The hole portion of each current collector is a composite material filling region in which an electrode composite material (positive electrode composite material, negative electrode composite material) containing an electrode active material is filled and disposed. In other words, the positive electrode tab 11 and the negative electrode tab are regions not filled with the electrode composite material.

(集電体)
集電体は、互いに連続した孔部を有する金属多孔体により構成される。互いに連続した孔部を有することで、孔部の内部に電極活物質を含む正極合材、負極合材を充填することができ、電極層の単位面積あたりの電極活物質量を増加させることができる。上記金属多孔体としては、互いに連続した孔部を有するものであれば特に制限されず、例えば発泡による孔部を有する発泡金属、金属メッシュ、エキスパンドメタル、パンチングメタル、金属不織布等の形態が挙げられる。
(current collector)
The current collector is composed of a metal porous body having mutually continuous pores. By having mutually continuous pores, the inside of the pores can be filled with a positive electrode composite material and a negative electrode composite material containing an electrode active material, and the amount of electrode active material per unit area of the electrode layer can be increased. can. The metal porous body is not particularly limited as long as it has mutually continuous pores, and examples thereof include foamed metal having pores formed by foaming, metal mesh, expanded metal, punched metal, metal nonwoven fabric, etc. .

金属多孔体に用いられる金属としては、導電性を有するものであれば特に限定されないが、例えば、ニッケル、アルミニウム、ステンレス、チタン、銅、銀等が挙げられる。これらの中では、正極を構成する集電体としては、発泡アルミニウム、発泡ニッケル及び発泡ステンレスが好ましく、負極を構成する集電体としては、発泡銅及び発泡ステンレスを好ましく用いることができる。 The metal used for the metal porous body is not particularly limited as long as it has conductivity, and examples thereof include nickel, aluminum, stainless steel, titanium, copper, and silver. Among these, foamed aluminum, foamed nickel, and foamed stainless steel are preferable as the current collector that constitutes the positive electrode, and foamed copper and foamed stainless steel can be preferably used as the current collector that constitutes the negative electrode.

金属多孔体の集電体を用いることで、電極の単位面積あたりの活物質量を増加させることができ、その結果、リチウムイオン二次電池の体積エネルギー密度を向上させることができる。また、正極合材、負極合材の固定化が容易となるため、従来の金属箔を集電体として用いる電極とは異なり、電極合材層を厚膜化する際に、電極合材層を形成する塗工用スラリーを増粘する必要がない。このため、増粘に必要であった有機高分子化合物等の結着剤を低減することができる。従って、電極の単位面積当たりの容量を増加させることができ、リチウムイオン二次電池の高容量化を実現することができる。 By using a porous metal current collector, the amount of active material per unit area of the electrode can be increased, and as a result, the volumetric energy density of the lithium ion secondary battery can be improved. In addition, since it is easier to fix the positive and negative electrode composite materials, unlike electrodes that use conventional metal foil as a current collector, when increasing the thickness of the electrode composite material layer, the electrode composite material layer can be There is no need to thicken the coating slurry that is formed. Therefore, it is possible to reduce the amount of binder such as an organic polymer compound required for thickening. Therefore, the capacity per unit area of the electrode can be increased, and a high capacity lithium ion secondary battery can be realized.

(電極合材)
正極合材、負極合材は、それぞれ、集電体の内部に形成される孔部に配置される。正極合材、負極合材は、それぞれ正極活物質、負極活物質を必須として含んでいる。
(electrode composite material)
The positive electrode composite material and the negative electrode composite material are each placed in a hole formed inside the current collector. The positive electrode composite material and the negative electrode composite material each essentially contain a positive electrode active material and a negative electrode active material.

