JP7388968B2 - Earthquake-resistant structure - Google Patents

Earthquake-resistant structure Download PDF

Info

Publication number
JP7388968B2
JP7388968B2 JP2020064849A JP2020064849A JP7388968B2 JP 7388968 B2 JP7388968 B2 JP 7388968B2 JP 2020064849 A JP2020064849 A JP 2020064849A JP 2020064849 A JP2020064849 A JP 2020064849A JP 7388968 B2 JP7388968 B2 JP 7388968B2
Authority
JP
Japan
Prior art keywords
pair
energy absorbing
horizontal member
earthquake
absorbing members
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020064849A
Other languages
Japanese (ja)
Other versions
JP2021161764A (en
Inventor
高夫 小山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Homes Corp
Original Assignee
Asahi Kasei Homes Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Homes Corp filed Critical Asahi Kasei Homes Corp
Priority to JP2020064849A priority Critical patent/JP7388968B2/en
Publication of JP2021161764A publication Critical patent/JP2021161764A/en
Application granted granted Critical
Publication of JP7388968B2 publication Critical patent/JP7388968B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Vibration Dampers (AREA)
  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Vibration Prevention Devices (AREA)

Description

本発明は、耐震構造に関するものである。 The present invention relates to an earthquake-resistant structure.

従来、一対のU字形のダンパーを用いた制震構造や耐震構造が知られている。これらの構造では、ダンパーが常に同一の曲率で湾曲するように構成するのが、エネルギー吸収性能上好ましい。 Conventionally, vibration control structures and earthquake-resistant structures using a pair of U-shaped dampers have been known. In these structures, it is preferable in terms of energy absorption performance that the damper is always curved with the same curvature.

その為、特許文献1では、一対の拘束部を一対のダンパーよりも左右または上下方向に長く延出させることで、建物の層間変位が大きくなりそれに伴い一対の拘束部の相対的変位が大きくなった場合も、一対の拘束部からダンパーがはみ出さないようにして、ダンパーの不均質な変形を抑制するように構成されている。 Therefore, in Patent Document 1, by making the pair of restraining parts extend longer in the horizontal or vertical direction than the pair of dampers, the interstory displacement of the building increases, and the relative displacement of the pair of restraining parts increases accordingly. Even in such a case, the damper is configured to prevent the damper from protruding from the pair of restraining portions, thereby suppressing uneven deformation of the damper.

特開2009-270336号公報JP2009-270336A

しかしながら、特許文献1に記載の技術では、一対の拘束部が一対のダンパーよりも長く延出するので、付近の他の部材との干渉を避ける必要があり、パネルフレームの幅を大きくしなければならず、建物の間取りの設計の自由度を低下させるおそれがあった。 However, in the technology described in Patent Document 1, since the pair of restraint parts extend longer than the pair of dampers, it is necessary to avoid interference with other nearby members, and the width of the panel frame must be increased. Therefore, there was a risk that the degree of freedom in designing the floor plan of the building would be reduced.

このような事情に鑑みて、本発明は、コンパクト化を図りつつ、高い耐震性能を確保することができる、耐震構造を提供することを目的とする。 In view of such circumstances, an object of the present invention is to provide an earthquake-resistant structure that can ensure high earthquake-resistant performance while achieving compactness.

本発明の要旨構成は、以下の通りである。
(1)上部横架材と、下部横架材と、前記上部横架材及び前記下部横架材の間に設けられた一対のエネルギー吸収部材と、を備え、
前記エネルギー吸収部材は、湾曲部と、前記湾曲部の両端のそれぞれから連続して延びる一対の中間部と、前記一対の中間部の端からそれぞれ連続して延びる一対の固定部と、を有するとともに、前記上部横架材と前記下部横架材との水平方向の相対的変位に応じて、前記一対の固定部にその延在方向の相対的変位が生じるように構成されており、
前記一対のエネルギー吸収部材は、一対の挟持部によって前記湾曲部同士が対向するように近接した状態で挟持されている、耐震構造。
The gist of the present invention is as follows.
(1) comprising an upper horizontal member, a lower horizontal member, and a pair of energy absorbing members provided between the upper horizontal member and the lower horizontal member,
The energy absorbing member includes a curved portion, a pair of intermediate portions that extend continuously from both ends of the curved portion, and a pair of fixed portions that continuously extend from the ends of the pair of intermediate portions. , the pair of fixed portions is configured to undergo relative displacement in the extending direction in response to relative displacement in the horizontal direction between the upper horizontal member and the lower horizontal member;
The pair of energy absorbing members have an earthquake-resistant structure, wherein the pair of energy absorbing members are held close to each other by a pair of holding parts so that the curved parts face each other.

(2)前記一対のエネルギー吸収部材の同じ側の前記固定部のうち一方の前記固定部の端部から他方の前記固定部の端部までの寸法に等しい寸法を有する前記挟持部によって挟持されている、上記(1)に記載の耐震構造。 (2) being held by the holding part having a dimension equal to the dimension from the end of one of the fixed parts on the same side of the pair of energy absorbing members to the end of the other fixed part; The earthquake-resistant structure described in (1) above.

(3)前記一対のエネルギー吸収部材を複数対、連続的に挟持しうる挟持部を有する、上記(1)に記載の耐震構造。 (3) The earthquake-resistant structure according to (1) above, including a holding part that can continuously hold a plurality of pairs of the pair of energy absorbing members.

(4)前記一対の挟持部は、複数対の前記エネルギー吸収部材を、上下方向に連続的に設置しうるように構成されている、上記(3)に記載の耐震構造。 (4) The earthquake-resistant structure according to (3) above, wherein the pair of holding parts are configured so that a plurality of pairs of the energy absorbing members can be installed continuously in the vertical direction.

(5)前記エネルギー吸収部材は、複数層で構成されており、内側の層の厚みは外側の層の厚みよりも小さい、上記(1)~(4)のいずれかに記載の耐震構造。 (5) The earthquake-resistant structure according to any one of (1) to (4) above, wherein the energy absorbing member is composed of multiple layers, and the thickness of the inner layer is smaller than the thickness of the outer layer.

本発明によれば、コンパクト化を図りつつ、高い耐震性能を確保することができる、耐震構造を提供することができる。 According to the present invention, it is possible to provide an earthquake-resistant structure that is compact and can ensure high earthquake-resistant performance.

