JP7342787B2 - Inductors and magnetic cores for inductors - Google Patents

Inductors and magnetic cores for inductors Download PDF

Info

Publication number
JP7342787B2
JP7342787B2 JP2020091574A JP2020091574A JP7342787B2 JP 7342787 B2 JP7342787 B2 JP 7342787B2 JP 2020091574 A JP2020091574 A JP 2020091574A JP 2020091574 A JP2020091574 A JP 2020091574A JP 7342787 B2 JP7342787 B2 JP 7342787B2
Authority
JP
Japan
Prior art keywords
particle ratio
magnetic powder
magnetic
element body
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020091574A
Other languages
Japanese (ja)
Other versions
JP2021190472A (en
Inventor
佳奈 田中
祐一 土屋
浩一 井田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP2020091574A priority Critical patent/JP7342787B2/en
Publication of JP2021190472A publication Critical patent/JP2021190472A/en
Application granted granted Critical
Publication of JP7342787B2 publication Critical patent/JP7342787B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Soft Magnetic Materials (AREA)
  • Coils Or Transformers For Communication (AREA)

Description

本発明は、インダクタ及びインダクタ用磁芯に関する。 The present invention relates to an inductor and a magnetic core for an inductor.

磁性粉と樹脂を含有する素体内にコイルを埋設したインダクタが知られている。その中には、8Wt%以上18wt%以下のCrを含有する金属磁性粉を用いて素体が形成されたインダクタが提案されている(例えば、特許文献1参照)。 2. Description of the Related Art Inductors in which a coil is embedded within an element body containing magnetic powder and resin are known. Among them, an inductor in which an element body is formed using a metal magnetic powder containing Cr in an amount of 8 wt% or more and 18 wt% or less has been proposed (for example, see Patent Document 1).

特開2007-35826号公報JP2007-35826A

特許文献1に記載の従来のインダクタでは、金属磁性粉中のCrの量が増加するにつれて、絶縁性は向上するが、インダクタンス値が低下する傾向があった。 In the conventional inductor described in Patent Document 1, as the amount of Cr in the metal magnetic powder increases, the insulation property improves, but the inductance value tends to decrease.

本発明は、インダクタンス値及び絶縁性ともに優れた特性を有するインダクタ及びインダクタ用磁芯を提供することを目的とする。 An object of the present invention is to provide an inductor and a magnetic core for an inductor that have excellent characteristics in both inductance value and insulation properties.

本発明の1つの態様は、
結晶質の金属磁性粉を含有する磁性粉と、樹脂とを有する磁性部と、磁性部内に埋設されたコイルを有する素体と、素体に配置された外部電極を備えるインダクタであって、
素体の断面において、
磁性粉はヘイウッド径が1μm以下の小粒子を含み、
小粒子の合計面積をAsとし、磁性粉の総面積をAtとすると、
小粒子比率As/Atは、
0.002 ≦ As/At ≦ 0.04
の関係を有し、
磁性粉のうち円形度係数が0.9を超える粒子の個数をNrとし、磁性粉の総個数をNtとすると、
球形粒子比率Nr/Ntは、
0.1 ≦ Nr/Nt ≦ 0.3
の関係を有し、
小粒子比率As/At×球形粒子比率Nr/Nt×10000で定義される球形小粒子比率Rsは、
3 ≦ Rs ≦ 33
の関係を有する。
One aspect of the present invention is
An inductor comprising a magnetic part having magnetic powder containing crystalline metal magnetic powder and a resin, an element body having a coil embedded in the magnetic part, and an external electrode disposed in the element body,
In the cross section of the element body,
The magnetic powder contains small particles with a Heywood diameter of 1 μm or less,
If the total area of small particles is As and the total area of magnetic powder is At, then
The small particle ratio As/At is
0.002≦As/At≦0.04
have the relationship of
If the number of particles with a circularity coefficient exceeding 0.9 among the magnetic powders is Nr, and the total number of magnetic particles is Nt, then
The spherical particle ratio Nr/Nt is
0.1 ≦ Nr/Nt ≦ 0.3
have the relationship of
The spherical small particle ratio Rs defined by the small particle ratio As/At x the spherical particle ratio Nr/Nt x 10000 is:
3 ≦ Rs ≦ 33
have the following relationship.

