JP7348982B2 - Manufacturing method of electric wire with terminal - Google Patents

Manufacturing method of electric wire with terminal Download PDF

Info

Publication number
JP7348982B2
JP7348982B2 JP2022049628A JP2022049628A JP7348982B2 JP 7348982 B2 JP7348982 B2 JP 7348982B2 JP 2022049628 A JP2022049628 A JP 2022049628A JP 2022049628 A JP2022049628 A JP 2022049628A JP 7348982 B2 JP7348982 B2 JP 7348982B2
Authority
JP
Japan
Prior art keywords
coating material
terminal
curing
electric wire
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2022049628A
Other languages
Japanese (ja)
Other versions
JP2022082643A (en
Inventor
裕文 河中
広樹 田中
健一 須山
弘哲 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Furukawa Automotive Systems Inc
Original Assignee
Furukawa Electric Co Ltd
Furukawa Automotive Systems Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd, Furukawa Automotive Systems Inc filed Critical Furukawa Electric Co Ltd
Priority to JP2022049628A priority Critical patent/JP7348982B2/en
Publication of JP2022082643A publication Critical patent/JP2022082643A/en
Priority to JP2023118070A priority patent/JP7445064B2/en
Application granted granted Critical
Publication of JP7348982B2 publication Critical patent/JP7348982B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Paints Or Removers (AREA)
  • Manufacturing Of Electrical Connectors (AREA)
  • Connections Effected By Soldering, Adhesion, Or Permanent Deformation (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Polymerisation Methods In General (AREA)

Description

本発明は、例えば自動車部品等の防食のために用いられる被膜材を用いた端子付き電線の製造方法等に関するものである。 The present invention relates to a method of manufacturing an electric wire with a terminal using a coating material used, for example, for corrosion protection of automobile parts and the like.

従来、自動車、OA機器、家電製品等の分野では、電力線や信号線として、電気導電性に優れた銅系材料からなる電線が使用されている。特に、自動車分野においては、車両の高性能化、高機能化が急速に進められており、車載される各種電気機器や制御機器が増加している。したがって、これに伴い、使用される端子付き電線も増加する傾向にある。 Conventionally, electric wires made of copper-based materials with excellent electrical conductivity have been used as power lines and signal lines in fields such as automobiles, OA equipment, and home appliances. In particular, in the automobile field, the performance and functionality of vehicles are rapidly increasing, and the number of various electrical devices and control devices mounted on vehicles is increasing. Therefore, along with this, there is a tendency for the number of electric wires with terminals to be used to increase.

一方、環境問題が注目される中、自動車の軽量化が要求されている。したがって、ワイヤハーネスの使用量増加に伴う重量増加が問題となる。このため、従来使用されている銅線に代えて、軽量なアルミニウム電線が注目されている。 On the other hand, with environmental issues attracting attention, there is a demand for lighter automobiles. Therefore, an increase in weight due to an increase in the amount of wire harness used becomes a problem. For this reason, lightweight aluminum electric wires are attracting attention in place of conventionally used copper wires.

ここで、このような電線同士を接続する際や機器類等の接続部においては、接続用端子が用いられる。しかし、アルミニウム電線を用いた端子付き電線であっても、接続部の信頼性等のため、端子部には、電気特性に優れる銅が使用される場合がある。このような場合には、アルミニウム電線と銅製の端子とが接合されて使用される。 Here, connection terminals are used when connecting such electric wires to each other or at connection parts of devices and the like. However, even in the case of an electric wire with a terminal using an aluminum electric wire, copper, which has excellent electrical properties, is sometimes used for the terminal part in order to ensure the reliability of the connection part. In such cases, aluminum wires and copper terminals are used together.

しかし、異種金属を接触させると、標準電極電位の違いから、いわゆる電食が発生する恐れがある。特に、アルミニウムと銅との標準電極電位差は大きいため、接触部への水の飛散や結露等の影響により、電気的に卑であるアルミニウム側の腐食が進行する。このため、接続部における電線と端子との接続状態が不安定となり、接触抵抗の増加や線径の減少による電気抵抗の増大、更には断線が生じて電装部品の誤動作、機能停止に至る恐れがある。 However, when dissimilar metals are brought into contact, so-called electrolytic corrosion may occur due to the difference in standard electrode potential. In particular, since the standard electrode potential difference between aluminum and copper is large, corrosion on the electrically base aluminum side progresses due to the influence of water splashing and dew condensation on the contact portion. As a result, the connection between the wire and the terminal at the connection point becomes unstable, increasing contact resistance, increasing electrical resistance due to a decrease in wire diameter, and even breaking the wire, which may lead to malfunction or stoppage of electrical components. be.

このため、電線と端子との接続部を被膜材で被覆する方法が提案されている。この際、塗布される被覆電線の被膜材を有色として、照射した光の反射光の強度に応じた物理量によって、被膜の厚みを検査する方法がある(特許文献1)。 For this reason, a method has been proposed in which the connecting portion between the electric wire and the terminal is coated with a coating material. At this time, there is a method in which the coating material of the coated wire is colored and the thickness of the coating is inspected using a physical quantity according to the intensity of reflected light of the irradiated light (Patent Document 1).

特開2012-209051号公報Japanese Patent Application Publication No. 2012-209051

特許文献1の方法によれば、膜厚が比較的厚い部分では、光が吸収され易いので、反射光の強度は小さくなり、膜厚が比較的薄い部分では、光が吸収されずにその下地で反射されやすく、反射光の強度は大きくなる。このため、有色の被膜による反射光の強度に応じた物理量(例えば、明度等)に基づいて、被膜の膜厚を検査することができる。 According to the method of Patent Document 1, in areas where the film thickness is relatively thick, light is easily absorbed, so the intensity of reflected light is small, and in areas where the film thickness is relatively thin, light is not absorbed and is absorbed by the underlying layer. , and the intensity of the reflected light increases. Therefore, the thickness of the coating can be inspected based on a physical quantity (for example, brightness, etc.) that corresponds to the intensity of light reflected by the colored coating.

しかし、特許文献1のように、光を照射して、その反射光の強度で膜厚を測定すると、特に、膜厚が比較的薄い部分では、下地の複雑形状の金属面からの乱反射の影響を受けやすい。また、複雑な形状でかつ光沢のある金属で構成された端子やアルミニウム線では、光の当たる角度によって、反射光の強度に大きく影響を与えるため、膜厚が比較的薄い部分の検出能力にばらつきが大きい。このように、特に、被膜の厚みが薄い場合には、外乱の影響が大きくなり、所望の厚みの被膜厚さを精度良く測定することは困難である。 However, when the film thickness is measured by irradiating light and measuring the intensity of the reflected light as in Patent Document 1, especially in parts where the film thickness is relatively thin, the influence of diffused reflection from the underlying metal surface with a complex shape occurs. easy to receive. In addition, with terminals and aluminum wires that have complex shapes and are made of shiny metal, the intensity of reflected light is greatly affected by the angle at which the light hits, so the detection ability varies in areas where the film thickness is relatively thin. is large. In this way, especially when the thickness of the coating is thin, the influence of disturbance becomes large, and it is difficult to accurately measure the thickness of the coating to a desired thickness.

本発明は、このような問題に鑑みてなされたもので、精度良く被膜の厚みを測定することが可能な被膜材を用いた端子付き電線の製造方法を提供することを目的とする。 The present invention was made in view of such problems, and an object of the present invention is to provide a method for manufacturing an electric wire with a terminal using a coating material that allows the thickness of the coating to be measured with high accuracy.

前述した目的を達するために本発明は、被覆導線と端子とが接続される端子付き電線の製造方法であって、前記被覆導線は、被覆部と、前記被覆部の先端から露出する導線とを具備し、前記端子は、端子本体と圧着部とを有し、前記圧着部は、前記導線が圧着される導線圧着部と、前記被覆部が圧着される被覆圧着部と、前記導線圧着部と前記被覆圧着部との間のバレル間部と、を具備し、少なくとも、前記バレル間部から前記導線圧着部までの前記導線が露出する部位に光反応開始剤を含む被膜材を塗布して硬化させた後、前記被膜材に紫外線を照射して発生した蛍光の強度を測定することで前記被膜材の膜厚を判断し、前記被膜材は、母材の樹脂に対して、波長365nmにおける吸光係数が、80ml/g cm in MeOH以上の光反応開始剤が3%以下の添加量で添加されており、硬化後の-40℃の伸びが100%以上であり、前記被膜材の母材の樹脂は、ウレタンアクリレートであり、前記母材の樹脂に使用するオリゴマーは、重量平均分子量が500~5000であることを特徴とする端子付き電線の製造方法である。 In order to achieve the above-mentioned object, the present invention provides a method for manufacturing an electric wire with a terminal in which a covered conductive wire and a terminal are connected, wherein the covered conductive wire has a covered portion and a conductive wire exposed from the tip of the covered portion. The terminal has a terminal main body and a crimping part, and the crimping part includes a conducting wire crimping part to which the conducting wire is crimped, a covering crimping part to which the covering part is crimped, and the conducting wire crimping part. an inter-barrel portion between the covering crimping portion, and applying a coating material containing a photoreaction initiator to at least a portion where the conducting wire is exposed from the inter-barrel portion to the conducting wire crimping portion and curing the coating material. After that, the thickness of the coating material is determined by irradiating the coating material with ultraviolet rays and measuring the intensity of the generated fluorescence. A photoreaction initiator with a coefficient of 80 ml/g cm in MeOH or more is added in an amount of 3% or less, the elongation at -40°C after curing is 100% or more, and the coating material has a The method for producing an electric wire with a terminal is characterized in that the resin is urethane acrylate, and the oligomer used for the resin of the base material has a weight average molecular weight of 500 to 5,000.

