JP7362534B2 - energy absorbing material - Google Patents

energy absorbing material Download PDF

Info

Publication number
JP7362534B2
JP7362534B2 JP2020064840A JP2020064840A JP7362534B2 JP 7362534 B2 JP7362534 B2 JP 7362534B2 JP 2020064840 A JP2020064840 A JP 2020064840A JP 2020064840 A JP2020064840 A JP 2020064840A JP 7362534 B2 JP7362534 B2 JP 7362534B2
Authority
JP
Japan
Prior art keywords
energy absorbing
layers
pair
absorbing member
energy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020064840A
Other languages
Japanese (ja)
Other versions
JP2021162099A (en
Inventor
高夫 小山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Homes Corp
Original Assignee
Asahi Kasei Homes Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Homes Corp filed Critical Asahi Kasei Homes Corp
Priority to JP2020064840A priority Critical patent/JP7362534B2/en
Publication of JP2021162099A publication Critical patent/JP2021162099A/en
Application granted granted Critical
Publication of JP7362534B2 publication Critical patent/JP7362534B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Vibration Prevention Devices (AREA)
  • Vibration Dampers (AREA)

Description

本発明は、エネルギー吸収部材に関するものである。 The present invention relates to an energy absorbing member.

従来、一対のU字形のダンパーを用いた制震構造や耐震構造が知られている。これらの制震構造や耐震構造では、U字形のダンパーの弾塑性変形によって高いエネルギー吸収性能を得ることができる。 Conventionally, vibration control structures and earthquake-resistant structures using a pair of U-shaped dampers have been known. In these damping structures and earthquake-resistant structures, high energy absorption performance can be obtained through elastoplastic deformation of the U-shaped damper.

特開2009-270336号公報JP2009-270336A 特開2017-061808号公報JP2017-061808A

しかしながら、特許文献1や特許文献2に記載の技術では、一つの制震パネル等に設置される一対のダンパーの数が限られており、より高いエネルギー吸収性能を得たい場合には、制震パネル等の設置数が増え建物の間取設計の自由度を低下させるおそれがあった。 However, in the technologies described in Patent Document 1 and Patent Document 2, the number of pairs of dampers installed in one vibration control panel etc. is limited, and if you want to obtain higher energy absorption performance, vibration control There was a risk that the number of panels etc. to be installed would reduce the degree of freedom in designing the building's floor plan.

このような事情に鑑みて、本発明は、建物の間取設計の自由度を低下させることなく、より高いエネルギー吸収性能を得ることができる、エネルギー吸収部材を提供することを目的とする。 In view of these circumstances, an object of the present invention is to provide an energy absorbing member that can obtain higher energy absorbing performance without reducing the degree of freedom in designing the floor plan of a building.

本発明の要旨構成は、以下の通りである。
(1)湾曲部と、前記湾曲部の両端のそれぞれから連続して延びる一対の中間部と、前記一対の中間部の端からそれぞれ連続して延びる一対の固定部と、を有する層が、複数層重ね合わせられてなることを特徴とする、エネルギー吸収部材。
The gist of the present invention is as follows.
(1) A plurality of layers each having a curved portion, a pair of intermediate portions extending continuously from both ends of the curved portion, and a pair of fixing portions continuously extending from the ends of the pair of intermediate portions, respectively. An energy absorbing member characterized by being made of overlapping layers.

(2)前記複数層のうち少なくとも互いに接する2層について、内側の前記層の厚さが、外側の前記層の厚さより薄い、上記(1)に記載のエネルギー吸収部材。 (2) The energy absorbing member according to (1) above, wherein the thickness of the inner layer is thinner than the thickness of the outer layer of at least two layers that are in contact with each other among the plurality of layers.

(3)前記層の厚さが、内側の層であるほど薄い、上記(2)に記載のエネルギー吸収部材。 (3) The energy absorbing member according to (2) above, wherein the inner layer is thinner.

(4)前記複数層の各層の曲げ歪みが略等しい、上記(1)~(3)のいずれか1つに記載のエネルギー吸収部材。 (4) The energy absorbing member according to any one of (1) to (3) above, wherein each layer of the plurality of layers has approximately equal bending strain.

(5)前記複数層が前記固定部において互いに溶接されて一体化されている、上記(1)~(4)のいずれか1つに記載のエネルギー吸収部材。 (5) The energy absorbing member according to any one of (1) to (4) above, wherein the plurality of layers are integrally welded to each other at the fixed portion.

(6)前記複数層の積層方向に隣接する2層のうちの一方の固定部の一部の欠損により段差部が形成され、該段差部において隅肉溶接されて一体化されている、上記(5)に記載のエネルギー吸収部材。 (6) A stepped portion is formed by a part of the fixing portion of one of the two layers adjacent to each other in the stacking direction of the plurality of layers, and the stepped portion is fillet welded and integrated. 5) The energy absorbing member according to item 5).