本発明の第1の実施形態にかかる耐震構造を示す正面図である。FIG. 1 is a front view showing an earthquake-resistant structure according to a first embodiment of the present invention. エネルギー吸収部材の一例を示す図である。It is a figure which shows an example of an energy absorption member. 本実施形態で用いているエネルギー吸収部材の配置を示す図である。FIG. 3 is a diagram showing the arrangement of energy absorbing members used in this embodiment. 本実施形態でのエネルギー吸収部材の変形を模式的に示す図である。It is a figure which shows typically the deformation of the energy absorption member in this embodiment. エネルギー吸収部材の対比となる配置を示す図である。It is a figure which shows the arrangement|positioning which becomes comparison of an energy absorption member. 対比となるエネルギー吸収部材の変形を模式的に示す図である。It is a figure which shows typically the deformation|transformation of the energy absorption member used as a comparison. 本発明の第2の実施形態にかかる耐震構造を示す正面図である。FIG. 7 is a front view showing an earthquake-resistant structure according to a second embodiment of the present invention. 本発明の第3の実施形態にかかる耐震構造を示す正面図である。FIG. 7 is a front view showing an earthquake-resistant structure according to a third embodiment of the present invention. 本発明の第4の実施形態にかかる耐震構造を示す正面図である。FIG. 7 is a front view showing an earthquake-resistant structure according to a fourth embodiment of the present invention. 本発明の第5の実施形態にかかる耐震構造を示す正面図である。It is a front view showing the earthquake-resistant structure concerning the 5th embodiment of the present invention. エネルギー吸収部材の一例を示す図である。It is a figure which shows an example of an energy absorption member. 層を重ね合わせる手法の一例を示す図である。It is a figure which shows an example of the method of superimposing layers. 層を重ね合わせる手法の他の例を示す図である。It is a figure which shows the other example of the method of superimposing layers. 層を重ね合わせる手法の別の例を示す図である。FIG. 7 is a diagram illustrating another example of a method of overlapping layers.

以下、本発明の実施形態について図面を参照して詳細に例示説明する。 Hereinafter, embodiments of the present invention will be illustrated in detail with reference to the drawings.

[第1の実施形態]
図1は、本発明の第1の実施形態にかかる耐震構造を示す正面図である。
本発明にかかる耐震構造が適用される建物の架構は、鉄筋コンクリート造の基礎梁及び基礎梁の上に構築され、鋼材の柱・梁等からなる鉄骨造の上部架構で構成されている。本例では、2階以上に設置される耐震構造について説明するが、本発明の耐震構造は、地上階にも設置することができる。図1に示すように、架構は、上階梁(上部横架材)5、下階梁(下部横架材)6を有している。ここでいう上下は、建物の鉛直方向の上下であり、図示の上下とも一致する。また、左右は、上記鉛直方向に直交する水平面における水平方向の一方側、他方側であり、図示の左右である。
[First embodiment]
FIG. 1 is a front view showing an earthquake-resistant structure according to a first embodiment of the present invention.
The frame of a building to which the earthquake-resistant structure according to the present invention is applied is constructed on a reinforced concrete foundation beam and a foundation beam, and is composed of a steel upper frame made of steel columns, beams, etc. In this example, an earthquake-resistant structure installed on the second floor or above will be described, but the earthquake-resistant structure of the present invention can also be installed on the ground floor. As shown in FIG. 1, the frame has an upper floor beam (upper horizontal member) 5 and a lower floor beam (lower horizontal member) 6. The "up and down" here refers to the top and bottom in the vertical direction of the building, and corresponds to the top and bottom in the illustration. Further, left and right are one side and the other side in the horizontal direction in a horizontal plane perpendicular to the vertical direction, and are the left and right sides in the drawing.

図1に示すように、上階梁5及び下階梁6は、水平方向に延在している。図示は省略しているが、上階梁5及び下階梁6の端は、柱または他の横架材に接合されている。上階梁5及び下階梁6はH形鋼で構成されており、上下フランジには、他の部材をボルト接合するための孔が所定のピッチで穿設されている。 As shown in FIG. 1, the upper floor beam 5 and the lower floor beam 6 extend in the horizontal direction. Although not shown, the ends of the upper floor beam 5 and the lower floor beam 6 are joined to columns or other horizontal members. The upper deck beam 5 and the lower deck beam 6 are made of H-shaped steel, and the upper and lower flanges have holes drilled at a predetermined pitch for bolting other members.

<エネルギー吸収部材>
図2は、エネルギー吸収部材の一例を示す図である。図3Aは、本実施形態で用いているエネルギー吸収部材の配置を示す図である。図3Bは、本実施形態でのエネルギー吸収部材の変形を模式的に示す図である。
エネルギー吸収部材4は、建物に地震等の水平力が作用した際の建物の層間変形に応じてそれ自体が変形等することにより、エネルギーを吸収し建物の揺れを減衰させる機能を有するものである。エネルギー吸収部材4は、略U字の形状をなしており、湾曲部4aと、湾曲部4aの両端のそれぞれから連続して延びる一対の中間部4bと、一対の中間部4bの端からそれぞれ連続して延びる一対の固定部4cと、を有している。一対の中間部4bの一部及び一対の固定部4cは、(非変形状態において)互いに対向する一対の対向部をなしている。エネルギー吸収部材4は矩形の板状の鋼材を曲げ加工することにより、上記の形状(略U字状)となされている。このような形状のエネルギー吸収部材4では、一対の固定部4cが、互いに平行な状態を保ったままその延在方向の相対的変位を正負方向に繰り返すことで、(一方の対向部における湾曲部の近傍部分が湾曲部と略同一の曲げ歪みで湾曲すると共に、他方の対向部における湾曲部の近傍付近が平坦となるような変形が生じて)その変位(変形)に応じた分のエネルギーを吸収することができる。
<Energy absorbing member>
FIG. 2 is a diagram showing an example of an energy absorbing member. FIG. 3A is a diagram showing the arrangement of energy absorbing members used in this embodiment. FIG. 3B is a diagram schematically showing deformation of the energy absorbing member in this embodiment.
The energy absorbing member 4 has the function of absorbing energy and attenuating the shaking of the building by deforming itself in accordance with the interstory deformation of the building when a horizontal force such as an earthquake acts on the building. . The energy absorbing member 4 has a substantially U-shape, and includes a curved portion 4a, a pair of intermediate portions 4b extending continuously from both ends of the curved portion 4a, and a pair of intermediate portions 4b extending continuously from each end of the pair of intermediate portions 4b. It has a pair of fixing parts 4c that extend as shown in FIG. Parts of the pair of intermediate portions 4b and the pair of fixed portions 4c form a pair of opposing portions that oppose each other (in the non-deformed state). The energy absorbing member 4 is formed into the above-mentioned shape (approximately U-shape) by bending a rectangular plate-shaped steel material. In the energy absorbing member 4 having such a shape, the pair of fixing parts 4c repeat relative displacement in the positive and negative directions in the extending direction while maintaining a parallel state to each other, so that (the curved part in one opposing part) The part near the curved part curves with almost the same bending strain as the curved part, and the part near the curved part in the other opposing part becomes flat, and the energy corresponding to the displacement (deformation) is absorbed. Can be absorbed.