(電極活物質)
正極活物質としては、リチウムイオンを吸蔵・放出することができるものであれば、特に限定されるものではないが、例えば、LiCoO、Li(Ni5/10Co2/10Mn3/10)O2、Li(Ni6/10Co2/10Mn2/10)O2、Li(Ni8/10Co1/10Mn1/10)O2、Li(Ni0.8Co0.15Al0.05)O2、Li(Ni1/6Co4/6Mn1/6)O2、Li(Ni1/3Co1/3Mn1/3)O2、LiCoO、LiMn、LiNiO、LiFePO、硫化リチウム、硫黄等が挙げられる。
(electrode active material)
The positive electrode active material is not particularly limited as long as it can absorb and release lithium ions, but examples include LiCoO 2 and Li (Ni 5/10 Co 2/10 Mn 3/10 ). O 2, Li (Ni 6/10 Co 2/10 Mn 2/10 ) O 2, Li (Ni 8/10 Co 1/10 Mn 1/10 ) O 2, Li (Ni 0.8 Co 0.15 Al 0.05 )O2 , Li(Ni1 / 6Co4 / 6Mn1 /6 )O2 , Li(Ni1 /3Co1 / 3Mn1 /3 )O2 , LiCoO4 , LiMn2O4 , LiNiO 2 , LiFePO 4 , lithium sulfide, sulfur, and the like.

負極活物質としては、リチウムイオンを吸蔵・放出することができるものであれば特に限定されるものではないが、例えば、金属リチウム、リチウム合金、金属酸化物、金属硫化物、金属窒化物、Si、SiO、および人工黒鉛、天然黒鉛、ハードカーボン、ソフトカーボン等の炭素材料等が挙げられる。 The negative electrode active material is not particularly limited as long as it can absorb and release lithium ions, but examples include metal lithium, lithium alloys, metal oxides, metal sulfides, metal nitrides, and Si. , SiO, and carbon materials such as artificial graphite, natural graphite, hard carbon, and soft carbon.

(その他の成分)
電極合材は、電極活物質及びイオン伝導性粒子以外のその他の成分を任意に含んでいてもよい。その他の成分としては特に限定されるものではなく、リチウムイオン二次電池を作製する際に用い得る成分であればよい。例えば、導電助剤、結着剤等が挙げられる。正極の導電助剤としては、アセチレンブラックなどが例示でき、正極のバインダーとしては、ポリフッ化ビニリデンなどが例示できる。負極のバインダーとしては、カルボキシルメチルセルロースナトリウム、スチレンブタジエンゴム、ポリアクリル酸ナトリウムなどが例示できる。
(Other ingredients)
The electrode mixture may optionally contain components other than the electrode active material and ion conductive particles. Other components are not particularly limited, and may be any component that can be used when producing a lithium ion secondary battery. Examples include conductive aids, binders, and the like. Examples of the conductive additive for the positive electrode include acetylene black, and examples of the binder for the positive electrode include polyvinylidene fluoride. Examples of the binder for the negative electrode include sodium carboxymethylcellulose, styrene-butadiene rubber, and sodium polyacrylate.

(正極及び負極の製造方法)
正極10及び負極20は、集電体としての互いに連続した孔部を有する金属多孔体の孔部に、電極合材を充填することにより得られる。まず、電極活物質、更に必要に応じてバインダーや助剤を、従来公知の方法にて均一に混合し、所定の粘度に調整された、好ましくはペースト状の電極合材組成物を得る。
(Manufacturing method of positive electrode and negative electrode)
The positive electrode 10 and the negative electrode 20 are obtained by filling the pores of a metal porous body having mutually continuous pores as a current collector with an electrode mixture. First, an electrode active material and, if necessary, a binder and an auxiliary agent are uniformly mixed by a conventionally known method to obtain an electrode mixture composition adjusted to a predetermined viscosity, preferably in the form of a paste.