本発明によれば、建物の間取設計の自由度を低下させることなく、より高いエネルギー吸収性能を得ることができる、エネルギー吸収部材を提供することができる。 According to the present invention, it is possible to provide an energy absorbing member that can obtain higher energy absorbing performance without reducing the degree of freedom in designing the floor plan of a building.

本発明の一実施形態にかかるエネルギー吸収部材を有する耐震構造を示す正面図である。FIG. 1 is a front view showing an earthquake-resistant structure having an energy absorbing member according to an embodiment of the present invention. エネルギー吸収部材の一例を示す図である。It is a figure which shows an example of an energy absorption member. 本実施形態でのエネルギー吸収部材の配置を示す図である。It is a figure showing arrangement of an energy absorbing member in this embodiment. 本実施形態でのエネルギー吸収部材の変形を模式的に示す図である。It is a figure which shows typically the deformation of the energy absorption member in this embodiment. エネルギー吸収部材の対比となる配置を示す図である。It is a figure which shows the arrangement|positioning which becomes comparison of an energy absorption member. 対比となるエネルギー吸収部材の変形を模式的に示す図である。It is a figure which shows typically the deformation|transformation of the energy absorption member used as a comparison. 層を重ね合わせる手法の一例を示す図である。It is a figure which shows an example of the method of superimposing layers. 層を重ね合わせる手法の他の例を示す図である。It is a figure which shows the other example of the method of superimposing layers. 層を重ね合わせる手法の別の例を示す図である。FIG. 7 is a diagram illustrating another example of a method of overlapping layers.

以下、本発明の実施形態について図面を参照して詳細に例示説明する。 Hereinafter, embodiments of the present invention will be illustrated in detail with reference to the drawings.

図1は、本発明の一実施形態にかかる耐震構造を示す正面図である。
本発明にかかるエネルギー吸収部材が適用される建物の架構は、鉄筋コンクリート造の基礎梁及び基礎梁の上に構築され、鋼材の柱・梁等からなる鉄骨造の上部架構で構成されている。本例では、2階以上に設置される耐震構造について説明するが、本発明の耐震構造は、地上階にも設置することができる。図1に示すように、架構は、上階梁(上部横架材)5、下階梁(下部横架材)6を有している。ここでいう上下は、建物の鉛直方向の上下であり、図示の上下とも一致する。また、左右は、上記鉛直方向に直交する水平面における水平方向の一方側、他方側であり、図示の左右である。
FIG. 1 is a front view showing an earthquake-resistant structure according to an embodiment of the present invention.
The frame of a building to which the energy absorbing member according to the present invention is applied is constructed on a reinforced concrete foundation beam and a foundation beam, and is composed of a steel upper frame made of steel columns, beams, etc. In this example, an earthquake-resistant structure installed on the second floor or above will be described, but the earthquake-resistant structure of the present invention can also be installed on the ground floor. As shown in FIG. 1, the frame has an upper floor beam (upper horizontal member) 5 and a lower floor beam (lower horizontal member) 6. The "up and down" here refers to the top and bottom in the vertical direction of the building, and corresponds to the top and bottom in the illustration. Further, left and right are one side and the other side in the horizontal direction in a horizontal plane perpendicular to the vertical direction, and are the left and right sides in the drawing.

図1に示すように、上階梁5及び下階梁6は、水平方向に延在している。図示は省略しているが、上階梁5及び下階梁6の端は、柱または他の横架材に接合されている。上階梁5及び下階梁6はH形鋼で構成されており、上下フランジには、他の部材をボルト接合するための孔が所定のピッチで穿設されている。 As shown in FIG. 1, the upper floor beam 5 and the lower floor beam 6 extend in the horizontal direction. Although not shown, the ends of the upper floor beam 5 and the lower floor beam 6 are joined to columns or other horizontal members. The upper deck beam 5 and the lower deck beam 6 are made of H-shaped steel, and the upper and lower flanges have holes drilled at a predetermined pitch for bolting other members.