前記被膜材は、母材の樹脂に対して、波長365nmにおける吸光係数が、80ml/g cm in MeOH以上の光反応開始剤が3%以下の添加量で添加されており、硬化後の-40℃の伸びが100%以上であることが望ましい。 In the coating material, a photoreaction initiator having an extinction coefficient of 80 ml/g cm in MeOH or more at a wavelength of 365 nm is added to the base resin in an amount of 3% or less, and -40% after curing. It is desirable that the elongation at °C is 100% or more.

前記被膜材は、紫外線硬化樹脂であることが望ましい。
また、硬化させた後の前記被膜材に含まれる、反応前は前記光反応開始剤であった物質から発せられる蛍光強度を利用して、前記被覆材の膜厚を算出することが望ましい。
また、硬化させた後の前記被膜材の膜厚が20μm以上で測定可能なことが望ましい。
また、1種類の前記被膜材が塗布されることが望ましい。
また、前記被膜材は、紫外線硬化と、湿気硬化または嫌気性硬化が付与されていることが望ましい。
また、前記被膜材の硬化の際の紫外線照射工程と、前記被膜材の厚みを測定する際の紫外線照射工程とが同一工程となっているか、または、前記紫外線硬化工程後、端子の位置補正を行った後に膜厚検査を行うことが望ましい。
The coating material is preferably an ultraviolet curing resin.
Further, it is desirable to calculate the film thickness of the coating material by using the fluorescence intensity emitted from the substance contained in the coating material after curing and which was the photoreaction initiator before the reaction.
Further, it is desirable that the film thickness of the coating material after curing is measurable at 20 μm or more.
Further, it is desirable that one type of the coating material is applied.
Further, it is desirable that the coating material be cured by ultraviolet rays, moisture cured, or anaerobically cured.
Also, whether the ultraviolet irradiation process for curing the coating material and the ultraviolet irradiation process for measuring the thickness of the coating material are the same process, or the terminal position correction is performed after the ultraviolet curing process. It is desirable to perform a film thickness inspection after this.

前記被膜材の母材の樹脂は、ウレタンアクリレートであり、前記母材の樹脂に使用するオリゴマーは、重量平均分子量が500~5000であることが望ましい。 The base resin of the coating material is urethane acrylate, and the oligomer used for the base resin preferably has a weight average molecular weight of 500 to 5,000.

本発明によれば、精度良く端子付き電線を製造することができる。 According to the present invention, an electric wire with a terminal can be manufactured with high precision.

特に、波長365nmにおける吸光係数が80ml/g cm in MeOH以上の被膜材を使用するため、塗布・硬化した被膜材に紫外線を照射すると、発生した蛍光強度が十分であるために、蛍光強度から膜厚を精度良く計算することができる。また、吸光係数が高いため、光反応開始剤の添加量を3%以下とすることができる。このため、硬化時の紫外線照射の際にも紫外線が光反応開始剤で吸収されにくく、深部硬化性にも優れる。また、硬化後の-40℃の伸びが100%以上であれば、低温時における割れ等を抑制することができる。 In particular, since a coating material with an extinction coefficient of 80 ml/g cm in MeOH or more at a wavelength of 365 nm is used, when the coated and cured coating material is irradiated with ultraviolet rays, the fluorescence intensity generated is sufficient, so Thickness can be calculated with high accuracy. Furthermore, since the absorption coefficient is high, the amount of photoreaction initiator added can be 3% or less. For this reason, even when UV rays are irradiated during curing, the photoreaction initiator hardly absorbs the UV rays, and it also has excellent deep curability. Furthermore, if the elongation at -40°C after curing is 100% or more, cracking etc. at low temperatures can be suppressed.

また、被膜材が紫外線硬化樹脂であれば、短時間で被膜材を硬化させることができる。 Further, if the coating material is an ultraviolet curing resin, the coating material can be cured in a short time.

本発明によれば、精度良く被膜の厚みを測定することが可能な被膜材を用いた端子付き電線の製造方法を提供することができる。 According to the present invention, it is possible to provide a method for manufacturing an electric wire with a terminal using a coating material that allows the thickness of the coating to be measured with high accuracy.

端子付き電線10を示す斜視図。FIG. 1 is a perspective view showing an electric wire 10 with a terminal. 端子付き電線10を示す断面図。FIG. 1 is a cross-sectional view showing an electric wire 10 with a terminal. 深部硬化性の測定治具19を示す図で、(a)は平面図、(b)は(a)のE-E線断面図。FIG. 3 is a diagram showing a deep-curing measuring jig 19, in which (a) is a plan view and (b) is a cross-sectional view taken along the line EE in (a).

以下、図面を参照しながら、本発明の実施形態について説明する。図1は、端子付き電線10を示す斜視図であり、図2は断面図である。なお、図1は、被膜材17を透視した図である。端子付き電線10は、端子1と被覆導線11が接続されて構成される。 Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a perspective view showing an electric wire 10 with a terminal, and FIG. 2 is a sectional view. Note that FIG. 1 is a perspective view of the coating material 17. The electric wire 10 with a terminal is configured by connecting a terminal 1 and a covered conductive wire 11.

被覆導線11は、アルミニウムまたはアルミニウム合金製である導線13と、導線13を被覆する被覆部15からなる。すなわち、被覆導線11は、被覆部15と、その先端から露出する導線13とを具備する。導線13は、例えば、複数の素線が撚り合わせられた撚り線である。 The covered conductive wire 11 includes a conductive wire 13 made of aluminum or an aluminum alloy, and a covering portion 15 that covers the conductive wire 13. That is, the covered conductive wire 11 includes a covered portion 15 and a conductive wire 13 exposed from the tip thereof. The conducting wire 13 is, for example, a stranded wire in which a plurality of wires are twisted together.

端子1は、オ-プンバレル型であり、銅または銅合金製である。端子1には被覆導線11が接続される。端子1は、端子本体3と圧着部5とがトランジション部4を介して連結されて構成される。圧着部5と端子本体3の間に位置するトランジション部4は、上方が開口する。 The terminal 1 is of an open barrel type and made of copper or copper alloy. A covered conductor wire 11 is connected to the terminal 1 . The terminal 1 is constructed by connecting a terminal body 3 and a crimp section 5 via a transition section 4 . The transition portion 4 located between the crimp portion 5 and the terminal body 3 is open at the top.

端子本体3は、所定の形状の板状素材を、断面が矩形の筒体に形成したものである。端子本体3は、内部に、板状素材を矩形の筒体内に折り込んで形成される弾性接触片を有する。端子本体3は、前端部から雄型端子などが挿入されて接続される。なお、以下の説明では、端子本体3が、雄型端子等の挿入タブ(図示省略)の挿入を許容する雌型端子である例を示すが、本発明において、この端子本体3の細部の形状は特に限定されない。例えば、雌型の端子本体3に代えて例えば雄型端子の挿入タブを設けてもよい。 The terminal main body 3 is formed from a plate-like material having a predetermined shape into a cylindrical body having a rectangular cross section. The terminal main body 3 has an elastic contact piece formed by folding a plate-like material into a rectangular cylinder. A male terminal or the like is inserted into the terminal body 3 from the front end and connected thereto. In the following description, an example will be shown in which the terminal main body 3 is a female terminal that allows insertion of an insertion tab (not shown) such as a male terminal, but in the present invention, the detailed shape of the terminal main body 3 is not particularly limited. For example, instead of the female terminal body 3, an insertion tab for a male terminal may be provided.

圧着部5は、被覆導線11と圧着される部位であり、圧着前においては、端子1の長手方向に垂直な断面形状が略U字状のバレル形状を有する。端子1の圧着部5は、被覆導線11の先端側に被覆部15から露出する導線13を圧着する導線圧着部7と、被覆導線11の被覆部15を圧着する被覆圧着部9と、導線圧着部7と被覆圧着部9の間のバレル間部8からなる。 The crimping portion 5 is a portion that is crimped to the covered conductive wire 11, and before crimping, the cross section perpendicular to the longitudinal direction of the terminal 1 has a substantially U-shaped barrel shape. The crimping part 5 of the terminal 1 includes a conductor crimping part 7 for crimping the conductor 13 exposed from the sheathing part 15 on the distal end side of the sheathed conductor 11 , a covering crimping part 9 for crimping the sheathing part 15 of the sheathed conductor 11 , and a conductor crimping part 9 for crimping the sheathing part 15 of the sheathed conductor 11 . It consists of an inter-barrel section 8 between the section 7 and the covering crimp section 9.