次いで、上記の電極合材組成物を電極合材として、集電体である金属多孔体の孔部に充填する。集電体に電極合材を充填する方法は、特に限定されず、例えば、プランジャー式ダイコーターを用いて、圧力をかけて、集電体の孔部の内部に電極合材を含むスラリーを充填する方法が挙げられる。上記以外に、ディップ方式により金属多孔体の内部にイオン伝導体層を含侵させてもよい。 Next, the electrode composite material composition described above is used as an electrode composite material and is filled into the pores of the metal porous body that is a current collector. The method of filling the electrode mixture into the current collector is not particularly limited. For example, a plunger type die coater is used to apply pressure to fill the slurry containing the electrode mixture into the holes of the current collector. One example is a filling method. In addition to the above, the ion conductor layer may be impregnated into the inside of the metal porous body by a dipping method.

<固体電解質層>
固体電解質層を構成する固体電解質としては、特に限定されないが、例えば、硫化物系固体電解質材料、酸化物系固体電解質材料、窒化物系固体電解質材料、ハロゲン化物系固体電解質材料等を挙げることができる。硫化物系固体電解質材料としては、例えばリチウムイオン電池であれば、LPS系ハロゲン(Cl、Br、I)や、LiS-P、LiS-P-LiI等が挙げられる。なお、上記「LiS-P」の記載は、LiSおよびPを含む原料組成物を用いてなる硫化物系固体電解質材料を意味し、他の記載についても同様である。酸化物系固体電解質材料としては、例えばリチウムイオン電池であれば、NASICON型酸化物、ガーネット型酸化物、ペロブスカイト型酸化物等を挙げることができる。NASICON型酸化物としては、例えば、Li、Al、Ti、PおよびOを含有する酸化物(例えばLi1.5Al0.5Ti1.5(PO)を挙げることができる。ガーネット型酸化物としては、例えば、Li、La、ZrおよびOを含有する酸化物(例えばLiLaZr12)を挙げることができる。ペロブスカイト型酸化物としては、例えば、Li、La、TiおよびOを含有する酸化物(例えばLiLaTiO)を挙げることができる。
<Solid electrolyte layer>
The solid electrolyte constituting the solid electrolyte layer is not particularly limited, but examples include sulfide-based solid electrolyte materials, oxide-based solid electrolyte materials, nitride-based solid electrolyte materials, halide-based solid electrolyte materials, etc. can. Examples of sulfide-based solid electrolyte materials for lithium ion batteries include LPS-based halogens (Cl, Br, I), Li 2 S-P 2 S 5 , Li 2 S-P 2 S 5 -LiI, etc. Can be mentioned. The above description of "Li 2 S-P 2 S 5 " means a sulfide-based solid electrolyte material using a raw material composition containing Li 2 S and P 2 S 5 , and the same applies to other descriptions. It is. Examples of oxide-based solid electrolyte materials include NASICON type oxides, garnet type oxides, perovskite type oxides, and the like in the case of lithium ion batteries. Examples of NASICON-type oxides include oxides containing Li, Al, Ti, P, and O (eg, Li 1.5 Al 0.5 Ti 1.5 (PO 4 ) 3 ). Examples of garnet-type oxides include oxides containing Li, La, Zr, and O (eg, Li 7 La 3 Zr 2 O 12 ). Examples of perovskite-type oxides include oxides containing Li, La, Ti, and O (eg, LiLaTiO 3 ).