<エネルギー吸収部材>
図2は、エネルギー吸収部材の一例を示す図である。図3Aは、本実施形態で用いているエネルギー吸収部材の配置を示す図である。図3Bは、本実施形態でのエネルギー吸収部材の変形を模式的に示す図である。
エネルギー吸収部材4は、建物に地震等の水平力が作用した際の建物の層間変形に応じてそれ自体が変形等することにより、エネルギーを吸収し建物の揺れを減衰させる機能を有するものである。エネルギー吸収部材4は、略U字の形状をなしており、湾曲部4aと、湾曲部4aの両端のそれぞれから連続して延びる一対の中間部4bと、一対の中間部4bの端からそれぞれ連続して延びる一対の固定部4cと、を有している。一対の中間部4bの一部及び一対の固定部4cは、(非変形状態において)互いに対向する一対の対向部をなしている。エネルギー吸収部材4は矩形の板状の鋼材を曲げ加工することにより、上記の形状(略U字状)となされている。このような形状のエネルギー吸収部材4では、一対の固定部4cが、互いに平行な状態を保ったままその延在方向の相対的変位を正負方向に繰り返すことで、(一方の対向部における湾曲部の近傍部分が湾曲部と略同一の曲げ歪みで湾曲すると共に、他方の対向部における湾曲部の近傍付近が平坦となるような変形が生じて)その変位(変形)に応じた分のエネルギーを吸収することができる。
<Energy absorbing member>
FIG. 2 is a diagram showing an example of an energy absorbing member. FIG. 3A is a diagram showing the arrangement of energy absorbing members used in this embodiment. FIG. 3B is a diagram schematically showing deformation of the energy absorbing member in this embodiment.
The energy absorbing member 4 has the function of absorbing energy and attenuating the shaking of the building by deforming itself in accordance with the interstory deformation of the building when a horizontal force such as an earthquake acts on the building. . The energy absorbing member 4 has a substantially U-shape, and includes a curved portion 4a, a pair of intermediate portions 4b extending continuously from both ends of the curved portion 4a, and a pair of intermediate portions 4b extending continuously from each end of the pair of intermediate portions 4b. It has a pair of fixing parts 4c that extend as shown in FIG. Parts of the pair of intermediate portions 4b and the pair of fixed portions 4c form a pair of opposing portions that oppose each other (in the non-deformed state). The energy absorbing member 4 is formed into the above-mentioned shape (approximately U-shape) by bending a rectangular plate-shaped steel material. In the energy absorbing member 4 having such a shape, the pair of fixing parts 4c repeat relative displacement in the positive and negative directions in the extending direction while maintaining a parallel state to each other, so that (the curved part in one opposing part) The part near the curved part curves with almost the same bending strain as the curved part, and the part near the curved part in the other opposing part becomes flat, and the energy corresponding to the displacement (deformation) is absorbed. Can be absorbed.

エネルギー吸収部材4は、耐震要素の固定部4cにはボルト接合の為の孔が複数穿設されており、後述のとおり取付部材の当接面に対しボルト接合等により接合されるが、この接合によって湾曲形状に変形することが拘束され平坦形状が維持される領域が固定部4cであり、円弧状の湾曲形状が常に維持される領域が湾曲部4aであり、湾曲形状と平坦形状とに変化し得る領域が中間部4bである。 The energy absorbing member 4 has a plurality of holes drilled in the fixed part 4c of the seismic element for bolt connection, and is connected to the contact surface of the mounting member by bolt connection etc. as described later. The fixed portion 4c is a region where deformation into a curved shape is restrained and a flat shape is maintained, and the region where an arcuate curved shape is always maintained is a curved portion 4a, which changes between a curved shape and a flat shape. The possible region is the intermediate portion 4b.

また、一方の中間部4bにおける固定部4cとの境界部まで湾曲形状に変形し、他方の中間部4bにおける湾曲部4aとの境界部まで平坦となった状態が、エネルギー吸収部材4の相対的変位が最大値に達した状態であり、エネルギー吸収部材4の相対的変位の最大量は、接合の位置により決定される(接合の位置が湾曲部4aから遠いほど、固定部4cの領域は小さくなり、エネルギー吸収部材4の相対的変位の最大量は大きくなる)。 In addition, the state in which one intermediate portion 4b is deformed into a curved shape up to the boundary with the fixed portion 4c, and the other intermediate portion 4b is flat until the boundary with the curved portion 4a is the relative state of the energy absorbing member 4. This is a state in which the displacement has reached the maximum value, and the maximum amount of relative displacement of the energy absorbing member 4 is determined by the position of the joint (the farther the position of the joint is from the curved part 4a, the smaller the area of the fixed part 4c is. (The maximum amount of relative displacement of the energy absorbing member 4 becomes large).

本例では、図1に示すように、一対のエネルギー吸収部材4が、湾曲部4a同士を対向させて(湾曲部4a同士が最も近接するように又は接するように)配置されている。湾曲部4a間は、例えば5~10mm間隔を空けることが、湾曲部4aの変形を考慮する上で好ましいが、間隔を設けないこともできる。なお、エネルギー吸収部材4を一対で設ける場合は、固定部4c同士が対向するように(固定部4c同士が最も近接するように又は接するように)配置することもできる。また、エネルギー吸収部材4(対ではなく単体)の長さ寸法は、例えば、250~400mmとすることができ、高さ寸法(一方の当接面から他方の当接面までの寸法)及び幅寸法は、例えば、50~150mmとすることができる。 In this example, as shown in FIG. 1, a pair of energy absorbing members 4 are arranged with their curved portions 4a facing each other (with the curved portions 4a closest to each other or in contact with each other). It is preferable to leave an interval of, for example, 5 to 10 mm between the curved parts 4a in consideration of deformation of the curved parts 4a, but it is also possible to provide no interval. In addition, when the energy absorbing members 4 are provided as a pair, they can also be arranged so that the fixing parts 4c face each other (so that the fixing parts 4c are closest to each other or in contact with each other). Further, the length dimension of the energy absorbing member 4 (single body, not a pair) can be, for example, 250 to 400 mm, and the height dimension (dimension from one contact surface to the other contact surface) and width The dimensions can be, for example, 50 to 150 mm.

