JP7356114B2 - Growth of human norovirus - Google Patents

Growth of human norovirus Download PDF

Info

Publication number
JP7356114B2
JP7356114B2 JP2020510836A JP2020510836A JP7356114B2 JP 7356114 B2 JP7356114 B2 JP 7356114B2 JP 2020510836 A JP2020510836 A JP 2020510836A JP 2020510836 A JP2020510836 A JP 2020510836A JP 7356114 B2 JP7356114 B2 JP 7356114B2
Authority
JP
Japan
Prior art keywords
intestinal epithelial
epithelial cells
hunov
cells
gii
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020510836A
Other languages
Japanese (ja)
Other versions
JPWO2019189049A1 (en
Inventor
慎太郎 佐藤
義和 幸
宏 清野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Research Foundation for Microbial Diseases of Osaka University BIKEN
University of Tokyo NUC
Original Assignee
Research Foundation for Microbial Diseases of Osaka University BIKEN
University of Tokyo NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Research Foundation for Microbial Diseases of Osaka University BIKEN, University of Tokyo NUC filed Critical Research Foundation for Microbial Diseases of Osaka University BIKEN
Publication of JPWO2019189049A1 publication Critical patent/JPWO2019189049A1/en
Application granted granted Critical
Publication of JP7356114B2 publication Critical patent/JP7356114B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N7/00Viruses; Bacteriophages; Compositions thereof; Preparation or purification thereof
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/70Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving virus or bacteriophage
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/15Medicinal preparations ; Physical properties thereof, e.g. dissolubility
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing

Description

本発明は、iPS(induced pluripotent stem cells)細胞から誘導した腸管上皮細胞を用いて、ヒトノロウイルスを増殖させる方法に関する。 The present invention relates to a method for propagating human norovirus using intestinal epithelial cells derived from iPS (induced pluripotent stem cells) cells.

ノロウイルス(Norovirus)は、十二指腸から小腸上部の細胞に侵入し、非細菌性急性胃腸炎を引き起こす病原性ウイルスで、エンベロープを持たないカリシウイルス科に属する。ヒトノロウイルス(Human Norovirus:HuNoV)は、ゲノム配列に基づいて3つの遺伝子群(GI、GIIおよびGIV)に分類され、少なくとも25種の遺伝子型が存在するとされている。高い多様性を示すノロウイルスであるが、ここ数年では、GI.2、GI.3、GI.4、GI.6、GII.2、GII.3、GII.4、GII.6、GII.14、GII.17などの遺伝子型のウイルスの流行がみられ、特にGII.4は、多くの胃腸炎患者から検出されている。GII.17は、2014年頃から流行が確認された新規遺伝子型のウイルスであり、今後この型およびその変異体による大流行が懸念される。 Norovirus is a pathogenic virus that invades cells in the upper small intestine from the duodenum and causes non-bacterial acute gastroenteritis, and belongs to the non-enveloped Caliciviridae family. Human Norovirus (HuNoV) is classified into three genogroups (GI, GII, and GIV) based on the genome sequence, and there are said to be at least 25 genotypes. Norovirus shows high diversity, but in recent years, GI.2, GI.3, GI.4, GI.6, GII.2, GII.3, GII.4, GII.6, GII.14 , GII.17 and other genotypes are prevalent, and GII.4 in particular has been detected in many gastroenteritis patients. GII.17 is a new genotype virus that has been confirmed to be prevalent since around 2014, and there are concerns that this type and its variants will cause a major outbreak in the future.

HuNoVはヒトが唯一の感受性動物であるが、HuNoVのインビトロでの感染・増殖系は確立されていなかった。2014年に、インビトロにおいて血液型抗原を産生する腸内細菌と共感染させることで、HuNoVがB細胞に感染し、増殖・培養し得ることが報告された(非特許文献1)が、その増殖および培養量が非常に低く、実用に耐え得るレベルではなかった上、再現性がないことが問題となっている。
一方で、腸管上皮幹細胞マーカーの同定を皮切りとして、ヒトの腸管上皮細胞の初代培養が可能になり、2016年に、このヒト小腸組織検体由来の腸管上皮細胞を用いることで、GII.4型のHuNoVが増殖し得ることが報告された(非特許文献2および特許文献1)。しかし、GII.4以外の型(GI.1, GII.3, GII.17)については、胆汁で処理した細胞でしか増殖させることはできなかった。
Humans are the only animal susceptible to HuNoV, but an in vitro infection and propagation system for HuNoV has not been established. In 2014, it was reported that HuNoV can infect, proliferate and culture B cells by co-infecting them with enterobacteria that produce blood group antigens in vitro (Non-Patent Document 1); The problem is that the amount of culture is very low and not at a level that can withstand practical use, and that it is not reproducible.
On the other hand, starting with the identification of intestinal epithelial stem cell markers, primary culture of human intestinal epithelial cells has become possible, and in 2016, by using intestinal epithelial cells derived from human small intestinal tissue specimens, GII. It has been reported that HuNoV can proliferate (Non-Patent Document 2 and Patent Document 1). However, types other than GII.4 (GI.1, GII.3, GII.17) could only be grown in cells treated with bile.

HuNoVをインビトロで感染・増殖させる系は、このウイルスによる感染増殖機構の解明や治療剤候補などの開発を行うためにも早急に確立される必要がある。しかしながら、これまでに報告されている系は、再現性に問題のある系(非特許文献1)や、ヒト検体由来の細胞を用いるという倫理的な問題を有し、組成不明な胆汁で処理する必要がある系(非特許文献2および特許文献1)などであって、依然として、実用レベルには達していない。 A system for in vitro infection and propagation of HuNoV needs to be established as soon as possible in order to elucidate the infection and propagation mechanism of this virus and to develop therapeutic drug candidates. However, the systems that have been reported so far have problems with reproducibility (Non-Patent Document 1), ethical problems of using cells derived from human specimens, and treatment with bile of unknown composition. systems (Non-Patent Document 2 and Patent Document 1), etc., which have not yet reached a practical level.

国際公開第2017/059449号パンフレットInternational Publication No. 2017/059449 pamphlet

Jonesら, Science 346:755-759 2014Jones et al., Science 346:755-759 2014 Ettayebiら, Science 353:1387-1393 2016Ettayebi et al., Science 353:1387-1393 2016

上記事情に鑑み、本発明は、倫理的な問題を回避し、胆汁非処理の細胞内でHuNoVを増殖させる方法の確立を解決課題とする。 In view of the above circumstances, the present invention aims to establish a method for propagating HuNoV in cells that are not treated with bile while avoiding ethical issues.

本発明者らは、iPS細胞から腸管上皮細胞を分化誘導し、当該細胞にHuNoVを感染させたところ、当該腸管上皮細胞を胆汁で処理しなくても、ウイルスが増殖することを見出した。
本発明は上記知見に基づいて完成されてものである。
The present inventors induced differentiation of intestinal epithelial cells from iPS cells and infected the cells with HuNoV, and found that the virus multiplied even if the intestinal epithelial cells were not treated with bile.
The present invention has been completed based on the above findings.

すなわち、本発明は以下の(1)~(7)である。
(1)HuNoVを増殖させる方法であって、ヒトiPS細胞由来腸管上皮細胞にHuNoVを感染させる工程および該腸管上皮細胞を培養する工程を含む、前記方法。
(2)前記ヒトiPS細胞由来腸管上皮細胞を胆汁で処理しないことを特徴とする上記(1)に記載の方法。
(3)前記ヒトiPS細胞由来腸管上皮細胞が単層を形成していることを特徴とする上記(1)または(2)に記載の方法。
(4)前記ヒトiPS細胞由来腸管上皮細胞が、パーミアブルサポート上で培養されることを特徴とする上記(1)ないし(3)のいずれかに記載の方法。
(5)以下(a)および(b)の工程を含む、HuNoVの増殖阻害物質のスクリーニング方法。
(a)ヒトiPS細胞由来腸管上皮細胞にHuNoVを感染させる工程および、
(b)ヒトiPS細胞由来腸管上皮細胞またはHuNoVと、候補物質を接触させる工程
(6)以下の(c)の工程をさらに含む上記(5)に記載のスクリーニング方法。
(c)候補物質を接触させたヒトiPS細胞由来腸管上皮細胞中におけるHuNoVの増殖量を測定する工程
(7)前記ヒトiPS細胞由来腸管上皮細胞を胆汁で処理しないことを特徴とする上記(5)または(6)に記載のスクリーニング方法。
That is, the present invention includes the following (1) to (7).
(1) A method for propagating HuNoV, the method comprising the steps of infecting human iPS cell-derived intestinal epithelial cells with HuNoV and culturing the intestinal epithelial cells.
(2) The method according to (1) above, wherein the human iPS cell-derived intestinal epithelial cells are not treated with bile.
(3) The method according to (1) or (2) above, wherein the human iPS cell-derived intestinal epithelial cells form a monolayer.
(4) The method according to any one of (1) to (3) above, wherein the human iPS cell-derived intestinal epithelial cells are cultured on a permeable support.
(5) A method for screening for a HuNoV growth inhibitor, comprising the following steps (a) and (b).
(a) Infecting human iPS cell-derived intestinal epithelial cells with HuNoV, and
(b) the step of bringing a candidate substance into contact with human iPS cell-derived intestinal epithelial cells or HuNoV; (6) the screening method according to (5) above, further comprising the following step (c);
(c) Measuring the proliferation amount of HuNoV in human iPS cell-derived intestinal epithelial cells contacted with the candidate substance (7) The above step (5) characterized in that the human iPS cell-derived intestinal epithelial cells are not treated with bile. ) or the screening method described in (6).