導線圧着部7の内面の一部には、幅方向(長手方向に垂直な方向)に、図示を省略したセレーションが設けられる。このようにセレーションを形成することで、導線13を圧着した際に、導線13の表面の酸化膜を破壊しやすく、また、導線13との接触面積を増加させることができる。 A portion of the inner surface of the conductive wire crimping portion 7 is provided with serrations (not shown) in the width direction (direction perpendicular to the longitudinal direction). By forming the serrations in this manner, when the conducting wire 13 is crimped, the oxide film on the surface of the conducting wire 13 is easily destroyed, and the contact area with the conducting wire 13 can be increased.

被覆導線11の先端は、被覆部15が剥離され、内部の導線13が露出する。被覆導線11の被覆部15は、端子1の被覆圧着部9によって圧着される。また、被覆部15が剥離されて露出する導線13は、導線圧着部7により圧着される。導線圧着部7において、導線13と端子1とが電気的に接続される。なお、被覆部15の端面は、被覆圧着部9と導線圧着部7の間のバレル間部8に位置する。 The covering portion 15 is peeled off from the tip of the covered conductive wire 11, and the internal conductive wire 13 is exposed. The covering portion 15 of the covered conducting wire 11 is crimped by the covering crimping portion 9 of the terminal 1 . Further, the conducting wire 13 exposed by peeling off the covering portion 15 is crimped by the conducting wire crimping portion 7 . In the conductor crimping section 7, the conductor 13 and the terminal 1 are electrically connected. Note that the end surface of the covering portion 15 is located in the inter-barrel portion 8 between the covering crimping portion 9 and the conductor crimping portion 7.

本発明では、少なくとも、被覆部15から露出する導線13が、被膜材17で覆われる。すなわち、少なくとも、バレル間部8から導線圧着部7までの導線13が露出する部位が被膜材17で覆われており、導線13は、被膜材17によって外部に露出しない。被膜材17は防食材として機能し、被覆対象部材である端子付き電線に塗布して硬化させることで、防食構造を構成する。 In the present invention, at least the conductive wire 13 exposed from the covering portion 15 is covered with the coating material 17. That is, at least the portion where the conducting wire 13 is exposed from the inter-barrel portion 8 to the conducting wire crimping portion 7 is covered with the coating material 17, and the conducting wire 13 is not exposed to the outside by the coating material 17. The coating material 17 functions as an anti-corrosion agent, and constitutes an anti-corrosion structure by applying and curing the electrical wire with a terminal, which is the member to be coated.

被膜材17の母材の樹脂には、光反応開始剤が添加される。光反応開始剤とは、例えば紫外線などの光を受けると、***してラジカルを生成する物質をいう。光反応開始剤は、光を吸収しやすい性質を持っており、例えば紫外線を照射すると、ラジカルという非常に不安定な反応しやすい状態に変化する。例えば、光反応開始剤が添加されている紫外線硬化樹脂では、ラジカルは、次に近くにある他の主剤(オリゴマーやモノマー)を非常に反応しやすいラジカルに変化させる。こうしてラジカルの連鎖反応が進み、小さな分子だったオリゴマー・モノマーは互いに結合し分子量の大きい高分子ポリマーの固体に変化する。固体に変化することを、紫外線硬化樹脂が硬化したと表現され、重合と呼ばれる。 A photoreaction initiator is added to the base material resin of the coating material 17. A photoreaction initiator is a substance that splits to generate radicals when exposed to light such as ultraviolet rays. Photoinitiators have the property of easily absorbing light, and when irradiated with ultraviolet rays, for example, they change into radicals, which are extremely unstable and easily react. For example, in UV-curable resins to which a photoinitiator is added, the radicals then convert other nearby base ingredients (oligomers and monomers) into highly reactive radicals. In this way, the radical chain reaction progresses, and the oligomers and monomers, which were small molecules, combine with each other and turn into solid polymers with large molecular weights. The change to a solid state is expressed as the UV-curable resin being cured, and is called polymerization.

この硬化した後のポリマーの末端には反応前は光反応開始剤であった物質が付加しており、紫外線を吸収しやすい性質は、硬化後も引き継いでいる。硬化後は反応が終了し物質が安定な状態になっているため、硬化後に吸収した紫外線のエネルギ-は蛍光というエネルギ-に変換されて放出される。この放出された蛍光の強度は、硬化した被膜材17の膜厚や、使用する光反応開始剤の種類や添加量に応じて、その蛍光強度が変化しうる。 A substance that was a photoreaction initiator before the reaction is added to the end of the cured polymer, and the property of easily absorbing ultraviolet rays is inherited even after the polymer is cured. After curing, the reaction has finished and the substance is in a stable state, so the energy of the ultraviolet light absorbed after curing is converted into energy called fluorescence and released. The intensity of the emitted fluorescence can vary depending on the thickness of the cured coating material 17 and the type and amount of the photoreaction initiator used.

従って、あらかじめ光反応開始剤の種類や添加量が決められた被膜材17の膜厚と、蛍光強度の関係式を算出しておけば、被覆対象部材に塗布されて硬化された被膜材17に紫外線を照射した際の蛍光強度から、その膜厚の分布を算出することができる。この際、被膜材17に含まれる光反応開始剤から発せられる蛍光強度を利用して膜厚を算出するため、反射光のように下地の金属面の状態に左右されず、ばらつきなく、安定的な膜厚検査が可能である。 Therefore, by calculating the relational expression between the film thickness of the coating material 17 for which the type and amount of the photoreaction initiator to be added are determined in advance and the fluorescence intensity, the coating material 17 that has been applied and cured on the member to be coated can be The film thickness distribution can be calculated from the fluorescence intensity when irradiated with ultraviolet rays. At this time, the film thickness is calculated using the fluorescence intensity emitted from the photoreaction initiator contained in the coating material 17, so unlike reflected light, it is not affected by the condition of the underlying metal surface and is stable without variation. Film thickness inspection is possible.

本発明では、照射する紫外線の波長(365nm)において、光反応開始剤のメタノール中における吸光係数が、80ml/g cm in MeOH以上とする。さらに好ましくは、150ml/g cm in MeOH以上である。ここで、吸光係数とは、光がある媒質(溶液)に入射したとき、その媒質がどれくらいの光を吸収するのかを示す定数である。ランベルト・ベールの法則に従えば、媒質をある距離通過した光の強度と入射した光の強度の比の対数(吸光度)は、通過距離と比例関係にあり、その比例係数を吸光係数と呼ぶ。媒質に入射する前の光の強度をIとしたとき、入射後の光の強度Iはランベルト・ベールの法則から吸収係数α、βおよびεを用いて以下の式で示される。
I=I-αx=I10-βx=I10-εcx
In the present invention, the extinction coefficient of the photoreaction initiator in methanol is 80 ml/g cm in MeOH or more at the wavelength (365 nm) of the ultraviolet rays to be irradiated. More preferably, it is 150 ml/g cm in MeOH or more. Here, the extinction coefficient is a constant that indicates how much light is absorbed by a medium (solution) when light is incident on that medium. According to the Lambert-Beer law, the logarithm (absorbance) of the ratio of the intensity of light that has passed a certain distance through a medium to the intensity of incident light is proportional to the passing distance, and the proportionality coefficient is called the extinction coefficient. When the intensity of light before entering the medium is I0 , the intensity I of light after entering the medium is expressed by the following equation using absorption coefficients α, β, and ε from the Beer-Lambert law.
I=I 0 e -αx = I 0 10 -βx = I 0 10 -εcx

なお、上記式において、xは媒質の距離、cは溶液のモル濃度である。したがって、次式で吸光係数が求められる。
α=-(1/x)・ln(I/I
β=-(1/x)・log10(I/I
ε=-(1/cx)・log10(I/I
以上により、溶液の吸光係数は、溶液層の厚さが既知のセルに光反応開始剤を溶解させた濃度既知の溶液を入れ、入射光と溶液を通過した光の強度の比から求めることができる。
In addition, in the above formula, x is the distance of the medium, and c is the molar concentration of the solution. Therefore, the extinction coefficient can be determined using the following formula.
α=-(1/x)・ln(I/I 0 )
β=-(1/x)・log 10 (I/I 0 )
ε=-(1/cx)・log 10 (I/I 0 )
From the above, the extinction coefficient of a solution can be determined from the ratio of the intensity of the incident light and the light that has passed through the solution by placing a solution of known concentration in which a photoreaction initiator is dissolved in a cell with a known solution layer thickness. can.

本実施形態のように、光反応開始剤の吸光係数が、80ml/g cm in MeOH以上であれば、光反応開始剤が、十分な蛍光強度を発するに足りる量の紫外線を吸収することができる。このように、吸光係数の大きな光反応開始剤を用いることで、光反応開始剤の添加量を減らすことができる。本発明では、光反応開始剤の添加量は3%以下とすることが望ましい。すなわち、本実施形態では、被膜材17の母材の樹脂に対して、波長365nmにおける吸光係数が、80ml/g cm in MeOH以上の光反応開始剤が3質量%以下の添加量で添加されることが望ましい。 As in this embodiment, if the extinction coefficient of the photoinitiator is 80 ml/g cm in MeOH or more, the photoinitiator can absorb a sufficient amount of ultraviolet light to emit sufficient fluorescence intensity. . In this way, by using a photoinitiator with a large extinction coefficient, the amount of photoinitiator added can be reduced. In the present invention, the amount of photoreaction initiator added is preferably 3% or less. That is, in the present embodiment, a photoreaction initiator having an extinction coefficient of 80 ml/g cm in MeOH or more at a wavelength of 365 nm is added to the base resin of the coating material 17 in an amount of 3% by mass or less. This is desirable.

