JP7362525B2 - Crystal oscillator - Google Patents

Crystal oscillator Download PDF

Info

Publication number
JP7362525B2
JP7362525B2 JP2020054189A JP2020054189A JP7362525B2 JP 7362525 B2 JP7362525 B2 JP 7362525B2 JP 2020054189 A JP2020054189 A JP 2020054189A JP 2020054189 A JP2020054189 A JP 2020054189A JP 7362525 B2 JP7362525 B2 JP 7362525B2
Authority
JP
Japan
Prior art keywords
excitation electrode
crystal
crystal piece
axis
piece
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020054189A
Other languages
Japanese (ja)
Other versions
JP2021158422A (en
Inventor
重隆 加賀
正積 窪田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon Dempa Kogyo Co Ltd
Original Assignee
Nihon Dempa Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Dempa Kogyo Co Ltd filed Critical Nihon Dempa Kogyo Co Ltd
Priority to JP2020054189A priority Critical patent/JP7362525B2/en
Publication of JP2021158422A publication Critical patent/JP2021158422A/en
Application granted granted Critical
Publication of JP7362525B2 publication Critical patent/JP7362525B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Description

本発明は、励振電極の周囲に傾斜部が形成されたATカットの水晶振動子に関する。 The present invention relates to an AT-cut crystal resonator in which a sloped portion is formed around an excitation electrode.

厚み滑り振動する水晶振動子では、外周付近の厚さを薄くしたいわゆるコンベックス形状の水晶片を用いることによって、振動エネルギーを水晶片に閉じ込めて、不要振動を抑圧することができる。しかし、水晶片をコンベックス形状に形成するためには、加工の手間及びコストがかかるという問題がある。 In a crystal resonator that vibrates through thickness shear, by using a so-called convex-shaped crystal piece that is thinner near the outer periphery, vibration energy can be confined in the crystal piece and unnecessary vibrations can be suppressed. However, there is a problem in that forming a crystal piece into a convex shape requires processing time and cost.

そこで、特許文献1では、水晶片は平板状のままで、両主面に形成される励振電極それぞれの縁に励振電極の厚さが漸減する傾斜部を形成することで、コンベックス形状の効果を生じさせて、水晶片の加工の手間及びコストを削減する旨が示されている。 Therefore, in Patent Document 1, the effect of the convex shape is improved by forming an inclined part where the thickness of the excitation electrode gradually decreases at the edge of each excitation electrode formed on both principal surfaces, while the crystal piece remains flat. It has been shown that the effort and cost of processing the crystal piece can be reduced by causing the crystal blank to occur.

特開2002-217675JP2002-217675 特開2018-98592JP2018-98592

一方、特許文献2には、特許文献1に開示された水晶振動子の構造、すなわち、水晶片の両両面に設ける励振電極それぞれが、縁に傾斜部を有したものであると、周波数調整のために励振電極をトリミングする際に傾斜部が消失して、振動エネルギーの損失が大きくなる場合があることが、記載されている(特許文献2の例えば図4、段落26等)。そして、その改善を図るため、水晶片の一方の主面に形成する第1励振電極は全体が一様な厚さのものとし、他方の主面に形成する第2励振電極は一定の厚さで形成される主厚部及び主厚部の周囲に形成され主厚部に接する部分から外に向かい厚さが徐々に薄くなる傾斜部を有するものとし、かつ、主厚部は第1励振電極の厚さよりも厚くする構造が記載されている。 On the other hand, Patent Document 2 discloses that the structure of the crystal resonator disclosed in Patent Document 1, that is, that each of the excitation electrodes provided on both sides of the crystal piece has a sloped portion at the edge allows frequency adjustment. Therefore, it is described that when the excitation electrode is trimmed, the slope portion may disappear and the loss of vibration energy may become large (for example, FIG. 4, paragraph 26, etc. of Patent Document 2). In order to improve this, the first excitation electrode formed on one main surface of the crystal blank has a uniform thickness throughout, and the second excitation electrode formed on the other main surface has a constant thickness. The main thick part has a main thick part formed around the main thick part and a slope part formed around the main thick part and whose thickness gradually becomes thinner toward the outside from the part in contact with the main thick part, and the main thick part is the first excitation electrode. A structure in which the thickness is thicker than that is described.

この特許文献2に開示された水晶振動子は、第1励振電極側を周波数調整することによって、周波数調整をしても振動損失の悪化の程度を軽減できるものであった。
しかしながら、特許文献2は、具体的な周波数及び大きさのATカット水晶振動子に関する適正構造の言及は、必ずしも満足のゆくものではなかった。
この出願は上記の点に鑑みなされたものであり、従って、この出願の目的は、一様な厚みの第1励振電極と、外周付近に傾斜部を持つ第2励振電極と、を有したATカット水晶振動子において、個別の周波数において好ましい具体的な構造を提供することにある。
In the crystal resonator disclosed in Patent Document 2, by adjusting the frequency on the first excitation electrode side, the degree of deterioration of vibration loss can be reduced even if the frequency is adjusted.
However, Patent Document 2 is not necessarily satisfactory in mentioning an appropriate structure for an AT-cut crystal resonator with a specific frequency and size.
This application was filed in view of the above points, and therefore, the purpose of this application is to provide an AT having a first excitation electrode having a uniform thickness and a second excitation electrode having an inclined portion near the outer periphery. The object of the present invention is to provide a preferable concrete structure for each frequency in a cut crystal resonator.