エネルギー吸収部材4は、耐震要素の固定部4cにはボルト接合の為の孔が複数穿設されており、後述のとおり取付部材の当接面に対しボルト接合等により接合されるが、この接合によって湾曲形状に変形することが拘束され平坦形状が維持される領域が固定部4cであり、円弧状の湾曲形状が常に維持される領域が湾曲部4aであり、湾曲形状と平坦形状とに変化し得る領域が中間部4bである。 The energy absorbing member 4 has a plurality of holes drilled in the fixed part 4c of the seismic element for bolt connection, and is connected to the contact surface of the mounting member by bolt connection etc. as described later. The fixed portion 4c is a region where deformation into a curved shape is restrained and a flat shape is maintained, and the region where an arcuate curved shape is always maintained is a curved portion 4a, which changes between a curved shape and a flat shape. The possible region is the intermediate portion 4b.

また、一方の中間部4bにおける固定部4cとの境界部まで湾曲形状に変形し、他方の中間部4bにおける湾曲部4aとの境界部まで平坦となった状態が、エネルギー吸収部材4の相対的変位が最大値に達した状態であり、エネルギー吸収部材4の相対的変位の最大量は、接合の位置により決定される(接合の位置が湾曲部4aから遠いほど、固定部4cの領域は小さくなり、エネルギー吸収部材4の相対的変位の最大量は大きくなる)。 In addition, the state in which one intermediate portion 4b is deformed into a curved shape up to the boundary with the fixed portion 4c, and the other intermediate portion 4b is flat until the boundary with the curved portion 4a is the relative state of the energy absorbing member 4. This is a state in which the displacement has reached the maximum value, and the maximum amount of relative displacement of the energy absorbing member 4 is determined by the position of the joint (the farther the position of the joint is from the curved part 4a, the smaller the area of the fixed part 4c is. (The maximum amount of relative displacement of the energy absorbing member 4 becomes large).

本例では、図1に示すように、一対のエネルギー吸収部材4が、湾曲部4a同士を対向させて(湾曲部4a同士が最も近接するように又は接するように)配置されている。湾曲部4a間は、例えば5~10mm間隔を空けることが、湾曲部4aの変形を考慮する上で好ましいが、間隔を設けないこともできる。なお、エネルギー吸収部材4を一対で設ける場合は、固定部4c同士が対向するように(固定部4c同士が最も近接するように又は接するように)配置することもできる。また、エネルギー吸収部材4(対ではなく単体)の長さ寸法は、例えば、250~400mmとすることができ、高さ寸法(一方の当接面から他方の当接面までの寸法)及び幅寸法は、例えば、50~150mmとすることができる。 In this example, as shown in FIG. 1, a pair of energy absorbing members 4 are arranged with their curved portions 4a facing each other (with the curved portions 4a closest to each other or in contact with each other). It is preferable to leave an interval of, for example, 5 to 10 mm between the curved parts 4a in consideration of deformation of the curved parts 4a, but it is also possible to provide no interval. In addition, when the energy absorbing members 4 are provided as a pair, they can also be arranged so that the fixing parts 4c face each other (so that the fixing parts 4c are closest to each other or in contact with each other). Further, the length dimension of the energy absorbing member 4 (single body, not a pair) can be, for example, 250 to 400 mm, and the height dimension (dimension from one contact surface to the other contact surface) and width. The dimensions can be, for example, 50 to 150 mm.

エネルギー吸収部材4は、湾曲部4a同士が対向するように(湾曲部4a同士が近接するように又は接するように)一対設けられており、エネルギー吸収部材4の一対分の長さ(一対のエネルギー吸収部4における同じ側の固定部2cのうち一方の固定部2cの端部から他方の固定部2cの端部までの寸法)に等しい寸法を有する当接面(挟持部)を有する一対の部材で挟持されている。対比として図4Aに示すように、エネルギー吸収部材4の一対を、固定部4cを対向させて配置した場合、エネルギー吸収部材4の一対分の長さの当接面(挟持部)を有する一対の部材で両側から挟持していても、図4Bに模式的に示すように、相対的に変位した際に、上下の拘束力がなくなることから、局所的に当初の曲げ歪みとは異なる不均質な曲げ歪みでの変形を生じやすくなり、一対の対向部が相対的に変位することによってエネルギーを吸収するという本来の機能が十分に発揮できなくなるおそれがある。これに対し、図3Aに示すように、エネルギー吸収部材4の一対を、湾曲部4a同士を対向させて配置することより、図3Bに模式的に示すように、相対的変位が生じた際にも、エネルギー吸収部材4が常に一対の部材の当接面からの拘束を受けた状態であるため、当初の曲げ歪みと同じ曲げ歪みでの変形が維持され、その結果、エネルギーを十分に吸収して、建物の揺れをより一層速やかに減衰させることができる。また、このような構成によれば、エネルギー吸収部材4を設置する為に必要なスペースも最小限に抑えることもできる。 A pair of energy absorbing members 4 are provided so that the curved portions 4a face each other (so that the curved portions 4a are close to each other or in contact with each other), and the length of the pair of energy absorbing members 4 (the length of the pair of energy absorbing members 4) is A pair of members each having an abutment surface (a clamping part) having a dimension equal to the dimension from the end of one of the fixed parts 2c on the same side of the absorbent part 4 to the end of the other fixed part 2c. It is held between. As a comparison, as shown in FIG. 4A, when a pair of energy absorbing members 4 are arranged with their fixing parts 4c facing each other, a pair of energy absorbing members 4 having contact surfaces (clamping parts) as long as the pair of energy absorbing members 4 are arranged. Even if the members are clamped from both sides, as schematically shown in Figure 4B, the vertical restraining force is lost when the relative displacement occurs, resulting in locally uneven bending strain that differs from the original bending strain. This tends to cause deformation due to bending strain, and there is a risk that the original function of absorbing energy cannot be fully exerted due to relative displacement of the pair of opposing parts. On the other hand, as shown in FIG. 3A, by arranging the pair of energy absorbing members 4 with their curved portions 4a facing each other, as shown schematically in FIG. 3B, when a relative displacement occurs, Also, since the energy absorbing member 4 is always constrained by the abutment surfaces of the pair of members, the deformation with the same bending strain as the initial bending strain is maintained, and as a result, energy is not sufficiently absorbed. Therefore, the shaking of the building can be attenuated even more quickly. Moreover, according to such a configuration, the space required for installing the energy absorbing member 4 can also be minimized.

