JP7345389B2 - Water treatment equipment and water treatment method - Google Patents

Water treatment equipment and water treatment method Download PDF

Info

Publication number
JP7345389B2
JP7345389B2 JP2019237036A JP2019237036A JP7345389B2 JP 7345389 B2 JP7345389 B2 JP 7345389B2 JP 2019237036 A JP2019237036 A JP 2019237036A JP 2019237036 A JP2019237036 A JP 2019237036A JP 7345389 B2 JP7345389 B2 JP 7345389B2
Authority
JP
Japan
Prior art keywords
sludge
tank
solid
liquid separation
biological treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019237036A
Other languages
Japanese (ja)
Other versions
JP2021104489A (en
Inventor
剛 安部
晃志 城野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KUBOTA ENVIRONMENTAL ENGINEERING CORPORATION
Original Assignee
KUBOTA ENVIRONMENTAL ENGINEERING CORPORATION
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KUBOTA ENVIRONMENTAL ENGINEERING CORPORATION filed Critical KUBOTA ENVIRONMENTAL ENGINEERING CORPORATION
Priority to JP2019237036A priority Critical patent/JP7345389B2/en
Publication of JP2021104489A publication Critical patent/JP2021104489A/en
Application granted granted Critical
Publication of JP7345389B2 publication Critical patent/JP7345389B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Activated Sludge Processes (AREA)

Description

本発明は、有機性排水を生物処理する水処理設備及び水処理方法に関する。 The present invention relates to water treatment equipment and a water treatment method for biologically treating organic wastewater.

一般に、有機性排水を生物処理する水処理設備に搬入された汚水は、し渣の除去等の前処理が行なわれた後に、貯留槽に貯留され、貯留槽から生物処理槽に定量的に送水される。そして、生物処理された被処理水は固液分離され、活性炭ろ過等の高度処理が行なわれた後に河川等に放流される。一方、固液分離された汚泥はフィルタプレス脱水機などを用いて脱水された後に焼却などの処理が行なわれる。 Generally, wastewater brought into a water treatment facility that biologically treats organic wastewater is stored in a storage tank after pretreatment such as removing scum, and the water is quantitatively transferred from the storage tank to the biological treatment tank. be done. Then, the biologically treated water is separated into solid and liquid, and after being subjected to advanced treatment such as activated carbon filtration, it is discharged into a river or the like. On the other hand, the solid-liquid separated sludge is dehydrated using a filter press dehydrator or the like, and then subjected to treatments such as incineration.

このような有機性排水に対する従来の水処理設備では、生物処理で生じた余剰汚泥の処理コストが水処理に掛かるコストの中で大きな割合を占めていることから、コスト低減のために余剰汚泥の減容化が求められている。 In conventional water treatment facilities for such organic wastewater, the cost of treating excess sludge generated through biological treatment accounts for a large proportion of the cost of water treatment. Volume reduction is required.

そこで、本願発明者らは、活性汚泥法を採用する水処理装置の処理槽に生物処理助剤を供給して特定の微生物叢を汚泥中で優占化させ、特定の微生物叢を用いた生物処理によって悪臭の発生を軽減させるとともに余剰汚泥の発生量を低減させるべく鋭意研究開発を進めてきた。 Therefore, the inventors of the present application supplied biological treatment aids to the treatment tank of water treatment equipment that employs the activated sludge method to make a specific microflora dominant in the sludge, and developed We have been actively researching and developing ways to reduce the amount of excess sludge generated through treatment, as well as to reduce the generation of bad odors.

特許文献1には、有機性排水を活性汚泥の存在下で曝気する曝気手段と、曝気後の排水を汚泥と処理水とに分離する分離手段と、汚泥の少なくとも一部を腐植の存在下で反応させる腐植リアクターと、腐植化した汚泥の少なくとも一部を腐植および微小動物の存在下で反応および捕食させる腐植化汚泥槽とからなる、腐植を用いた汚泥減量化装置が提案されている。 Patent Document 1 discloses an aeration means for aerating organic wastewater in the presence of activated sludge, a separation means for separating the aerated wastewater into sludge and treated water, and a separation means for separating at least a portion of the sludge in the presence of humus. A sludge reduction device using humus has been proposed, which includes a humus reactor for reacting, and a humic sludge tank for reacting and feeding at least a portion of the humicized sludge in the presence of humus and microfauna.

特許文献2には、有機性排水を微生物によって生物処理する生物処理槽と、前記生物処理槽で処理された有機性排水を固液分離する固液分離槽と、前記固液分離槽で固液分離された汚泥を脱水処理する脱水機構とを備えている水処理設備であって、前記微生物のうち特定微生物群を優占化する生物処理助剤が充填されたリアクターを備えるとともに、前記固液分離槽で固液分離された汚泥を曝気する散気機構を備えた汚泥調質槽が設けられ、前記汚泥調質槽で調質された汚泥が前記脱水機構で脱水処理されるように構成された水処理設備が提案されている。 Patent Document 2 describes a biological treatment tank that biologically treats organic wastewater using microorganisms, a solid-liquid separation tank that separates solid-liquid from the organic wastewater treated in the biological treatment tank, and a solid-liquid separation tank that separates the organic wastewater treated in the biological treatment tank into solid-liquid. The water treatment equipment is equipped with a dehydration mechanism for dehydrating the separated sludge, and includes a reactor filled with a biological treatment aid that makes a specific group of microorganisms dominant among the microorganisms, and A sludge conditioning tank is provided with an aeration mechanism for aerating the sludge separated into solid and liquid in the separation tank, and the sludge conditioned in the sludge conditioning tank is configured to be dehydrated by the dewatering mechanism. A new water treatment facility has been proposed.

特開2005-161233号公報Japanese Patent Application Publication No. 2005-161233 特開2015-160188号公報Japanese Patent Application Publication No. 2015-160188

特許文献1に記載された汚泥減量化装置は、余剰汚泥の一部を腐植リアクターに供給し、腐植リアクターで変換された腐植汚泥の一部を曝気槽に供給するとともに、腐植汚泥の残余を余剰汚泥の残余とともに浸漬型のリアクターを備えた腐植化汚泥槽に供給し、腐植化汚泥槽で10日間程度滞留させた後に脱水処理するように構成されていた。 The sludge reduction device described in Patent Document 1 supplies a portion of surplus sludge to a humus reactor, supplies a portion of the humic sludge converted in the humus reactor to an aeration tank, and supplies the remainder of the humic sludge to the humus reactor. The sludge was supplied together with the remaining sludge to a humic sludge tank equipped with an immersion type reactor, and was allowed to stay in the humic sludge tank for about 10 days before being dehydrated.

そのために腐植化汚泥槽として大容量の処理槽が必要になるという問題や、腐植化汚泥槽で変換された腐植汚泥を脱水処理した後に堆肥などに用いることが開示されているものの、全てが堆肥として有効に利用できるものではなく、焼却などの最終処理を行なう場合もあり、腐植汚泥を生物処理に有効に活用するという観点でさらに改良の余地があった。 For this reason, there is a problem that a large-capacity processing tank is required as a humic sludge tank, and although it has been disclosed that the humic sludge converted in the humic sludge tank is dehydrated and then used for compost, etc. However, in some cases, final treatment such as incineration is required, and there is still room for further improvement from the perspective of effectively utilizing humus sludge for biological treatment.