本発明は、ヒトiPS細胞から分化誘導した腸管上皮細胞(以下「ヒトiPS細胞由来腸管上皮細胞」とも記載する)を用いて、インビトロにて、HuNoVの感染・増殖を可能ならしめる方法に関するものである。従って、本発明により、従来技術において生じていた倫理上の問題を回避することが可能になる。 The present invention relates to a method for enabling HuNoV infection and proliferation in vitro using intestinal epithelial cells induced to differentiate from human iPS cells (hereinafter also referred to as "human iPS cell-derived intestinal epithelial cells"). be. The invention therefore makes it possible to avoid the ethical problems that have arisen in the prior art.

また、ヒト腸管上皮細胞初代培養を用いる従来法では、HuNoVを増殖させるために、組成が不明確な胆汁で細胞を処理する必要があった。本発明にかかる方法ではその必要がなくなり、HuNoVの増殖メカニズムの検討をより正確に行うことが可能となる。そのため、HuNoV感染症の治療剤(例えば、HuNoVの増殖阻害剤など)などのスクリーニングをより正確に実施できる。 Furthermore, in the conventional method using primary cultures of human intestinal epithelial cells, it was necessary to treat the cells with bile, whose composition is unclear, in order to propagate HuNoV. The method according to the present invention eliminates the need for this, making it possible to more accurately examine the proliferation mechanism of HuNoV. Therefore, screening for therapeutic agents for HuNoV infection (eg, HuNoV growth inhibitors, etc.) can be performed more accurately.

さらには、本発明によりHuNoV感染症に対するワクチンや治療剤の有効性をより正確に評価できる。 Furthermore, the present invention allows for more accurate evaluation of the effectiveness of vaccines and therapeutic agents against HuNoV infections.

また、HuNoVの不活性化の検討(ノロウイルス感染症を防ぐための食物の調理法あるいは吐瀉物の処理のガイドラインの作製等への応用)についても正確に実施できる。 In addition, studies on HuNoV inactivation (applicable to food preparation methods to prevent norovirus infections, preparation of guidelines for disposal of vomit, etc.) can be carried out accurately.

上記薬剤スクリーニング、ワクチンや治療剤の評価、不活性化の検討などを行うにあたり、iPS細胞由来の細胞を用いることができるため、倫理的な問題を回避することが可能となる。 Since iPS cell-derived cells can be used for the above-mentioned drug screening, evaluation of vaccines and therapeutic agents, and consideration of inactivation, it is possible to avoid ethical problems.

単層化したヒトiPS細胞由来腸管上皮細胞の構造。Transwell上に単層化したヒトiPS細胞由来腸管上皮細胞に存在するE-cadherin、VillinおよびHBGAを免疫染色し観察した顕微鏡写真を示す。単層化した腸管上皮細胞に局在するE-cadherin、VillinおよびHBGAと核を例示的に矢印で示した。Structure of monolayered human iPS cell-derived intestinal epithelial cells. A micrograph showing immunostaining and observation of E-cadherin, Villin, and HBGA present in human iPS cell-derived intestinal epithelial cells monolayered on Transwell is shown. E-cadherin, villin, HBGA and nuclei localized in monolayered intestinal epithelial cells are exemplarily indicated by arrows. 単層化したヒトiPS細胞由来腸管上皮細胞へのHuNoVの感染性の検討。Transwell上に単層化したヒトiPS細胞由来腸管上皮細胞にGII.4のVLPを添加し、細胞内に侵入するかどうかを確認した。細胞内に侵入したVLPを例示的に矢印で示した。Examination of HuNoV infectivity to monolayered human iPS cell-derived intestinal epithelial cells. GII.4 VLPs were added to human iPS cell-derived intestinal epithelial cells monolayered on Transwell, and it was confirmed whether they invaded the cells. VLPs that have invaded the cells are exemplarily indicated by arrows. ヒトiPS細胞由来腸管上皮細胞内でのHuNoV GII.4型の増殖レベルを測定した結果。ヒトiPS細胞由来腸管上皮細胞を胆汁で処理した条件(胆汁(+))および胆汁で処理しない条件(胆汁(-))において、HuNoV GII.4型ウイルスを感染させ、その増殖レベルを測定した結果を示す。感染後3時間および72時間の培養上清中のウイルスコピー数をグラフ化した。グラフ内の数字は、感染後3時間のウイルスコピー数に対する感染後72時間のウイルスコピー数の倍率を表す。左のグラフはGII.4 17-53株、右のグラフはGII.4 17-231株の結果である。Results of measuring the proliferation level of HuNoV GII.4 type in human iPS cell-derived intestinal epithelial cells. Results of infecting human iPS cell-derived intestinal epithelial cells with HuNoV GII.4 virus under bile-treated conditions (bile (+)) and non-bile-treated conditions (bile (-)), and measuring the proliferation level. shows. The virus copy number in the culture supernatant at 3 and 72 hours post-infection was graphed. The numbers in the graph represent the fold of the viral copy number at 72 hours post-infection relative to the virus copy number at 3 hours post-infection. The graph on the left shows the results for GII.4 17-53 stocks, and the graph on the right shows the results for GII.4 17-231 stocks. ヒトiPS細胞由来腸管上皮細胞内でのHuNoV GII.3型(16-50株)の増殖レベルを測定した結果。ヒトiPS細胞由来腸管上皮細胞を胆汁で処理した条件(胆汁(+))および胆汁で処理しない条件(胆汁(-))において、HuNoV GII.3型(16-50株)ウイルスを感染させ、その増殖レベルを測定した結果を示す。感染後3時間および72時間の培養上清中のウイルスコピー数をグラフ化した。グラフ内の数字は、感染後3時間のウイルスコピー数に対する感染後72時間のウイルスコピー数の倍率を表す。Results of measuring the proliferation level of HuNoV GII.3 type (16-50 strain) in human iPS cell-derived intestinal epithelial cells. Human iPS cell-derived intestinal epithelial cells were infected with HuNoV GII.3 type (16-50 strain) virus under bile-treated conditions (bile (+)) and non-bile-treated conditions (bile (-)). The results of measuring the proliferation level are shown. The virus copy number in the culture supernatant at 3 and 72 hours post-infection was graphed. The numbers in the graph represent the fold of the viral copy number at 72 hours post-infection relative to the virus copy number at 3 hours post-infection. ヒトiPS細胞由来腸管上皮細胞内でのHuNoV GII.17型(16-421株)の増殖レベルを測定した結果。ヒトiPS細胞由来腸管上皮細胞を胆汁で処理した条件(胆汁(+))および胆汁で処理しない条件(胆汁(-))において、HuNoV GII.17型(16-421株)ウイルスを感染させ、その増殖レベルを測定した結果を示す。感染後3時間および72時間の培養上清中のウイルスコピー数をグラフ化した。グラフ内の数字は、感染後3時間のウイルスコピー数に対する感染後72時間のウイルスコピー数の倍率を表す。Results of measuring the proliferation level of HuNoV GII.17 type (16-421 strain) in human iPS cell-derived intestinal epithelial cells. Human iPS cell-derived intestinal epithelial cells were infected with HuNoV GII.17 type (16-421 strain) virus under bile-treated conditions (bile (+)) and non-bile-treated conditions (bile (-)). The results of measuring the proliferation level are shown. The virus copy number in the culture supernatant at 3 and 72 hours post-infection was graphed. The numbers in the graph represent the fold of the viral copy number at 72 hours post-infection relative to the virus copy number at 3 hours post-infection. ヒトiPS細胞由来腸管上皮細胞内でのHuNoV GII.6型(16B27株)の増殖レベルを測定した結果。ヒトiPS細胞由来腸管上皮細胞を胆汁で処理した条件(胆汁(+))および胆汁で処理しない条件(胆汁(-))において、HuNoV GII.6型(16B27株)ウイルスを感染させ、その増殖レベルを測定した結果を示す。感染後3時間および72時間の培養上清中のウイルスコピー数をグラフ化した。グラフ内の数字は、感染後3時間のウイルスコピー数に対する感染後72時間のウイルスコピー数の倍率を表す。Results of measuring the proliferation level of HuNoV GII.6 type (16B27 strain) in human iPS cell-derived intestinal epithelial cells. Human iPS cell-derived intestinal epithelial cells were infected with HuNoV GII.6 type (16B27 strain) virus under bile-treated conditions (bile (+)) and non-bile-treated conditions (bile (-)), and the proliferation level was determined. The results are shown below. The virus copy number in the culture supernatant at 3 and 72 hours post-infection was graphed. The numbers in the graph represent the fold of the viral copy number at 72 hours post-infection relative to the virus copy number at 3 hours post-infection. ヒトiPS細胞由来腸管上皮細胞内でのHuNoV GI.7型(18-36株)の増殖レベルを測定した結果。ヒトiPS細胞由来腸管上皮細胞を胆汁で処理した条件(胆汁(+))および胆汁で処理しない条件(胆汁(-))において、HuNoV GI.7型(18-36株)ウイルスを感染させ、その増殖レベルを測定した結果を示す。感染後3時間および72時間の培養上清中のウイルスコピー数をグラフ化した。グラフ内の数字は、感染後3時間のウイルスコピー数に対する感染後72時間のウイルスコピー数の倍率を表す。Results of measuring the proliferation level of HuNoV GI.7 type (18-36 strain) in human iPS cell-derived intestinal epithelial cells. Human iPS cell-derived intestinal epithelial cells were infected with HuNoV GI.7 (strain 18-36) virus under bile-treated conditions (bile (+)) and non-bile-treated conditions (bile (-)). The results of measuring the proliferation level are shown. The virus copy number in the culture supernatant at 3 and 72 hours post-infection was graphed. The numbers in the graph represent the fold of the viral copy number at 72 hours post-infection relative to the virus copy number at 3 hours post-infection.