前述したように、光反応開始剤は紫外線を吸収する性質があるため、蛍光強度を強めるために光反応開始剤の添加量を増やすと、端子に塗布した被膜材17に紫外線を照射して硬化せしめる際に、紫外線が深部に到達せず、塗布した被膜材17の深部に未硬化部分が残り、防食性が劣る場合がある。これに対し、本発明では、高い吸光係数の光反応開始剤を少ない添加量で被膜材17へ添加するため、硬化時には紫外線が深部まで届き、かつ、硬化後には蛍光を効率よく発せさせることができる。したがって、端子の深部に浸透した被膜材17を硬化することができ、より高度な防食性を付与することができる。なお、十分な蛍光強度を得るためには、光反応開始剤の添加量は少なくとも0.5質量%以上であることが望ましい。光反応開始剤の添加量は、例えば紫外線吸収スペクトル分析で光反応開始剤の吸収波長を測定することで特定することができる。 As mentioned above, the photoreaction initiator has the property of absorbing ultraviolet rays, so if the amount of photoreaction initiator added is increased to increase the fluorescence intensity, the coating material 17 applied to the terminal will be irradiated with ultraviolet rays and cured. When drying, the ultraviolet rays do not reach the deep part, and an uncured part remains in the deep part of the coated coating material 17, which may result in poor corrosion resistance. In contrast, in the present invention, since a photoreaction initiator with a high extinction coefficient is added to the coating material 17 in a small amount, ultraviolet rays can reach deep parts during curing, and fluorescence can be efficiently emitted after curing. can. Therefore, the coating material 17 that has penetrated deep into the terminal can be hardened, and a higher degree of corrosion resistance can be imparted. In addition, in order to obtain sufficient fluorescence intensity, it is desirable that the amount of the photoreaction initiator added is at least 0.5% by mass or more. The amount of the photoinitiator added can be determined, for example, by measuring the absorption wavelength of the photoinitiator by ultraviolet absorption spectroscopy.

このような光反応開始剤としては、ベンジルジメチルケタール系、ヒドロキシケトン系、α-アミノケトン系、アシルフォスフィンオキサイド系、オキシムエステル系などが適用可能である。特に365nmの吸光係数の高い光反応開始剤として、ベンジルジメチルケタール系としては、2,2-ジメトキシ-1,2-ジフェニルエタン-1-オンが挙げられる。市販品ではIRGACURE651(商品名、BASF社製)を挙げることができる。 As such a photoreaction initiator, benzyl dimethyl ketal type, hydroxyketone type, α-aminoketone type, acylphosphine oxide type, oxime ester type, etc. can be applied. In particular, as a photoreaction initiator having a high extinction coefficient at 365 nm, 2,2-dimethoxy-1,2-diphenylethan-1-one is exemplified as a benzyl dimethyl ketal-based photoreaction initiator. As a commercially available product, IRGACURE651 (trade name, manufactured by BASF) can be mentioned.

また、ヒドロキシケトン系としては、1-ヒドロキシ-シクロヘキシル-フェニル-ケトン、1-ヒドロキシ-シクロヘキシル-フェニル-ケトン+ベンゾフェノン、 2-ヒロドキシ-1-{4-[4-(2-ヒドロキシ-2-メチル-プロピオニル)-ベンジル]フェニル}-2-メチル-プロパン-1-オンを挙げることができる。市販品ではIRGACURE184、IRGACURE500およびIRGACURE127(いずれも商品名、BASF社製)を挙げることができる。 In addition, hydroxyketones include 1-hydroxy-cyclohexyl-phenyl-ketone, 1-hydroxy-cyclohexyl-phenyl-ketone + benzophenone, 2-hydroxy-1-{4-[4-(2-hydroxy-2-methyl -propionyl)-benzyl]phenyl}-2-methyl-propan-1-one. Commercially available products include IRGACURE 184, IRGACURE 500 and IRGACURE 127 (all trade names, manufactured by BASF).

またα-アミノケトン系としては、2-メチル-1-(4-メチルチオフェニル)-2-モルフォリノプロパン-1-オン、2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)-ブタノン-1、2-(ジメチルアミノ)-2-[(4-メチルフェニル)メチル]-1-[4-(4-モルホリニル)フェニル]-1-ブタノンが挙げられる。市販品ではIRGACURE907、IRGACURE369、IRGACURE379(いずれも商品名、BASF社製)が挙げられる。 In addition, α-aminoketones include 2-methyl-1-(4-methylthiophenyl)-2-morpholinopropan-1-one, 2-benzyl-2-dimethylamino-1-(4-morpholinophenyl)- Butanone-1,2-(dimethylamino)-2-[(4-methylphenyl)methyl]-1-[4-(4-morpholinyl)phenyl]-1-butanone is mentioned. Commercially available products include IRGACURE907, IRGACURE369, and IRGACURE379 (all brand names, manufactured by BASF).

また、前記2-メチル-1-(4-メチルチオフェニル)-2-モルフォリノプロパン-1-オン(907)、2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)-ブタノン-1(369)、2-(ジメチルアミノ)-2-[(4-メチルフェニル)メチル]-1-[4-(4-モルホリニル)フェニル]-1-ブタノン(379)とチオキサントン系の260~410nmに吸収を持つ2,4-ジエチルチオキサントン(市販品としては、カヤキュアDETX-S(商品名、日本化薬社製))を併用することで、405nmにおける吸光係数(ε)が高くなり、より深部硬化に寄与し、より効率良く反応させることができる。 In addition, the aforementioned 2-methyl-1-(4-methylthiophenyl)-2-morpholinopropan-1-one (907), 2-benzyl-2-dimethylamino-1-(4-morpholinophenyl)-butanone- 1 (369), 2-(dimethylamino)-2-[(4-methylphenyl)methyl]-1-[4-(4-morpholinyl)phenyl]-1-butanone (379) and thioxanthone-based 260-410 nm By using 2,4-diethylthioxanthone (commercially available product: Kayacure DETX-S (trade name, manufactured by Nippon Kayaku Co., Ltd.)), which has absorption in Contributes to curing and enables more efficient reaction.

また、アシルフォスフィンオキサイド系としては、ビス(2,4,6-トリメチルベンゾイル)-フェニルフォスフィンオキサイド、2,4,6-トリメチルベンゾイル-ジフェニル-フォスフィンオキサイドが挙げられる。市販品ではLucirin-TPO、DAROCUR-TPOやIRGACURE819(いずれも商品名、BASF社製)を挙げることができる。260~440nmに吸収ピークを持ち、分解により吸収がなくなるブリーチング効果が得られ、表面だけではなく、内部の硬化度も高くすることができる。さらには、ヒドロキシケトン系、1-ヒドロキシ-シクロヘキシル-フェニル-ケトン(市販品ではIrugacure184(商品名、BASF社製))と組み合わせることで表面から深部までの硬化が得られる。 Further, examples of the acylphosphine oxide type include bis(2,4,6-trimethylbenzoyl)-phenylphosphine oxide and 2,4,6-trimethylbenzoyl-diphenyl-phosphine oxide. Commercially available products include Lucirin-TPO, DAROCUR-TPO and IRGACURE819 (all trade names, manufactured by BASF). It has an absorption peak in the range of 260 to 440 nm, and a bleaching effect in which absorption disappears due to decomposition can be obtained, and it is possible to increase the degree of hardening not only on the surface but also on the inside. Furthermore, by combining with hydroxyketone type 1-hydroxy-cyclohexyl-phenyl-ketone (commercially available product is Irugacure 184 (trade name, manufactured by BASF)), hardening from the surface to the deep part can be obtained.

なお、フォトブリーチング(photobleaching)とは、光退色、光脱色とも書き、環境効果の一つで、励起蛍光分子でまれにみられる光化学的性質を指す。この反応は、励起状態にある蛍光物質が基底状態に比べて化学的に活性化され不安定になるために起こる。この反応の結果、蛍光分子が最終的に低蛍光性の構造に変化することを意味する。本実施形態に係る発明では、光反応開始剤が、ある紫外線領域において光を吸収し、ラジカルを発生させて紫外線硬化樹脂に重合を開始させる際に、ラジカル発生後の光反応開始剤の分子の共役結合が切断され、該紫外線領域における吸光度が低下することを、フォトブリーチングという。その結果、その紫外線領域における光を内部まで透過させることができるため、厚い膜であっても硬化をスムーズに進ませることができる。 Note that photobleaching, also written as photobleaching or photobleaching, is one of the environmental effects and refers to photochemical properties rarely observed in excited fluorescent molecules. This reaction occurs because the fluorescent substance in the excited state is chemically activated and becomes unstable compared to the ground state. As a result of this reaction, the fluorescent molecule ultimately changes into a less fluorescent structure. In the invention according to this embodiment, when the photoreaction initiator absorbs light in a certain ultraviolet region and generates radicals to initiate polymerization in the ultraviolet curable resin, the photoreaction initiator molecules change after the radicals are generated. The phenomenon in which conjugated bonds are broken and the absorbance in the ultraviolet region decreases is called photobleaching. As a result, light in the ultraviolet region can be transmitted to the inside, so even thick films can be cured smoothly.