<液体電解質>
非水溶媒に溶解される電解質としては、特に限定されないが、例えば、LiPF、LiBF、LiClO、LiN(SOCF)、LiN(SO、LiCFSO、LiCSO、LiC(SOCF、LiF、LiCl、LiI、LiS、LiN、LiP、Li10GeP12(LGPS)、LiPS、LiPSCl、LiI、LiPO(x=2y+3z-5、LiPON)、LiLaZr12(LLZO)、Li3xLa2/3-xTiO(LLTO)、Li1+xAlTi2-x(PO(0≦x≦1、LATP)、Li1.5Al0.5Ge1.5(PO(LAGP)、Li1+x+yAlTi2-xSiyP3-y12、Li1+x+yAl(Ti,Ge)2-xSiyP3-y12、Li4-2xZnGeO(LISICON)等を挙げることができる。上記は1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
<Liquid electrolyte>
The electrolyte dissolved in the non-aqueous solvent is not particularly limited, but includes, for example, LiPF 6 , LiBF 4 , LiClO 4 , LiN(SO 2 CF 3 ), LiN(SO 2 C 2 F 5 ) 2 , LiCF 3 SO 3 , LiC 4 F 9 SO 3 , LiC(SO 2 CF 3 ) 3 , LiF, LiCl, LiI, Li 2 S, Li 3 N, Li 3 P, Li 10 GeP 2 S 12 (LGPS), Li 3 PS 4 , Li 6 PS 5 Cl, Li 7 P 2 S 8 I, Li x PO y N z (x=2y+3z-5, LiPON), Li 7 La 3 Zr 2 O 12 (LLZO), Li 3x La 2/3-x TiO 3 (LLTO), Li 1+x Al x Ti 2-x (PO 4 ) 3 (0≦x≦1, LATP), Li 1.5 Al 0.5 Ge 1.5 (PO 4 ) 3 (LAGP), Examples include Li 1+x+y Al x Ti 2-x SiyP 3-y O 12 , Li 1+x+y Al x (Ti,Ge) 2-x SiyP 3-y O 12 , Li 4-2x Zn x GeO 4 (LISICON), etc. can. The above may be used alone or in combination of two or more.

電解液に含まれる非水溶媒としては、特に限定されないが、カーボネート類、エステル類、エーテル類、ニトリル類、スルホン類、ラクトン類等の非プロトン性溶媒を挙げることができる。具体的には、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ジエチルカーボネート(DEC)、ジメチルカーボネート(DMC)、エチルメチルカーボネート(EMC)、1,2-ジメトキシエタン(DME)、1,2-ジエトキシエタン(DEE)、テトラヒドロフラン(THF)、2-メチルテトラヒドロフラン、ジオキサン、1,3-ジオキソラン、ジエチレングリコールジメチルエーテル、エチレングリコールジメチルエーテル、アセトニトリル(AN)、プロピオニトリル、ニトロメタン、N,N-ジメチルホルムアミド(DMF)、ジメチルスルホキシド、スルホラン、γ-ブチロラクトン等を挙げることができる。上記は1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。 The non-aqueous solvent contained in the electrolytic solution is not particularly limited, but may include aprotic solvents such as carbonates, esters, ethers, nitriles, sulfones, and lactones. Specifically, ethylene carbonate (EC), propylene carbonate (PC), diethyl carbonate (DEC), dimethyl carbonate (DMC), ethylmethyl carbonate (EMC), 1,2-dimethoxyethane (DME), 1,2- Diethoxyethane (DEE), tetrahydrofuran (THF), 2-methyltetrahydrofuran, dioxane, 1,3-dioxolane, diethylene glycol dimethyl ether, ethylene glycol dimethyl ether, acetonitrile (AN), propionitrile, nitromethane, N,N-dimethylformamide ( DMF), dimethyl sulfoxide, sulfolane, γ-butyrolactone, and the like. The above may be used alone or in combination of two or more.

(セパレータ)
本実施形態に係るリチウムイオン二次電池は、特に液状の電解質を用いる場合には、セパレータを含んでいてもよい。セパレータは、正極と負極との間に位置する。その材料や厚み等は特に限定されるものではなく、ポリエチレンやポリプロピレンなど、リチウムイオン二次電池に用いうる公知のセパレータを適用することができる。
(Separator)
The lithium ion secondary battery according to this embodiment may include a separator, particularly when using a liquid electrolyte. The separator is located between the positive electrode and the negative electrode. The material, thickness, etc. are not particularly limited, and known separators that can be used in lithium ion secondary batteries, such as polyethylene and polypropylene, can be used.