エネルギー吸収部材4は、湾曲部4a同士が対向するように(湾曲部4a同士が近接するように又は接するように)一対設けられており、エネルギー吸収部材4の一対分の長さ(一対のエネルギー吸収部4における同じ側の固定部2cのうち一方の固定部2cの端部から他方の固定部2cの端部までの寸法)に等しい寸法を有する当接面(挟持部)を有する一対の部材で挟持されている。対比として図4Aに示すように、エネルギー吸収部材4の一対を、固定部4cを対向させて配置した場合、エネルギー吸収部材4の一対分の長さの当接面(挟持部)を有する一対の部材で両側から挟持していても、図4Bに模式的に示すように、相対的に変位した際に、上下の拘束力がなくなることから、局所的に当初の曲げ歪みとは異なる不均質な曲げ歪みでの変形を生じやすくなり、一対の対向部が相対的に変位することによってエネルギーを吸収するという本来の機能が十分に発揮できなくなるおそれがある。これに対し、図3Aに示すように、エネルギー吸収部材4の一対を、湾曲部4a同士を対向させて配置することより、図3Bに模式的に示すように、相対的変位が生じた際にも、エネルギー吸収部材4が常に一対の部材の当接面からの拘束を受けた状態であるため、当初の曲げ歪みと同じ曲げ歪みでの変形が維持され、その結果、エネルギーを十分に吸収して、建物の揺れをより一層速やかに減衰させることができる。また、このような構成によれば、エネルギー吸収部材4を設置する為に必要なスペースも最小限に抑えることもできる。 A pair of energy absorbing members 4 are provided so that the curved portions 4a face each other (so that the curved portions 4a are close to each other or in contact with each other), and the length of the pair of energy absorbing members 4 (the length of the pair of energy absorbing members 4) is A pair of members each having an abutment surface (a clamping part) having a dimension equal to the dimension from the end of one of the fixed parts 2c on the same side of the absorbent part 4 to the end of the other fixed part 2c. It is held between. As a comparison, as shown in FIG. 4A, when a pair of energy absorbing members 4 are arranged with their fixing parts 4c facing each other, a pair of energy absorbing members 4 having contact surfaces (clamping parts) as long as the pair of energy absorbing members 4 are arranged. Even if the members are clamped from both sides, as schematically shown in Figure 4B, the vertical restraining force is lost when the relative displacement occurs, resulting in locally uneven bending strain that differs from the original bending strain. This tends to cause deformation due to bending strain, and there is a risk that the original function of absorbing energy cannot be fully exerted due to relative displacement of the pair of opposing parts. On the other hand, as shown in FIG. 3A, by arranging the pair of energy absorbing members 4 with their curved portions 4a facing each other, as shown schematically in FIG. 3B, when a relative displacement occurs, Also, since the energy absorbing member 4 is always constrained by the abutting surfaces of the pair of members, the deformation with the same bending strain as the initial bending strain is maintained, and as a result, energy is not sufficiently absorbed. Therefore, the shaking of the building can be attenuated even more quickly. Moreover, according to such a configuration, the space required for installing the energy absorbing member 4 can also be minimized.

エネルギー吸収部材4は上階梁または下階梁に対し、直接あるいは取付部材3を介して接合されている。取付部材3は、一対の棒状部材3a、3bと、エネルギー吸収部材4が接合される当接面(挟持部)を有する連結部材3cと、を有する。一対の棒状部材3a、3bは、角形鋼管で構成されている。また、連結部材3cは、矩形板状の水平片と、矩形板状であって水平片から垂下した垂下片と、を有する断面略T字状の部材である。水平片は、その上面が当接面とされており、エネルギー吸収部材2をボルト接合する為の孔が穿設されている。一対の棒状部材3a、3bはその一端側が連結部材3cの両端部に溶接等によって接合されており、取付部材3は全体として正面視で略等脚台形状をなしている。 The energy absorbing member 4 is connected to the upper deck beam or the lower deck beam directly or via the attachment member 3. The mounting member 3 includes a pair of rod-shaped members 3a and 3b, and a connecting member 3c having an abutment surface (a clamping portion) to which the energy absorbing member 4 is joined. The pair of rod-shaped members 3a and 3b are made of square steel pipes. Further, the connecting member 3c is a member having a substantially T-shaped cross section and having a rectangular plate-shaped horizontal piece and a rectangular plate-shaped hanging piece that hangs down from the horizontal piece. The upper surface of the horizontal piece serves as an abutment surface, and a hole for bolting the energy absorbing member 2 is bored therein. One end of the pair of rod-shaped members 3a and 3b is joined to both ends of the connecting member 3c by welding or the like, and the mounting member 3 as a whole has a substantially isosceles trapezoid shape when viewed from the front.