特許文献2に記載された水処理設備では、固液分離装置から引抜かれた余剰汚泥を汚泥調質槽に導入して散気することにより微生物の自己分解作用を促進し、その後に汚泥貯留槽を経由して脱水処理するように構成されていたため、脱水時に汚泥濃度が低下しており、その結果、脱水効率が低下するばかりでなく、脱水機構に備える水槽の容量が大きくなり広い設置面積が必要になるという点で改良の余地があった。 In the water treatment facility described in Patent Document 2, excess sludge drawn from a solid-liquid separation device is introduced into a sludge conditioning tank and aerated to promote self-decomposition of microorganisms, and then transferred to a sludge storage tank. Since the sludge was configured to be dewatered via the dewatering system, the sludge concentration decreased during dewatering, and as a result, not only did the dewatering efficiency decrease, but the capacity of the water tank for the dewatering mechanism increased, requiring a large installation area. There was room for improvement in terms of what was needed.

また、特許文献1,2の何れの構成であっても余剰汚泥が腐植リアクターとBODの高い栄養豊富な生物処理槽との間で循環される構成であるため、特定微生物群以外の微生物が十分に淘汰される環境ではなかった。そのため特定微生物群に対する優占化効率を高める観点でさらなる改良の余地があった。 In addition, in either of the configurations of Patent Documents 1 and 2, excess sludge is circulated between the humus reactor and the nutrient-rich biological treatment tank with high BOD, so microorganisms other than specific microorganism groups are sufficiently removed. It was not an environment where they would be weeded out. Therefore, there was room for further improvement in terms of increasing the efficiency of dominating specific microorganism groups.

本発明の目的は、上述した従来技術に鑑み、特定微生物群の優占化をより効率的に行ないうる水処理設備及び水処理方法を提供する点にある。 An object of the present invention is to provide water treatment equipment and a water treatment method that can more efficiently make a specific microorganism group dominant, in view of the above-mentioned prior art.

上述の目的を達成するため、本発明による水処理設備の第一特徴構成は、有機性排水を微生物によって生物処理する生物処理槽と、前記生物処理槽で処理された有機性排水を固液分離する固液分離槽と、前記固液分離槽で固液分離された汚泥を脱水処理する脱水機構とを備えている水処理設備であって、散気機構を備え、前記固液分離槽で固液分離された汚泥の一部を導入して調質する汚泥調質槽と、前記微生物のうち特定微生物群を優占化する生物処理助剤が充填されたリアクターと、前記汚泥調質槽に導入した汚泥を、前記リアクターとの間で循環させる汚泥循環路と、前記汚泥調質槽で調質された汚泥の全てを前記生物処理槽に供給する汚泥供給路と、を備えている点にある。 In order to achieve the above object, the first characteristic configuration of the water treatment equipment according to the present invention includes a biological treatment tank that biologically treats organic wastewater using microorganisms, and a solid-liquid separation of the organic wastewater treated in the biological treatment tank. The water treatment equipment is equipped with a solid-liquid separation tank, and a dehydration mechanism that dehydrates the sludge separated into solid and liquid in the solid-liquid separation tank, and is equipped with an aeration mechanism, and a sludge conditioning tank into which a part of liquid-separated sludge is introduced and conditioned; a reactor filled with a biological treatment aid that makes a specific group of microorganisms dominant among the microorganisms; A sludge circulation path that circulates introduced sludge between the reactor and the sludge conditioning tank, and a sludge supply path that supplies all of the sludge that has been conditioned in the sludge conditioning tank to the biological treatment tank. be.

固液分離槽で固液分離され汚泥調質槽に導かれた汚泥は汚泥循環路を介して特定微生物群を優占化する生物処理助剤が充填されたリアクターに循環供給される。汚泥調質槽を含めてこの循環路を循環する汚泥には生物処理槽に供給される有機性排水のような高BODを有する環境下には無く、また散気機構からの散気によって自己酸化反応が促進される過酷な環境となる。例えば、有芽胞菌であるバチルス属細菌などの特定微生物群は芽胞を形成して耐久性を発揮するが、他の微生物は淘汰されるようになる。その結果、汚泥調質槽に導かれた汚泥は効果的に特定微生物群に優占化され、汚泥全体として効果的に減容化される。また、そのようにして優占化された特定微生物群が汚泥調質槽から生物処理槽に供給されるので、生物処理槽に導かれる有機性排水に含まれる有機物に対する分解効率が向上するとともに余剰汚泥の発生量自体も少なくなる。なお、固液分離槽で固液分離された汚泥は濃度の高い状態で脱水機構に導かれるので脱水効率も、固液分離された汚泥を汚泥調質槽に導入して散気した後に脱水機構に導入する従来の構成のように低下することも無い。 The sludge separated into solid and liquid in the solid-liquid separation tank and led to the sludge conditioning tank is circulated and supplied via the sludge circulation path to a reactor filled with a biological treatment aid that makes a specific group of microorganisms dominant. The sludge circulating in this circulation path, including the sludge conditioning tank, is not in an environment with high BOD like the organic wastewater supplied to the biological treatment tank, and is self-oxidized by air diffusion from the aeration mechanism. This creates a harsh environment that accelerates reactions. For example, a specific group of microorganisms such as spore-forming bacteria of the genus Bacillus form spores and exhibit durability, but other microorganisms become culled. As a result, the sludge led to the sludge conditioning tank is effectively dominated by a specific group of microorganisms, and the volume of the sludge as a whole is effectively reduced. In addition, since the specific microorganism group that has become dominant in this way is supplied from the sludge conditioning tank to the biological treatment tank, the decomposition efficiency of organic matter contained in the organic wastewater led to the biological treatment tank is improved, and the surplus The amount of sludge generated will also be reduced. In addition, since the sludge separated into solid and liquid in the solid-liquid separation tank is led to the dewatering mechanism in a highly concentrated state, the dewatering efficiency is also improved by introducing the separated sludge into the sludge conditioning tank and aerating it before the dewatering mechanism. Unlike conventional configurations that are introduced in

同第二の特徴構成は、上述の第一の特徴構成に加えて、前記汚泥調質槽に前記リアクターが浸漬配置され、前記汚泥循環路は前記汚泥調質槽の内部に形成され、汚泥を前記リアクターに循環させる循環流路で構成されている点にある。 In addition to the first characteristic configuration described above, the second characteristic configuration is that the reactor is immersed in the sludge conditioning tank, the sludge circulation path is formed inside the sludge conditioning tank, and the sludge It is comprised of a circulation flow path that circulates through the reactor.

汚泥調質槽にリアクターを浸漬配置することにより、装置をコンパクトに構成することができ、例えば散気機構から供給される気泡により生じる上向流を利用して汚泥をリアクターに循環供給できれば、汚泥を循環させるための別途の動力源も不要になる。 By immersing the reactor in the sludge conditioning tank, the device can be constructed compactly. For example, if sludge can be circulated and supplied to the reactor using the upward flow generated by air bubbles supplied from the aeration mechanism, the sludge There is no need for a separate power source to circulate the water.