また、オキシムエステル系としては、1.2-オクタンジオン,1-[4-(フェニルチオ)-,2-(0-ベンゾイルオキシム)]、エタノン,1-[9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル]-,1-(0-アセチルオキシム)が挙げられる。市販品ではIRGACURE OXE01やIRGACURE OXE02(いずれも商品名、BASF社製)を挙げることができるが、IRGACURE OXE01(商品名、BASF社製)はフォトブリーチングするため、より良い。また、ヒドロキシケトン系、1-ヒドロキシ-シクロヘキシル-フェニル-ケトン(市販品ではIrugacure184(商品名、BASF社製))と組み合わせることで表面から深部までの硬化が得られる。 In addition, oxime esters include 1.2-octanedione, 1-[4-(phenylthio)-,2-(0-benzoyloxime)], ethanone, 1-[9-ethyl-6-(2-methyl Benzoyl)-9H-carbazol-3-yl]-,1-(0-acetyloxime). Commercially available products include IRGACURE OXE01 and IRGACURE OXE02 (both trade names, manufactured by BASF), but IRGACURE OXE01 (trade name, manufactured by BASF) is better because it performs photobleaching. In addition, by combining with hydroxyketone type 1-hydroxy-cyclohexyl-phenyl-ketone (commercially available product is Irugacure 184 (trade name, manufactured by BASF)), hardening from the surface to the deep part can be obtained.

なお、前述したように、紫外線硬化樹脂の主反応はラジカル重合であり、紫外線の作用で、光反応開始剤が分解して生じたラジカルが変性アクリレートの二重結合を攻撃し、ラジカル重合が開始される。ベース樹脂は、変性アクリレートであって、エポキシ、ポリエステル、ウレタンなどの主鎖の両末端にアクリル基を付加させたもので、このアクリル基が紫外線により重合する反応基となる。また、紫外線硬化樹脂の主成分である変性アクリレートが持つ他の機能を付与することにより、紫外線が届き難い部分も紫外線照射と同時に硬化させたり、あるいは工程中に硬化させることができる。例えば、変性アクリレートは、紫外線硬化と湿気硬化、熱硬化、嫌気性硬化をそれぞれ付与することが可能である。紫外線硬化と、湿気硬化乃至は、嫌気硬化、この両方の性質をバランスよく付与させることで、深部硬化性を付与することができる。 As mentioned above, the main reaction of UV-curable resins is radical polymerization, and the radicals generated when the photoinitiator decomposes due to the action of UV light attack the double bonds of the modified acrylate, starting radical polymerization. be done. The base resin is a modified acrylate, which has acrylic groups added to both ends of the main chain of epoxy, polyester, urethane, etc., and these acrylic groups become reactive groups that are polymerized by ultraviolet light. Furthermore, by imparting other functions to the modified acrylate, which is the main component of the UV-curable resin, it is possible to cure areas that are difficult to reach with UV rays at the same time as UV irradiation, or during the process. For example, modified acrylates can be cured by ultraviolet light, moisture cure, heat cure, and anaerobic cure. By imparting UV curing and moisture curing or anaerobic curing in a well-balanced manner, deep curability can be imparted.

湿気硬化はシリコーン変性アクリレートが好適に使用され、紫外線硬化終了後に、湿気によりさらに硬化させることができる。また、熱硬化は、熱硬化性のエポキシ変性アクリレートを併用することによって、紫外線を照射することによって、熱硬化しにくい樹脂表面を硬化させ、さらに加熱により、紫外線が届き難い部分を短時間で完全硬化させることができる。嫌気硬化については、金属イオンが介在する条件で、紫外線による硬化の際の照射熱による嫌気硬化促進や、紫外線硬化による表面部分の空気遮断により、比較的速やかに硬化が完了する。 Silicone-modified acrylate is preferably used for moisture curing, and after UV curing is completed, it can be further cured with moisture. In addition, heat curing uses thermosetting epoxy-modified acrylate and irradiates it with ultraviolet rays to harden the resin surface, which is difficult to thermoset.Furthermore, by heating, areas that are difficult for ultraviolet rays to reach can be completely cured in a short period of time. Can be hardened. Regarding anaerobic curing, under conditions where metal ions are present, curing is completed relatively quickly due to acceleration of anaerobic curing by irradiated heat during curing with ultraviolet rays and air blocking of the surface portion by ultraviolet curing.

このような硬化方法は、紫外線の照射による硬化工程が最も硬化時間が短くなるため、製造上最もコスト的に有利であるが、湿気硬化または嫌気硬化であれば、特別な硬化工程を設けることなく、紫外線硬化の後に、自然硬化させることができるためより望ましい方法である。なお、熱硬化は紫外線硬化とは別に熱硬化工程が必要であり、また、嫌気硬化は、金属の介在する環境のみ硬化するため、被膜材などの高分子材料との接触面も硬化できる湿気硬化が最も望ましい。 In this type of curing method, the curing process using ultraviolet irradiation has the shortest curing time, so it is the most cost-effective in terms of manufacturing costs, but moisture curing or anaerobic curing does not require a special curing process. This is a more desirable method because it allows natural curing after UV curing. Note that heat curing requires a heat curing process separate from ultraviolet curing, and anaerobic curing only cures in environments where metal is present, so moisture curing can also cure surfaces that come in contact with polymeric materials such as coating materials. is the most desirable.

また、紫外線硬化樹脂に限らず、他の硬化タイプの樹脂であっても透明・半透明であれば、同じような添加剤をいれることで蛍光測定により膜厚検査が可能である。例えば、熱可塑性樹脂としては、ポリエチレン、ポリプロピレン、シアノアクリレート、ポリエチレンテレフタレート、塩化ビニル、ポリスチレン、ABS樹脂、アクリル樹脂、ポリアミド、ポリカーボネート、四フッ化エチレン、エチレン-酢酸ビニル共重合体。エチレン-アクリレート共重合体、エチレン-アクリル酸エステル共重合体、など、非結性ポリマーもしくは、結晶性ポリマーでも結晶性の低いグレードの樹脂が透明もしくは半透明となり照射する紫外線の透過を妨げ難く、好適に使用することができる。また、熱硬化性樹脂としては、フェノール樹脂、メラミン樹脂、不飽和ポリエステル樹脂、エポキシ樹脂が挙げられる。その他、常温で液状の樹脂であって、湿気や熱や溶剤の揮散などにより硬化する樹脂として、シアノアクリレートや、ポリウレタン樹脂、酢酸ビニル、クロロプレン、イソプレン、スチレン-ブチレンゴム、シリコーンゴム、二トリルゴムなどが挙げられる。 Furthermore, not only ultraviolet curable resins but also other curable type resins can be tested for film thickness by fluorescence measurement by adding similar additives as long as they are transparent or translucent. For example, thermoplastic resins include polyethylene, polypropylene, cyanoacrylate, polyethylene terephthalate, vinyl chloride, polystyrene, ABS resin, acrylic resin, polyamide, polycarbonate, tetrafluoroethylene, and ethylene-vinyl acetate copolymer. Non-binding polymers such as ethylene-acrylate copolymer, ethylene-acrylic acid ester copolymer, etc., or low-crystalline grade resins of crystalline polymers are transparent or translucent and do not easily block the transmission of ultraviolet rays. It can be suitably used. Furthermore, examples of thermosetting resins include phenol resins, melamine resins, unsaturated polyester resins, and epoxy resins. Other resins that are liquid at room temperature and harden when exposed to moisture, heat, or solvent volatilization include cyanoacrylate, polyurethane resin, vinyl acetate, chloroprene, isoprene, styrene-butylene rubber, silicone rubber, and nitrile rubber. Can be mentioned.

なお、被膜材17には、例えばオリゴマーに使用しているポリオールにソフトセグメントが導入され、硬化後の-40℃での伸び率が、100%以上であることが望ましい。オリゴマーとしてポリエーテル系ウレタンアクリレートを使用する場合は、ポリオールは、例えば、ポリプロピレングリコール、ポリエチレングリコール、ポリテトラメチレングリコール等のポリオールを使用することができる。ポリテトラメチレングリコールを中間ブロックとし、骨格成分として、その両末端の水酸基に、芳香族系ジイソシアネートを介して、紫外線に対して反応性を有する不飽和二重結合を有するヒドロキシ化合物を結合させたオリゴマーを使用することが好ましい。使用するオリゴマーは、重量平均分子量が500~5000のものを使用することが好ましく、2000~5000のものを使用することが特に好ましい。これにより、低温での伸びを維持することができ、このようにすることで、耐サーマルショック性を確保することができる。 In the coating material 17, for example, a soft segment is introduced into the polyol used in the oligomer, and it is desirable that the elongation rate at -40° C. after curing is 100% or more. When polyether urethane acrylate is used as the oligomer, polyols such as polypropylene glycol, polyethylene glycol, and polytetramethylene glycol can be used as the polyol. An oligomer in which polytetramethylene glycol is used as an intermediate block, and a hydroxyl compound having an unsaturated double bond that is reactive to ultraviolet rays is bonded to the hydroxyl groups at both ends of the skeleton via an aromatic diisocyanate. It is preferable to use The oligomer used preferably has a weight average molecular weight of 500 to 5,000, particularly preferably 2,000 to 5,000. This makes it possible to maintain elongation at low temperatures, and thereby ensure thermal shock resistance.