本発明の第1の実施形態は、HuNoVを増殖させる方法であって、ヒトiPS細胞由来腸管上皮細胞にHuNoVを感染させる工程および該腸管上皮細胞を培養する工程を含む、前記方法である。
第1の実施形態における増殖の対象となるHuNoVは、カリシウイルス科に属し、ヒトに感染するノロウイルスの遺伝子型を有するウイルスであれば、いかなるものであってもよく、今後出現する新規遺伝子型のウイルスも含まれる。当該HuNoVの型として、限定はしないが、例えば、GI.2、GI.3、GI.4、GI.6、GI.7、GII.2、GII.3、GII.4、GII.6、GII.14、GII.17など、好ましくは、GI.1、GI.7、GII.2、GII.3、GII.4、GII.6、GII.17、さらに好ましくは、GI.7、GII.3、GII.4、GII.6、GII.17およびこれらのバリアントを挙げることができる。
A first embodiment of the present invention is a method for propagating HuNoV, which comprises the steps of infecting human iPS cell-derived intestinal epithelial cells with HuNoV and culturing the intestinal epithelial cells.
The HuNoV to be propagated in the first embodiment may be any virus as long as it belongs to the family Caliciviridae and has the genotype of norovirus that infects humans. This also includes viruses. Examples of the type of HuNoV include, but are not limited to, GI.2, GI.3, GI.4, GI.6, GI.7, GII.2, GII.3, GII.4, GII.6, GII .14, GII.17, etc., preferably GI.1, GI.7, GII.2, GII.3, GII.4, GII.6, GII.17, more preferably GI.7, GII.3 , GII.4, GII.6, GII.17 and variants thereof.

第1の実施形態で使用されるヒトiPS細胞は、線維芽細胞などのヒト由来体細胞へ数種類の初期化因子の遺伝子を導入することなどにより、分化多能性を獲得した細胞であれば特に限定されるものではない。ここで、分化多能性の獲得に必要な初期化因子の遺伝子としては、例えば、Nanog、Oct3/4、Sox2、Klf4、c-Myc、Lin28などが知られている。これらの遺伝子のうち、例えば、Oct3/4、Sox2、Klf4、c-Mycの組合せ、Oct3/4、Sox2、Nanog、Lin28の組合せ、Oct3/4、Sox2、Klf4の組合せなどすでに公知の組み合わせを選択して体細胞に導入してもよく、Oct3/4、Sox2、Klf4を好適な組み合わせとして挙げることができる。 The human iPS cells used in the first embodiment are especially cells that have acquired pluripotency by introducing several types of reprogramming factor genes into human-derived somatic cells such as fibroblasts. It is not limited. Here, known examples of reprogramming factor genes necessary for acquisition of pluripotency include Nanog, Oct3/4, Sox2, Klf4, c-Myc, and Lin28. Among these genes, select already known combinations, such as a combination of Oct3/4, Sox2, Klf4, and c-Myc, a combination of Oct3/4, Sox2, Nanog, and Lin28, and a combination of Oct3/4, Sox2, and Klf4. Oct3/4, Sox2, and Klf4 can be cited as a suitable combination.

ヒトiPS細胞から腸管上皮細胞への誘導は、公知の方法に基づいて行うことができる。ヒトiPS細胞から腸管上皮オルガノイドの誘導は、基本的には、例えば、McCrackenら, Nat. Protoc., 6:1920-1928 2011およびTakahashiら, Stem Cell Reports 10:314-328 2018などを参照して、実施することができる。第1の実施形態で使用する腸管上皮細胞の調製を開始するにあたり、細胞外マトリクスでコーティングしたプラスティックディッシュまたはパーミアブルサポート上に適当な密度となるようにヒトiPS細胞を播種することが望ましく、細胞の播種密度は、例えば、20~30%(1~3×104/0.32cm2)程度にすることが望ましい。また、ここで使用する細胞外マトリクスは、市販品を使用することも可能であり、特に限定しないが、例えば、Matrigel(登録商標)(Becton Dickinson社)などを使用してもよい。ただし、市販の細胞外マトリクスを使用する場合、異なるロットで誘導される腸管上皮細胞の性質が異なる場合があるので、予備的な実験を行い、所望の腸管上皮細胞が誘導されるものを使用するとよい。
上記パーミアブルサポートは、多孔性メンブレンを有するインサートとこれを挿入して培養するための培養容器(ウェル)から構成されており、市販品(例えば、Corning International 社、Thermo Scientific社など)を入手して使用することができる。
Induction of human iPS cells into intestinal epithelial cells can be performed based on known methods. The induction of intestinal epithelial organoids from human iPS cells is basically based on, for example, McCracken et al., Nat. Protoc., 6:1920-1928 2011 and Takahashi et al., Stem Cell Reports 10:314-328 2018. , can be implemented. To begin preparing the intestinal epithelial cells used in the first embodiment, it is desirable to seed human iPS cells at an appropriate density on a plastic dish or permeable support coated with an extracellular matrix. It is desirable that the seeding density is, for example, about 20 to 30% (1 to 3 x 10 4 /0.32 cm 2 ). Furthermore, the extracellular matrix used here may be a commercially available product, and for example, Matrigel (registered trademark) (Becton Dickinson) may be used, although it is not particularly limited. However, when using commercially available extracellular matrices, the properties of intestinal epithelial cells induced in different lots may differ, so conduct preliminary experiments and use one that induces the desired intestinal epithelial cells. good.
The above-mentioned permeable support consists of an insert with a porous membrane and a culture vessel (well) for inserting and culturing the insert, and is a commercially available product (for example, Corning International, Thermo Scientific, etc.). can be used.

ヒトiPS細胞から腸管上皮細胞を誘導する場合、内胚葉系細胞への分化に適したサプリメント、シグナル伝達因子、成長因子、血清および抗生物質などを培地に添加してもよく、例えば、アクチビンAおよびWNT3aなどのシグナル伝達因子、FGF2およびEGFなどの成長因子を添加してもよい(McCrackenら, Nat. Protoc., 6:1920-1928 2011およびTakahashiら, Stem Cell Reports 10:314-328 2018などを参照のこと)。また、iPS細胞から内胚葉系へ分化させる培地キット(Thermo Fisher社;PSC Definitive Endoderm(DE) Induction Kitなど)などを使用することもできる。 When intestinal epithelial cells are derived from human iPS cells, supplements suitable for differentiation into endodermal cells, signal transduction factors, growth factors, serum, and antibiotics may be added to the medium, such as activin A and Signal transduction factors such as WNT3a, growth factors such as FGF2 and EGF may be added (e.g. McCracken et al., Nat. Protoc., 6:1920-1928 2011 and Takahashi et al., Stem Cell Reports 10:314-328 2018). (see ). Additionally, a culture medium kit for differentiating iPS cells into endodermal lineage (Thermo Fisher; PSC Definitive Endoderm (DE) Induction Kit, etc.) can also be used.