<集電体構造>
次に、本発明の特徴である集電体構造について、図1から図3を用いて具体的に説明する。図1は本発明の集電体構造の実施形態を示す断面模式図である、図2は図1のタブ集束位置Pの拡大平面図であり、図3は図2におけるX-X断面図である。
<Current collector structure>
Next, the current collector structure, which is a feature of the present invention, will be specifically explained using FIGS. 1 to 3. FIG. 1 is a schematic cross-sectional view showing an embodiment of the current collector structure of the present invention, FIG. 2 is an enlarged plan view of the tab focusing position P in FIG. 1, and FIG. 3 is a cross-sectional view taken along line XX in FIG. be.

図1に示すように、本実施形態に係る集電体構造100は、正極10を構成する集電体の一端から正極タブ11が複数延出された後に、タブ集束位置において集束され、外部接続用タブ50と接合部60において電気的に接合されている。以下、正極側の集電体構造を例に説明するが、負極側も同様の構成であるのでその説明を省略する。 As shown in FIG. 1, in the current collector structure 100 according to the present embodiment, after a plurality of positive electrode tabs 11 are extended from one end of the current collector constituting the positive electrode 10, the positive electrode tabs 11 are collected at a tab collection position, and external connections are made. It is electrically connected to the tab 50 at the joint 60. Hereinafter, the current collector structure on the positive electrode side will be explained as an example, but since the negative electrode side has a similar structure, the explanation thereof will be omitted.

正極10は、全体が金属多孔体で形成されており、電極合材が充填される合材充填領域と、電極合材が充填されていない合材未充填領域が存在し、合材未充填領域が正極タブ11を構成している。正極タブ11はタブ集束位置Pにおいてそれぞれ集束されるが、この実施形態においては、外部接続用タブ50を挟んで、上下に分配され、上方の3本の正極タブ11aは外部接続用タブ50の上方に配置され、下方の3本の正極タブ11bは外部接続用タブ50の下方に配置される。正極タブ11a、正極タブ11bを挟むように、一対の当て板70が配置されており、この当て板70を介して、上下から超音波接合を行う。このように複数の電極タブを外部接続用タブの上下(表裏)に配置することで、電極タブの破断を防止できる。 The positive electrode 10 is entirely formed of a metal porous body, and has a composite material-filled region filled with an electrode composite material and a composite material-unfilled region where the electrode composite material is not filled. constitutes the positive electrode tab 11. The positive electrode tabs 11 are each focused at the tab focusing position P, but in this embodiment, they are distributed vertically with the external connection tab 50 in between, and the three positive electrode tabs 11a at the top are separated from the external connection tab 50. The three lower positive electrode tabs 11b are arranged above and below the external connection tab 50. A pair of backing plates 70 are arranged to sandwich the positive electrode tabs 11a and 11b, and ultrasonic bonding is performed from above and below via the backing plates 70. By arranging the plurality of electrode tabs above and below (on the front and back) of the external connection tab in this manner, it is possible to prevent the electrode tabs from breaking.

図2、図3に示すように、外部接続用タブ50はxy平面視では幅方向(幅W1)と長手方向を有する板状部材であり、断面は矩形形状である。タブ集束位置Pにおいて、正極タブ11は幅W4で、外部接続用タブ50の幅W1より広い。このため、図3に示すように外部接続用タブ50を挟むように配置される(W4>W1)。 As shown in FIGS. 2 and 3, the external connection tab 50 is a plate-like member having a width direction (width W1) and a longitudinal direction in an xy plane view, and has a rectangular cross section. At the tab focusing position P, the positive electrode tab 11 has a width W4, which is wider than the width W1 of the external connection tab 50. Therefore, as shown in FIG. 3, they are arranged so as to sandwich the external connection tab 50 (W4>W1).

当て板70は幅W2であり、外部接続用タブ50の幅W1より広い(W2>W1)。このため、図3に示すように、接合部60は、外部接続用タブ50の表裏において、幅W1の全域に亘って形成される。すなわち、接合部60の幅W3は、幅W1に略等しい(W3=W1)。これにより、正極タブ11と外部接続用タブ50との接合を確実に行うことができる。 The backing plate 70 has a width W2, which is wider than the width W1 of the external connection tab 50 (W2>W1). Therefore, as shown in FIG. 3, the joint portion 60 is formed over the entire width W1 on the front and back sides of the external connection tab 50. That is, the width W3 of the joint portion 60 is approximately equal to the width W1 (W3=W1). Thereby, the positive electrode tab 11 and the external connection tab 50 can be reliably joined.