この目的の達成を図るため、この発明のATカットの水晶振動子によれば、パッケージと、該パッケージに内蔵されていて平板かつ平面形状が矩形のATカットの水晶片と、該水晶片の主面の一方の面に設けられ厚さが一様な第1励振電極と、前記主面の他方の面に設けられ外周付近が傾斜部となっていて該傾斜部以外は一様な厚みの主圧部となっている前記第1励振電極の厚みより厚い水晶振動子において、
前記水晶片は、水晶のX軸方向を長辺とし、水晶のZ′方向を短辺とし、発振周波数が基本波で38MHzの水晶片であり、
前記第1励振電極及び第2励振電極の質量/水晶の質量の比を4.7%とし、前記第1励振電極及び第2励振電極による、前記水晶片の水晶Z′軸方向の閉じ込め係数を、3.5~3.8としてあるか、
又は、前記第1励振電極及び第2励振電極の質量/水晶の質量の比を5.3%とし、前記第1励振電極及び第2励振電極による、前記水晶片の水晶Z′軸方向の閉じ込め係数を、3.7~3.8としてあり、
前記傾斜部の幅を、前記水晶片で生じる屈曲モードの振動の波長λに対し1~2.5λの寸法としてあり、
前記第1励振電極及び第2励振電極各々は、前記水晶片の長辺方向を長軸、前記水晶片の短辺方向を短軸とする楕円形状としてあり、かつ、長軸長さ/短軸長さ=1.265±10%としてあること
を特徴とする。
In order to achieve this object, the AT-cut crystal resonator of the present invention includes a package, an AT-cut crystal piece built in the package and having a flat and rectangular planar shape, and a main body of the crystal piece. A first excitation electrode provided on one of the surfaces and having a uniform thickness, and a main excitation electrode provided on the other surface of the main surface and having an inclined portion near the outer periphery and having a uniform thickness except for the inclined portion. In a crystal resonator that is thicker than the thickness of the first excitation electrode serving as a pressure part,
The crystal piece has a long side in the X-axis direction of the crystal, a short side in the Z′ direction of the crystal, and has an oscillation frequency of 38 MHz as a fundamental wave,
The ratio of the mass of the first excitation electrode and the second excitation electrode to the mass of the crystal is 4.7%, and the confinement coefficient of the crystal piece in the crystal Z' axis direction by the first excitation electrode and the second excitation electrode is , 3.5 to 3.8,
Alternatively, the ratio of the mass of the first excitation electrode and the second excitation electrode to the mass of the crystal is 5.3%, and the crystal piece is confined in the crystal Z' axis direction by the first excitation electrode and the second excitation electrode. The coefficient is set to 3.7 to 3.8,
The width of the inclined portion is set to a dimension of 1 to 2.5λ with respect to the wavelength λ of vibration in a bending mode generated in the crystal piece,
Each of the first excitation electrode and the second excitation electrode has an elliptical shape with a long axis in the direction of the long side of the crystal piece and a short axis in the direction of the short side of the crystal piece, and has a long axis length/short axis. It is characterized in that the length is 1.265±10%.

なお、この発明を実施するに当たり、前記水晶片は、水晶のX軸方向の寸法をL1、水晶のZ′軸方向の寸法をW1、厚みをtと表したとき、L1/t≧50、W1/t≧33を満たす水晶片とすることが好ましい。例えば、長辺寸法L1が2.1±0.1mm、短辺寸法W1が1.381±0.1mmの水晶片は、L1/t=51、W1/t=33であり、本発明で使用可能な水晶片の一例である。
また、前記水晶片の発振周波数が基本波で38MHzとは、例えば、38MHz、38.88MHzなどの良く使用される周波数を含む、例えば、38MHz±3MHzの周波数帯のことである。
また、上記の閉じ込め係数とは、n(We/βz・tq)√Δで決まる値である。ここで、nは水晶振動子の振動次数(例えば基本波であれば1)、Weは励振電極の水晶結晶軸のZ′方向の寸法、βzは水晶結晶軸のZ′方向の異方性係数1.538、tqは水晶片の厚みある。また、Δは、励振電極の質量/水晶の質量で決まる値であり、具体的には、(2ρe・te/ρq・tq)で求まる値である。ここで、ρqは水晶の密度、tqは水晶の厚み、ρeは励振電極の密度、teは励振電極の厚みである。
In carrying out the present invention, the crystal piece has the following characteristics: L1/t≧50, W1, where L1 is the dimension of the crystal in the X-axis direction, W1 is the dimension of the crystal in the Z'-axis direction, and t is the thickness. It is preferable to use a crystal piece that satisfies /t≧33. For example, a crystal piece with a long side dimension L1 of 2.1±0.1 mm and a short side dimension W1 of 1.381±0.1 mm has L1/t=51 and W1/t=33, and is used in the present invention. This is an example of a possible crystal piece.
Furthermore, when the oscillation frequency of the crystal piece is a fundamental wave of 38 MHz, it refers to a frequency band of, for example, 38 MHz±3 MHz, which includes frequently used frequencies such as 38 MHz and 38.88 MHz.
Further, the above-mentioned confinement coefficient is a value determined by n(We/βz·tq)√Δ. Here, n is the vibration order of the crystal oscillator (for example, 1 for the fundamental wave), We is the dimension in the Z' direction of the crystal axis of the excitation electrode, and βz is the anisotropy coefficient in the Z' direction of the crystal axis of the excitation electrode. 1.538, tq is the thickness of the crystal piece. Further, Δ is a value determined by the mass of the excitation electrode/mass of the crystal, and specifically, is a value determined by (2ρe·te/ρq·tq). Here, ρq is the density of the crystal, tq is the thickness of the crystal, ρe is the density of the excitation electrode, and te is the thickness of the excitation electrode.