同第三の特徴構成は、上述の第一または第二の特徴構成に加えて、前記固液分離槽から前記脱水機構に導かれる汚泥量Qoに対する前記固液分離槽から前記汚泥調質槽に導かれる汚泥量Qq及び前記固液分離槽から前記生物処理槽へ返送される汚泥量Qrの総量(Qq+Qr)の比(Qq+Qr)/Qoが10から18の範囲に設定され、汚泥量Qoに対する汚泥量Qqの比Qq/Qoが0.3から1の範囲に設定されている点にある。 The third characteristic configuration is, in addition to the first or second characteristic configuration described above, that the sludge is transferred from the solid-liquid separation tank to the sludge conditioning tank with respect to the amount Qo of sludge introduced from the solid-liquid separation tank to the dewatering mechanism. The ratio (Qq+Qr)/Qo of the total amount (Qq+Qr) of the introduced sludge amount Qq and the sludge amount Qr returned from the solid-liquid separation tank to the biological treatment tank is set in the range of 10 to 18, and the sludge amount relative to the sludge amount Qo is The point is that the ratio Qq/Qo of the quantity Qq is set in the range of 0.3 to 1.

固液分離槽で固液分離され、脱水機に導かれる汚泥量Qoに対して汚泥調質槽に導かれる汚泥量Qqと生物処理槽へ返送される汚泥量Qrの総量の比が10から18の範囲に設定され、汚泥量Qoに対する汚泥量Qqの比が0.3から1の範囲に設定されることにより、効果的に脱水すべき汚泥量を低減しながらも汚泥調質槽で効率的に特定微生物群が馴養できる。 The ratio of the total amount of sludge Qq led to the sludge conditioning tank and the amount Qr of sludge returned to the biological treatment tank to the amount Qo of sludge separated into solid and liquid in the solid-liquid separation tank and led to the dehydrator is 10 to 18. By setting the ratio of the sludge amount Qq to the sludge amount Qo to the range of 0.3 to 1, the sludge conditioning tank can efficiently reduce the amount of sludge to be dewatered. A specific group of microorganisms can become accustomed to it.

同第四の特徴構成は、上述の第一から第三の何れかの特徴構成に加えて、前記汚泥調質槽の容量は、前記固液分離槽から前記汚泥調質槽に導かれる汚泥量Qqの3倍以上に設定され、少なくとも3日は前記汚泥調質槽で調質されるように構成されている点にある。 The fourth characteristic configuration is that, in addition to any one of the first to third characteristic configurations described above, the capacity of the sludge conditioning tank is based on the amount of sludge guided from the solid-liquid separation tank to the sludge conditioning tank. The sludge is set at three times or more of Qq, and is configured to be tempered in the sludge conditioning tank for at least three days.

汚泥調質槽の容量を固液分離槽で固液分離された1日当たりの汚泥量の3倍以上に設定することにより、特定微生物群の十分な馴養期間を確保できる。 By setting the capacity of the sludge conditioning tank to three times or more the daily amount of sludge separated into solid and liquid in the solid-liquid separation tank, a sufficient acclimatization period for the specific microorganism group can be ensured.

同第五の特徴構成は、上述の第一から第四の何れかの特徴構成に加えて、前記散気機構から前記汚泥調質槽への散気量は汚泥量1m当たり1~2m/hの範囲に設定されている点にある。 The fifth characteristic configuration is that, in addition to any one of the first to fourth characteristic configurations described above, the amount of air diffused from the aeration mechanism to the sludge conditioning tank is 1 to 2 m 3 per 1 m 3 of sludge volume. /h range.

汚泥量1m当たり1~2m/hの範囲に散気量が設定されることにより、汚泥調質槽の内部で汚泥の流動性が確保でき、汚泥の腐敗を招くようなことが無い。 By setting the aeration rate in the range of 1 to 2 m 3 /h per 1 m 3 of sludge, the fluidity of the sludge can be ensured inside the sludge conditioning tank, and the sludge will not rot.

同第六の特徴構成は、上述の第一から第四の何れかの特徴構成に加えて、前記汚泥調質槽の溶存酸素濃度DOは0.5~3mg/Lに調整されている点にある。 The sixth characteristic configuration is that, in addition to any of the above-mentioned first to fourth characteristic configurations, the dissolved oxygen concentration DO of the sludge conditioning tank is adjusted to 0.5 to 3 mg/L. be.

汚泥調質槽の溶存酸素濃度DOが0.5mg/Lより低い場合には、汚泥の自己分解による高い減容化効果が得られず、また特定微生物群が芽胞を形成するような厳しい環境に維持することもできない。また、溶存酸素濃度DOが3mg/Lより高い場合には、減容化効果及び芽胞形成効果が損なわれるようなことはないが散気のために供されるエネルギーが無駄になる。 If the dissolved oxygen concentration DO in the sludge conditioning tank is lower than 0.5 mg/L, a high volume reduction effect due to sludge self-decomposition cannot be obtained, and the environment is harsh, where specific microorganisms form spores. Nor can it be maintained. Moreover, when the dissolved oxygen concentration DO is higher than 3 mg/L, the volume reduction effect and the spore formation effect are not impaired, but the energy provided for aeration is wasted.

同第七の特徴構成は、上述の第一から第六の何れかの特徴構成に加えて、前記生物処理助剤が腐植物質及び/またはミネラルであり、前記特定微生物群がバチルス属細菌を含む土壌微生物群である点にある。 The seventh feature configuration is that, in addition to any of the above-mentioned first to sixth feature configurations, the biological treatment aid is a humic substance and/ or a mineral , and the specific microorganism group is Bacillus bacteria. It is a soil microorganism group that includes.

腐植物質及び/またはミネラルを生物処理助剤として汚泥に供給すると、汚泥中の微生物叢がバチルス属細菌を含む土壌微生物群に優占化される。このような汚泥で有機性排水を生物処理することで、有機性排水の処理効率が上昇し、汚泥の発生量の低減及び悪臭の発生の抑制が可能になる。 When humic substances and/ or minerals are supplied to sludge as biological treatment aids, the microbial flora in the sludge becomes dominated by soil microorganisms containing Bacillus bacteria. By biologically treating organic wastewater with such sludge, the treatment efficiency of organic wastewater increases, and it becomes possible to reduce the amount of sludge generated and suppress the generation of bad odors.

本発明による水処理方法の第一の特徴構成は、有機性排水を微生物によって生物処理する生物処理工程と、前記生物処理工程で処理された有機性排水を固液分離する固液分離工程と、前記固液分離工程で固液分離された汚泥を脱水処理する脱水工程とを備えている水処理方法であって、前記固液分離工程で固液分離された汚泥の一部を散気する汚泥調質工程と、前記汚泥調質工程に導入された汚泥を前記微生物のうち特定微生物群を優占化する生物処理助剤との間で循環させることで生物処理助剤に接触させて汚泥中の特定微生物群を優占化する優占化工程と、前記優占化工程で優占化処理され、前記汚泥調質工程で調質された汚泥の全てを前記生物処理工程に供給する優占化汚泥供給工程と、を含む点にある。 The first characteristic configuration of the water treatment method according to the present invention is a biological treatment step of biologically treating organic wastewater with microorganisms, a solid-liquid separation step of separating solid-liquid of the organic wastewater treated in the biological treatment step, A water treatment method comprising a dehydration step of dehydrating the sludge separated into solid and liquid in the solid-liquid separation step, the sludge comprising aerating a part of the sludge separated into solid-liquid in the solid-liquid separation step. The sludge introduced into the sludge conditioning process is circulated between the sludge conditioning process and a biological treatment aid that makes a specific group of microorganisms dominant among the microorganisms, so that the sludge is brought into contact with the biological treatment aid and the sludge is heated. a dominating step in which a specific group of microorganisms is made dominant; and a dominating step in which all of the sludge treated in the dominating step and tempered in the sludge conditioning step is supplied to the biological treatment step. The process includes a chemical sludge supply process.