エネルギー吸収部材4は上階梁または下階梁に対し、直接あるいは取付部材3を介して接合されている。取付部材3は、一対の棒状部材3a、3bと、エネルギー吸収部材4が接合される当接面(挟持部)を有する連結部材3cと、を有する。一対の棒状部材3a、3bは、角形鋼管で構成されている。また、連結部材3cは、矩形板状の水平片と、矩形板状であって水平片から垂下した垂下片と、を有する断面略T字状の部材である。水平片は、その上面が当接面とされており、エネルギー吸収部材2をボルト接合する為の孔が穿設されている。一対の棒状部材3a、3bはその一端側が連結部材3cの両端部に溶接等によって接合されており、取付部材3は全体として正面視で略等脚台形状をなしている。 The energy absorbing member 4 is connected to the upper deck beam or the lower deck beam directly or via the attachment member 3. The mounting member 3 includes a pair of rod-shaped members 3a and 3b, and a connecting member 3c having an abutment surface (a clamping portion) to which the energy absorbing member 4 is joined. The pair of rod-shaped members 3a and 3b are made of square steel pipes. Further, the connecting member 3c is a member having a substantially T-shaped cross section and having a rectangular plate-shaped horizontal piece and a rectangular plate-shaped hanging piece that hangs down from the horizontal piece. The upper surface of the horizontal piece serves as an abutment surface, and a hole for bolting the energy absorbing member 2 is bored therein. One end of the pair of rod-shaped members 3a and 3b is joined to both ends of the connecting member 3c by welding or the like, and the mounting member 3 as a whole has a substantially isosceles trapezoid shape when viewed from the front.

取付部材3は、一対の棒状部材3a、3bの他端側が上階梁5または下階梁6にボルト接合等により接合されることによって、上階梁5から垂下または下階梁6から起立している。取付部材3は、地震等の水平力により架構に層間変位(上階梁5と下階梁6との水平方向の相対的変位)が生じた際に、一対の当接面の間に層間変位に応じた相対的な変位を生じせしめることでエネルギー吸収部材4を変形させる。取付部材3は、その剛性が大きいほど効果的にエネルギー吸収部材4を変形させるが、エネルギー吸収部材4に変形を生じさせる程度の剛性を有していればよく、完全な剛体でなくともよい。 The mounting member 3 hangs down from the upper floor beam 5 or stands up from the lower floor beam 6 by joining the other ends of the pair of rod-shaped members 3a and 3b to the upper floor beam 5 or the lower floor beam 6 by bolting or the like. ing. The mounting member 3 is designed to prevent interstory displacement between a pair of abutting surfaces when interstory displacement (horizontal relative displacement between the upper floor beam 5 and the lower floor beam 6) occurs in the frame due to horizontal force such as an earthquake. The energy absorbing member 4 is deformed by causing a relative displacement according to the energy absorbing member 4. The greater the rigidity of the mounting member 3, the more effectively it deforms the energy absorbing member 4, but the mounting member 3 only needs to have enough rigidity to cause the energy absorbing member 4 to deform, and does not need to be a completely rigid body.

図1(a)に示す形態は、一対の取付部材3を用いてエネルギー吸収部材4を上階梁と下階梁との間の略中間に配置するとともに、一対の取付部材3の当接面(一対の挟持部)に当接しボルト接合により接合した例である。また、図1(b)及び図1(c)に示す形態は、ひとつの取付部材3のみを用いてエネルギー吸収部材4を上階梁近傍または下階梁近傍に配置するとともに、取付部材3の当接面(一方の挟持部)と下階梁または上階梁のフランジ面(他方の挟持部)に当接しボルト接合により接合した例である。いずれ形態においても、エネルギー吸収部材4の一対の固定片2cの間には層間変位(上階梁と下階梁の水平方向の相対的変位)に対応した水平方向の相対的変位が生じ、地震等のエネルギーを吸収することができる。 The form shown in FIG. 1(a) uses a pair of mounting members 3 to dispose an energy absorbing member 4 approximately in the middle between an upper floor beam and a lower floor beam, and a contact surface of the pair of mounting members 3. This is an example in which the parts are brought into contact with each other (a pair of clamping parts) and joined by bolt joints. Furthermore, in the embodiments shown in FIGS. 1(b) and 1(c), the energy absorbing member 4 is placed near the upper floor beam or the lower floor beam using only one mounting member 3, and the energy absorbing member 4 is placed near the upper floor beam or the lower floor beam. This is an example in which the abutting surface (one clamping part) contacts the flange surface (the other clamping part) of the lower deck beam or the upper deck beam and is joined by bolt connection. In either form, relative horizontal displacement occurs between the pair of fixed pieces 2c of the energy absorbing member 4 corresponding to the interstory displacement (relative displacement in the horizontal direction between the upper floor beam and the lower floor beam), and It can absorb energy such as