第1の実施形態において、ヒトiPS細胞由来腸管上皮細胞へのHuNoV感染は、非特許文献2および特許文献1など、公知の方法に基づいて行うことができる。
ウイルス感染の前に、ヒトiPS細胞由来腸管上皮細胞を単層化することが望ましい。腸管上皮細胞の単層化は、例えば、Takahashiら, EBioMedicine 23:34-45 2017、非特許文献2および特許文献1などに記載されている方法を参照して実施してもよい。また、腸管上皮細胞へのウイルスの感染は、例えば、非特許文献2および特許文献1などに記載されている方法に従って行うことができる。ここで、ヒトiPS細胞由来腸管上皮細胞を単層化する場合、細胞外マトリクス(例えば、前出のMatrigelやType Iコラーゲン(Nitta Gelatin社)など)でコーティングしたプラスティックディッシュまたはパーミアブルサポート上で単層化してもよく、パーミアブルサポート上での単層化がより好ましい。
In the first embodiment, human iPS cell-derived intestinal epithelial cells can be infected with HuNoV based on known methods such as Non-Patent Document 2 and Patent Document 1.
It is desirable to monolayer human iPS cell-derived intestinal epithelial cells before viral infection. Intestinal epithelial cells may be monolayered, for example, with reference to the methods described in Takahashi et al., EBioMedicine 23:34-45 2017, Non-Patent Document 2, Patent Document 1, and the like. Infection of intestinal epithelial cells with a virus can be performed, for example, according to the methods described in Non-Patent Document 2 and Patent Document 1. When forming human iPS cell-derived intestinal epithelial cells into a monolayer, monolayer them on a plastic dish or permeable support coated with an extracellular matrix (for example, Matrigel or Type I collagen (Nitta Gelatin), etc.). It may be layered, and single layering on a permeable support is more preferred.

これまでに報告されているヒト小腸組織検体由来の腸管上皮細胞を用いたHuNoVの増殖方法(非特許文献2および特許文献1)においては、GII.3型やGII.17型のウイルスは、胆汁非処理のヒト小腸組織検体由来腸管上皮細胞中では増殖させることができなかった。これに対し、本発明にかかるヒトiPS細胞由来腸管上皮細胞を用いると、細胞を胆汁で処理しなくても、これらのウイルスを増殖させることが可能である。もちろん、胆汁で処理した細胞中においてもウイルス増殖は可能であるが、後述するスクリーニング方法(本発明の第2の実施形態)などにおいては、細胞を胆汁で処理しない条件の方が好ましい。ウイルスの増殖を阻害する物質を探索するために行うスクリーニングにおいては、未同定物質のスクリーニング系への混入は可能なかぎり回避した方がよく、胆汁のような未同定物質を含む可能性のあるものを、当該スクリーニング系で使用することは避ける方が好ましい。 In the previously reported methods for propagating HuNoV using intestinal epithelial cells derived from human small intestine tissue specimens (Non-Patent Document 2 and Patent Document 1), GII.3 and GII.17 viruses are It could not be grown in intestinal epithelial cells derived from untreated human small intestine tissue specimens. In contrast, when the human iPS cell-derived intestinal epithelial cells of the present invention are used, these viruses can be propagated without treating the cells with bile. Of course, virus proliferation is possible even in cells treated with bile, but in the screening method described below (second embodiment of the present invention), etc., it is preferable to use conditions in which cells are not treated with bile. In screening for substances that inhibit virus proliferation, it is best to avoid contamination of unidentified substances into the screening system as much as possible, and avoid using substances that may contain unidentified substances such as bile. It is preferable to avoid using them in the screening system.

本発明の第2の実施形態は、少なくとも以下(a)および(b)の工程を含む、HuNoVの増殖阻害物質のスクリーニング方法である。
(a)ヒトiPS細胞由来腸管上皮細胞にHuNoVを感染させる工程および、
(b)ヒトiPS細胞由来腸管上皮細胞またはHuNoVと候補物質を接触させる工程
The second embodiment of the present invention is a method for screening for a HuNoV growth inhibitor, which includes at least the following steps (a) and (b).
(a) Infecting human iPS cell-derived intestinal epithelial cells with HuNoV, and
(b) Step of bringing the candidate substance into contact with human iPS cell-derived intestinal epithelial cells or HuNoV

工程(a)は、ヒトiPS細胞由来腸管上皮細胞にHuNoVを感染させる工程である。
ウイルスの腸管上皮細胞への侵入を阻害することで、ウイルスの増殖を阻害する物質をスクリーニングする場合には、必ずしも、複製能を有するウイルス粒子を用いる必要はなく、例えば、ヒトiPS細胞由来腸管上皮細胞にウイルス様粒子(virus like particle:VLP)を侵入させることでもよい。これに対し、ウイルスの腸管上皮細胞内での複製を阻害する物質をスクリーニングする場合には、細胞への侵入および細胞内での複製能を有するウイルス粒子を用いる方が望ましい。
VLPおよびウイルス粒子の細胞内への侵入は、VLPおよびウイルス粒子を免疫染色等して、蛍光顕微鏡等で確認することができる。
Step (a) is a step of infecting human iPS cell-derived intestinal epithelial cells with HuNoV.
When screening for substances that inhibit viral proliferation by inhibiting viral entry into intestinal epithelial cells, it is not necessarily necessary to use replication-competent virus particles; for example, human iPS cell-derived intestinal epithelial It may also be possible to infiltrate cells with virus-like particles (VLPs). On the other hand, when screening for substances that inhibit the replication of viruses within intestinal epithelial cells, it is preferable to use virus particles that have the ability to invade cells and replicate within cells.
Invasion of VLPs and virus particles into cells can be confirmed by immunostaining VLPs and virus particles using a fluorescence microscope or the like.

工程(b)は、ヒトiPS細胞由来腸管上皮細胞またはHuNoVと、候補物質(HuNoVの増殖阻害能の有無を評価する物質)を接触させる工程である。ヒトiPS細胞由来腸管上皮細胞に候補物質を接触させるとは、例えば、ヒトiPS細胞由来腸管上皮細胞を培養している培養容器に候補物質を添加するなどして、ヒトiPS細胞由来腸管上皮細胞と候補物質を接触させること、または候補物質が接触可能な状態にすることである。この場合、ヒトiPS細胞由来腸管上皮細胞内に候補物質を侵入させるための処理を行ってもよい。また、HuNoVと候補物質を接触させるとは、例えば、HuNoVと候補物質を混合して接触させること、または接触可能な状態にすることである。この場合、HuNoVと候補物質を混合して、適宜、インキュベートしたのち、工程(a)を実施してもよく、当該工程(a)は、候補物質と混合したHuNoVをヒトiPS細胞由来腸管腸上皮細胞に感染させてもよい。 Step (b) is a step of bringing human iPS cell-derived intestinal epithelial cells or HuNoV into contact with a candidate substance (substance for evaluating the presence or absence of HuNoV growth inhibition ability). Contacting human iPS cell-derived intestinal epithelial cells with a candidate substance means, for example, adding the candidate substance to a culture vessel in which human iPS cell-derived intestinal epithelial cells are being cultured. It is to bring the candidate substance into contact with it or to make it possible for the candidate substance to come into contact with it. In this case, a treatment may be performed to allow the candidate substance to enter into human iPS cell-derived intestinal epithelial cells. Further, bringing HuNoV and a candidate substance into contact means, for example, mixing HuNoV and a candidate substance and bringing them into contact, or bringing them into a state where they can come into contact. In this case, the HuNoV and the candidate substance may be mixed and incubated as appropriate, and then step (a) may be carried out. Cells may also be infected.

なお、工程(a)と工程(b)の順番は、いずれを先に行っても、または工程(a)と工程(b)を同時に行ってもよく(つまり、HuNoVの感染と候補物質と腸管上皮細胞との接触を同時に行ってもよく)、スクリーニングの目的に応じて、適宜決定することができる。工程(a)および/または工程(b)の後、適当な培養条件で、ヒトiPS細胞由来腸管上皮細胞を培養維持してもよい。
また、前述のように、スクリーニングの結果を正しく評価するためには、ヒトiPS細胞由来腸管上皮細胞を胆汁で処理しない方が好ましい。
Note that the order of step (a) and step (b) may be either performed first or step (a) and step (b) may be performed simultaneously (i.e., HuNoV infection, candidate substance, and intestinal tract). (Contacting with epithelial cells may be carried out at the same time) can be determined as appropriate depending on the purpose of screening. After step (a) and/or step (b), human iPS cell-derived intestinal epithelial cells may be maintained in culture under appropriate culture conditions.
Furthermore, as described above, in order to correctly evaluate the screening results, it is preferable not to treat human iPS cell-derived intestinal epithelial cells with bile.