以上説明した通り、本発明によれば、特定微生物群の優占化をより効率的に行ないうる水処理設備及び水処理方法を提供することができるようになった。 As explained above, according to the present invention, it has become possible to provide water treatment equipment and a water treatment method that can more efficiently make a specific microorganism group dominant.

本発明による水処理設備の第一の実施形態の説明図An explanatory diagram of a first embodiment of water treatment equipment according to the present invention 本発明による水処理設備の第一の実施形態の汚泥処理量の説明図An explanatory diagram of the sludge treatment amount of the first embodiment of the water treatment equipment according to the present invention 本発明による水処理設備の第二の実施形態の説明図Explanatory diagram of a second embodiment of water treatment equipment according to the present invention

以下、本発明による水処理設備及び水処理方法の実施形態を説明する。
図1に示すように、本発明による水処理設備10は、生物処理槽11と、固液分離槽12と、汚泥調質槽13と、リアクター14と、汚泥貯留槽15と、脱水機構16と、脱水ケーキホッパ17などを備えている。
Embodiments of the water treatment equipment and water treatment method according to the present invention will be described below.
As shown in FIG. 1, the water treatment equipment 10 according to the present invention includes a biological treatment tank 11, a solid-liquid separation tank 12, a sludge conditioning tank 13, a reactor 14, a sludge storage tank 15, and a dewatering mechanism 16. , a dehydrating cake hopper 17, etc.

生物処理槽11は微生物の集合体である活性汚泥を用いて有機性排水を生物処理する槽で、好気状態で有機性排水に含まれるBODを分解するとともにアンモニア性窒素を硝酸性窒素に硝化する硝化槽11Bと、硝化槽11Bで硝化された硝酸性窒素を嫌気状態で窒素ガスに還元して有機性排水から窒素を除去する脱窒素槽11Aを備えている。本実施形態では有機性排水としてし尿や浄化槽汚泥が対象となるが、し尿や浄化槽汚泥以外に下水汚泥、生活排水、食品工場などで生じる工場排水、家畜の糞尿などの各種の有機性排水も対象となる。 The biological treatment tank 11 is a tank that biologically treats organic wastewater using activated sludge, which is a collection of microorganisms, and decomposes BOD contained in the organic wastewater under aerobic conditions and nitrifies ammonia nitrogen to nitrate nitrogen. and a denitrification tank 11A that removes nitrogen from organic wastewater by reducing nitrate nitrogen nitrified in the nitrification tank 11B to nitrogen gas in an anaerobic state. In this embodiment, human waste and septic tank sludge are targeted as organic wastewater, but in addition to human waste and septic tank sludge, various organic wastewaters such as sewage sludge, domestic wastewater, industrial wastewater generated at food factories, etc., and livestock manure are also targeted. becomes.

活性汚泥中の微生物は、有機性排水に含まれるBODを二酸化炭素、水、アンモニア性窒素などの無機物に分解し、アデノシン三リン酸(ATP)を産生する異化反応を生起し、産生したアデノシン三リン酸(ATP)と有機物からアミノ酸などを生合成する同化反応を生起する。生合成物は微生物の細胞成分や分泌物となる。一部の生合成物は、自己酸化反応によって二酸化炭素や水になって消失する。 Microorganisms in activated sludge decompose BOD contained in organic wastewater into inorganic substances such as carbon dioxide, water, and ammonia nitrogen, and cause a catabolic reaction that produces adenosine triphosphate (ATP). It causes an anabolic reaction that biosynthesizes amino acids and other substances from phosphoric acid (ATP) and organic substances. Biosynthetic products become cellular components and secretions of microorganisms. Some biosynthetic compounds are converted into carbon dioxide and water through autooxidation reactions and are lost.

固液分離槽12は生物処理槽11で有機性排水が生物処理された後の被処理水と汚泥とを固液分離する槽であり、本実施形態では槽内に膜分離装置Mが浸漬配置されて構成され、膜分離装置Mの分離膜を介して汚泥と分離された被処理水が取り出される。硝化槽11B及び固液分離槽11には散気装置が設置されており槽内が好気状態に維持されている。 The solid-liquid separation tank 12 is a tank for solid-liquid separation between water to be treated and sludge after organic wastewater is biologically treated in the biological treatment tank 11. In this embodiment, a membrane separator M is immersed in the tank. The water to be treated is separated from the sludge through the separation membrane of the membrane separation device M. An aeration device is installed in the nitrification tank 11B and the solid-liquid separation tank 11 to maintain the inside of the tank in an aerobic state.

固液分離槽12で固液分離された被処理水は活性炭吸着設備などにより高度処理し、高度処理した被処理水は消毒設備で消毒された後に河川など外部に放流する。 The water to be treated that has undergone solid-liquid separation in the solid-liquid separation tank 12 is subjected to advanced treatment using activated carbon adsorption equipment, etc., and the highly treated water to be treated is disinfected by disinfection equipment and then discharged to the outside, such as a river.

なお、膜分離装置Mを硝化槽11Bに浸漬配置して固液分離槽12と硝化槽11Bを兼用するように構成してもよい。また、膜分離装置Mを備えた固液分離槽12に代えて汚泥を沈降させて上澄み液となる被処理水を取り出す沈殿槽を固液分離槽12として用いることも可能である。 Note that the membrane separator M may be immersed in the nitrification tank 11B to serve as both the solid-liquid separation tank 12 and the nitrification tank 11B. Further, instead of the solid-liquid separation tank 12 equipped with the membrane separator M, it is also possible to use a settling tank as the solid-liquid separation tank 12 in which sludge is sedimented and water to be treated as a supernatant liquid is taken out.

生物処理の過程で増殖し固液分離槽12からポンプを介して引き出された余剰汚泥の一部は汚泥貯留槽15に貯留され、その後に例えばフィルタプレス式脱水機やスクリュープレス式脱水機などを備えた脱水機構16により脱水されて、得られた脱水ケーキは脱水ケーキホッパ17に貯留され、脱水ケーキホッパ17から取り出された後に肥料として資源化処理または焼却処理される。なお、複数のフィルタプレス式脱水機を備えるなど余剰汚泥を連続的に脱水処理可能な場合には汚泥貯留槽15は不要となる。 A part of the surplus sludge that has multiplied during the biological treatment process and is drawn out from the solid-liquid separation tank 12 via a pump is stored in the sludge storage tank 15, and is then used, for example, in a filter press type dehydrator or screw press type dehydrator. The obtained dehydrated cake is dehydrated by the provided dewatering mechanism 16 and stored in the dehydrated cake hopper 17, and after being taken out from the dehydrated cake hopper 17, it is recycled as fertilizer or incinerated. The sludge storage tank 15 is not necessary when surplus sludge can be continuously dehydrated, such as when a plurality of filter press type dehydrators are provided.