[第2の実施形態]
図5は、本発明の第2の実施形態にかかる耐震構造を示す正面図である。図5に示す第2の実施形態では、エネルギー吸収部材4の水平方向の両側に一対の柱7、8が配置されている点で、図1に示す第1の実施形態と異なっている(なお、図1(a)と図5(a)、図1(b)と図5(b)、及び図1(c)と図5(c)をそれぞれ対比させている)。
柱7及び柱8は、それぞれ、角形鋼管からなり、上端は上階梁5にボルト接合等によって接合され、下端は下階梁6にボルト接合等によって接合されている。
そして、一対の棒状部材2a、2bの他端側は、柱7及び柱8の側面にそれぞれボルト接合等によって接合されている。
このような形態とすることで、上階梁5及び下階梁6が柱7及び柱8によって連結され、上階梁5及び下階梁6の鉛直方向の変形が抑制されるので、層間変位がエネルギー吸収部材4に対してよりダイレクトに伝わり、エネルギー吸収部材4のエネルギー吸収効果をより高めることができる。
[Second embodiment]
FIG. 5 is a front view showing an earthquake-resistant structure according to a second embodiment of the present invention. The second embodiment shown in FIG. 5 differs from the first embodiment shown in FIG. 1 in that a pair of columns 7 and 8 are arranged on both sides of the energy absorption member 4 in the horizontal direction ( , FIG. 1(a) and FIG. 5(a), FIG. 1(b) and FIG. 5(b), and FIG. 1(c) and FIG. 5(c), respectively).
The columns 7 and 8 are each made of square steel pipes, and their upper ends are joined to the upper floor beam 5 by bolts or the like, and their lower ends are joined to the lower floor beam 6 by bolts or the like.
The other ends of the pair of rod-like members 2a and 2b are joined to the side surfaces of the pillars 7 and 8, respectively, by bolts or the like.
With this configuration, the upper floor beam 5 and the lower floor beam 6 are connected by the columns 7 and 8, and vertical deformation of the upper floor beam 5 and the lower floor beam 6 is suppressed, so interstory displacement is transmitted more directly to the energy absorbing member 4, and the energy absorbing effect of the energy absorbing member 4 can be further enhanced.

[第3の実施形態]
図6は、本発明の第3の実施形態にかかる耐震構造を示す正面図である。第2の実施形態と同一の構成については説明を省略し、異なる点について以下説明する。図6(a)の形態では、一対の取付部材3が、左右方向に並び、エネルギー吸収部材4は上下方向に延在するように配置されている。各取付部材3は、他方の柱から一方の柱の方向に延びている。各取付部材3の棒状部材3a、3bは、柱の側面にボルト接合等にて接合されている。図6(b)(c)の形態では、取付部材3は、一方の柱から他方の柱の方向の近傍まで延びており、その当接面(一方の挟持部)は他方の柱の側面に対向しており、エネルギー吸収部材4は上下方向に延在するように配置されている。エネルギー吸収部材4の一方の固定部4cは、他方の柱の上下方向の中間部側面(他方の挟持部)に直接ボルト接合等により接合され、他方の固定部4cは取付部材3の当接面にボルト接合等により接合されている。図6(a)~(c)の形態のいずれにおいても、エネルギー吸収部材4を、上下方向に複数並ぶように設置してもよい。
[Third embodiment]
FIG. 6 is a front view showing an earthquake-resistant structure according to a third embodiment of the present invention. The explanation of the same configuration as the second embodiment will be omitted, and the different points will be explained below. In the form of FIG. 6(a), the pair of attachment members 3 are arranged in the left-right direction, and the energy absorbing member 4 is arranged to extend in the up-down direction. Each attachment member 3 extends in the direction of one column from the other column. The rod-shaped members 3a and 3b of each mounting member 3 are joined to the side surface of the column by bolting or the like. In the form of FIGS. 6(b) and 6(c), the mounting member 3 extends from one pillar to the vicinity of the other pillar, and its contact surface (one clamping part) is on the side surface of the other pillar. The energy absorbing members 4 are arranged so as to extend in the vertical direction. One fixed part 4c of the energy absorbing member 4 is directly joined to the vertically intermediate side surface (the other clamping part) of the other column by bolting or the like, and the other fixed part 4c is connected to the contact surface of the mounting member 3. are connected by bolts, etc. In any of the embodiments shown in FIGS. 6(a) to 6(c), a plurality of energy absorbing members 4 may be installed in a line in the vertical direction.

[第4の実施形態]
図7は、本発明の第4の実施形態にかかる耐震構造を示す正面図である。図7に示す第4の実施形態では、一対の柱7、8が比較的近い位置に配置されている(例えば対向する側面同士の離間寸法が20~30cm程度である)。また、エネルギー吸収部材4は、一対の固定部4cがそれぞれ一対の柱7、8の側面(一対の挟持部)に直接当接されてボルト接合等により接合されている。エネルギー吸収部材4は、一対の柱7、8に対し複数対が上下方向に連続的に設置し得るように構成されている(柱の側面には、予め所定の位置にボルト接合用の孔が穿設されている)。エネルギー吸収部材4は、一対(2個)を一単位として設置される。必要とされる水平耐力に応じて、設置するエネルギー吸収部材4の対の個数が決定される(例えば一対のみでもよい)。
[Fourth embodiment]
FIG. 7 is a front view showing an earthquake-resistant structure according to a fourth embodiment of the present invention. In the fourth embodiment shown in FIG. 7, a pair of pillars 7 and 8 are arranged relatively close to each other (for example, the distance between opposing side surfaces is about 20 to 30 cm). Further, in the energy absorbing member 4, the pair of fixing parts 4c are directly abutted on the side surfaces (pair of clamping parts) of the pair of pillars 7 and 8, respectively, and are joined by bolt joints or the like. The energy absorbing member 4 is configured so that a plurality of pairs of energy absorbing members 4 can be installed continuously in the vertical direction on a pair of pillars 7 and 8 (holes for bolt connection are formed in advance at predetermined positions on the side surfaces of the pillars). perforated). The energy absorbing members 4 are installed in pairs (two pieces) as one unit. The number of pairs of energy absorbing members 4 to be installed is determined depending on the required horizontal strength (for example, only one pair may be used).

[第5の実施形態]
図8は、本発明の第5の実施形態にかかる耐震構造を示す正面図である。取付部材3は、柱の側面に当接される当接面を有する第一の当接片と、エネルギー吸収部材4の固定部4cが当接される当接面(挟持部)を有する第二当接片と、第一当接片と第二当接片との間に介在する略等脚台形状の板材からなる連結片とで構成されている。第二の当接片は、複数対のエネルギー吸収部材4を上下方向に連続的に設置し得るように構成されている(予め所定の位置にボルト接合用の孔が穿設されている)。エネルギー吸収部材4は、一対(2個)を一単位として設置される。必要とされる水平耐力に応じて、設置するエネルギー吸収部材4の対の個数が決定される(例えば一対のみでもよい)。
[Fifth embodiment]
FIG. 8 is a front view showing an earthquake-resistant structure according to a fifth embodiment of the present invention. The mounting member 3 includes a first contact piece having a contact surface that comes into contact with the side surface of the column, and a second contact piece that has a contact surface (pinching part) that comes into contact with the fixing part 4c of the energy absorbing member 4. It is composed of an abutting piece and a connecting piece made of a substantially isosceles trapezoidal plate interposed between the first abutting piece and the second abutting piece. The second abutting piece is configured such that a plurality of pairs of energy absorbing members 4 can be installed continuously in the vertical direction (holes for bolt connection are previously drilled at predetermined positions). The energy absorbing members 4 are installed in pairs (two pieces) as one unit. The number of pairs of energy absorbing members 4 to be installed is determined depending on the required horizontal strength (for example, only one pair may be used).