本発明の第2の実施形態には、以下の(c)の工程がさらに含まれてもよい。
(c)候補物質を接触させたヒトiPS細胞由来腸管上皮細胞中におけるHuNoVの複製量を測定する工程
工程(c)は、工程(a)および(b)の後の工程で、候補物質のウイルス侵入・複製に対する影響を調べる工程である。
腸管上皮細胞内におけるノロウイルスの複製量は、当業者において周知の方法に基づいて、ウイルス粒子数をゲノムコピー数として測定し、調べることができる。例えば、感染後の培養上清または腸管上皮細胞、もしくはその両者からRNAを抽出し、リアルタイムPCR法でノロウイルスゲノムコピー数を検出し、当該サンプル中に存在していたノロウイルスの粒子数をゲノムコピー数に基づいて概算することができる。測定したノロウイルスのコピー数をコントロール(例えば、感染後短時間で測定したウイルス数)と比較して、ノロウイルスの複製の有無および複製の程度を評価することができる。
The second embodiment of the present invention may further include the following step (c).
(c) Step of measuring the replication amount of HuNoV in human iPS cell-derived intestinal epithelial cells contacted with the candidate substance Step (c) is a step after steps (a) and (b), in which the candidate substance virus This is the process of examining the influence on invasion and replication.
The amount of norovirus replication within intestinal epithelial cells can be determined by measuring the number of virus particles as the genome copy number based on methods well known to those skilled in the art. For example, RNA is extracted from the culture supernatant after infection, intestinal epithelial cells, or both, the norovirus genome copy number is detected by real-time PCR, and the number of norovirus particles present in the sample is calculated as the genome copy number. It can be estimated based on By comparing the measured norovirus copy number with a control (for example, the virus number measured a short time after infection), the presence or absence of norovirus replication and the degree of replication can be evaluated.

本明細書において引用されたすべての文献の開示内容は、全体として明細書に参照により組み込まれる。また、本明細書全体において、単数形の「a」、「an」および「the」の単語が含まれる場合、文脈から明らかにそうでないことが示されていない限り、単数のみならず複数のものを含むものとする。
以下に実施例を示してさらに本発明の説明を行うが、実施例は、あくまでも本発明の実施形態の例示にすぎず、本発明の範囲を限定するものではない。
The disclosures of all documents cited herein are incorporated by reference in their entirety. Additionally, throughout this specification, references to the singular words "a,""an," and "the" refer to the plural as well as the singular, unless the context clearly dictates otherwise. shall be included.
The present invention will be further explained below with reference to Examples, but the Examples are merely illustrative of the embodiments of the present invention and do not limit the scope of the present invention.

1.材料と方法
1-1.細胞
腸管上皮細胞の誘導には、国立大学法人東京大学医科学研究所・ステムセルバンクから入手したヒトiPS細胞株、TkDN4-M株(Oct3/4、Sox2、Klf4を導入;Takayamaら, J. Exp. Med., 207:2817-2830 2010)を使用した。細胞は、TCプロテクター(DSファーマバイオメディカル社)に懸濁し、-80℃で保存していたものを融解し、復元培養して用いた。
1. Materials and methods 1-1. Cells For induction of intestinal epithelial cells, human iPS cell lines and TkDN4-M lines (introduced with Oct3/4, Sox2, and Klf4; Takayama et al., J. Exp. Med., 207:2817-2830 2010) was used. The cells were suspended in TC protector (DS Pharma Biomedical), stored at -80°C, thawed, reconstituted, and used.

1-2.iPS細胞の培養
ヒトiPS細胞は、Essential 8 medium(Thermo Fisher Scientific社:#A1517001)中、フィーダー細胞フリーの条件でビトロネクチン(Thermo Fisher Scientific社:#A14700)コートしたプレート上で、コロニーの状態で維持した。細胞は、コンフルエントになる前に、3、4日毎に継代した。
1-2. Culture of iPS cells Human iPS cells were maintained as colonies on plates coated with vitronectin (Thermo Fisher Scientific: #A14700) in feeder cell-free conditions in Essential 8 medium (Thermo Fisher Scientific: #A1517001). did. Cells were passaged every 3 to 4 days before reaching confluence.

1-3.iPS細胞から内胚葉系細胞への分化誘導
オルガノイドは、すでに報告されているプロトコール(McCracken et al., Nat. Prot. 6:1920, 2011)に若干の変更を加えた方法により、ヒトiPS細胞(クローン:TkDN4-M)から分化誘導させた。hESC-qualified Matrigel(Becton Dickinson社:#354277)でコートしたプレート上に、80-90%程度コンフルエントになるように培養したiPS細胞を、DE1培地(表1)中で24時間培養した後、DE2培地(表1)中で24時間、さらに、DE3培地(表1)中で24時間培養し、胚体内胚葉(definitive endoderm:DE)に分化させた。
1-3. Induction of differentiation from iPS cells to endodermal cells Organoids were generated from human iPS cells ( Clone: TkDN4-M) was induced to differentiate. iPS cells were cultured to approximately 80-90% confluence on plates coated with hESC-qualified Matrigel (Becton Dickinson: #354277) in DE1 medium (Table 1) for 24 hours, then DE2 The cells were cultured in the medium (Table 1) for 24 hours and then in the DE3 medium (Table 1) for 24 hours to differentiate into definitive endoderm (DE).

Figure 0007356114000001
Figure 0007356114000001

1-4.内胚葉系細胞からスフェロイド(中腸-後腸)の誘導
中腸-後腸については、DE細胞(胚体内胚葉細胞)を中腸、後腸分化用培地中(表1)4日間培養した。
1-4. Induction of spheroids (midgut-hindgut) from endodermal cells For midgut-hindgut, DE cells (definitive endoderm cells) were cultured for 4 days in medium for midgut/hindgut differentiation (Table 1).

1-5.スフェロイドからオルガノイドへの培養
浮遊してきたスフェロイドを回収し、腸成長用培地(表1)中、Matrigel(Becton Dickinson社:#354232)内で、2、3日毎に培地交換をしながら14日間、3次元培養を行った。得られたオルガノイドは、下記1-6に記載の通り、Takahashiらの方法(Takahashiら, Stem Cell Reports 10:314-328 2018)に従って、数回継代した後、回収した。
1-5. Culture from spheroids to organoids Floating spheroids were collected and placed in Matrigel (Becton Dickinson: #354232) in intestinal growth medium (Table 1) for 14 days, changing the medium every 2 to 3 days. Dimensional culture was performed. The obtained organoids were passaged several times and collected according to the method of Takahashi et al. (Takahashi et al., Stem Cell Reports 10:314-328 2018), as described in 1-6 below.

1-6.オルガノイドの維持、継代
オルガノイドは、2~3×104/50 μL Matrigel(=10 μL培養用培地(表1)(+10 μM Y-27632(和光純薬工業:#253-00513))+40 μL Matrigel)/ウェルで継代してから5~7日後に、4-well分から細胞を回収した。培地をアスピレーションで除去後、1 mL/ウェルのD-PBS (-)で1度洗浄した。0.5 mL/ウェルの10 μM Y-27632を含むTyrpLE Express(Thermo Fisher Scientific社:#12605010)を加え、マイクロピペットでMatrigelごと細胞塊を回収し、15 mL チューブに移した。その後の処置効率化のため、1本の15 mL チューブには、4-ウェル分(約2 mL)を最大量とした。チューブの蓋を閉めた後、37℃の水浴で5分間インキュベートした。クリーンベンチ内で蓋を開け、マイクロピペットを用いて細胞塊を破砕した。細胞懸濁液を、メッシュを通してステムフル15 mL チューブ(住友ベークライト:#MS-90150)に移した。この状態の懸濁液を数マイクロリットル取り、細胞数計数に用いた。残りの細胞懸濁液に、10% FBS/基本培地(表1)を適量加え、TrypLE Expressの酵素反応を停止した後、遠心(400 g、25℃、5分)により細胞を沈殿させた。沈殿した細胞を2~3×106/mLになるように培養用培地(+10 μM Y-27632)で懸濁した。40 μLを1.5 mL チューブに取り、氷上で数分間冷却した。ここに160 μLのMatrigelを加え、ピペッティングにより懸濁し、そこから50 μL/ウェルの量を、24-ウェルプレートに添加した(2~3×104/50 μL Matrigel/ウェル)。プレートを37℃、5% CO2インキュベーターに10分間静置し、Matrigelを固化させた。培養用培地(+10 μM Y-27632)を500 μL/ウェルで加え、37℃、5% CO2インキュベーターで2日間培養し、Y-27632を含まない培養用培地に培地交換した。
1-6. Maintenance and passage of organoids Organoids are prepared using 2-3×10 4 /50 μL Matrigel (=10 μL culture medium (Table 1) (+10 μM Y-27632 (Wako Pure Chemical Industries: #253-00513)) + 40 μL Five to seven days after passage in Matrigel/well, cells were collected from 4-wells. After removing the medium by aspiration, the wells were washed once with 1 mL/well of D-PBS (-). TyrpLE Express (Thermo Fisher Scientific: #12605010) containing 0.5 mL/well of 10 μM Y-27632 was added, and the cell mass was collected together with Matrigel using a micropipette and transferred to a 15 mL tube. To improve the efficiency of subsequent treatment, the maximum volume in one 15 mL tube was 4 wells (approximately 2 mL). After the tube was capped, it was incubated in a 37°C water bath for 5 minutes. The lid was opened in a clean bench, and the cell mass was disrupted using a micropipette. The cell suspension was transferred through a mesh to a stemful 15 mL tube (Sumitomo Bakelite: #MS-90150). Several microliters of the suspension in this state was taken and used for counting the number of cells. After adding an appropriate amount of 10% FBS/basal medium (Table 1) to the remaining cell suspension to stop the TrypLE Express enzyme reaction, cells were precipitated by centrifugation (400 g, 25°C, 5 minutes). The precipitated cells were suspended in culture medium (+10 μM Y-27632) to a concentration of 2 to 3×10 6 /mL. 40 μL was taken into a 1.5 mL tube and cooled on ice for several minutes. 160 μL of Matrigel was added thereto, suspended by pipetting, and 50 μL/well was added to a 24-well plate (2 to 3×10 4 /50 μL Matrigel/well). The plate was left in a 5% CO 2 incubator at 37° C. for 10 minutes to solidify Matrigel. A culture medium (+10 μM Y-27632) was added at 500 μL/well, cultured at 37° C. in a 5% CO 2 incubator for 2 days, and the medium was replaced with a culture medium not containing Y-27632.