取付部材3は、一対の棒状部材3a、3bの他端側が上階梁5または下階梁6にボルト接合等により接合されることによって、上階梁5から垂下または下階梁6から起立している。取付部材3は、地震等の水平力により架構に層間変位(上階梁5と下階梁6との水平方向の相対的変位)が生じた際に、一対の当接面の間に層間変位に応じた相対的な変位を生じせしめることでエネルギー吸収部材4を変形させる。取付部材3は、その剛性が大きいほど効果的にエネルギー吸収部材4を変形させるが、エネルギー吸収部材4に変形を生じさせる程度の剛性を有していればよく、完全な剛体でなくともよい。 The mounting member 3 hangs down from the upper floor beam 5 or stands up from the lower floor beam 6 by joining the other ends of the pair of rod-shaped members 3a and 3b to the upper floor beam 5 or the lower floor beam 6 by bolting or the like. ing. The mounting member 3 is designed to prevent interstory displacement between a pair of abutting surfaces when interstory displacement (horizontal relative displacement between the upper floor beam 5 and the lower floor beam 6) occurs in the frame due to horizontal force such as an earthquake. The energy absorbing member 4 is deformed by causing a relative displacement according to the energy absorbing member 4. The greater the rigidity of the mounting member 3, the more effectively it deforms the energy absorbing member 4, but the mounting member 3 only needs to have enough rigidity to cause the energy absorbing member 4 to deform, and does not need to be a completely rigid body.

図1(a)に示す形態は、一対の取付部材3を用いてエネルギー吸収部材4を上階梁と下階梁との間の略中間に配置するとともに、一対の取付部材3の当接面(一対の挟持部)に当接しボルト接合により接合した例である。また、図1(b)及び図1(c)に示す形態は、ひとつの取付部材3のみを用いてエネルギー吸収部材4を上階梁近傍または下階梁近傍に配置するとともに、取付部材3の当接面(一方の挟持部)と下階梁または上階梁のフランジ面(他方の挟持部)に当接しボルト接合により接合した例である。いずれ形態においても、エネルギー吸収部材4の一対の固定片2cの間には層間変位(上階梁と下階梁の水平方向の相対的変位)に対応した水平方向の相対的変位が生じ、地震等のエネルギーを吸収することができる。 The form shown in FIG. 1(a) uses a pair of mounting members 3 to dispose an energy absorbing member 4 approximately in the middle between an upper floor beam and a lower floor beam, and a contact surface of the pair of mounting members 3. This is an example in which the parts are brought into contact with each other (a pair of clamping parts) and joined by bolt joints. Furthermore, in the embodiments shown in FIGS. 1(b) and 1(c), the energy absorbing member 4 is placed near the upper floor beam or the lower floor beam using only one mounting member 3, and the energy absorbing member 4 is placed near the upper floor beam or the lower floor beam. This is an example in which the abutting surface (one clamping part) contacts the flange surface (the other clamping part) of the lower deck beam or the upper deck beam and is joined by bolt connection. In either form, relative horizontal displacement occurs between the pair of fixed pieces 2c of the energy absorbing member 4 corresponding to the interstory displacement (relative displacement in the horizontal direction between the upper floor beam and the lower floor beam), and It can absorb energy such as