図9は、エネルギー吸収部材の一例を示す図である。ここで、エネルギー吸収部材4は、湾曲部と、湾曲部の両端のそれぞれから連続して延びる一対の中間部と、一対の中間部の端からそれぞれ連続して延びる一対の固定部と、を有する層が、複数層重ね合わせられてなることが好ましい。耐震性能をさらに向上させることができるからである。ここで、重ねる層の層数や各層の厚さ等を調整することにより、容易に、各エネルギー吸収部材4の耐震性能を調整することができる。図示例では、3層41、42、42を重ね合わせた構成を示したが、2層以上であれば良い。層数の上限は、加工可能な範囲であれば特には限定されない。ここで、各層の厚さt1、t2、t3は、特には限定されないが、各層の曲げ歪みが略同じとなるように決定することができる。加えて、例えばエネルギー吸収能力に大きな影響を与える曲げ歪みが同じ場合で仮定すると、複数層にすることにより、材積が小さくなって省スペース化も可能となる。
ここで、図9に示すように、厚みtの部材が、外形半径rで曲げられた際の曲げ歪みεは、
(式)ε=(t/2)/(r-t/2)
で定義される。
一例を示すと、r=88mm、t=16mmの場合、
ε=(t/2)/(r-t/2)=(16/2)/(88-16/2)=8/80=0.1
となり、曲げ歪みは0.1(10%)となる。
なお、奥行き方向の単位長さ当たりの面積S1は、
S1=(88-72)×π/2≒4021.24mm/mm
となる。
一方で、2層で外側の厚みt2=12mm、内側の厚みt1=9mmとすると、外側の層の曲げ歪みは、
ε=(t/2)/(r-t/2)=(12/2)/(66-12/2)=6/60=0.1
となり、10%である。
内側の層の曲げ歪みは、
ε=(t/2)/(r-t/2)=(9/2)/(54-9/2)=4.5/49.5
=0.091
となり、9.1%である。
よって、t=16mmの1層の場合と比較して、上記の2層の場合は、外側の層も内側の層も曲げ歪みが同等以下となり、t=16mmの1層の場合と同等以上の繰り返し性能が期待できる。
一方で、上記の2層の場合の奥行き方向の単位長さ当たりの面積S2は、
S2=(66-45)×π/2≒3661.53mm/mm
となり、S2/S1=3661.53/4021.24≒0.91
となり、材積は91%となる。このように、同等の耐震性能(エネルギー吸収能力)で材積を小さくすることが可能である。
FIG. 9 is a diagram showing an example of an energy absorbing member. Here, the energy absorbing member 4 has a curved portion, a pair of intermediate portions that extend continuously from both ends of the curved portion, and a pair of fixed portions that extend continuously from the ends of the pair of intermediate portions. Preferably, the layers are stacked one on top of the other. This is because seismic performance can be further improved. Here, by adjusting the number of stacked layers, the thickness of each layer, etc., the seismic performance of each energy absorbing member 4 can be easily adjusted. In the illustrated example, a configuration in which three layers 41, 42, and 42 are stacked is shown, but two or more layers may be used. The upper limit of the number of layers is not particularly limited as long as it is within a processable range. Here, the thicknesses t1, t2, and t3 of each layer are not particularly limited, but can be determined so that the bending strain of each layer is approximately the same. In addition, assuming that the bending strain, which greatly affects the energy absorption capacity, is the same, by using multiple layers, the material volume becomes smaller and space can be saved.
Here, as shown in FIG. 9, when a member with a thickness t is bent with an outer radius r, the bending strain ε is:
(Formula) ε=(t/2)/(rt/2)
Defined by
As an example, when r=88mm and t=16mm,
ε=(t/2)/(rt/2)=(16/2)/(88-16/2)=8/80=0.1
Therefore, the bending strain is 0.1 (10%).
Note that the area S1 per unit length in the depth direction is
S1=(88 2 -72 2 )×π/2≒4021.24mm 2 /mm
becomes.
On the other hand, if there are two layers, the outer thickness t2 = 12 mm and the inner thickness t1 = 9 mm, the bending strain of the outer layer is:
ε=(t/2)/(rt/2)=(12/2)/(66-12/2)=6/60=0.1
Therefore, it is 10%.
The bending strain of the inner layer is
ε=(t/2)/(rt/2)=(9/2)/(54-9/2)=4.5/49.5
=0.091
This is 9.1%.
Therefore, compared to the case of a single layer with t = 16 mm, in the case of the above two layers, the bending strain of both the outer layer and the inner layer is equal to or less than that of the case of a single layer with t = 16 mm. You can expect repeatable performance.
On the other hand, the area S2 per unit length in the depth direction in the case of the above two layers is
S2=(66 2 -45 2 )×π/2≒3661.53mm 2 /mm
So, S2/S1=3661.53/4021.24≒0.91
Therefore, the material volume is 91%. In this way, it is possible to reduce the material volume with the same seismic performance (energy absorption capacity).