1-7.オルガノイドから単層化腸管上皮細胞の調製
2~3×104/50 μL Matrigel/ウェルで継代してから5~7日後に、4-ウェル分から細胞を回収する。培地をアスピレーションで除去後、1 mL/ウェルのD-PBS (-)で1度洗浄した。0.5 mL/ウェルのTyrpLE Express(+10 μM Y-27632)を加え、マイクロピペットでMatrigelごと細胞塊を回収し、15 mLチューブに移した。その後の処置効率化のため、1本の15 mL チューブには、4-ウェル分(約2 mL)を最大量とした。チューブの蓋を閉めた後、37℃の水浴で5分間インキュベートした。クリーンベンチ内で蓋を開け、マイクロピペットを用いて細胞塊を破砕した。細胞懸濁液をメッシュを通してステムフル15 mL チューブに移した。この状態の懸濁液を数マイクロリットル取り、細胞数計数に用いた。残りの細胞懸濁液に、10% FBS/基本培地を適量加え、TrypLE Expressの酵素反応を停止した後、遠心(400 g、25℃、5分)により細胞を沈殿させた。沈殿した細胞を1~4×105/mLになるように培養用培地(+10 μM Y-27632)で懸濁した。
1-7. Preparation of monolayered intestinal epithelial cells from organoids
Harvest cells from 4-wells 5-7 days after passaging in 2-3 x 10 4 /50 μL Matrigel/well. After removing the medium by aspiration, the wells were washed once with 1 mL/well of D-PBS (-). 0.5 mL/well of TyrpLE Express (+10 μM Y-27632) was added, and the cell mass was collected together with Matrigel using a micropipette and transferred to a 15 mL tube. To improve the efficiency of subsequent treatment, the maximum volume in one 15 mL tube was 4 wells (approximately 2 mL). After the tube was capped, it was incubated in a 37°C water bath for 5 minutes. The lid was opened in a clean bench, and the cell mass was disrupted using a micropipette. The cell suspension was transferred through a mesh into a stemful 15 mL tube. Several microliters of the suspension in this state was taken and used for counting the number of cells. After adding an appropriate amount of 10% FBS/basal medium to the remaining cell suspension to stop the TrypLE Express enzyme reaction, the cells were precipitated by centrifugation (400 g, 25°C, 5 minutes). The precipitated cells were suspended in culture medium (+10 μM Y-27632) to a concentration of 1 to 4×10 5 /mL.

細胞外マトリクス(2.5% Matrigel、または0.1% I型コラーゲン(新田ゼラチン:#638-00781))でコーティングしたプラスティックディッシュ、もしくはパーミアブルサポート(Transwell:Corning 3413もしくは3470)に播種した。播種した細胞数は1~4×104/0.32 mm2とする。播種されたプレートを遠心(350 g、25℃、1分)することにより、細胞を速やかにプレート底に接着させた。
播種の24時間後に培地を分化用培地(表1)に置換した。
さらに48時間後、培地を0.015~0.03% ブタ胆汁(SIGMA社)添加または非添加の分化用培地に置換した。
その後、さらに48時間後にHuNoVの感染を開始した。
The cells were seeded on plastic dishes coated with extracellular matrix (2.5% Matrigel or 0.1% type I collagen (Nitta gelatin: #638-00781)) or on permeable supports (Transwell: Corning 3413 or 3470). The number of seeded cells is 1 to 4 x 10 4 /0.32 mm 2 . The cells were quickly allowed to adhere to the bottom of the plate by centrifuging the seeded plate (350 g, 25°C, 1 minute).
24 hours after seeding, the medium was replaced with a differentiation medium (Table 1).
After a further 48 hours, the medium was replaced with a differentiation medium supplemented with or without 0.015-0.03% porcine bile (SIGMA).
Then, HuNoV infection was started after another 48 hours.

1-8.オルガノイドの保存
2~3×104/50 μL Matrigel/ウェルで継代してから5~7日後に、細胞を回収した。培地をアスピレーションで除去後、1 mL/ウェルのD-PBS (-)で1度洗浄した。0.5 mL/ウェルのTyrpLE Express(+10 μM Y-27632)を加え、マイクロピペットでMatrigelごと細胞塊を回収し、15 mL チューブに移した。その後の処置効率化のため、1本の15 mL チューブには、4-ウェル分(約2 mL)を最大量とした。チューブの蓋を閉めた後、37℃の水浴で5分間インキュベートした。クリーンベンチ内で蓋を開け、マイクロピペットを用いて細胞塊を破砕した。10% FBS/基本培地を適量加え、TrypLE Expressの酵素反応を停止した後、遠心(400 g、25℃、5分)により細胞を沈殿させた。沈殿した細胞を、回収に用いた細胞1-ウェル分につき2 mL(4-ウェル分から回収した場合8 mL)のCELLBANKER-1(タカラバイオ: #TKR-CB011)(+10 μM Y-27632)で懸濁し、1 mLずつクライオチューブに分注し、速やかに-80℃で保存した。
1-8. Storage of organoids
Cells were harvested 5-7 days after passage in 2-3×10 4 /50 μL Matrigel/well. After removing the medium by aspiration, the wells were washed once with 1 mL/well of D-PBS (-). 0.5 mL/well of TyrpLE Express (+10 μM Y-27632) was added, and the cell mass was collected together with the Matrigel using a micropipette and transferred to a 15 mL tube. To improve the efficiency of subsequent treatment, the maximum volume in one 15 mL tube was 4 wells (approximately 2 mL). After the tube was capped, it was incubated in a 37°C water bath for 5 minutes. The lid was opened in a clean bench, and the cell mass was disrupted using a micropipette. After adding an appropriate amount of 10% FBS/basal medium to stop the TrypLE Express enzyme reaction, cells were precipitated by centrifugation (400 g, 25°C, 5 minutes). The precipitated cells were treated with 2 mL of CELLBANKER-1 (Takara Bio: #TKR-CB011) (+10 μM Y-27632) for each well of cells used for collection (8 mL if collected from 4 wells). The suspension was suspended, dispensed into cryotubes in 1 mL portions, and immediately stored at -80°C.

1-9.腸管上皮細胞へのHuNoVの感染
本実施例で使用したHuNoVは、大阪健康安全基盤研究所から入手した。
具体的には、HuNoVに感染した患者の糞便を100 mg/mlになるようにPBSに懸濁して、0.22 μMのFilterを通して滅菌、不純物除去を行ってウイルス原液とした。
公定法に基づいたリアルタイムPCRを用いて原液中のウイルスのゲノムコピー数を算定し、1-ウェル(0.32 mm2)あたり1~2×106コピーのウイルスを上記1-7で調製した単層化腸管上皮細胞に、基本培地(胆汁非添加)中にて3時間感染させた。
1-9. Infection of Intestinal Epithelial Cells with HuNoV The HuNoV used in this example was obtained from the Osaka Institute for Health and Safety Research.
Specifically, the feces of a patient infected with HuNoV was suspended in PBS to a concentration of 100 mg/ml, sterilized through a 0.22 μM filter, and impurities removed to obtain a virus stock solution.
The genome copy number of the virus in the stock solution was calculated using real-time PCR based on the official method, and 1 to 2 × 10 6 copies of virus per well (0.32 mm 2 ) were added to the monolayer prepared in 1-7 above. Transformed intestinal epithelial cells were infected for 3 hours in basal medium (no bile added).