なお、上記の発明において、長軸長さ/短軸長さ=1.265±10%とした理由は、ATカット水晶片の異方性係数比(X軸方向:1.945、Z′軸方向:1.538の比=1.945/1.538≒1.265)と、その許容度±10%とに基づく。なお、異方性係数については、例えば文献「弾性波デバイス技術(株オーム社2014年版)、pp。183-185」等に記載されているので、説明は省略する。
また、上記の各発明を実施するに当たり、パッケージとしては、外形寸法でいって長辺が3.2mm、短辺が2.5mmのセラミック製のパッケージ、いわゆる3225サイズのセラミックパッケージが好ましい。ただし、長辺、短辺いずれもパッケージの一般的な公差である±0.2mmは許容される。
また、第1励振電極及び第2励振電極の質量/水晶の質量の比を示した上記値は、それぞれの値に対し±0.1%は、本発明に含まれる。
In the above invention, the reason why the major axis length/minor axis length is set to 1.265±10% is because the anisotropy coefficient ratio of the AT-cut crystal piece (X-axis direction: 1.945, Z'-axis Direction: 1.538 ratio = 1.945/1.538≈1.265) and its tolerance ±10%. Note that the anisotropy coefficient is described in, for example, the document "Acoustic Wave Device Technology (Ohmsha Co., Ltd. 2014 edition), pp. 183-185", so the explanation will be omitted.
In carrying out each of the above inventions, the package is preferably a ceramic package having external dimensions of 3.2 mm on the long side and 2.5 mm on the short side, that is, a so-called 3225 size ceramic package. However, a general tolerance of ±0.2 mm for both the long and short sides of the package is allowed.
Further, the above values showing the ratio of the mass of the first excitation electrode and the second excitation electrode to the mass of the crystal are included in the present invention within ±0.1% of each value.

本発明の水晶振動子によれば、周波数が50MHz付近で、かつ、一様な厚みの第1励振電極と、外周付近に傾斜部を持つ第2励振電極とを有した水晶振動子において、不要振動を抑えることができると共に周波数調整の際の振動エネルギーの損失を防ぐことができる。 According to the crystal resonator of the present invention, in a crystal resonator having a frequency of around 50 MHz and having a first excitation electrode with a uniform thickness and a second excitation electrode having an inclined portion near the outer periphery, unnecessary Vibration can be suppressed and vibration energy loss during frequency adjustment can be prevented.

図1(A)は実施形態の水晶振動子10を説明する平面図、図1(B)は実施形態の水晶振動子10を説明する断面図であって、図1(A)のI-I線に沿う断面図である。FIG. 1(A) is a plan view for explaining the crystal resonator 10 of the embodiment, and FIG. 1(B) is a cross-sectional view for explaining the crystal resonator 10 of the embodiment. It is a sectional view along a line. 図2(A)は実施形態の水晶振動子10の励振電極における傾斜部を説明する断面図、図2(B)は楕円電極を説明する平面図である。FIG. 2(A) is a cross-sectional view illustrating the inclined portion of the excitation electrode of the crystal resonator 10 of the embodiment, and FIG. 2(B) is a plan view illustrating the elliptical electrode. 実施例1のシミュレーション結果を説明する図である。3 is a diagram illustrating simulation results of Example 1. FIG. 実施例2のシミュレーション結果を説明する図である。FIG. 7 is a diagram illustrating simulation results of Example 2.

以下、図面を参照してこの発明の実施形態について説明する。なお、説明に用いる各図はこれら発明を理解できる程度に概略的に示してあるにすぎない。また、説明に用いる各図において、同様な構成成分については同一の番号を付して示し、その説明を省略する場合もある。また、以下の実施形態中で述べる形状、寸法、材質等はこの発明の範囲内の好適例に過ぎない。従って、本発明が以下の実施形態のみに限定されるものではない。 Embodiments of the present invention will be described below with reference to the drawings. Note that the drawings used in the explanation are merely shown schematically to the extent that these inventions can be understood. Moreover, in each figure used for explanation, the same number is attached|subjected and shown about the same component, and the explanation may be abbreviate|omitted. Furthermore, the shapes, dimensions, materials, etc. described in the following embodiments are merely preferred examples within the scope of the present invention. Therefore, the present invention is not limited only to the following embodiments.