ここで、エネルギー吸収部材は、複数層のうち少なくとも2層について、内側の層の厚さが、外側の層の厚さより薄いことが好ましい。これにより内側の層と外側の層との曲げ歪みの差を低減することができ、内側の層の疲労が早期に発生してしまうのを抑制することができ、また、内側の層の加工が容易となるからである。同様の理由により、特に、最も内側の層の厚さが最も薄いことが好ましい。また、同様の理由により、エネルギー吸収部材は、図9等に示すように、層の厚さが、湾曲部の曲げ歪み中心側である内側の層であるほど薄いことが好ましい(図9の例では、t1<t2<t3)。ここで、エネルギー吸収部材は、複数層が溶接されて一体化された状態であることが好ましい。現場での施工が容易となるからである。エネルギー吸収部材は、複数層の積層方向に隣接する2層の長さが異なることにより段差部が形成され、該段差部において隅肉溶接が施されて一体化された状態であることが好ましい。図9に示したようなエネルギー吸収部材を容易に製造することができるからである。例えば、図10A(正面図)に示すように、外側層より内側層の長さが短く、それにより生じた段差部において隅肉溶接(黒塗りで示している)を施して一体化することができる。また、図10B(側面図)に示すように、長さの短い層を長さの長い層で挟み込み、段差部に隅肉溶接(黒塗りで示している)を施すことによっても一体化することができる。あるいは、図10C(側面図)に示すように、外側層に孔を設けて孔の周縁部に隅肉溶接(黒塗りで示している)を施すこともできる。ここで、一例としては、耐震性能を向上させる対象となる建物において、外形寸法が同一であり、上記湾曲部と、上記一対の中間部と、上記一対の固定部と、を有する層が、複数層重ね合わせられてなるエネルギー吸収部材であって、層数及び/又は層の厚さが異なるものを複数種準備する工程と、上記建物においてエネルギー吸収部材を設置可能な設置部を1つ以上設定する工程と、当該建物において、各エネルギー吸収部材が負担する水平荷重を算出する工程と、算出した水平荷重に基づいて、設置部に設置するエネルギー吸収部材の種類を上記複数種の中から選択する工程と、を含む方法によって、建物の耐震設計をすることができる。このような方法によれば、エネルギー吸収部材を設置する位置を集約させることができ、間取りの設計自由度が増す。また、エネルギー吸収部材を重ね合わせる層の数や厚さを変えて耐震性能を向上させても、エネルギー吸収部材を重ね合わせる層の数や厚さに関係なく外形寸法が同一であるため、エネルギー吸収部材の設置部を常に同一の納まりとすることができる。 Here, it is preferable that the thickness of the inner layer of at least two of the plurality of layers in the energy absorbing member is thinner than the thickness of the outer layer. This makes it possible to reduce the difference in bending strain between the inner layer and the outer layer, suppress early fatigue of the inner layer, and reduce the processing of the inner layer. This is because it becomes easier. For similar reasons, it is particularly preferred that the innermost layer has the thinnest thickness. Furthermore, for the same reason, as shown in FIG. 9, it is preferable that the layer thickness of the energy absorbing member is thinner as the inner layer is closer to the bending strain center of the curved portion (the example of FIG. 9). Then, t1<t2<t3). Here, it is preferable that the energy absorbing member is in a state in which a plurality of layers are welded and integrated. This is because on-site construction becomes easier. It is preferable that the energy absorbing member has a stepped portion formed by two layers adjacent to each other in the stacking direction having different lengths, and is integrated by fillet welding at the stepped portion. This is because an energy absorbing member as shown in FIG. 9 can be easily manufactured. For example, as shown in FIG. 10A (front view), the length of the inner layer is shorter than that of the outer layer, and it is possible to perform fillet welding (shown in black) at the resulting step to integrate the inner layer. can. Alternatively, as shown in Figure 10B (side view), a shorter layer can be sandwiched between longer layers, and the step can be integrated by fillet welding (shown in black). I can do it. Alternatively, as shown in FIG. 10C (side view), a hole may be provided in the outer layer and a fillet weld (shown in black) may be applied to the periphery of the hole. Here, as an example, in a building whose seismic performance is to be improved, a plurality of layers having the same external dimensions and having the above-mentioned curved part, the above-mentioned pair of intermediate parts, and the above-mentioned pair of fixed parts are provided. A process of preparing multiple types of energy absorbing members formed by stacking layers, each having a different number of layers and/or layer thickness, and setting one or more installation parts in the building where the energy absorbing members can be installed. a step of calculating the horizontal load borne by each energy absorbing member in the building; and a step of selecting the type of energy absorbing member to be installed in the installation part from among the above multiple types based on the calculated horizontal load. A building can be seismically designed by a method that includes the following steps: According to such a method, the positions where the energy absorbing members are installed can be concentrated, and the degree of freedom in designing the floor plan increases. Furthermore, even if the seismic performance is improved by changing the number and thickness of the layers of energy-absorbing materials, the external dimensions remain the same regardless of the number and thickness of the layers of energy-absorbing materials. The installation parts of the members can always be placed in the same space.

1:耐震構造、
3:取付部材、
4:エネルギー吸収部材、
5:上階梁(上部横架材)、
6:下階梁(下部横架材)、
7:柱、
8:柱
1: Earthquake-resistant structure,
3: Mounting member,
4: Energy absorbing member,
5: Upper floor beam (upper horizontal member),
6: Lower floor beam (lower horizontal member),
7: Pillar,
8: Pillar

Claims (5)