その後、基本培地で洗浄した後、さらに培養する場合には、0.015~0.03 %ブタ胆汁の添加または非添加の分化用培地中で培養を行った。
なお、後述する実験結果において、胆汁(+)の条件とは、上記1-7に記載の感染前2日から0.015~0.03 %ブタ胆汁を添加した分化用培地で培養後、血清および胆汁非添加の分化用培地に変えてHuNoVを感染させ、3時間培養後、洗浄し、0.015~0.03 %胆汁を添加した分化用培地でさらに培養した。一方、胆汁(-)の条件では、胆汁を一切添加せずに、上記の工程を行った。
Thereafter, after washing with basal medium, if further culturing was required, the cells were cultured in a differentiation medium with or without addition of 0.015 to 0.03% porcine bile.
In addition, in the experimental results described below, bile (+) conditions refer to conditions for culturing in a differentiation medium supplemented with 0.015 to 0.03% porcine bile from 2 days before infection as described in 1-7 above, without addition of serum or bile. The cells were infected with HuNoV in a differentiating medium, and after culturing for 3 hours, they were washed and further cultured in a differentiating medium supplemented with 0.015 to 0.03% bile. On the other hand, under bile (-) conditions, the above steps were performed without adding any bile.

2.結果
2-1.iPS由来単層化腸管上皮細胞
Transwell 上に単層化したiPS細胞由来腸管上皮細胞を、メンブレンごと4%パラホルムアルデヒドで固定し、OCTコンパウンドに埋め込み凍結させ、約7 μMの凍結切片を作製した。作製した凍結切片に対し、抗Villin1抗体、抗E-カドヘリン抗体、ローダミン標識UEA1、Alexa633標識ファロイジン等を反応させ、必要に応じ適切な蛍光標識2次抗体を反応させて免疫組織染色用サンプルとした。サンプルをスライドグラスとカバーガラス間に封入するときに、核染色に用いるDAPIを含んだ試薬(ProLongTM Diamond Antifade Mountant with DAPI, Thermo Fisher Scientifi, #P36962)を用いた。調製したサンプルを蛍光顕微鏡ないしは共焦点レーザー顕微鏡を用いて観察を行った。
図1のiPS細胞由来ヒト腸管上皮細胞は、Transwell上で極性を持たせ単層化したもので、Villin1(Villin1は吸収上皮細胞のマーカー)が管腔側で発現していることが確認できた(図1左)。また、E-cadherinの染色像も確認でき、タイトジャンクションがきちんと形成されていることも確認できた(図1)。HuNoVの感染には、血液型抗原(HBGA)が必要と考えられている。最も代表的なものがα1,2フコースで、ヒトではFUT2によって修飾される糖鎖である。この糖鎖はレクチンの一種であるUEA1で検出できる。上記1-7に記載したTranswell上のiPS由来単層化腸管上皮細胞においても、血液型抗原が十分に発現していることがUEA1染色により明らかになった(図1右)。
2. Result 2-1. iPS-derived monolayered intestinal epithelial cells
iPS cell-derived intestinal epithelial cells monolayered on Transwell were fixed with 4% paraformaldehyde along with the membrane, embedded in OCT compound and frozen, and frozen sections of approximately 7 μM were prepared. The prepared frozen sections were reacted with anti-Villin1 antibody, anti-E-cadherin antibody, rhodamine-labeled UEA1, Alexa633-labeled phalloidin, etc., and if necessary, reacted with an appropriate fluorescently labeled secondary antibody to prepare a sample for immunohistological staining. . A reagent containing DAPI used for nuclear staining (ProLong TM Diamond Antifade Mountant with DAPI, Thermo Fisher Scientifi, #P36962) was used when mounting the sample between a slide glass and a cover glass. The prepared samples were observed using a fluorescence microscope or a confocal laser microscope.
The iPS cell-derived human intestinal epithelial cells shown in Figure 1 were polarized and monolayered on Transwell, and it was confirmed that Villin1 (Villin1 is a marker for absorptive epithelial cells) was expressed on the luminal side. (Figure 1 left). In addition, E-cadherin staining images were also confirmed, confirming that tight junctions were properly formed (Figure 1). Blood group antigen (HBGA) is thought to be required for HuNoV infection. The most typical example is α1,2 fucose, which is a sugar chain modified by FUT2 in humans. This sugar chain can be detected with UEA1, a type of lectin. UEA1 staining revealed that blood group antigens were sufficiently expressed in the iPS-derived monolayered intestinal epithelial cells on Transwell described in 1-7 above (Fig. 1, right).

2-2.iPS細胞由来腸管上皮細胞に対するHuNoVの感染性の検討
生きたHuNoVを感染させる前に、ゲノムを持たないVLPを用いて、ここで作製した腸管上皮細胞にVLPが侵入できるかどうかを検討した。
GII.4型のVLPは既報に基づいて調製した。上記1-7に記載したTranswell上の単層化腸管上皮細胞に、VLP 300 ngを添加し、CO2インキュベーター内で3時間静置した。基本培地で2度洗浄後、上記2-1に記載したように切片を調製し、抗Villin1抗体、抗GII.4 VLP抗体およびAlexa633標識ファロイジンを用いて、染色した。
図2に示すように、GII.4 VLPが腸管上皮細胞内に侵入していることが確認できた。
2-2. Examining the infectivity of HuNoV to iPS cell-derived intestinal epithelial cells Before infecting live HuNoV, we examined whether VLPs could invade the intestinal epithelial cells prepared here using VLPs that do not have genomes.
GII.4 type VLP was prepared based on a previous report. 300 ng of VLP was added to the monolayered intestinal epithelial cells on the Transwell described in 1-7 above, and the cells were left standing in a CO 2 incubator for 3 hours. After washing twice with basal medium, sections were prepared as described in 2-1 above and stained using anti-Villin1 antibody, anti-GII.4 VLP antibody, and Alexa633-labeled phalloidin.
As shown in Figure 2, it was confirmed that GII.4 VLP invaded into intestinal epithelial cells.

2-3.iPS細胞由来腸管上皮細胞へのHuNoV感染に対する胆汁処理の影響
これまでに、ヒト小腸組織検体由来の腸管上皮細胞へのHuNoV(少なくとも、GII.3、GII.17およびGI.1)の感染には、当該腸管上皮細胞を胆汁で処理する必要があった(非特許文献2および特許文献1)。そこで、iPS細胞由来腸管上皮細胞に対するHuNoVの感染についても、細胞を胆汁処理する必要があるかどうかの検討を行った。
GII.4(17-53株および17-231株)については、胆汁非処理の条件で、感染後72時間の細胞内のウイルスコピー数が、感染後3時間のウイルスコピー数の約140倍~440倍程度(17-53株が約143倍、17-231株が約430倍)に増加しており(図3)、iPS細胞由来腸管上皮細胞では、胆汁非処理であっても、ウイルスが感染し増殖可能であることが確認された。
また、GII.3、GII.17、GII.6およびGI.7についても、同様に、胆汁非処理のiPS細胞由来腸管上皮細胞に感染し増殖可能であることが確認された(図4、図5、図6および図7)。感染後3時間の細胞内のウイルスコピー数と比べて、感染後72時間の細胞内のウイルスコピー数が、GII.3(16-50株)では約16倍に(図4)、GII.17(16-421株)では約28.0倍(図5)、GII.6(16B27株)では約16倍に(図6)、GI.7(18-36株)では約3.0倍(図7)、に増加していた。
2-3. Effect of bile treatment on HuNoV infection of iPS cell-derived intestinal epithelial cells To date, HuNoV (at least GII.3, GII.17 and GI.1) infection of intestinal epithelial cells derived from human small intestinal tissue specimens has been shown to be effective. , it was necessary to treat the intestinal epithelial cells with bile (Non-Patent Document 2 and Patent Document 1). Therefore, we investigated whether it is necessary to treat cells with bile when infecting iPS cell-derived intestinal epithelial cells with HuNoV.
For GII.4 (strains 17-53 and 17-231), in the absence of bile treatment, the number of viral copies in cells at 72 hours after infection is approximately 140 times the number at 3 hours after infection. The increase was approximately 440 times (approximately 143 times for the 17-53 strain and approximately 430 times for the 17-231 strain) (Figure 3), and the virus was increased in iPS cell-derived intestinal epithelial cells even without bile treatment. It was confirmed that the virus was infected and could proliferate.
In addition, it was confirmed that GII.3, GII.17, GII.6, and GI.7 were also able to infect and proliferate in bile-untreated iPS cell-derived intestinal epithelial cells (Fig. 5, Figures 6 and 7). Compared to the intracellular virus copy number 3 hours after infection, the intracellular virus copy number 72 hours after infection was approximately 16 times greater in GII.3 (strain 16-50) (Figure 4), and GII.17 (strain 16-421) about 28.0 times (Figure 5), GII.6 (strain 16B27) about 16 times (Figure 6), GI.7 (strain 18-36) about 3.0 times (Figure 7), It was increasing.