ここで、エネルギー吸収部材4は、湾曲部と、湾曲部の両端のそれぞれから連続して延びる一対の中間部と、一対の中間部の端からそれぞれ連続して延びる一対の固定部と、を有する層が、複数層重ね合わせられてなる。これにより耐震性能を向上させることができるからである。ここで、重ねる層の層数や各層の厚さ等を調整することにより、容易に、各エネルギー吸収部材4の耐震性能を調整することができる。図示例では、3層41、42、42を重ね合わせた構成を示したが、2層以上であれば良い。層数の上限は、加工可能な範囲であれば特には限定されない。ここで、各層の厚さt1、t2、t3は、特には限定されないが、各層の曲げ歪みが略同じとなるように決定することができる。加えて、例えばエネルギー吸収能力に大きな影響を与える曲げ歪みが同じ場合で仮定すると、複数層にすることにより、材積が小さくなって省スペース化も可能となる。
ここで、図9に示すように、厚みtの部材が、外形半径rで曲げられた際の曲げ歪みεは、
(式)ε=(t/2)/(r-t/2)
で定義される。
一例を示すと、r=88mm、t=16mmの場合、
ε=(t/2)/(r-t/2)=(16/2)/(88-16/2)=8/80=0.1
となり、曲げ歪みは0.1(10%)となる。
なお、奥行き方向の単位長さ当たりの面積S1は、
S1=(88-72)×π/2≒4021.24mm/mm
となる。
一方で、2層で外側の厚みt2=12mm、内側の厚みt1=9mmとすると、外側の層の曲げ歪みは、
ε=(t/2)/(r-t/2)=(12/2)/(66-12/2)=6/60=0.1
となり、10%である。
内側の層の曲げ歪みは、
ε=(t/2)/(r-t/2)=(9/2)/(54-9/2)=4.5/49.5
=0.091
となり、9.1%である。
よって、t=16mmの1層の場合と比較して、上記の2層の場合は、外側の層も内側の層も曲げ歪みが同等以下となり、t=16mmの1層の場合と同等以上の繰り返し性能が期待できる。
一方で、上記の2層の場合の奥行き方向の単位長さ当たりの面積S2は、
S2=(66-45)×π/2≒3661.53mm/mm
となり、S2/S1=3661.53/4021.24≒0.91
となり、材積は91%となる。このように、同等の耐震性能(エネルギー吸収能力)で材積を小さくすることが可能である。
Here, the energy absorbing member 4 has a curved portion, a pair of intermediate portions that extend continuously from both ends of the curved portion, and a pair of fixed portions that extend continuously from the ends of the pair of intermediate portions. The layers are stacked one on top of the other. This is because seismic performance can be improved thereby. Here, by adjusting the number of stacked layers, the thickness of each layer, etc., the seismic performance of each energy absorbing member 4 can be easily adjusted. In the illustrated example, a configuration in which three layers 41, 42, and 42 are stacked is shown, but two or more layers may be used. The upper limit of the number of layers is not particularly limited as long as it is within a processable range. Here, the thicknesses t1, t2, and t3 of each layer are not particularly limited, but can be determined so that the bending strain of each layer is approximately the same. In addition, assuming that the bending strain, which greatly affects the energy absorption capacity, is the same, by using multiple layers, the material volume becomes smaller and space can be saved.
Here, as shown in FIG. 9, when a member with a thickness t is bent with an outer radius r, the bending strain ε is:
(Formula) ε=(t/2)/(rt/2)
Defined by
As an example, when r=88mm and t=16mm,
ε=(t/2)/(rt/2)=(16/2)/(88-16/2)=8/80=0.1
Therefore, the bending strain is 0.1 (10%).
Note that the area S1 per unit length in the depth direction is
S1=(88 2 -72 2 )×π/2≒4021.24mm 2 /mm
becomes.
On the other hand, if there are two layers, the outer thickness t2 = 12 mm and the inner thickness t1 = 9 mm, the bending strain of the outer layer is:
ε=(t/2)/(rt/2)=(12/2)/(66-12/2)=6/60=0.1
Therefore, it is 10%.
The bending strain of the inner layer is
ε=(t/2)/(rt/2)=(9/2)/(54-9/2)=4.5/49.5
=0.091
This is 9.1%.
Therefore, compared to the case of a single layer with t = 16 mm, in the case of the above two layers, the bending strain of both the outer layer and the inner layer is equal to or less than that of the case of a single layer with t = 16 mm. You can expect repeatable performance.
On the other hand, the area S2 per unit length in the depth direction in the case of the above two layers is
S2=(66 2 -45 2 )×π/2≒3661.53mm 2 /mm
So, S2/S1=3661.53/4021.24≒0.91
Therefore, the material volume is 91%. In this way, it is possible to reduce the material volume with the same seismic performance (energy absorption capacity).