また、固液分離槽12からポンプを介して引き出された余剰汚泥の一部は脱窒素槽11Aに返送汚泥として戻されて、硝化処理された汚泥に含まれる硝酸性窒素を窒素ガスに還元する脱窒素処理が行なわれる。 In addition, a part of the surplus sludge drawn out from the solid-liquid separation tank 12 via the pump is returned to the denitrification tank 11A as return sludge, and the nitrate nitrogen contained in the nitrified sludge is reduced to nitrogen gas. Denitrification treatment is performed.

さらに、固液分離槽12からポンプを介して引き出された余剰汚泥の一部は汚泥調質槽13に送られて、汚泥調質槽13に備えた散気装置で散気処理される。汚泥調質槽13で散気された汚泥は、内生呼吸(自己酸化)により減容化される。内生呼吸とは、栄養源となるBOD濃度が低いために、微生物が自分の細胞質を補充することなく代謝することをいう。最終的に微生物の細胞膜は破壊されて内側に残存する分子を放出し、それが今度は他の微生物の栄養源になる。 Further, a portion of the excess sludge drawn out from the solid-liquid separation tank 12 via the pump is sent to the sludge conditioning tank 13 and subjected to aeration treatment by an aeration device provided in the sludge conditioning tank 13. The sludge aerated in the sludge conditioning tank 13 is reduced in volume by endogenous respiration (self-oxidation). Endogenous respiration refers to the fact that microorganisms metabolize their own cytoplasm without replenishing it because the concentration of BOD, which serves as a nutrient source, is low. Eventually, the microorganism's cell membrane ruptures, releasing the remaining molecules inside, which in turn become a food source for other microorganisms.

さらに、汚泥調質槽13に導入された汚泥は、ポンプを介してリアクター14との間に形成される循環路に沿って循環される。
リアクター14は、活性汚泥を構成する微生物のうち特定微生物群を優占化する生物処理助剤が充填された装置で、ケーシングの内部に生物処理助剤が保持された容器14Aが設置されている。容器14Aは内部に汚泥が通流するように少なくとも上下がパンチングメタルを含むメッシュ状の支持板で挟まれている。
Furthermore, the sludge introduced into the sludge conditioning tank 13 is circulated along a circulation path formed between the sludge and the reactor 14 via a pump.
The reactor 14 is a device filled with a biological treatment aid that makes a specific group of microorganisms dominant among the microorganisms constituting activated sludge, and a container 14A holding the biological treatment aid is installed inside the casing. . At least the top and bottom of the container 14A are sandwiched between mesh-like support plates containing punched metal so that sludge can flow inside.

汚泥調質槽13からポンプアップされた汚泥は上方の流入部からリアクター14に流入し、ケーシングの底部に備えた散気装置により散気されつつケーシング内で循環し、その後ケーシング上方の流出部から汚泥調質槽13に返送される。 The sludge pumped up from the sludge conditioning tank 13 flows into the reactor 14 from the upper inflow section, circulates within the casing while being diffused by the aeration device provided at the bottom of the casing, and then flows from the upper outflow section of the casing. The sludge is returned to the sludge conditioning tank 13.

生物処理助剤として、ペレット状に成形した腐植成分やミネラル塊、詳しくは腐植、腐植抽出物、フミン酸、フルボ酸、珪砂、珪石等のうちの一種または複数種が用いられる。このような成分からなる生物処理助剤に汚泥が接触すると通性嫌気性菌である土壌微生物群が優占化され、例えばバチルス属細菌のような土壌微生物群が優占化される。 As the biological treatment aid, one or more of humus, humus extract, humic acid, fulvic acid, silica sand, silica stone, etc., formed into pellets, are used. When sludge comes into contact with a biological treatment aid consisting of such components, soil microorganisms that are facultative anaerobes become dominant, for example, soil microorganisms such as bacteria belonging to the genus Bacillus.

リアクター14を通過することによって生物処理助剤に接触した汚泥が汚泥調質槽13に返送されると、汚泥調質槽13の槽内でも土壌微生物群である特定微生物群が優占化され、当該特定微生物群によって硝化・脱窒等の生物処理が行なわれる。 When the sludge that has come into contact with the biological treatment aid by passing through the reactor 14 is returned to the sludge conditioning tank 13, a specific microorganism group that is a soil microorganism group becomes dominant within the sludge conditioning tank 13. Biological treatments such as nitrification and denitrification are performed by the specific microorganism group.

即ち、リアクター14及び汚泥調質槽13では、上述した異化反応、同化反応、内生呼吸が同時に進行するばかりでなく、生合成物が生物処理助剤の存在下で重縮合反応し腐植に変えられる腐植化反応が生起され、易分解性の腐植は異化反応によりガス化され、生成された腐植は同化反応及び自己酸化反応によりガス化し、効果的に減容化される。 That is, in the reactor 14 and the sludge conditioning tank 13, not only the above-mentioned catabolic reactions, anabolic reactions, and endogenous respiration proceed simultaneously, but also biosynthetic products undergo a polycondensation reaction in the presence of biological treatment aids and are converted into humus. Easily degradable humus is gasified by a catabolic reaction, and the generated humus is gasified by an assimilation reaction and an autooxidation reaction, thereby effectively reducing its volume.

汚泥調質槽13を含めてこの循環路を循環する汚泥には生物処理槽11に供給される有機性排水のような高BODを有する環境下には無く、また散気機構からの散気によって自己酸化反応が促進される過酷な環境となる。 The sludge circulating in this circulation path, including the sludge conditioning tank 13, is not in an environment with high BOD like the organic wastewater supplied to the biological treatment tank 11, and due to the aeration from the aeration mechanism. This creates a harsh environment that promotes auto-oxidation reactions.

バチルス属細菌などの有芽胞菌は芽胞を形成して耐久性を発揮するが、他の微生物は淘汰されるようになる。その結果、汚泥調質槽に導かれた汚泥は効果的に特定微生物群に優占化され、汚泥全体として効果的に減容化される。 Spore-forming bacteria such as Bacillus bacteria form spores and exhibit durability, but other microorganisms are eliminated. As a result, the sludge led to the sludge conditioning tank is effectively dominated by a specific group of microorganisms, and the volume of the sludge as a whole is effectively reduced.

また、そのようにして優占化された特定微生物群が汚泥調質槽13から専ら生物処理槽11に供給されるので、生物処理槽11に導かれる有機性排水に含まれる有機物に対する分解効率が向上するとともに余剰汚泥の発生量自体も少なくなる。なお、固液分離槽12で固液分離された汚泥は濃度の高い状態で脱水機構16に導かれるので脱水効率も、固液分離された汚泥を汚泥調質槽に導入して散気した後に脱水機構に導入する従来の構成のように低下することも無い。この様なリアクター14が導入された設備をASB(Activation of Soil Bacteria)導入設備という。 In addition, since the specific microorganism group that has become dominant in this way is exclusively supplied from the sludge conditioning tank 13 to the biological treatment tank 11, the decomposition efficiency for organic matter contained in the organic wastewater led to the biological treatment tank 11 is improved. Along with this improvement, the amount of surplus sludge generated also decreases. In addition, since the sludge separated into solid and liquid in the solid-liquid separation tank 12 is led to the dewatering mechanism 16 in a highly concentrated state, the dewatering efficiency also increases after the sludge separated into solid and liquid is introduced into the sludge conditioning tank and aerated. There is no reduction unlike in the conventional structure introduced into the dewatering mechanism. Equipment in which such a reactor 14 is introduced is called ASB (Activation of Soil Bacteria) introduction equipment.