図3において、外部接続用タブ50の幅を超える両側には、接合部60から連続するように、上下に配置された前記集電体タブ同士が圧縮接合されている圧縮接合部80を有している。圧縮接合部80は、上下の金属多孔体同士が絡まった状態で圧縮接合されている。これにより、外部接続用タブが動いたり回転したりするのを更に抑制できる。この実施形態においては、正極タブ11の幅方向全部に亘って圧縮接合部80が形成されているが、これに限らず、正極タブ11の接合部60から連続する幅方向の一部まで圧縮接合部を形成してもよい。圧縮接合部80は、接合部60とは別にプレス工程などによって形成することができる。 In FIG. 3, on both sides exceeding the width of the external connection tab 50, there is a compression joint 80 in which the current collector tabs arranged above and below are compressed and joined so as to be continuous from the joint 60. ing. In the compression joint portion 80, the upper and lower metal porous bodies are compressed and joined in a state in which they are entangled with each other. Thereby, movement and rotation of the external connection tab can be further suppressed. In this embodiment, the compression joint 80 is formed across the entire width of the positive electrode tab 11; however, the compression joint is not limited to this, and extends from the joint 60 of the positive electrode tab 11 to a continuous portion in the width direction. It is also possible to form a section. The compression joint 80 can be formed separately from the joint 60 by a pressing process or the like.

図4は、図3の変形例を示す図である。当て板70aの形状が異なっている点が図3と異なっている。図4(a)は接合部形成前を示し、図4(b)は接合部形成後の状態を示す図である。この実施形態においては、上下の当て板70aが、プレス工程で外部接続用タブ50の断面形状に沿って変形し、傾斜部を介して正極タブ11の幅方向に延出して接合部を構成している。これにより、外部接続用タブが動いたり回転したりするのを更に抑制できる。 FIG. 4 is a diagram showing a modification of FIG. 3. The difference from FIG. 3 is that the shape of the backing plate 70a is different. FIG. 4(a) shows the state before the joint is formed, and FIG. 4(b) shows the state after the joint is formed. In this embodiment, the upper and lower backing plates 70a are deformed in the pressing process along the cross-sectional shape of the external connection tab 50, and extend in the width direction of the positive electrode tab 11 via the inclined part to form a joint part. ing. Thereby, movement and rotation of the external connection tab can be further suppressed.

図5は、図2の変形例を示す平面図であり、図6は図5におけるY-Y断面図である。この変形例においては、外部接続用タブ50の両側縁から幅方向に延びる突出部50a、50aがそれぞれ形成されている。突出部50aを形成することで、図5の矢印に示す方向、すなわち図5のxy平面内で、外部接続用タブ50が回転することをより効果的に防止できる。 FIG. 5 is a plan view showing a modification of FIG. 2, and FIG. 6 is a YY cross-sectional view in FIG. In this modification, protrusions 50a, 50a are formed extending in the width direction from both side edges of the external connection tab 50, respectively. By forming the protrusion 50a, it is possible to more effectively prevent the external connection tab 50 from rotating in the direction shown by the arrow in FIG. 5, that is, within the xy plane of FIG.

以上、本発明の好ましい実施形態について説明したが、本発明の内容は上記実施形態に限定されず、適宜変更が可能である。 Although preferred embodiments of the present invention have been described above, the content of the present invention is not limited to the above embodiments and can be modified as appropriate.