ここで、エネルギー吸収部材は、複数層のうち少なくとも互いに接する2層について、内側の層の厚さが、外側の層の厚さより薄いことが好ましい。これにより内側の層と外側の層との曲げ歪みの差を低減することができ、内側の層の疲労が早期に発生してしまうのを抑制することができ、また、内側の層の加工が容易となるからである。同様の理由により、特に、最も内側の層の厚さが最も薄いことが好ましい。また、同様の理由により、エネルギー吸収部材は、図2等に示すように、層の厚さが、湾曲部の曲げ歪み中心側である内側の層であるほど薄いことが好ましい(図2の例では、t1<t2<t3)。ここで、エネルギー吸収部材は、複数層が固定部において互いに溶接されて一体化されていることが好ましい。各層の間で滑りが発生せず、期待通りのエネルギー吸収能力が得られる(例えば、ボルトで締結されているだけは、ボルトとボルト孔の遊びにより各層の間ですべりが生じて期待通りのエネルギー吸収能力が得られないおそれがある)。また、複数層を予め一体化しておくことで取り付け作業の際の作業性がよい。エネルギー吸収部材は、複数層の積層方向に隣接する2層の長さが異なることにより段差部が形成され、該段差部において隅肉溶接が施されて一体化された状態であることが好ましい。図2に示したようなエネルギー吸収部材を容易に製造することができるからである。例えば、図5A(正面図)に示すように、外側層より内側層の長さが短く、それにより生じた段差部において隅肉溶接(黒塗りで示している)を施して一体化することができる。また、図5B(側面図)に示すように、長さの短い層を長さの長い層で挟み込み、段差部に隅肉溶接(黒塗りで示している)を施すことによっても一体化することができる。あるいは、図5C(側面図)に示すように、外側層に孔を設けて孔の周縁部に隅肉溶接(黒塗りで示している)を施すこともできる。ここで、一例としては、耐震性能を向上させる対象となる建物において、外形寸法が同一であり、上記湾曲部と、上記一対の中間部と、上記一対の固定部と、を有する層が、複数層重ね合わせられてなるエネルギー吸収部材であって、層数及び/又は層の厚さが異なるものを複数種準備する工程と、上記建物においてエネルギー吸収部材を設置可能な設置部を1つ以上設定する工程と、当該建物において、各エネルギー吸収部材が負担する水平荷重を算出する工程と、算出した水平荷重に基づいて、設置部に設置するエネルギー吸収部材の種類を上記複数種の中から選択する工程と、を含む方法によって、建物の耐震設計をすることができる。このような方法によれば、エネルギー吸収部材を設置する位置を集約させることができ、間取りの設計自由度が増す。また、エネルギー吸収部材を重ね合わせる層の数や厚さを変えて耐震性能を向上させても、エネルギー吸収部材を重ね合わせる層の数や厚さに関係なく外形寸法が同一であるため、エネルギー吸収部材の設置部を常に同一の納まりとすることができる。 Here, in the energy absorbing member, it is preferable that at least two layers of the plurality of layers that are in contact with each other have an inner layer thinner than an outer layer. This makes it possible to reduce the difference in bending strain between the inner layer and the outer layer, suppress early fatigue of the inner layer, and reduce the processing of the inner layer. This is because it becomes easier. For similar reasons, it is particularly preferred that the innermost layer has the thinnest thickness. Furthermore, for the same reason, as shown in FIG. 2, it is preferable that the layer thickness of the energy absorbing member is thinner as the inner layer is closer to the bending strain center of the curved portion (example of FIG. 2). Then, t1<t2<t3). Here, it is preferable that the energy absorbing member has a plurality of layers welded together at the fixing portion to be integrated. No slippage occurs between each layer, and the expected energy absorption ability is obtained (for example, if the layers are only fastened with bolts, slippage occurs between each layer due to the play between the bolts and bolt holes, and the expected energy absorption capacity is obtained. absorption capacity may not be obtained). Further, by integrating the plurality of layers in advance, workability during installation work is improved. It is preferable that the energy absorbing member has a stepped portion formed by two layers adjacent to each other in the stacking direction having different lengths, and is integrated by fillet welding at the stepped portion. This is because an energy absorbing member as shown in FIG. 2 can be easily manufactured. For example, as shown in Figure 5A (front view), the length of the inner layer is shorter than the outer layer, and it is possible to perform fillet welding (shown in black) at the resulting step to integrate the layer. can. Alternatively, as shown in Figure 5B (side view), a shorter layer can be sandwiched between longer layers, and the step can be integrated by fillet welding (shown in black). Can be done. Alternatively, as shown in FIG. 5C (side view), a hole may be provided in the outer layer and a fillet weld (shown in black) may be applied to the periphery of the hole. Here, as an example, in a building whose seismic performance is to be improved, a plurality of layers having the same external dimensions and having the curved portion, the pair of intermediate portions, and the pair of fixed portions are provided. A step of preparing multiple types of energy absorbing members formed by stacking layers, each having a different number of layers and/or layer thickness, and setting one or more installation parts in the building where the energy absorbing members can be installed. a step of calculating the horizontal load borne by each energy absorbing member in the building; and a step of selecting the type of energy absorbing member to be installed in the installation part from among the above multiple types based on the calculated horizontal load. A building can be seismically designed by a method that includes the following steps: According to such a method, the positions where the energy absorbing members are installed can be concentrated, and the degree of freedom in designing the floor plan increases. In addition, even if the seismic performance is improved by changing the number and thickness of the layers of energy-absorbing materials, the external dimensions remain the same regardless of the number and thickness of the layers of energy-absorbing materials. The installation parts of the members can always be placed in the same space.

1:耐震構造、
3:取付部材、
4:エネルギー吸収部材、
5:上階梁(上部横架材)、
6:下階梁(下部横架材)、
7:柱、
8:柱、
6:下部横架材
1: Earthquake-resistant structure,
3: Mounting member,
4: Energy absorbing member,
5: Upper floor beam (upper horizontal member),
6: Lower floor beam (lower horizontal member),
7: Pillar,
8: Pillar,
6: Lower horizontal member

Claims (5)