本発明は、iPS細胞から誘導した腸管上皮細胞を用いて、HuNoVを増殖させる方法を提供する。この方法は、検体由来の組織を用いる必要がなく、倫理的なハードルが低いことから、HuNoV感染症の治療剤のスクリーニングなどを可能ならしめ、医療分野においての利用が期待される。 The present invention provides a method for propagating HuNoV using intestinal epithelial cells derived from iPS cells. This method does not require the use of specimen-derived tissue and has low ethical hurdles, making it possible to screen for therapeutic agents for HuNoV infections and is expected to be used in the medical field.

Claims (5)

ヒトノロウイルス(HuNoV)を増殖させる方法であって、ヒトiPS細胞由来腸管上皮細胞にHuNoVを感染させる工程および該腸管上皮細胞を培養する工程を含み、当該ヒトノロウイルスの遺伝子型がGII.3、GII.17、GII.6またはGI.7であり、当該ヒトiPS細胞由来腸管上皮細胞を胆汁で処理しないことを特徴とする、前記方法。 A method for propagating human norovirus (HuNoV), comprising the steps of infecting human iPS cell-derived intestinal epithelial cells with HuNoV and culturing the intestinal epithelial cells, wherein the genotype of the human norovirus is GII.3, GII.17, GII.6 or GI.7, and the method is characterized in that the human iPS cell-derived intestinal epithelial cells are not treated with bile . 前記ヒトiPS細胞由来腸管上皮細胞が単層を形成していることを特徴とする請求項に記載の方法。 2. The method according to claim 1, wherein the human iPS cell-derived intestinal epithelial cells form a monolayer. 前記ヒトiPS細胞由来腸管上皮細胞が、パーミアブルサポート上で培養されることを特徴とする請求項1または2に記載の方法。 3. The method according to claim 1, wherein the human iPS cell-derived intestinal epithelial cells are cultured on a permeable support. HuNoVの増殖阻害物質のスクリーニング方法であって、当該HuNoVの遺伝子型がGII.3、GII.17、GII.6またはGI.7であり、以下(a)および(b)の工程を含み、ヒトiPS細胞由来腸管上皮細胞を胆汁で処理しないことを特徴とする、前記方法
(a)ヒトiPS細胞由来腸管上皮細胞にHuNoVを感染させる工程および、
(b)ヒトiPS細胞由来腸管上皮細胞またはHuNoVと、候補物質を接触させる工程
A method for screening for a HuNoV growth inhibitor, wherein the HuNoV genotype is GII.3, GII.17, GII.6, or GI.7, and the method includes the following steps (a) and (b). , the method described above, characterized in that the human iPS cell-derived intestinal epithelial cells are not treated with bile .
(a) Infecting human iPS cell-derived intestinal epithelial cells with HuNoV, and
(b) Step of bringing the candidate substance into contact with human iPS cell-derived intestinal epithelial cells or HuNoV
以下の(c)の工程をさらに含む請求項に記載のスクリーニング方法。
(c)候補物質を接触させたヒトiPS細胞由来腸管上皮細胞中におけるHuNoVの増殖量を測定する工程


The screening method according to claim 4 , further comprising the following step (c).
(c) Measuring the amount of HuNoV proliferation in human iPS cell-derived intestinal epithelial cells contacted with the candidate substance


JP2020510836A 2018-03-27 2019-03-26 Growth of human norovirus Active JP7356114B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2018059354 2018-03-27
JP2018059354 2018-03-27
PCT/JP2019/012649 WO2019189049A1 (en) 2018-03-27 2019-03-26 Human norovirus proliferation

Publications (2)

Publication Number Publication Date
JPWO2019189049A1 JPWO2019189049A1 (en) 2021-04-01
JP7356114B2 true JP7356114B2 (en) 2023-10-04

Family

ID=68061734

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020510836A Active JP7356114B2 (en) 2018-03-27 2019-03-26 Growth of human norovirus

Country Status (2)

Country Link
JP (1) JP7356114B2 (en)
WO (1) WO2019189049A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016147975A1 (en) 2015-03-13 2016-09-22 国立研究開発法人医薬基盤・健康・栄養研究所 Intestinal epithelioid cells
WO2017059449A1 (en) 2015-10-02 2017-04-06 Baylor College Of Medicine Cultivation of human noroviruses
WO2017154795A1 (en) 2016-03-08 2017-09-14 公立大学法人名古屋市立大学 Induction of differentiation of induced pluripotent stem cells into intestinal epithelial cells

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016147975A1 (en) 2015-03-13 2016-09-22 国立研究開発法人医薬基盤・健康・栄養研究所 Intestinal epithelioid cells
WO2017059449A1 (en) 2015-10-02 2017-04-06 Baylor College Of Medicine Cultivation of human noroviruses
WO2017154795A1 (en) 2016-03-08 2017-09-14 公立大学法人名古屋市立大学 Induction of differentiation of induced pluripotent stem cells into intestinal epithelial cells

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
Nature,2011年02月03日,Vol.470,p.105-109
Science,2016年09月23日,Vol.353, Issue 6306,p.1387-1393
Scientific Reports, 2017年,Vol.7,12621 (p.1-12),DOI:10.1038/s41598-017-12736-2
Stem Cell Reports,2018年01月09日,Vol.10,p.314-328
Viruses,2015年07月13日,Vol.7,p.3835-3856

Also Published As

Publication number Publication date
WO2019189049A1 (en) 2019-10-03
JPWO2019189049A1 (en) 2021-04-01

Similar Documents

Publication Publication Date Title
Carrascosa et al. Methods for growing and titrating African swine fever virus: field and laboratory samples
Karakasheva et al. Generation and characterization of patient‐derived head and neck, oral, and esophageal cancer organoids
You et al. Culture and differentiation of mouse tracheal epithelial cells
de León et al. Laboratory methods to study African swine fever virus
Ohnuki et al. Generation and characterization of human induced pluripotent stem cells
US20110306516A1 (en) Methods for producing induced pluripotent stem cells
Dilnessa et al. Cell culture, cytopathic effect and immunofluorescence diagnosis of viral infection
WO2020045368A1 (en) Method for evaluating anti-infective drugs, vaccines, etc. using immortalized monocytic cells and induced cells
Aghazadeh et al. GP2-enriched pancreatic progenitors give rise to functional beta cells in vivo and eliminate the risk of teratoma formation
Jackson et al. 3D Oral and Cervical Tissue Models for Studying Papillomavirus Host‐Pathogen Interactions
JP2014513524A (en) Cytomegalovirus (CMV) gene variant
US20230167413A1 (en) Isolation and functional analysis of epithelial progenitor cells from the human lung
Warschkau et al. From 3D to 2D: Harmonization of protocols for two-dimensional cultures on cell culture inserts of intestinal organoids from various species
JP7356114B2 (en) Growth of human norovirus
Muhsen et al. Biological properties of bovine viral diarrhea virus quasispecies detected in the RK13 cell line
Caxaria et al. Generation of integration-free patient specific iPS cells using episomal plasmids under feeder free conditions
Kim et al. Generation of induced pluripotent stem cell-like lines from human pancreatic ductal adenocarcinoma
Korovina et al. Characterization of multipotent mesenchymal stem cells isolated from equine umbilical cord blood
CN110951694B (en) Preparation method of autologous trophoblast and culture method of SNK cells
CN114752626A (en) Reversible immortalized II-type alveolar epithelial cell and construction and application thereof
CN105483087A (en) Human bronchial epithelial cell strain HBE-TT
Ledermann et al. Analysis of CHIKV in mosquitoes infected via artificial blood meal
Cantero et al. Maximizing the immunological output of the cervicovaginal explant model
JP7385244B2 (en) Method for isolating pancreatic progenitor cells
Deng et al. Cultivation of host-adapted Cryptosporidium parvum and Cryptosporidium hominis using enteroids for cryopreservation of isolates and transcriptomic studies of infection

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20200925

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220308

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230327

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230516

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230822

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230913

R150 Certificate of patent or registration of utility model

Ref document number: 7356114

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150