即ち、水処理設備10は、汚泥調質槽13に導入した汚泥を、リアクター14を介して循環させる汚泥循環路R1,R2と、汚泥調質槽13で調質された汚泥を専ら生物処理槽11に供給する汚泥供給路R3と、を備えている。 That is, the water treatment equipment 10 includes sludge circulation paths R1 and R2 that circulate the sludge introduced into the sludge conditioning tank 13 via the reactor 14, and a biological treatment tank that exclusively uses the sludge conditioned in the sludge conditioning tank 13. 11.

図2に示すように、生物処理槽11に投入される有機性排水の単位時間当たりの投入量をQ、固液分離装置12から取り出される単位時間当たりの被処理水の水量をQとする場合に、固液分離槽12から脱水機構16に導かれる汚泥量Qoが0.3Qに設定され、固液分離槽12から汚泥調質槽13に導かれる汚泥量Qqと固液分離槽12から生物処理槽11に返送される汚泥量Qrの総量(Qq+Qr)が3.0Qから5.3Qの範囲に設定され、固液分離槽12から汚泥調質槽13に導かれる汚泥量Qqが0.09Qから0.3Qに設定されていることが好ましい。 As shown in FIG. 2, when the amount of organic wastewater input per unit time into the biological treatment tank 11 is Q, and the amount of water to be treated per unit time taken out from the solid-liquid separator 12 is Q. , the sludge amount Qo led from the solid-liquid separation tank 12 to the dewatering mechanism 16 is set to 0.3Q, and the sludge amount Qq led from the solid-liquid separation tank 12 to the sludge conditioning tank 13 and the biological The total amount (Qq+Qr) of the sludge amount Qr returned to the treatment tank 11 is set in the range of 3.0Q to 5.3Q, and the sludge amount Qq guided from the solid-liquid separation tank 12 to the sludge conditioning tank 13 is 0.09Q. It is preferable to set it to 0.3Q.

汚泥量Qqを0.09Qから0.3Qの範囲に設定することにより汚泥量Qo及びQqのMLSS濃度を、汚泥の減容及び馴致に最適な濃度15,000mg/L~20,000mg/Lに維持することができる。 By setting the sludge volume Qq in the range of 0.09Q to 0.3Q, the MLSS concentration of the sludge volume Qo and Qq is set to the optimal concentration for sludge volume reduction and acclimatization of 15,000 mg/L to 20,000 mg/L. can be maintained.

換言すると、固液分離槽12から脱水機構16に導かれる汚泥量Qoに対する固液分離槽12から汚泥調質槽13に導かれる汚泥量Qq及び固液分離槽12から生物処理槽11へ返送される汚泥量Qrの総量(Qq+Qr)の比(Qq+Qr)/Qoが10から18の範囲に設定され、汚泥量Qoに対する汚泥量Qqの比Qq/Qoが0.3から1の範囲に設定されていることが好ましく、脱水すべき汚泥量を低減しながらも汚泥調質槽で効率的に特定微生物群が馴養できるようになる。なお、この場合、固液分離槽12から生物処理槽11に返送される汚泥量Qrは、脱窒素効率などの観点で約3Qから5Qの間で、上述の条件に整合する範囲に設定される。 In other words, the amount of sludge Qq led from the solid-liquid separation tank 12 to the sludge conditioning tank 13 and the amount of sludge returned from the solid-liquid separation tank 12 to the biological treatment tank 11 relative to the amount Qo of sludge led from the solid-liquid separation tank 12 to the dewatering mechanism 16. The ratio (Qq+Qr)/Qo of the total amount (Qq+Qr) of the sludge amount Qr is set in the range of 10 to 18, and the ratio Qq/Qo of the sludge amount Qq to the sludge amount Qo is set in the range of 0.3 to 1. It is preferable that the specific microorganism group can be acclimated efficiently in the sludge conditioning tank while reducing the amount of sludge to be dewatered. In this case, the amount Qr of sludge returned from the solid-liquid separation tank 12 to the biological treatment tank 11 is set within a range of approximately 3Q to 5Q, consistent with the above conditions, from the viewpoint of denitrification efficiency, etc. .

また、汚泥調質槽13の容量は、固液分離槽12から汚泥調質槽13に導かれる1日当たりの汚泥量Qqの3倍以上に設定され、少なくとも3日は汚泥調質槽で調質されるように構成されている。 In addition, the capacity of the sludge conditioning tank 13 is set to be more than three times the daily amount of sludge Qq introduced from the solid-liquid separation tank 12 to the sludge conditioning tank 13, and the sludge conditioning tank 13 is used for at least three days of sludge conditioning. is configured to be

汚泥調質槽の容量を固液分離槽12から汚泥調質槽13に導かれる1日当たりの汚泥量Qqの3倍以上に設定することにより、特定微生物群の十分な馴養期間を確保できる。 By setting the capacity of the sludge conditioning tank to three times or more the daily amount of sludge Qq introduced from the solid-liquid separation tank 12 to the sludge conditioning tank 13, a sufficient acclimatization period for the specific microorganism group can be ensured.

さらに、散気機構から汚泥調質槽13への散気量は汚泥量1m当たり1~2m/hの範囲に設定されていることが好ましく、この数値の範囲に散気量が設定されることにより、汚泥調質槽13の内部で汚泥の流動性が確保でき、汚泥の腐敗を招くようなことが無い。 Further, it is preferable that the amount of air diffused from the aeration mechanism to the sludge conditioning tank 13 is set in the range of 1 to 2 m 3 /h per 1 m 3 of sludge, and the amount of air diffused is set within this numerical range. By doing so, the fluidity of the sludge can be ensured inside the sludge conditioning tank 13, and the sludge will not deteriorate.

さらにまた、汚泥調質槽13の溶存酸素濃度DOは0.5~3mg/Lに調整されていることが好ましい。汚泥調質槽13の溶存酸素濃度DOが0.5mg/Lより低い場合には、汚泥の自己分解による高い減容化効果が得られず、また特定微生物群が芽胞を形成するような厳しい環境に維持することもできない。また、溶存酸素濃度DOが3mg/Lより高い場合には、減容化効果及び芽胞形成効果が損なわれるようなことはないが散気のために供されるエネルギーが無駄になる。 Furthermore, it is preferable that the dissolved oxygen concentration DO in the sludge conditioning tank 13 is adjusted to 0.5 to 3 mg/L. If the dissolved oxygen concentration DO in the sludge conditioning tank 13 is lower than 0.5 mg/L, a high volume reduction effect due to self-decomposition of sludge cannot be obtained, and a harsh environment where specific microorganism groups form spores may occur. cannot be maintained. Moreover, when the dissolved oxygen concentration DO is higher than 3 mg/L, the volume reduction effect and the spore formation effect are not impaired, but the energy provided for aeration is wasted.