上部横架材と、下部横架材と、前記上部横架材及び前記下部横架材の間に設けられた一対のエネルギー吸収部材と、を備え、
前記エネルギー吸収部材は、湾曲部と、前記湾曲部の両端のそれぞれから連続して延びる一対の中間部と、前記一対の中間部の端からそれぞれ連続して延びる一対の固定部と、を有するとともに、前記上部横架材と前記下部横架材との水平方向の相対的変位に応じて、前記一対の固定部にその延在方向の相対的変位が生じるように構成されており、
前記一対のエネルギー吸収部材は、一対の挟持部によって前記湾曲部同士が対向するように近接した状態で挟持されており、
前記一対のエネルギー吸収部材の同じ側の前記固定部のうち一方の前記固定部の端部から他方の前記固定部の端部までの寸法に等しい寸法を有する前記挟持部によって挟持されている、耐震構造。
An upper horizontal member, a lower horizontal member, and a pair of energy absorbing members provided between the upper horizontal member and the lower horizontal member,
The energy absorbing member includes a curved portion, a pair of intermediate portions that extend continuously from both ends of the curved portion, and a pair of fixed portions that continuously extend from the ends of the pair of intermediate portions. , the pair of fixed portions is configured to undergo relative displacement in the extending direction in response to relative displacement in the horizontal direction between the upper horizontal member and the lower horizontal member;
The pair of energy absorbing members are held in close proximity by a pair of holding parts, with the curved parts facing each other,
Earthquake-resistant, which is held by the holding parts having a dimension equal to the dimension from the end of one of the fixed parts on the same side of the pair of energy absorbing members to the end of the other fixed part. structure.
上部横架材と、下部横架材と、前記上部横架材及び前記下部横架材の間に設けられた一対のエネルギー吸収部材と、を備え、
前記エネルギー吸収部材は、湾曲部と、前記湾曲部の両端のそれぞれから連続して延びる一対の中間部と、前記一対の中間部の端からそれぞれ連続して延びる一対の固定部と、を有するとともに、前記上部横架材と前記下部横架材との水平方向の相対的変位に応じて、前記一対の固定部にその延在方向の相対的変位が生じるように構成されており、
前記一対のエネルギー吸収部材は、一対の挟持部によって前記湾曲部同士が対向するように近接した状態で挟持されており、
前記一対のエネルギー吸収部材を複数対、連続的に挟持しうる挟持部を有し、
前記一対の挟持部は、複数対の前記エネルギー吸収部材を、上下方向に連続的に設置しうるように構成されている、耐震構造。
An upper horizontal member, a lower horizontal member, and a pair of energy absorbing members provided between the upper horizontal member and the lower horizontal member,
The energy absorbing member includes a curved portion, a pair of intermediate portions that extend continuously from both ends of the curved portion, and a pair of fixed portions that continuously extend from the ends of the pair of intermediate portions. , the pair of fixed portions is configured to undergo relative displacement in the extending direction in response to relative displacement in the horizontal direction between the upper horizontal member and the lower horizontal member;
The pair of energy absorbing members are held in close proximity by a pair of holding parts, with the curved parts facing each other,
having a holding part that can continuously hold a plurality of pairs of the pair of energy absorbing members;
The seismic structure is such that the pair of clamping parts are configured to allow a plurality of pairs of the energy absorbing members to be installed continuously in the vertical direction.
上部横架材と、下部横架材と、前記上部横架材及び前記下部横架材の間に設けられた一対のエネルギー吸収部材と、を備え、
前記エネルギー吸収部材は、湾曲部と、前記湾曲部の両端のそれぞれから連続して延びる一対の中間部と、前記一対の中間部の端からそれぞれ連続して延びる一対の固定部と、を有するとともに、前記上部横架材と前記下部横架材との水平方向の相対的変位に応じて、前記一対の固定部にその延在方向の相対的変位が生じるように構成されており、
前記一対のエネルギー吸収部材は、一対の挟持部によって前記湾曲部同士が対向するように近接した状態で挟持されており、
前記エネルギー吸収部材は、複数層で構成されており、内側の層の厚みは外側の層の厚みよりも小さい、耐震構造。
An upper horizontal member, a lower horizontal member, and a pair of energy absorbing members provided between the upper horizontal member and the lower horizontal member,
The energy absorbing member includes a curved portion, a pair of intermediate portions that extend continuously from both ends of the curved portion, and a pair of fixed portions that continuously extend from the ends of the pair of intermediate portions. , the pair of fixed portions is configured to undergo relative displacement in the extending direction in response to relative displacement in the horizontal direction between the upper horizontal member and the lower horizontal member;
The pair of energy absorbing members are held in close proximity by a pair of holding parts, with the curved parts facing each other,
The energy absorbing member has an earthquake-resistant structure that is composed of multiple layers, and the thickness of the inner layer is smaller than the thickness of the outer layer.
前記エネルギー吸収部材は、複数層で構成されており、内側の層の厚みは外側の層の厚みよりも小さい、請求項1又は2に記載の耐震構造。 The earthquake-resistant structure according to claim 1 or 2, wherein the energy absorbing member is composed of multiple layers, and the thickness of the inner layer is smaller than the thickness of the outer layer. 前記一対のエネルギー吸収部材を複数対、連続的に挟持しうる挟持部を有する、請求項3に記載の耐震構造。 The earthquake-resistant structure according to claim 3, further comprising a holding portion that can continuously hold a plurality of pairs of the pair of energy absorbing members .
JP2020064849A 2020-03-31 2020-03-31 Earthquake-resistant structure Active JP7388968B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020064849A JP7388968B2 (en) 2020-03-31 2020-03-31 Earthquake-resistant structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020064849A JP7388968B2 (en) 2020-03-31 2020-03-31 Earthquake-resistant structure

Publications (2)

Publication Number Publication Date
JP2021161764A JP2021161764A (en) 2021-10-11
JP7388968B2 true JP7388968B2 (en) 2023-11-29

Family

ID=78002871

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020064849A Active JP7388968B2 (en) 2020-03-31 2020-03-31 Earthquake-resistant structure

Country Status (1)

Country Link
JP (1) JP7388968B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010116779A1 (en) 2009-03-30 2010-10-14 国立大学法人名古屋大学 Vibration control device for beam frame body
JP2012082668A (en) 2010-02-16 2012-04-26 Norimine Okura Fastener
JP2017061808A (en) 2015-09-25 2017-03-30 新日鐵住金株式会社 Earthquake resistant wall structure

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010116779A1 (en) 2009-03-30 2010-10-14 国立大学法人名古屋大学 Vibration control device for beam frame body
JP2012082668A (en) 2010-02-16 2012-04-26 Norimine Okura Fastener
JP2017061808A (en) 2015-09-25 2017-03-30 新日鐵住金株式会社 Earthquake resistant wall structure

Also Published As

Publication number Publication date
JP2021161764A (en) 2021-10-11

Similar Documents

Publication Publication Date Title
JP4729134B1 (en) Metal plate for vibration control and building structure
JP6054913B2 (en) Elastic-plastic hysteretic damper
JP5908688B2 (en) Exposed-type column base structure of steel column
KR100516332B1 (en) Steel structure equipped with connection damper
JP7362534B2 (en) energy absorbing material
JP4070117B2 (en) Vibration control device
JP2010216611A (en) Seismic response control metallic plate
JP6589922B2 (en) Beam reinforcement structure and beam reinforcement method
JP7388968B2 (en) Earthquake-resistant structure
JP6838877B2 (en) Buckling restraint brace damper
JP6717636B2 (en) Vibration control device
JP2602888Y2 (en) Elasto-plastic damper
JP2531053B2 (en) Steel damper mounting structure
JP2813122B2 (en) Elasto-plastic damper
JP4563875B2 (en) An improved method for reducing the eccentricity of a structure using corrugated steel sheets and a structure having a reduced eccentricity using corrugated steel sheets
JP5421236B2 (en) Building wall damping structure construction method
JP6976653B2 (en) Axial force member
JP4994009B2 (en) Buildings with steel frame vibration control frames
JP2010007395A (en) Vibration control wall using corrugated steel plate
JP4971697B2 (en) Load bearing wall frame
JP7368849B2 (en) Vibration damper
JP4305230B2 (en) Column and beam joint structure
JP2001115599A (en) Steel structural member and frame member
JP7487649B2 (en) Vibration control system and vibration control method
JP7479262B2 (en) Seismic dampers and seismic frame structures

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230912

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230913

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230921

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231114

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231116

R150 Certificate of patent or registration of utility model

Ref document number: 7388968

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150