1.水晶振動子の構造
先ず、図1(A)及び(B)を参照して実施形態の水晶振動子10の構造について説明する。
実施形態の水晶振動子10は、パッケージ11、ATカット水晶片13、第1励振電極15及び第2励振電極17を備えている。
パッケージ11は、この例の場合、セラミック製のパッケージであって、AT水晶片を実装する凹部11aを有したものである。凹部11aの周囲は土手部11bとなっている。このセラミック製パッケージ11では、蓋部材(図示を省略)を土手11b部に、シーム封止、ガラス封止、金錫封止等の任意好適な方法によって接合することによって、水晶片11を封止できる。なお、後述するシミュレーションで用いた水晶片13の大きさを考慮すると、パッケージ11の外形寸法は、長辺L0が約3.2mm、短辺W0が約2.5mmの、いわゆる3225サイズが良い。
AT水晶片13は、平板かつ平面形状が矩形のもので、周波数に応じた厚みを有したものである。なお、ATカット水晶片自体は公知のものなので、その説明を省略する。
このATカット水晶片11の一方の主面に、第1励振電極15を設けてあり。他方の主面に、第2励振電極17を設けてある。これら電極15,17は例えばクロム膜と金膜との積層膜で構成できる。
第1励振電極15は、厚さが一様となっている。第2励振電極17は、図1(B)に示したように、外周付近が、水晶片の中央側から縁に向かって厚さが減じている傾斜部17aとなっていて、傾斜部17a以外は一様な厚みの主圧部17bとなっている。第2励振電極17の主厚部17bの厚みは、第1励振電極15の厚みより厚くなっている。
そして、この実施形態の水晶振動子10は、水晶片13の周波数に応じて、以下のような構造となっている。
1. Structure of Crystal Resonator First, the structure of the crystal resonator 10 of the embodiment will be described with reference to FIGS. 1(A) and (B).
The crystal resonator 10 of the embodiment includes a package 11, an AT-cut crystal piece 13, a first excitation electrode 15, and a second excitation electrode 17.
In this example, the package 11 is a ceramic package, and has a recess 11a in which an AT crystal piece is mounted. The periphery of the recessed portion 11a is a bank portion 11b. In this ceramic package 11, the crystal piece 11 is sealed by joining a lid member (not shown) to the bank 11b by any suitable method such as seam sealing, glass sealing, gold-tin sealing, etc. can. In addition, considering the size of the crystal piece 13 used in the simulation described later, the package 11 preferably has a so-called 3225 size, in which the long side L0 is about 3.2 mm and the short side W0 is about 2.5 mm.
The AT crystal piece 13 is a flat plate with a rectangular planar shape, and has a thickness depending on the frequency. Note that the AT-cut crystal piece itself is well known, so its explanation will be omitted.
A first excitation electrode 15 is provided on one main surface of this AT-cut crystal piece 11. A second excitation electrode 17 is provided on the other main surface. These electrodes 15 and 17 can be composed of, for example, a laminated film of a chromium film and a gold film.
The first excitation electrode 15 has a uniform thickness. As shown in FIG. 1(B), the second excitation electrode 17 has a sloped part 17a near the outer periphery where the thickness decreases from the center side toward the edge of the crystal blank, and other than the sloped part 17a. The main pressure portion 17b has a uniform thickness. The thickness of the main thick portion 17b of the second excitation electrode 17 is thicker than the thickness of the first excitation electrode 15.
The crystal resonator 10 of this embodiment has the following structure depending on the frequency of the crystal piece 13.

当該水晶片13は、水晶のX軸方向を長辺とし、水晶のZ′方向を短辺とし、発振周波数が基本波で38MHzの水晶片となっている。
さらに、第1励振電極15及び第2励振電極17の質量/水晶片13の質量の比を4.7%とし、第1励振電極及び第2励振電極による、水晶片の水晶Z′軸方向の閉じ込め係数を、3.3~3.9としてある。
又は、第1励振電極15及び第2励振電極17の質量/水晶の質量の比を5.3%とし、第1励振電極15及び第2励振電極17による、水晶片の水晶Z′軸方向の閉じ込め係数を、3.7~3.8としてある。
さらに、傾斜部17の幅Wk(図2(A)参照)を、水晶片13で生じる屈曲モードの振動の波長λに対し1~2.5λの寸法としてある。
さらに、第1励振電極15及び第2励振電極17各々は、水晶片13の長辺方向を長軸、水晶片13の短辺方向を短軸とする楕円形状としてあり、かつ、長軸長さLa/短軸長さWa=1.265±10%としてある。
ここで、長軸長さLa、短軸長さWaは、この例の場合は、傾斜部17の中間点同士を結んだ長さと定義している(図2(B)参照)。
なお、閉じ込め係数と、長軸長さLa/短軸長さWa=1.265±10%とについては、上記の「課題を解決するための手段の項」にて説明したものである。
The crystal piece 13 has a long side in the X-axis direction of the crystal, a short side in the Z' direction of the crystal, and has an oscillation frequency of 38 MHz as a fundamental wave.
Furthermore, the ratio of the mass of the first excitation electrode 15 and the second excitation electrode 17 to the mass of the crystal blank 13 is set to 4.7%, and the crystal Z' axis direction of the crystal blank is The confinement coefficient is set to 3.3 to 3.9.
Alternatively, the ratio of the mass of the first excitation electrode 15 and the second excitation electrode 17 to the mass of the crystal is set to 5.3%, and the first excitation electrode 15 and the second excitation electrode 17 cause the crystal blank to move in the crystal Z' axis direction. The confinement factor is set to 3.7 to 3.8.
Further, the width Wk (see FIG. 2A) of the inclined portion 17 is set to a dimension of 1 to 2.5λ with respect to the wavelength λ of the vibration in the bending mode generated in the crystal piece 13.
Furthermore, each of the first excitation electrode 15 and the second excitation electrode 17 has an elliptical shape with a long axis in the direction of the long side of the crystal piece 13 and a short axis in the direction of the short side of the crystal piece 13, and has a long axis length. La/minor axis length Wa=1.265±10%.
Here, in this example, the major axis length La and the minor axis length Wa are defined as lengths connecting the midpoints of the inclined portions 17 (see FIG. 2(B)).
Note that the confinement coefficient and major axis length La/minor axis length Wa = 1.265±10% are explained in the above "Means for Solving the Problems" section.