図3に示すように、汚泥調質槽13にリアクター14を浸漬配置し、汚泥循環路が汚泥調質槽13の内部に形成され、汚泥をリアクター14に循環させる循環流路で構成されていることが好ましい。汚泥調質槽13にリアクター14を浸漬配置することにより、装置をコンパクトに構成することができ、例えば散気機構から供給される気泡により生じる上向流を利用して汚泥をリアクター14に循環供給できれば、汚泥を循環させるための別途の動力源も不要になる。 As shown in FIG. 3, a reactor 14 is immersed in a sludge conditioning tank 13, and a sludge circulation path is formed inside the sludge conditioning tank 13, and is composed of a circulation flow path that circulates sludge to the reactor 14. It is preferable. By immersing the reactor 14 in the sludge conditioning tank 13, the device can be configured compactly. For example, sludge can be circulated and supplied to the reactor 14 by using the upward flow generated by air bubbles supplied from the aeration mechanism. If possible, a separate power source for circulating the sludge would also be unnecessary.

以上説明したように、本発明による水処理方法は、有機性排水を微生物によって生物処理する生物処理工程と、生物処理工程で処理された有機性排水を固液分離する固液分離工程と、固液分離工程で固液分離された汚泥を脱水処理する脱水工程とを備えている水処理方法であり、詳しくは、固液分離工程で固液分離された汚泥の一部を散気する汚泥調質工程と、汚泥調質工程に導入された汚泥を前記微生物のうち特定微生物群を優占化する生物処理助剤に接触させて汚泥中の特定微生物群を優占化する優占化工程と、優占化工程で優占化処理され、汚泥調質工程で調質された汚泥を専ら生物処理工程に供給する優占化汚泥供給工程と、を含む。 As explained above, the water treatment method according to the present invention includes a biological treatment process in which organic wastewater is biologically treated using microorganisms, a solid-liquid separation process in which the organic wastewater treated in the biological treatment process is separated into solid and liquid, and It is a water treatment method that includes a dehydration process in which sludge separated from solid and liquid in the liquid separation process is dehydrated. Specifically, it is a water treatment method that includes a sludge conditioning process in which a part of the sludge separated from solid and liquid in the solid-liquid separation process is aerated. a predominance step in which the sludge introduced into the sludge conditioning step is brought into contact with a biological treatment aid that predominates a specific group of microorganisms among the microorganisms, thereby making a specific group of microorganisms in the sludge predominant; , and a dominant sludge supply step in which the sludge that has been subjected to the dominant treatment in the dominant treatment step and has been tempered in the sludge refining step is exclusively supplied to the biological treatment step.

高度処理設備は固液分離槽11で固液分離された液体成分を活性炭等により高度処理する設備で、消毒設備では高度処理後の有機性排水を外部に放流する前の最終的な処理として消毒が行なわれる。 The advanced treatment equipment is equipment that performs advanced treatment of liquid components separated into solid and liquid in the solid-liquid separation tank 11 using activated carbon, etc., and the disinfection equipment disinfects the organic wastewater after advanced treatment as a final treatment before discharging it outside. will be carried out.

上述した実施形態は本発明の一態様であり、該記載により本発明の技術的範囲が限定されるものではなく、大きさや素材の選択など各部の具体的構成は本発明の作用効果が奏される範囲で適宜変更設計可能であることはいうまでもない。 The embodiment described above is one aspect of the present invention, and the technical scope of the present invention is not limited by the description, and the specific configuration of each part, such as size and selection of materials, does not affect the effects of the present invention. Needless to say, the design can be changed as appropriate within the range.

10:水処理設備
11:生物処理槽
11A:脱窒素槽
11B:硝化槽
12:固液分離槽
13:汚泥調質槽
14:リアクター
15:汚泥貯留槽
16:脱水機構

10: Water treatment equipment 11: Biological treatment tank 11A: Denitrification tank 11B: Nitrification tank 12: Solid-liquid separation tank 13: Sludge conditioning tank 14: Reactor 15: Sludge storage tank 16: Dewatering mechanism

Claims (8)

有機性排水を微生物によって生物処理する生物処理槽と、前記生物処理槽で処理された有機性排水を固液分離する固液分離槽と、前記固液分離槽で固液分離された汚泥を脱水処理する脱水機構とを備えている水処理設備であって、
散気機構を備え、前記固液分離槽で固液分離された汚泥の一部を導入して調質する汚泥調質槽と、
前記微生物のうち特定微生物群を優占化する生物処理助剤が充填されたリアクターと、
前記汚泥調質槽に導入した汚泥を、前記リアクターとの間で循環させる汚泥循環路と、
前記汚泥調質槽で調質された汚泥の全てを前記生物処理槽に供給する汚泥供給路と、
を備えている水処理設備。
A biological treatment tank that biologically treats organic wastewater using microorganisms, a solid-liquid separation tank that separates solid-liquid from the organic wastewater treated in the biological treatment tank, and dewatering of the sludge separated into solid-liquid in the solid-liquid separation tank. A water treatment facility comprising a dehydration mechanism for processing,
a sludge conditioning tank that is equipped with an aeration mechanism and that introduces and refines a portion of the sludge that has been solid-liquid separated in the solid-liquid separation tank;
A reactor filled with a biological treatment aid that makes a specific group of microorganisms dominant among the microorganisms;
a sludge circulation path for circulating sludge introduced into the sludge conditioning tank between the reactor and the sludge conditioning tank;
a sludge supply path that supplies all of the sludge tempered in the sludge conditioning tank to the biological treatment tank;
Water treatment equipment equipped with
前記汚泥調質槽に前記リアクターが浸漬配置され、前記汚泥循環路は前記汚泥調質槽の内部で汚泥を前記リアクターに循環させる循環流路で構成されている請求項1記載の水処理設備。 2. The water treatment facility according to claim 1, wherein the reactor is immersed in the sludge conditioning tank, and the sludge circulation path is configured as a circulation flow path that circulates sludge to the reactor inside the sludge conditioning tank. 前記固液分離槽から前記脱水機構に導かれる汚泥量Qoに対する前記固液分離槽から前記汚泥調質槽に導かれる汚泥量Qq及び前記固液分離槽から前記生物処理槽へ返送される汚泥量Qrの総量(Qq+Qr)の比(Qq+Qr)/Qoが10から18の範囲に設定され、汚泥量Qoに対する汚泥量Qqの比Qq/Qoが0.3から1の範囲に設定されている請求項1または2記載の水処理設備。 The amount Qq of sludge led from the solid-liquid separation tank to the sludge conditioning tank relative to the amount Qo of sludge led from the solid-liquid separation tank to the dewatering mechanism, and the amount of sludge returned from the solid-liquid separation tank to the biological treatment tank. A claim in which the ratio (Qq+Qr)/Qo of the total amount of Qr (Qq+Qr) is set in the range of 10 to 18, and the ratio Qq/Qo of the sludge amount Qq to the sludge amount Qo is set in the range of 0.3 to 1. Water treatment equipment according to 1 or 2. 前記汚泥調質槽の容量は、前記固液分離槽から前記汚泥調質槽に導かれる汚泥量Qqの3倍以上に設定され、少なくとも3日は前記汚泥調質槽で調質されるように構成されている請求項1から3の何れかに記載の水処理設備。 The capacity of the sludge conditioning tank is set to be at least 3 times the amount Qq of sludge introduced from the solid-liquid separation tank to the sludge conditioning tank, and the sludge conditioning tank is configured to condition the sludge for at least 3 days. The water treatment equipment according to any one of claims 1 to 3, comprising: 前記散気機構から前記汚泥調質槽への散気量は汚泥量1m当たり1~2m/hの範囲に設定されている請求項1から4の何れかに記載の水処理設備。 The water treatment facility according to any one of claims 1 to 4, wherein the amount of air diffused from the aeration mechanism to the sludge conditioning tank is set in the range of 1 to 2 m 3 /h per 1 m 3 of sludge. 前記汚泥調質槽の溶存酸素濃度DOは0.5~3mg/Lに調整されている請求項1から4の何れかに記載の水処理設備。 The water treatment facility according to any one of claims 1 to 4, wherein the dissolved oxygen concentration DO in the sludge conditioning tank is adjusted to 0.5 to 3 mg/L. 前記生物処理助剤が腐植物質及び/またはミネラルであり、前記特定微生物群がバチルス属細菌を含む土壌微生物群である請求項1から6の何れかに記載の水処理設備。 7. The water treatment facility according to claim 1, wherein the biological treatment aid is a humic substance and/ or a mineral , and the specific microorganism group is a soil microorganism group containing Bacillus bacteria. 有機性排水を微生物によって生物処理する生物処理工程と、前記生物処理工程で処理された有機性排水を固液分離する固液分離工程と、前記固液分離工程で固液分離された汚泥を脱水処理する脱水工程とを備えている水処理方法であって、
前記固液分離工程で固液分離された汚泥の一部を散気する汚泥調質工程と、
前記汚泥調質工程に導入された汚泥を前記微生物のうち特定微生物群を優占化する生物処理助剤との間で循環させることで生物処理助剤に接触させて汚泥中の特定微生物群を優占化する優占化工程と、
前記優占化工程で優占化処理され、前記汚泥調質工程で調質された汚泥の全てを前記生物処理工程に供給する優占化汚泥供給工程と、
を含む水処理方法。
A biological treatment process in which organic wastewater is biologically treated with microorganisms, a solid-liquid separation process in which the organic wastewater treated in the biological treatment process is separated into solid-liquid, and sludge separated from solid-liquid in the solid-liquid separation process is dehydrated. A water treatment method comprising a dehydration step,
a sludge conditioning step of aerating a part of the sludge separated into solid and liquid in the solid-liquid separation step;
By circulating the sludge introduced into the sludge conditioning process with a biological treatment aid that makes a specific group of microorganisms predominant among the microorganisms, it is brought into contact with the biological treatment aid and the specific group of microorganisms in the sludge is isolated. a dominant process of becoming dominant;
a dominant sludge supply step of supplying all of the sludge that has been dominant treated in the dominant step and refined in the sludge refining step to the biological treatment step;
water treatment methods including;
JP2019237036A 2019-12-26 2019-12-26 Water treatment equipment and water treatment method Active JP7345389B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019237036A JP7345389B2 (en) 2019-12-26 2019-12-26 Water treatment equipment and water treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019237036A JP7345389B2 (en) 2019-12-26 2019-12-26 Water treatment equipment and water treatment method