湾曲部と、前記湾曲部の両端のそれぞれから連続して延びる一対の中間部と、前記一対の中間部の端からそれぞれ連続して延びる一対の固定部と、を有する層が、複数層重ね合わせられてなり、
前記複数層の各層の曲げ歪みが略等しいことを特徴とする、エネルギー吸収部材。
A plurality of layers are stacked, each having a curved portion, a pair of intermediate portions extending continuously from both ends of the curved portion, and a pair of fixing portions continuously extending from the ends of the pair of intermediate portions. Becomes tired,
An energy absorbing member characterized in that each layer of the plurality of layers has approximately the same bending strain .
湾曲部と、前記湾曲部の両端のそれぞれから連続して延びる一対の中間部と、前記一対の中間部の端からそれぞれ連続して延びる一対の固定部と、を有する層が、複数層重ね合わせられてなり、
前記複数層が前記固定部において互いに溶接されて一体化されていることを特徴とする、エネルギー吸収部材。
A plurality of layers are stacked, each having a curved portion, a pair of intermediate portions extending continuously from both ends of the curved portion, and a pair of fixing portions continuously extending from the ends of the pair of intermediate portions. Becomes tired,
An energy absorbing member, characterized in that the plurality of layers are welded together and integrated at the fixed portion .
前記複数層のうち少なくとも互いに接する2層について、内側の前記層の厚さが、外側
の前記層の厚さより薄い、請求項1又は2に記載のエネルギー吸収部材。
The energy absorbing member according to claim 1 or 2 , wherein the thickness of the inner layer is thinner than the thickness of the outer layer of at least two layers that are in contact with each other among the plurality of layers.
前記層の厚さが、内側の層であるほど薄い、請求項に記載のエネルギー吸収部材。 The energy absorbing member according to claim 3 , wherein the inner layer has a thinner thickness. 前記複数層の積層方向に隣接する2層のうちの一方の固定部の一部の欠損により段差部が形成され、該段差部において隅肉溶接されて一体化されている、請求項に記載のエネルギー吸収部材。 A stepped portion is formed by a partial loss of a fixing portion of one of the two layers adjacent in the stacking direction of the plurality of layers, and the plurality of layers are integrally welded by fillet welding at the stepped portion . energy absorbing member.
JP2020064840A 2020-03-31 2020-03-31 energy absorbing material Active JP7362534B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020064840A JP7362534B2 (en) 2020-03-31 2020-03-31 energy absorbing material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020064840A JP7362534B2 (en) 2020-03-31 2020-03-31 energy absorbing material

Publications (2)

Publication Number Publication Date
JP2021162099A JP2021162099A (en) 2021-10-11
JP7362534B2 true JP7362534B2 (en) 2023-10-17

Family

ID=78003003

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020064840A Active JP7362534B2 (en) 2020-03-31 2020-03-31 energy absorbing material

Country Status (1)

Country Link
JP (1) JP7362534B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102673242B1 (en) * 2022-08-18 2024-06-05 한양대학교 산학협력단 Laminated steel dampers for seismic retrofit of existing old buildings

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009270336A (en) 2008-05-07 2009-11-19 Daiwa House Industry Co Ltd Vibration control structure of building
JP2010180936A (en) 2009-02-04 2010-08-19 Bridgestone Corp Layer structure object for damping device
JP2013038923A (en) 2011-08-08 2013-02-21 Yaskawa Electric Corp Servo motor and encoder
JP2017061808A (en) 2015-09-25 2017-03-30 新日鐵住金株式会社 Earthquake resistant wall structure

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0819788B2 (en) * 1989-12-11 1996-02-28 佐藤工業株式会社 Elastic-plastic damper
JPH0893847A (en) * 1994-09-29 1996-04-12 Kurashiki Kako Co Ltd Vibration isolating mount

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009270336A (en) 2008-05-07 2009-11-19 Daiwa House Industry Co Ltd Vibration control structure of building
JP2010180936A (en) 2009-02-04 2010-08-19 Bridgestone Corp Layer structure object for damping device
JP2013038923A (en) 2011-08-08 2013-02-21 Yaskawa Electric Corp Servo motor and encoder
JP2017061808A (en) 2015-09-25 2017-03-30 新日鐵住金株式会社 Earthquake resistant wall structure

Also Published As

Publication number Publication date
JP2021162099A (en) 2021-10-11

Similar Documents

Publication Publication Date Title
JP4729134B1 (en) Metal plate for vibration control and building structure
JP5486278B2 (en) How to install the viscoelastic damper
JP5908688B2 (en) Exposed-type column base structure of steel column
JP5822203B2 (en) Brace damper
KR100516332B1 (en) Steel structure equipped with connection damper
JP7362534B2 (en) energy absorbing material
JP7228344B2 (en) Joint structure of reinforced concrete frame and brace and precast member
JP4070117B2 (en) Vibration control device
JP2010216611A (en) Seismic response control metallic plate
JP6838877B2 (en) Buckling restraint brace damper
JP7388968B2 (en) Earthquake-resistant structure
JP6717636B2 (en) Vibration control device
KR20200065414A (en) Joint damper structure and joint structure for beam to column connection
JP6277234B2 (en) Damping device and building
JP2531053B2 (en) Steel damper mounting structure
JP2813122B2 (en) Elasto-plastic damper
JP4563875B2 (en) An improved method for reducing the eccentricity of a structure using corrugated steel sheets and a structure having a reduced eccentricity using corrugated steel sheets
JP5421236B2 (en) Building wall damping structure construction method
JP2001115599A (en) Steel structural member and frame member
JP7368849B2 (en) Vibration damper
JP7479262B2 (en) Seismic dampers and seismic frame structures
KR102311233B1 (en) Emergency reinforced steel hysteresis damper for secondary deformation control in the event of an earthquake in a wooden structure
JP3895866B2 (en) Multistage history damper
JP7384732B2 (en) Earthquake reinforcement structure
JP4305230B2 (en) Column and beam joint structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230615

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230620

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230629

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230919

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231004

R150 Certificate of patent or registration of utility model

Ref document number: 7362534

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150