2.シミュレーション及びその結果
上記の実施形態の水晶振動子10について、以下に実施例1、実施例2として示す各種条件による有限要素法によるシミュレーションを行った。なお、これらのシミュレーションでは、図2(A)に示したように、傾斜部17aが、第1部分17aa、第2部分17ab及び第3部分17acの階段状の3つの部分からなる傾斜部を持つモデルを用いた。
また、傾斜部17aの幅Wkを69μmとした。この69μmとは、38MHzの水晶片で生じる屈曲モードの不要信号の波長λの1倍に相当する寸法である。
2. Simulation and Results The crystal resonator 10 of the above embodiment was subjected to a simulation using the finite element method under various conditions shown as Examples 1 and 2 below. In addition, in these simulations, as shown in FIG. 2(A), the slope portion 17a has a slope portion consisting of three step-shaped portions: a first portion 17aa, a second portion 17ab, and a third portion 17ac. A model was used.
Further, the width Wk of the inclined portion 17a was set to 69 μm. This 69 μm is a dimension corresponding to one time the wavelength λ of an unnecessary signal in a bending mode generated in a 38 MHz crystal piece.

なお、シミュレーションで用いた水晶片の大きさであるが、長辺寸法L1が2.1mm、短辺寸法W1が1.381mmである。もちろん、水晶片の大きさはこれらの例に限られない。例えば、水晶片の長辺寸法L1、短辺寸法W1が上記より大きければ、厚みtに対するL1/t、W1/t、すなわち辺比が水晶振動子の特性に有利になるので、水晶片は上記より大きくても良い。 In addition, regarding the size of the crystal piece used in the simulation, the long side dimension L1 is 2.1 mm, and the short side dimension W1 is 1.381 mm. Of course, the size of the crystal piece is not limited to these examples. For example, if the long side dimension L1 and short side dimension W1 of the crystal piece are larger than the above, L1/t and W1/t, that is, the side ratio with respect to the thickness t, will be advantageous for the characteristics of the crystal resonator, so the crystal piece will be It may be larger.

また、実施例1、実施例2各々のモデルの第1部分17aaの幅Wka、第2部分17abの幅Wkb及び第3部分17acの幅Wkc(それぞれ図2(A)参照)は、それぞれ、傾斜部の幅Wkの3分の1の寸法とした。
第1部分17aaの厚さt1、第2部分17abの厚さt2及び第3部分17acの厚さt3(それぞれ図2(A)参照)は、それぞれ、主厚部17bの厚さtの4分の1とした。
また、実施例1のモデルは、第2励振電極17の主厚部17bの厚さを135nmとし、実施例2のモデルは、第2励振電極17の主厚み部17bの厚さを150nmとした。
そして、実施例1、実施例2のいずれのモデルも、第1励振電極15の厚さは、第2励振電極17の主厚部17bの厚さより30nm薄くした。第1励振電極の膜厚及び第2励振用電極の膜厚を上記の値としたのは、電極の質量/水晶片の質量の比を、本願でいう4.7%や、5.3%等にするためである。なお、第1励振電極の膜厚を第2励振用電極の膜厚より30nm薄くしたが、これは一例であり、薄くする程度はこれに限られない。第1励振電極が膜として成立する範囲までさらに薄くしても良い。ただし、周波数調整ができなくなる程度まで薄い場合は、本発明の範囲外である。
In addition, the width Wka of the first portion 17aa, the width Wkb of the second portion 17ab, and the width Wkc of the third portion 17ac (see FIG. 2(A), respectively) of the models of Example 1 and Example 2 are respectively inclined. The dimension is one-third of the width Wk of the section.
The thickness t1 of the first portion 17aa, the thickness t2 of the second portion 17ab, and the thickness t3 of the third portion 17ac (see FIG. 2A) are each a quarter of the thickness t of the main thick portion 17b. It was set as 1.
Further, in the model of Example 1, the thickness of the main thickness part 17b of the second excitation electrode 17 was 135 nm, and in the model of Example 2, the thickness of the main thickness part 17b of the second excitation electrode 17 was 150 nm. .
In both the models of Example 1 and Example 2, the thickness of the first excitation electrode 15 was made 30 nm thinner than the thickness of the main thick portion 17b of the second excitation electrode 17. The reason why the film thickness of the first excitation electrode and the film thickness of the second excitation electrode are set to the above values is that the ratio of the mass of the electrode/mass of the crystal blank is 4.7% or 5.3% in the present application. This is to make it equal. Although the film thickness of the first excitation electrode was made 30 nm thinner than the film thickness of the second excitation electrode, this is just an example, and the degree of thinning is not limited to this. The first excitation electrode may be further thinned to the extent that it can be formed as a film. However, if the thickness is so thin that frequency adjustment is impossible, it is outside the scope of the present invention.