Publications (2)

Publication Number Publication Date
JP2021104489A JP2021104489A (en) 2021-07-26
JP7345389B2 true JP7345389B2 (en) 2023-09-15

Family

ID=76919575

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019237036A Active JP7345389B2 (en) 2019-12-26 2019-12-26 Water treatment equipment and water treatment method

Country Status (1)

Country Link
JP (1) JP7345389B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005161233A (en) 2003-12-04 2005-06-23 Enzyme Kk Sludge weight reduction method by using humus and system therefor
WO2005100267A1 (en) 2004-03-30 2005-10-27 Masaki Envec Co. Ltd. Drainage treatment apparatus using humic matters
JP2014208322A (en) 2013-03-28 2014-11-06 クボタ環境サ−ビス株式会社 Operation method and operation control device of sewage treatment plant, and sewage treatment plant
JP2015160188A (en) 2014-02-28 2015-09-07 クボタ環境サ−ビス株式会社 Water treatment installation and method of biologically treating organic waste water

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6012194A (en) * 1983-07-01 1985-01-22 Mamoru Uchimizu Treatment of waste water containing organic substance by biological reaction

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005161233A (en) 2003-12-04 2005-06-23 Enzyme Kk Sludge weight reduction method by using humus and system therefor
WO2005100267A1 (en) 2004-03-30 2005-10-27 Masaki Envec Co. Ltd. Drainage treatment apparatus using humic matters
JP2014208322A (en) 2013-03-28 2014-11-06 クボタ環境サ−ビス株式会社 Operation method and operation control device of sewage treatment plant, and sewage treatment plant
JP2015160188A (en) 2014-02-28 2015-09-07 クボタ環境サ−ビス株式会社 Water treatment installation and method of biologically treating organic waste water

Also Published As

Publication number Publication date
JP2021104489A (en) 2021-07-26

Similar Documents

Publication Publication Date Title
US6692642B2 (en) Organic slurry treatment process
Cao et al. Slaughterhouse wastewater treatment by combined anaerobic baffled reactor and UV/H2O2 processes
US5514277A (en) Treatment of wastewater and sludges
US5853589A (en) Advanced biological phosphorus removal using a series of sequencing batch reactors
KR100986036B1 (en) Method for treating livestock excretions
KR100670081B1 (en) Apparatus and method for treatment of food waste
JP4892917B2 (en) Biological treatment method and apparatus for organic wastewater
KR100953058B1 (en) Natural high-treatment system
CN103922538A (en) Livestock and poultry breeding wastewater treatment method
Silva et al. Effects of intermittent aeration periods on a structured-bed reactor continuously fed on the post-treatment of sewage anaerobic effluent
de Souza et al. Optimization of ozone application in post-treatment of cattle wastewater from organic farms
KR102171918B1 (en) Recycling and water quality purification treatment system of livestock manure
JP4417087B2 (en) Sludge reduction method and apparatus using humus
US6764600B2 (en) Lagoon for hog waste and the method of treatment thereof
JP7345389B2 (en) Water treatment equipment and water treatment method
KR100714825B1 (en) Method for treating sewage and high organic loading wastewater by anaerobic/oxic process with membrane and biological aerated filter
CN211546257U (en) Highly integrated improved A/A/O-MBR integrated sewage treatment device
CA2425147A1 (en) Apparatus and method for wastewater treatment with enhanced solids reduction (esr)
JP6393491B2 (en) Water treatment equipment and biological treatment method of organic waste water
KR20160105364A (en) High concentration wastewater treatment apparatus using a microorganism amplification device
JP2022032306A (en) Water treatment installation and water treatment method
KR20010029666A (en) Removal Methods of Nitrogen and phosphorus in wastewater using external carbon source
JP2022032305A (en) Water treatment installation and water treatment method
Duc Application of hybrid modified UASB-MBBR technology for wastewater treatment of Sao Thai Duong Pharmaceuticals and Cosmetics Factory
JP6909147B2 (en) Organic wastewater treatment equipment, organic wastewater treatment method and renovation method of organic wastewater treatment equipment

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200106

A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20220623

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230317

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230404

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230526

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230829

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230905

R150 Certificate of patent or registration of utility model

Ref document number: 7345389

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150