次に、端子付き電線10の製造方法について説明する。まず、被覆導線11と端子1とを圧着により接続する。次に、少なくとも、バレル間部8から導線圧着部7までの導線13が露出する部位に、前述したような光反応開始剤を含む被膜材17を塗布する。次に、例えば被膜材17が紫外線硬化樹脂である場合には、被膜材17へ紫外線を照射して被膜材17を硬化させる。その後、被膜材17に紫外線を照射し、発生した蛍光の強度を集光レンズで集光し、センサによって測定することで被膜材17の膜厚を判断する。被膜材17の厚みが十分であれば合格品として判断する。以上により、端子付き電線10を得ることができる。 Next, a method for manufacturing the electric wire 10 with a terminal will be described. First, the covered conductive wire 11 and the terminal 1 are connected by crimping. Next, a coating material 17 containing a photoreaction initiator as described above is applied to at least the exposed portion of the conducting wire 13 from the inter-barrel portion 8 to the conducting wire crimping portion 7 . Next, for example, when the coating material 17 is an ultraviolet curing resin, the coating material 17 is irradiated with ultraviolet rays to harden the coating material 17. Thereafter, the thickness of the coating material 17 is determined by irradiating the coating material 17 with ultraviolet rays, condensing the intensity of the generated fluorescence with a condensing lens, and measuring it with a sensor. If the thickness of the coating material 17 is sufficient, the product is judged to be acceptable. Through the above steps, the electric wire 10 with a terminal can be obtained.

なお、被膜材17の硬化の際の紫外線照射工程と、被膜材17の厚みを測定する際の紫外線照射工程とは同一工程としてもよいが、紫外線硬化工程後、必要に応じて端子の位置補正を行い、その後に膜厚検査を行ってもよい。すなわち、膜厚検査工程における紫外線照射と、硬化工程における紫外線照射とは別装置および別工程で行われてもよい。 Note that the ultraviolet irradiation process for curing the coating material 17 and the ultraviolet irradiation process for measuring the thickness of the coating material 17 may be the same process, but after the ultraviolet curing process, the position of the terminal may be corrected as necessary. The film thickness may be inspected after that. That is, the ultraviolet irradiation in the film thickness inspection process and the ultraviolet irradiation in the curing process may be performed in separate devices and separate processes.

以上説明したように、本実施形態によれば、端子付き電線の防食を行うための被膜材17に光反応開始剤が添加されるため、被膜材17を塗布して硬化した後に、紫外線を照射することで、容易に精度良く膜厚を測定することができる。このため、防食性能に対して信頼性の高い端子付き電線10を得ることができる。 As explained above, according to the present embodiment, a photoreaction initiator is added to the coating material 17 for corrosion protection of the electric wire with a terminal, so after the coating material 17 is applied and cured, ultraviolet rays are irradiated. By doing so, the film thickness can be easily and accurately measured. Therefore, it is possible to obtain the terminal-equipped electric wire 10 with high reliability in terms of anti-corrosion performance.

特に、光反応開始剤の波長365nmにおける吸光係数が80ml/g cm in MeOH以上であれば、発生する蛍光強度が十分であるために、精度良く、蛍光強度から膜厚を計算することができる。また、吸光係数が高いため、3%以下の少ない添加量とすることができるため、硬化時の紫外線照射の際にも紫外線が光反応開始剤で吸収されにくく、深部硬化性にも優れる。このため、防食性の高い防食構造を得ることができる。 In particular, if the extinction coefficient of the photoinitiator at a wavelength of 365 nm is 80 ml/g cm in MeOH or more, the generated fluorescence intensity is sufficient, so that the film thickness can be calculated from the fluorescence intensity with high accuracy. Furthermore, since it has a high absorption coefficient, it can be added in a small amount of 3% or less, so that the photoreaction initiator is less likely to absorb the ultraviolet light when irradiated with ultraviolet light during curing, and it also has excellent deep curability. Therefore, a corrosion-resistant structure with high corrosion resistance can be obtained.

また、硬化後の-40℃の伸びが100%以上であれば、低温時における割れ等を抑制することができる。 Furthermore, if the elongation at -40°C after curing is 100% or more, cracking etc. at low temperatures can be suppressed.

なお、本実施形態においては、被覆対象部材が、被覆導線11と端子1とが接続される端子付き電線10であり、被膜材17が、被覆対象部材である端子付き電線10に塗布されて硬化する例について説明したが、本発明はこれに限られない。防食や保護のために樹脂皮膜を形成し、その被膜厚みを判断する必要があるような被覆対象部材であれば、被膜材17は、その他の分野にも利用可能である。例えば、光ファイバの被覆工程、電子部品や光ピックアップの樹脂塗布工程、プリントレジスト硬化工程、各種部材の貼り合せ時における樹脂塗布工程など、被覆対象部材に樹脂を塗布する工程であれば、いずれの分野でも利用可能である。特に、被覆対象部材が溝部を有し、被膜材17を溝部に浸透させて硬化させた構造の場合は、深部硬化性に優れた被膜材17とすることで、防食性や防水性に優れた被膜構造を得ることができる。 In this embodiment, the member to be coated is the electric wire 10 with a terminal to which the covered conductor 11 and the terminal 1 are connected, and the coating material 17 is applied to the electric wire 10 with a terminal, which is the member to be coated, and hardened. Although an example has been described, the present invention is not limited to this example. The coating material 17 can also be used in other fields as long as it is a member to be coated where it is necessary to form a resin coating for corrosion prevention or protection and to determine the thickness of the coating. For example, any process in which resin is applied to a member to be coated, such as an optical fiber coating process, a resin coating process for electronic components or optical pickups, a print resist curing process, a resin coating process when bonding various parts, etc. It can also be used in the field. In particular, if the member to be coated has a groove and the coating material 17 is infiltrated into the groove and cured, the coating material 17 with excellent deep hardening properties can provide excellent corrosion resistance and waterproof properties. A film structure can be obtained.

各種の被膜材を用いて、蛍光強度検査の可否と深部硬化性について評価した。各種条件および結果を表1、表2に示す。 Using various coating materials, the feasibility of fluorescence intensity testing and deep curing properties were evaluated. Various conditions and results are shown in Tables 1 and 2.

実施例1~実施例4および比較例1~比較例4は、いずれも光反応開始剤を1種のみ添加したものであり、実施例5~実施例7は、2種の光反応開始剤を混合して添加したものである。光反応開始剤としては、実施例7のカヤキュアDETX-Sのみが日本化薬社製の商品名であり、その他は全てBASF社製の商品名である。 In Examples 1 to 4 and Comparative Examples 1 to 4, only one type of photoinitiator was added, and in Examples 5 to 7, two types of photoinitiators were added. It was mixed and added. As for the photoreaction initiator, only Kayacure DETX-S of Example 7 is a trade name manufactured by Nippon Kayaku Co., Ltd., and all others are trade names manufactured by BASF Corporation.

蛍光度強度検査は、同じ樹脂を用いて作成した膜厚既知のサンプルを作成し、蛍光強度と膜厚の検量線を作成して、測定可能な最小膜厚を評価した。50μmの膜厚を測定可能であったものを「○」評価とし、50μmの膜厚を測定できなかったものを「×」評価とした。なお、比較例4のみ、蛍光強度による膜厚測定ではなく、反射光による測定とした。すなわち、樹脂を用いて作成した膜厚既知のサンプルを作成し、反射光強度(明度)と膜厚の検量線を作成して、測定可能な最小膜厚を評価した(特開2012-209051号公報参照)。 For the fluorescence intensity test, a sample with a known film thickness was created using the same resin, a calibration curve of fluorescence intensity and film thickness was created, and the minimum measurable film thickness was evaluated. Those in which a film thickness of 50 μm could be measured were evaluated as “○”, and those in which a film thickness of 50 μm could not be measured were evaluated as “×”. Note that only in Comparative Example 4, the film thickness was measured not by fluorescence intensity but by reflected light. That is, a sample of known film thickness was created using a resin, a calibration curve of reflected light intensity (brightness) and film thickness was created, and the minimum measurable film thickness was evaluated (Japanese Patent Laid-Open No. 2012-209051). (see official bulletin).