上記の実施例1のシミュレーションモデルについて、表1に示したように励振電極の楕円形状の長軸及び短軸寸法を振ることで、閉じ込め係数が異なる5種類のモデルを構成し、それらモデルの第1励振電極15の膜厚を減じた場合、すなわち水晶振動子の周波数調整によって第1励振電極15がアルゴンイオンなどによって削られた場合の、当該水晶振動子での損失(1/Q)を、有限要素法によって算出した。 Regarding the simulation model of Example 1 above, five types of models with different confinement coefficients were constructed by varying the long and short axis dimensions of the elliptical shape of the excitation electrode as shown in Table 1. When the film thickness of the first excitation electrode 15 is reduced, that is, when the first excitation electrode 15 is scraped by argon ions or the like due to frequency adjustment of the crystal resonator, the loss (1/Q) in the crystal resonator is calculated as follows: Calculated using the finite element method.

また、上記の実施例2のシミュレーションモデルについて、表2に示したように励振電極の楕円形状の長軸および短軸寸法を振ることで、閉じ込め係数が異なる5種類のモデルを構成し、それらモデルの第1励振電極15の膜厚を減じた場合、すなわち水晶振動子の周波数調整によって第1励振電極15がアルゴンイオンなどによって削られた場合の、当該水晶振動子での損失(1/Q)を、有限要素法によって算出した。 Furthermore, regarding the simulation model of Example 2 above, five types of models with different confinement coefficients were constructed by varying the long and short axis dimensions of the elliptical shape of the excitation electrode as shown in Table 2. Loss (1/Q) in the crystal resonator when the film thickness of the first excitation electrode 15 is reduced, that is, when the first excitation electrode 15 is scraped by argon ions etc. due to frequency adjustment of the crystal resonator. was calculated using the finite element method.

Figure 0007362525000001
Figure 0007362525000001

Figure 0007362525000002
Figure 0007362525000002

図3は、表1に示した5種類の試料について、横軸に第1励振電極15の周波数調整で減った膜厚(nm)をとり、縦軸にその際の水晶振動子の損失(1/Q)をとって、両者の関係を示した図である。
図3、表1から、周波数が38MHzの場合で、励振電極の質量/水晶片の質量の比を4.7%とした場合、短軸長W2を1.017~1.097mmすなわち閉じ込め係数を3.5~3.8とすると、第1励振電極15の膜厚を周波数調整によって減じても、損失は小さく抑えられることが分かる。
In FIG. 3, for the five types of samples shown in Table 1, the horizontal axis shows the film thickness (nm) reduced by adjusting the frequency of the first excitation electrode 15, and the vertical axis shows the loss (1 nm) of the crystal resonator at that time. /Q) and shows the relationship between the two.
From Fig. 3 and Table 1, when the frequency is 38 MHz and the ratio of excitation electrode mass/crystal blank mass is 4.7%, the short axis length W2 is 1.017 to 1.097 mm, that is, the confinement coefficient is It can be seen that when the value is 3.5 to 3.8, the loss can be kept small even if the film thickness of the first excitation electrode 15 is reduced by frequency adjustment.

図4は、表2に示した5種類の試料について、横軸に第1励振電極15の周波数調整で減った膜厚(nm)をとり、縦軸にその際の水晶振動子の損失(1/Q)をとって、両者の関係を示した図である。
図4、表2から、周波数が38MHzの場合で、励振電極の質量/水晶片の質量の比を5.3%とした場合、短軸長W2を1.017~1.057mmすなわち閉じ込め係数を3.7~3.8とすると、第1励振電極15の膜厚を周波数調整によって減じても、損失は小さく抑えられることが分かる。
In FIG. 4, for the five types of samples shown in Table 2, the horizontal axis shows the film thickness (nm) reduced by adjusting the frequency of the first excitation electrode 15, and the vertical axis shows the loss (1 nm) of the crystal resonator at that time. /Q) and shows the relationship between the two.
From Fig. 4 and Table 2, when the frequency is 38 MHz and the ratio of excitation electrode mass/crystal blank mass is 5.3%, the short axis length W2 is 1.017 to 1.057 mm, that is, the confinement coefficient is It can be seen that when the value is 3.7 to 3.8, the loss can be kept small even if the film thickness of the first excitation electrode 15 is reduced by frequency adjustment.