10 正極
11 正極タブ
11a、11b 正極タブ
50 外部接続用タブ
50a 突出部
60 接合部
70、70a 当て板
80 圧縮接合部
100 集電体構造
P タブ集束位置
10 Positive electrode 11 Positive electrode tab 11a, 11b Positive electrode tab 50 External connection tab 50a Projection part 60 Joint part 70, 70a Backing plate 80 Compression joint part 100 Current collector structure P Tab focusing position

Claims (3)

金属多孔体で構成される複数の電極集電体と、
それぞれの前記電極集電体において前記金属多孔体の一端から延出される集電体タブと、を備え、
前記集電体タブは、金属多孔体で構成され、
複数の前記集電体タブが集束されるタブ集束位置において、外部接続用タブと接合される接合部を形成しており、
複数の前記集電体タブは、前記外部接続用タブの上下から挟み込むように配置されており、
複数の前記集電体タブの幅は、前記外部接続用タブの幅より広く、
前記接合部は、前記外部接続用タブの幅を跨いで形成されており、
前記外部接続用タブの幅を超える両側には、上下に配置された前記集電体タブ同士が圧縮接合されている圧縮接合部を有する、集電体構造。
a plurality of electrode current collectors made of porous metal;
a current collector tab extending from one end of the metal porous body in each of the electrode current collectors;
The current collector tab is made of a porous metal body,
A joint portion is formed to be joined to an external connection tab at a tab collection position where the plurality of current collector tabs are collected;
The plurality of current collector tabs are arranged to sandwich the external connection tab from above and below,
The width of the plurality of current collector tabs is wider than the width of the external connection tab,
The joint portion is formed across the width of the external connection tab,
The current collector structure has compression joints on both sides exceeding the width of the external connection tab, in which the current collector tabs arranged above and below are compressed and joined to each other.
金属多孔体で構成される複数の電極集電体と、
それぞれの前記電極集電体において前記金属多孔体の一端から延出される集電体タブと
、を備え、
前記集電体タブは、金属多孔体で構成され、
複数の前記集電体タブが集束されるタブ集束位置において、外部接続用タブと接合され
る接合部を形成しており、
複数の前記集電体タブは、前記外部接続用タブの上下から挟み込むように配置されてお
り、
複数の前記集電体タブの幅は、前記外部接続用タブの幅より広く、
前記接合部は、前記外部接続用タブの幅を跨いで形成されており、
前記外部接続用タブの幅を超える両側には、上下に配置された前記集電体タブ同士が圧
縮接合されている圧縮接合部を有し、
前記圧縮接合部において、上下の前記集電体タブの間には、前記外部接続用タブの両側
縁から幅方向に延びる突出部がそれぞれ配置されている、集電体構造。
a plurality of electrode current collectors made of porous metal;
a current collector tab extending from one end of the metal porous body in each of the electrode current collectors;
The current collector tab is made of a porous metal body,
A joint portion is formed to be joined to an external connection tab at a tab collection position where the plurality of current collector tabs are collected;
The plurality of current collector tabs are arranged to sandwich the external connection tab from above and below,
The width of the plurality of current collector tabs is wider than the width of the external connection tab,
The joint portion is formed across the width of the external connection tab,
On both sides exceeding the width of the external connection tab, there is a compression joint where the current collector tabs arranged above and below are compression-joined to each other,
In the compression joint portion, a current collector structure is provided, wherein protrusions extending in the width direction from both side edges of the external connection tab are respectively disposed between the upper and lower current collector tabs.
請求項1または2に記載の集電体構造を備える二次電池であって、
前記電極集電体の前記金属多孔体の内部に電極合材が充填されている合材充填領域と、
前記電極合材が充填されていない合材未充填領域と、を有する正極及び/又は負極と、
両電極間に配置される電解質と、を備え、
前記電極集電体の前記合材未充填領域が、前記集電体タブを構成する、二次電池。
A secondary battery comprising the current collector structure according to claim 1 or 2,
a composite material filling region in which the inside of the metal porous body of the electrode current collector is filled with an electrode composite material;
a positive electrode and/or a negative electrode having a composite material unfilled region where the electrode composite material is not filled;
an electrolyte disposed between both electrodes,
A secondary battery, wherein the region of the electrode current collector that is not filled with the composite material constitutes the current collector tab.
JP2021005111A 2021-01-15 2021-01-15 Current collector structure and secondary battery using it Active JP7368400B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021005111A JP7368400B2 (en) 2021-01-15 2021-01-15 Current collector structure and secondary battery using it
CN202210037763.8A CN114765257A (en) 2021-01-15 2022-01-13 Current collector structure and secondary battery using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021005111A JP7368400B2 (en) 2021-01-15 2021-01-15 Current collector structure and secondary battery using it