また、深部硬化性は、図3(a)に示した測定治具19を用いて評価した。なお、図3(a)は測定治具19を示す平面図であり、図3(b)は図3(a)のE-E線断面図である。 In addition, the deep hardenability was evaluated using the measuring jig 19 shown in FIG. 3(a). Note that FIG. 3(a) is a plan view showing the measuring jig 19, and FIG. 3(b) is a sectional view taken along line EE in FIG. 3(a).

測定治具19は、アルミニウム製であり、中央部に所定の深さの穴21が形成される。穴21の下端からは穴21の同一幅の間隙25が長手方向に向けて形成される。なお、穴21の径は1mmφとし、穴21の深さ(図3(b)のF)は、1mmとし、間隙25の高さ(図3(b)のG)は、100μmとした。 The measuring jig 19 is made of aluminum, and has a hole 21 of a predetermined depth formed in the center. A gap 25 having the same width as the hole 21 is formed from the lower end of the hole 21 in the longitudinal direction. The diameter of the hole 21 was 1 mmφ, the depth of the hole 21 (F in FIG. 3(b)) was 1 mm, and the height of the gap 25 (G in FIG. 3(b)) was 100 μm.

穴21および間隙25に被膜材17を充填し、穴21の上方からLED23によって紫外線を照射した(図3(b)矢印H)。LED23で照射する紫外線は、波長365nmであって、1000mW/cmとした。また、照射時間は10秒とした。 The hole 21 and the gap 25 were filled with the coating material 17, and ultraviolet rays were irradiated from above the hole 21 using the LED 23 (arrow H in FIG. 3(b)). The ultraviolet light emitted by the LED 23 had a wavelength of 365 nm and was 1000 mW/cm 2 . Moreover, the irradiation time was 10 seconds.

LED23によって紫外線を照射した後、測定治具19を分解して洗浄し、残った硬化物の距離(図中矢印Iであって、硬化物の長さから穴21の径を除いた距離)を深部硬化性として測定した。深部硬化性は、2mm以上を「◎」とし、1mm以上2mm未満を「○」とし、0.1mm以上1mm未満を「△」とし、0.1mm未満を「×」とした。 After irradiating ultraviolet light with the LED 23, the measurement jig 19 is disassembled and cleaned, and the distance of the remaining cured material (arrow I in the figure, the distance obtained by subtracting the diameter of the hole 21 from the length of the cured material) is measured. It was measured as deep hardening. For deep hardening, 2 mm or more was marked as "◎", 1 mm or more and less than 2 mm as "○", 0.1 mm or more and less than 1 mm as "△", and less than 0.1 mm as "x".

なお、被膜材17の材質としては、硬化後の-40℃の引張破断伸びが100%以上であることが望ましい。硬化後の-40℃での引張破断伸びは、200μm厚さの被膜材を用いて、JISK6251に準じて硬化後の-40℃における引張破断伸びを測定することで得ることができる。200μm厚さの被膜材は、硬化前の液状の被膜材を、基材に均一に塗布し、紫外線照射して200μmの厚さとなるように被膜材を調整することで得ることができる。照射する紫外線は、波長365nmであって、照度は1000mW/cmとした。また、照射時間は10秒とした。この結果、詳細は割愛するが、実施例1~7および比較例1~4のいずれも、-40℃の引張破断伸びが100%以上であった。 Note that it is desirable that the material of the coating material 17 has a tensile elongation at -40° C. after curing of 100% or more. The tensile elongation at -40°C after curing can be obtained by measuring the tensile elongation at -40°C after curing according to JIS K6251 using a 200 μm thick coating material. A coating material with a thickness of 200 μm can be obtained by uniformly applying a liquid coating material before curing onto a base material, and adjusting the coating material to a thickness of 200 μm by irradiating it with ultraviolet rays. The irradiated ultraviolet rays had a wavelength of 365 nm and an illuminance of 1000 mW/cm 2 . Moreover, the irradiation time was 10 seconds. As a result, the details are omitted, but the tensile elongation at -40°C was 100% or more in all of Examples 1 to 7 and Comparative Examples 1 to 4.

結果より、実施例1~7は、いずれも蛍光強度検査が○評価であった。これは、光反応開始剤の吸光係数が高いためである。また、実施例1~7は、いずれも深部硬化性が△以上であった。これは、光反応開始剤の添加量が少ないため、硬化時に照射した光が、光反応開始剤で吸収される量が少なかったためである。 The results show that Examples 1 to 7 were all rated ○ in the fluorescence intensity test. This is because the photoinitiator has a high extinction coefficient. Further, in Examples 1 to 7, the deep hardening properties were all △ or higher. This is because since the amount of photoinitiator added was small, the amount of light irradiated during curing was absorbed by the photoinitiator.

特に、2種の光反応開始剤を混合した実施例5~実施例7は、フォトブリーチングによって、紫外線硬化後には、光反応開始剤が光を吸収しなくなるため、より深部まで光が行き届くようになり、深部硬化性は全て◎評価となった。 In particular, in Examples 5 to 7 in which two types of photoinitiators were mixed, the photoinitiator no longer absorbs light after UV curing due to photobleaching, so that the light could reach deeper parts. The deep hardening properties were all rated ◎.

一方、比較例1、比較例2は、光反応開始剤の添加量が多いため、紫外線硬化時において光反応開始剤によって紫外線が吸光されて、深部まで紫外線が十分に透過せず、深部硬化性が×となった。 On the other hand, in Comparative Examples 1 and 2, since the amount of photoreaction initiator added was large, the ultraviolet rays were absorbed by the photoreaction initiator during ultraviolet curing, and the ultraviolet rays did not penetrate deep enough, resulting in deep curing. became ×.

また、比較例3は、吸光係数が低いため、蛍光強度検査において蛍光の強度が弱く、薄い膜厚を精度良く測定することができずに、蛍光強度検査が×となった。 In addition, in Comparative Example 3, since the extinction coefficient was low, the fluorescence intensity was low in the fluorescence intensity test, and the thin film thickness could not be measured accurately, and the fluorescence intensity test was rated "x".

また、比較例4は、反射光を利用した膜厚測定であり、外乱の影響から、薄い膜厚を精度良く測定することができずに、蛍光強度検査が×となった。 In addition, in Comparative Example 4, the film thickness was measured using reflected light, and due to the influence of disturbance, it was not possible to accurately measure the thin film thickness, and the fluorescence intensity test was rated as x.

以上、添付図を参照しながら、本発明の実施の形態を説明したが、本発明の技術的範囲は、前述した実施の形態に左右されない。当業者であれば、特許請求の範囲に記載された技術的思想の範疇内において各種の変更例または修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。 Although the embodiments of the present invention have been described above with reference to the accompanying drawings, the technical scope of the present invention is not limited to the embodiments described above. It is clear that those skilled in the art can come up with various changes and modifications within the scope of the technical idea stated in the claims, and these naturally fall within the technical scope of the present invention. It is understood that it belongs.

1………端子
3………端子本体
4………トランジション部
5………圧着部
7………導線圧着部
8………バレル間部
9………被覆圧着部
10………端子付き電線
11………被覆導線
13………導線
15………被覆部
17………被膜材
19………測定治具
21………穴
23………LED
25………間隙
1...Terminal 3...Terminal body 4...Transition section 5...Crimping section 7...Conductor crimping section 8...Inter-barrel section 9...Sheathing crimping section 10...With terminal Electric wire 11......Coated conductor wire 13......Conductor wire 15......Sheathing portion 17......Coating material 19...Measurement jig 21......Hole 23......LED
25……gap

Claims (7)