以上、本発明の実施形態について説明したが、本発明は上記の例に限られない。例えば、上記実施形態における傾斜部の段差は4段であるが、段差は4段に限らず、これよりも多くても少なくとも良い。また、上記の実施形態は様々に組み合わせて実施されても良い。
また、シミュレーションによる実施例として、周波数が38MHz帯で長辺寸法L1が2.1mm、短辺寸法W1が1.381mmの水晶片の例を挙げたが、パッケージ寸法がいわゆる3225サイズに収納できる対応として、長辺寸法L1が2~2.4mm、短辺寸法W1が1.2~1.5mmまでの範囲の水晶片においても同様の効果を確認している。
Although the embodiments of the present invention have been described above, the present invention is not limited to the above examples. For example, although the slope portion has four steps in the above embodiment, the number of steps is not limited to four steps, and may be more than four steps. Furthermore, the above embodiments may be implemented in various combinations.
In addition, as an example based on simulation, an example of a crystal piece with a frequency of 38 MHz and a long side dimension L1 of 2.1 mm and a short side dimension W1 of 1.381 mm was given, but the package size can be accommodated in a so-called 3225 size. Similar effects have been confirmed for crystal pieces having a long side dimension L1 of 2 to 2.4 mm and a short side dimension W1 of 1.2 to 1.5 mm.

10:実施形態の水晶振動子 11:パッケージ
13:ATカット水晶片 15:第1励振電極
17:第2励振電極 17a:傾斜部
17aa:第1部分 17ab:第2部分
17ac:第3部分 17b:主圧部
10: Crystal resonator of embodiment 11: Package 13: AT-cut crystal piece 15: First excitation electrode 17: Second excitation electrode 17a: Inclined portion 17aa: First portion 17ab: Second portion 17ac: Third portion 17b: Main pressure section

Claims (3)

パッケージと、該パッケージに内蔵されていて平板かつ平面形状が矩形のATカットの水晶片と、該水晶片の主面の一方の面に設けられ厚さが一様な第1励振電極と、前記主面の他方の面に設けられ外周付近が傾斜部となっていて該傾斜部以外は一様な厚みの主厚部となっている第2励振電極と、を備え、前記主厚部の厚みが前記第1励振電極の厚みより厚い水晶振動子において、
前記水晶片は、水晶のX軸方向を長辺とし、水晶のZ′方向を短辺とし、発振周波数が基本波で38MHzの水晶片であり、
前記第1励振電極及び第2励振電極の質量/水晶の質量を4.7%とし、前記第1励振電極及び第2励振電極による、前記水晶片の水晶Z′軸方向の閉じ込め係数を、3.5~3.8としてあり、
前記傾斜部の幅を、前記水晶片で生じる屈曲モードの振動の波長λに対し1~2.5λの寸法としてあり、
前記第1励振電極及び第2励振電極各々は、前記水晶片の長辺方向を長軸、前記水晶片の短辺方向を短軸とする楕円形状としてあり、かつ、長軸長さ/短軸長さ=1.265±10%としてあること
を特徴とする水晶振動子。
a package, an AT-cut crystal piece built in the package and having a flat plate and a rectangular planar shape; a first excitation electrode provided on one main surface of the crystal piece and having a uniform thickness; a second excitation electrode provided on the other surface of the main surface and having an inclined portion near the outer periphery and a main thick portion having a uniform thickness except for the inclined portion; is thicker than the first excitation electrode,
The crystal piece has a long side in the X-axis direction of the crystal, a short side in the Z′ direction of the crystal, and has an oscillation frequency of 38 MHz as a fundamental wave,
The mass of the first excitation electrode and the second excitation electrode/mass of the crystal is 4.7%, and the confinement coefficient of the crystal piece in the crystal Z' axis direction by the first excitation electrode and the second excitation electrode is 3. There are .5 to 3.8,
The width of the inclined portion is set to a dimension of 1 to 2.5λ with respect to the wavelength λ of vibration in a bending mode generated in the crystal piece,
Each of the first excitation electrode and the second excitation electrode has an elliptical shape with a long axis in the direction of the long side of the crystal piece and a short axis in the direction of the short side of the crystal piece, and has a long axis length/short axis. A crystal resonator characterized in that the length is 1.265±10%.
パッケージと、該パッケージに内蔵されていて平板かつ平面形状が矩形のATカットの水晶片と、該水晶片の主面の一方の面に設けられ厚さが一様な第1励振電極と、前記主面の他方の面に設けられ外周付近が傾斜部となっていて該傾斜部以外は一様な厚みの主厚部となっている第2励振電極と、を備え、前記主厚部の厚みが前記第1励振電極の厚みより厚い水晶振動子において、
前記水晶片は、水晶のX軸方向を長辺とし、水晶のZ′方向を短辺とし、発振周波数が基本波で38MHzの水晶片であり、
前記第1励振電極及び第2励振電極の質量/水晶の質量を5.3%とし、前記第1励振電極及び第2励振電極による、前記水晶片の水晶Z′軸方向の閉じ込め係数を、3.7~3.8としてあり、
前記傾斜部の幅を、前記水晶片で生じる屈曲モードの振動の波長λに対し1~2.5λの寸法としてあり、
前記第1励振電極及び第2励振電極各々は、前記水晶片の長辺方向を長軸、前記水晶片の短辺方向を短軸とする楕円形状としてあり、かつ、長軸長さ/短軸長さ=1.265±10%としてあること
を特徴とする水晶振動子。
a package, an AT-cut crystal piece built in the package and having a flat plate and a rectangular planar shape; a first excitation electrode provided on one main surface of the crystal piece and having a uniform thickness; a second excitation electrode provided on the other surface of the main surface and having an inclined portion near the outer periphery and a main thick portion having a uniform thickness except for the inclined portion; is thicker than the first excitation electrode,
The crystal piece has a long side in the X-axis direction of the crystal, a short side in the Z′ direction of the crystal, and has an oscillation frequency of 38 MHz as a fundamental wave,
The mass of the first excitation electrode and the second excitation electrode/the mass of the crystal is 5.3%, and the confinement coefficient of the crystal piece in the crystal Z' axis direction by the first excitation electrode and the second excitation electrode is 3. There are .7 to 3.8,
The width of the inclined portion is set to a dimension of 1 to 2.5λ with respect to the wavelength λ of vibration in a bending mode generated in the crystal piece,
Each of the first excitation electrode and the second excitation electrode has an elliptical shape with a long axis in the direction of the long side of the crystal piece and a short axis in the direction of the short side of the crystal piece, and has a long axis length/short axis. A crystal resonator characterized in that the length is 1.265±10%.
前記水晶片は、長辺寸法が2~2.4mm、短辺寸法W1が1.2~1.5mmから選ばれる大きさであり、前記パッケージは外形の長辺寸法が3.2±0.2mm及び短辺寸法が2.5±0.2mmであることを特徴とする請求項1又は2に記載の水晶振動子。