Publications (2)

Publication Number Publication Date
JP2022109676A JP2022109676A (en) 2022-07-28
JP7368400B2 true JP7368400B2 (en) 2023-10-24

Family

ID=82365383

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021005111A Active JP7368400B2 (en) 2021-01-15 2021-01-15 Current collector structure and secondary battery using it

Country Status (2)

Country Link
JP (1) JP7368400B2 (en)
CN (1) CN114765257A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002252036A (en) 2001-02-23 2002-09-06 Mitsubishi Materials Corp Lithium ion polymer secondary battery
WO2005013408A1 (en) 2003-07-31 2005-02-10 Nec Lamilion Energy, Ltd. Lithium ion secondary cell
JP2006324093A (en) 2005-05-18 2006-11-30 Nissan Motor Co Ltd Secondary battery and method for manufacturing the same
JP2010010145A (en) 2009-10-09 2010-01-14 Nec Corp Flat type battery and battery pack using the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2984816B2 (en) * 1996-01-30 1999-11-29 古河電池株式会社 How to attach tab to positive plate

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002252036A (en) 2001-02-23 2002-09-06 Mitsubishi Materials Corp Lithium ion polymer secondary battery
WO2005013408A1 (en) 2003-07-31 2005-02-10 Nec Lamilion Energy, Ltd. Lithium ion secondary cell
JP2006324093A (en) 2005-05-18 2006-11-30 Nissan Motor Co Ltd Secondary battery and method for manufacturing the same
JP2010010145A (en) 2009-10-09 2010-01-14 Nec Corp Flat type battery and battery pack using the same

Also Published As

Publication number Publication date
CN114765257A (en) 2022-07-19
JP2022109676A (en) 2022-07-28

Similar Documents

Publication Publication Date Title
JP5218808B2 (en) Lithium ion battery
JP5541957B2 (en) Multilayer secondary battery
JP2018055871A (en) Secondary battery
JP4604306B2 (en) Solid electrolyte battery and manufacturing method thereof
JP2007141482A (en) Nonaqueous electrolyte winding type secondary battery
KR20170055439A (en) Pouch type secondary battery and method of making the same
JP7148586B2 (en) lithium ion secondary battery
JP7368400B2 (en) Current collector structure and secondary battery using it
US20220231329A1 (en) Coin-type all-solid-state battery and method of manufacturing the same
JP7357650B2 (en) Current collector structure and secondary battery using it
CN111033857A (en) Lithium ion secondary battery
JP7239537B2 (en) Electrode for lithium ion secondary battery and method for producing electrode for lithium ion secondary battery
JP7239548B2 (en) Electrode and lithium ion secondary battery using the same
JP2017111890A (en) Composite electrolyte for lithium ion secondary battery
JP7239551B2 (en) Electrodes for lithium-ion secondary batteries
US20220223920A1 (en) Electrode and secondary battery including the same
JP2015222632A (en) Power storage element
JP7174085B2 (en) secondary battery
JP7149355B2 (en) Electrode for lithium ion secondary battery, and lithium ion secondary battery
JP2010055950A (en) Manufacturing method of battery
KR20230048711A (en) Electrode for lithium secondary battery and manufacturing method thereof
CN117730428A (en) Positive electrode for secondary battery and secondary battery
WO2015037114A1 (en) Negative-electrode material for use in lithium-ion secondary batteries

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221004

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230516

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230704

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230919

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231012

R150 Certificate of patent or registration of utility model

Ref document number: 7368400

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150