被覆導線と端子とが接続される端子付き電線の製造方法であって、
前記被覆導線は、被覆部と、前記被覆部の先端から露出する導線とを具備し、
前記端子は、端子本体と圧着部とを有し、
前記圧着部は、前記導線が圧着される導線圧着部と、前記被覆部が圧着される被覆圧着部と、前記導線圧着部と前記被覆圧着部との間のバレル間部と、を具備し、
少なくとも、前記バレル間部から前記導線圧着部までの前記導線が露出する部位に光反応開始剤を含む被膜材を塗布して硬化させた後、前記被膜材に紫外線を照射して発生した蛍光の強度を測定することで前記被膜材の膜厚を判断し、
前記被膜材は、母材の樹脂に対して、波長365nmにおける吸光係数が、80ml/g cm in MeOH以上の光反応開始剤が3%以下の添加量で添加されており、硬化後の-40℃の伸びが100%以上であり、
前記被膜材の母材の樹脂は、ウレタンアクリレートであり、
前記母材の樹脂に使用するオリゴマーは、重量平均分子量が500~5000であることを特徴とする端子付き電線の製造方法。
A method for manufacturing an electric wire with a terminal in which a covered conductor and a terminal are connected, the method comprising:
The covered conducting wire includes a covering portion and a conducting wire exposed from a tip of the covering portion,
The terminal has a terminal main body and a crimp part,
The crimping part includes a conducting wire crimping part to which the conducting wire is crimped, a covering crimping part to which the sheathing part is crimped, and an inter-barrel part between the conducting wire crimping part and the covering crimping part,
At least, a coating material containing a photoreaction initiator is applied to the area where the conductor is exposed from the part between the barrels to the conductor crimping part and cured, and then the coating material is irradiated with ultraviolet rays to remove the generated fluorescence. Determining the film thickness of the coating material by measuring the strength ,
In the coating material, a photoreaction initiator having an extinction coefficient of 80 ml/g cm in MeOH or more at a wavelength of 365 nm is added to the base resin in an amount of 3% or less, and -40% after curing. ℃ elongation is 100% or more,
The base material resin of the coating material is urethane acrylate,
A method for manufacturing an electric wire with a terminal , wherein the oligomer used for the resin of the base material has a weight average molecular weight of 500 to 5,000 .
前記被膜材は、紫外線硬化樹脂であることを特徴とする請求項記載の端子付き電線の製造方法。 2. The method of manufacturing an electric wire with a terminal according to claim 1 , wherein the coating material is an ultraviolet curing resin. 硬化させた後の前記被膜材に含まれる、反応前は前記光反応開始剤であった物質から発せられる蛍光強度を利用して、前記被材の膜厚を算出することを特徴とする請求項記載の端子付き電線の製造方法。 A claim characterized in that the film thickness of the coating material is calculated by using fluorescence intensity emitted from a substance contained in the coating material after curing and which was the photoreaction initiator before the reaction. Item 2. A method for manufacturing an electric wire with a terminal according to item 2 . 硬化させた後の前記被膜材の膜厚が20μm以上で測定可能なことを特徴とする請求項記載の端子付き電線の製造方法。 4. The method of manufacturing an electric wire with a terminal according to claim 3 , wherein the film thickness of the coating material after curing is measurable at 20 μm or more. 1種類の前記被膜材が塗布されることを特徴とする請求項または請求項記載の端子付き電線の製造方法。 5. The method of manufacturing an electric wire with a terminal according to claim 3 , wherein one type of the coating material is applied. 前記被膜材は、紫外線硬化と、湿気硬化または嫌気性硬化が付与されていることを特徴とする請求項記載の端子付き電線の製造方法。 6. The method of manufacturing an electric wire with a terminal according to claim 5 , wherein the coating material is cured by ultraviolet light, moisture cured, or anaerobically cured. 前記被膜材の硬化の際の紫外線照射工程と、前記被膜材の厚みを測定する際の紫外線照射工程とが同一工程となっているか、または、紫外線硬化工程後、端子の位置補正を行った後に膜厚検査を行うことを特徴とする請求項のいずれか1項に記載の端子付き電線の製造方法。 Is the ultraviolet irradiation process for curing the coating material and the ultraviolet irradiation process for measuring the thickness of the coating material the same process, or is the process corrected after the terminal position is corrected after the ultraviolet curing process? The method for manufacturing an electric wire with a terminal according to any one of claims 3 to 6 , characterized in that a film thickness test is performed.
JP2022049628A 2018-03-29 2022-03-25 Manufacturing method of electric wire with terminal Active JP7348982B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022049628A JP7348982B2 (en) 2018-03-29 2022-03-25 Manufacturing method of electric wire with terminal
JP2023118070A JP7445064B2 (en) 2018-03-29 2023-07-20 Manufacturing method of electric wire with terminal

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018065278A JP7050551B2 (en) 2018-03-29 2018-03-29 Anti-corrosion structure
JP2022049628A JP7348982B2 (en) 2018-03-29 2022-03-25 Manufacturing method of electric wire with terminal

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2018065278A Division JP7050551B2 (en) 2018-03-29 2018-03-29 Anti-corrosion structure

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2023118070A Division JP7445064B2 (en) 2018-03-29 2023-07-20 Manufacturing method of electric wire with terminal

Publications (2)

Publication Number Publication Date
JP2022082643A JP2022082643A (en) 2022-06-02
JP7348982B2 true JP7348982B2 (en) 2023-09-21

Family

ID=68168137

Family Applications (3)

Application Number Title Priority Date Filing Date
JP2018065278A Active JP7050551B2 (en) 2018-03-29 2018-03-29 Anti-corrosion structure
JP2022049628A Active JP7348982B2 (en) 2018-03-29 2022-03-25 Manufacturing method of electric wire with terminal
JP2023118070A Active JP7445064B2 (en) 2018-03-29 2023-07-20 Manufacturing method of electric wire with terminal

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2018065278A Active JP7050551B2 (en) 2018-03-29 2018-03-29 Anti-corrosion structure

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2023118070A Active JP7445064B2 (en) 2018-03-29 2023-07-20 Manufacturing method of electric wire with terminal

Country Status (1)

Country Link
JP (3) JP7050551B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115340799A (en) * 2022-08-26 2022-11-15 苏州鑫新海运有限公司 Metal antirust paint for water cargo ship and preparation method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003279326A (en) 2002-03-26 2003-10-02 Univ Toyama Method and apparatus for measuring thickness of organic thin film used for organic electroluminescent element
JP2013133444A (en) 2011-12-27 2013-07-08 Jgc Catalysts & Chemicals Ltd Coating material for transparent film formation and substrate with transparent film
JP2015159070A (en) 2014-02-25 2015-09-03 株式会社オートネットワーク技術研究所 wire harness
JP2015181322A (en) 2013-07-22 2015-10-15 Jsr株式会社 Sealing material for covered conductor
JP2016181367A (en) 2015-03-24 2016-10-13 古河電気工業株式会社 Connection structure, wire harness, and method of manufacturing connection structure

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4185939B2 (en) 2006-03-15 2008-11-26 オムロン株式会社 UV curable resin state estimation method
JP2012113963A (en) 2010-11-25 2012-06-14 Auto Network Gijutsu Kenkyusho:Kk Electric wire with terminal
JP2015185264A (en) * 2014-03-20 2015-10-22 株式会社オートネットワーク技術研究所 Terminal-provided covered conductor
JP6624919B2 (en) 2015-12-18 2019-12-25 株式会社ディスコ Protective film detection method for laser processing
JP6868358B2 (en) 2016-09-14 2021-05-12 古河電気工業株式会社 Manufacturing method of electric wire with terminal
JP6962745B2 (en) * 2017-01-11 2021-11-05 アイカ工業株式会社 LED curable moisture-proof insulating coating composition

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003279326A (en) 2002-03-26 2003-10-02 Univ Toyama Method and apparatus for measuring thickness of organic thin film used for organic electroluminescent element
JP2013133444A (en) 2011-12-27 2013-07-08 Jgc Catalysts & Chemicals Ltd Coating material for transparent film formation and substrate with transparent film
JP2015181322A (en) 2013-07-22 2015-10-15 Jsr株式会社 Sealing material for covered conductor
JP2015159070A (en) 2014-02-25 2015-09-03 株式会社オートネットワーク技術研究所 wire harness
JP2016181367A (en) 2015-03-24 2016-10-13 古河電気工業株式会社 Connection structure, wire harness, and method of manufacturing connection structure

Also Published As

Publication number Publication date
JP7050551B2 (en) 2022-04-08
JP2023129530A (en) 2023-09-14
JP2022082643A (en) 2022-06-02
JP7445064B2 (en) 2024-03-06
JP2019172908A (en) 2019-10-10

Similar Documents

Publication Publication Date Title
JP7445064B2 (en) Manufacturing method of electric wire with terminal
US9018528B2 (en) Method for producing wiring harness, and wiring harness
US9054434B2 (en) Method for producing wiring harness, and wiring harness
US11149155B2 (en) Electrically-insulating energy-curable inkjet fluids
JPWO2005071792A1 (en) Method for waterproofing connection part of coated wire
JP6327408B1 (en) (Meth) acrylic composition, paint and cured product containing the same
EP2652059A2 (en) Method for forming uv-curable conductive compositions and a composition thus formed
JP5270914B2 (en) Resin composition and cured product and sheet using the same
JP6111997B2 (en) Anticorrosive, coated electric wire with terminal and wire harness
TW200705103A (en) Curing accelerator, thermosetting resin composition, photo-sensitive composition and photo-sensitive film, permanent pattern and process for forming the same
JP7012415B2 (en) Wire with terminal
JP2011113693A (en) Method for producing wire harness, and the wire harness
KR102380913B1 (en) Antistatic hard coating composition and hard coating material having UV hardenability comprising the same
JP7223179B2 (en) Wire with terminal
JP2021070784A (en) Film material, and resin film structure and electric wire with terminal using the same
JP7370816B2 (en) Coating material, resin coating structure using the same, and electric wire with terminal
JP7245096B2 (en) UV curable insulating coating agent resin composition
JP4429803B2 (en) Method for evaluating yellowing degree of resin
CN114479647B (en) Corrosion-resistant material, terminal-equipped electric wire, and wire harness
JPH10269853A (en) Aeolotropic conductive film
JP5617458B2 (en) Active energy ray-curable resin composition and cured product thereof
JP2022071506A (en) Corrosion-proof material, electric wire with terminal, and wire harness
JP2022160186A (en) Aqueous hard coat agent
WO2023233947A1 (en) Curable composition and electrical member
JP2008262858A (en) Composition for conductive film formation, its manufacturing method, and conductive film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220330

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230113

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230509

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230720

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20230728

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230822

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230908

R151 Written notification of patent or utility model registration

Ref document number: 7348982

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151