以 上
The crystal piece has a long side dimension W1 of 2 to 2.4 mm and a short side dimension W1 of 1.2 to 1.5 mm, and the package has an external long side dimension of 3.2±0. 3. The crystal resonator according to claim 1, wherein the crystal resonator has a length of 2 mm and a short side dimension of 2.5±0.2 mm.

that's all
JP2020054189A 2020-03-25 2020-03-25 Crystal oscillator Active JP7362525B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020054189A JP7362525B2 (en) 2020-03-25 2020-03-25 Crystal oscillator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020054189A JP7362525B2 (en) 2020-03-25 2020-03-25 Crystal oscillator

Publications (2)

Publication Number Publication Date
JP2021158422A JP2021158422A (en) 2021-10-07
JP7362525B2 true JP7362525B2 (en) 2023-10-17

Family

ID=77918806

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020054189A Active JP7362525B2 (en) 2020-03-25 2020-03-25 Crystal oscillator

Country Status (1)

Country Link
JP (1) JP7362525B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007214941A (en) 2006-02-10 2007-08-23 Epson Toyocom Corp Piezoelectric vibration chip and piezoelectric device
JP2018033122A (en) 2016-08-22 2018-03-01 日本電波工業株式会社 Crystal oscillator
JP2018098592A (en) 2016-12-12 2018-06-21 日本電波工業株式会社 Piezoelectric vibration piece and piezoelectric device
JP2018117198A (en) 2017-01-17 2018-07-26 日本電波工業株式会社 Piezoelectric vibration piece and piezoelectric device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007214941A (en) 2006-02-10 2007-08-23 Epson Toyocom Corp Piezoelectric vibration chip and piezoelectric device
JP2018033122A (en) 2016-08-22 2018-03-01 日本電波工業株式会社 Crystal oscillator
JP2018098592A (en) 2016-12-12 2018-06-21 日本電波工業株式会社 Piezoelectric vibration piece and piezoelectric device
JP2018117198A (en) 2017-01-17 2018-07-26 日本電波工業株式会社 Piezoelectric vibration piece and piezoelectric device

Also Published As

Publication number Publication date
JP2021158422A (en) 2021-10-07

Similar Documents

Publication Publication Date Title
JP7313327B2 (en) Method of fabricating a micro-electro-mechanical system (MEMS) waveguide device and micro-electro-mechanical system (MEMS) waveguide device
US7057476B2 (en) Noise suppression method for wave filter
US6750593B2 (en) High frequency piezoelectric resonator having reduced spurious modes
US7199683B2 (en) BAW resonator
JP5507298B2 (en) Method for manufacturing quartz diaphragm
TWI707486B (en) Piezoelectric vibrating piece and piezoelectric device
JP5632627B2 (en) Quartz crystal
JP2006340023A (en) Mesa crystal oscillator
US10804876B2 (en) Piezoelectric vibrating piece and piezoelectric device
CN111010108A (en) Bulk acoustic wave resonator with recess and air wing structure, filter and electronic device
CN107994880A (en) Piezoelectric vibration piece and piezoelectric element
JP2012165367A (en) Piezoelectric vibrator and acoustic wave device
JP2006270465A (en) Method for adjusting frequency characteristics of piezoelectric vibrator
US7888849B2 (en) Piezoelectric resonator and method for producing the same
JP7362525B2 (en) Crystal oscillator
JP7362526B2 (en) Crystal oscillator
JP7396946B2 (en) Crystal oscillator
CN111884618A (en) Resonator having a dielectric layer
JPH0257009A (en) Piezoelectric resonator
JPH04127709A (en) At cut crystal oscillator
JP2008160253A (en) Oscillator and its manufacturing method
JP7423231B2 (en) Manufacturing method of piezoelectric vibrating piece, piezoelectric vibrating piece and piezoelectric vibrator
CN216134461U (en) Resonator having a dielectric layer
JP2013093797A (en) Crystal vibration device
WO2022007238A1 (en) Resonator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220922

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230719

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230725

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230822

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230926

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231004

R150 Certificate of patent or registration of utility model

Ref document number: 7362525

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150