本発明の別の1つの態様は、
結晶質の金属磁性粉を含有する磁性粉と、樹脂とを有するインダクタ用磁芯であって、
磁芯の断面において、
磁性粉はヘイウッド径が1μm以下の小粒子を含み、
小粒子の合計面積をAsとし、磁性粉の総面積をAtとすると、
小粒子比率As/Atは、
0.002 ≦ As/At ≦ 0.04
の関係を有し、
磁性粉のうち円形度係数が0.9を超える粒子の個数をNrとし、磁性粉の総個数をNtとすると、
球形粒子比率Nr/Ntは、
0.1 ≦ Nr/Nt ≦ 0.3
の関係を有し、
小粒子比率As/At×球形粒子比率Nr/Nt×10000で定義される球形小粒子比率Rsは、
3 ≦ Rs ≦ 33
の関係を有する。
Another aspect of the present invention is
A magnetic core for an inductor comprising magnetic powder containing crystalline metal magnetic powder and resin,
In the cross section of the magnetic core,
The magnetic powder contains small particles with a Heywood diameter of 1 μm or less,
If the total area of small particles is As and the total area of magnetic powder is At, then
The small particle ratio As/At is
0.002≦As/At≦0.04
have the relationship of
If the number of particles with a circularity coefficient exceeding 0.9 among the magnetic powders is Nr, and the total number of magnetic particles is Nt, then
The spherical particle ratio Nr/Nt is
0.1 ≦ Nr/Nt ≦ 0.3
have the relationship of
The spherical small particle ratio Rs defined by the small particle ratio As/At x the spherical particle ratio Nr/Nt x 10000 is:
3 ≦ Rs ≦ 33
have the following relationship.

本発明の態様では、インダクタンス値及び絶縁性ともに優れた特性を有するインダクタ及びインダクタ用磁芯を提供することができる。 Aspects of the present invention can provide an inductor and a magnetic core for an inductor that have excellent characteristics in both inductance value and insulation properties.

本発明の第1の実施形態に係るインダクタを模式的に示す斜視図及び断面図である。1 is a perspective view and a sectional view schematically showing an inductor according to a first embodiment of the present invention. FIG. 本発明の第2の実施形態に係るインダクタを模式的に示す斜視図である。FIG. 3 is a perspective view schematically showing an inductor according to a second embodiment of the present invention. 従来例のインダクタの素体又は磁芯の断面における磁性粉の小粒子及び大粒子の分布状態を模式的に示す図である。FIG. 2 is a diagram schematically showing the distribution state of small particles and large particles of magnetic powder in a cross section of an element body or a magnetic core of a conventional inductor. 本発明の実施形態に係るインダクタの素体又は磁芯の断面における磁性粉の小粒子及び大粒子の分布状態を模式的に示す図である。FIG. 2 is a diagram schematically showing the distribution state of small particles and large particles of magnetic powder in a cross section of an element body or a magnetic core of an inductor according to an embodiment of the present invention. 実施例における磁性粉の粒度分布を示すグラフである。It is a graph showing the particle size distribution of magnetic powder in Examples. 小粒子比率と透磁率と絶縁抵抗の関係を示すグラフである。It is a graph showing the relationship between small particle ratio, magnetic permeability, and insulation resistance. 球形粒子比率と透磁率と絶縁抵抗の関係を示すグラフである。It is a graph showing the relationship between spherical particle ratio, magnetic permeability, and insulation resistance. 球形小粒子比率と透磁率と絶縁抵抗の関係を示すグラフである。It is a graph showing the relationship between the spherical small particle ratio, magnetic permeability, and insulation resistance.

以下、図面を参照しながら、本発明を実施するための実施形態を説明する。以下に説明する実施形態は、本発明の技術思想を具体化するためのものであって、特定的な記載がない限り、本発明を以下のものに限定しない。
各図面中、同一の機能を有する部材には、同一符号を付している場合がある。要点の説明または理解の容易性を考慮して、便宜上実施形態を分けて示す場合があるが、異なる実施形態で示した構成の部分的な置換または組み合わせは可能である。後述の実施形態では前述の実施形態と共通の事柄についての記述を省略し、異なる点についてのみ説明する。特に、同様の構成による同様の作用効果については、実施形態ごとには逐次言及しないものとする。各図面が示す部材の大きさや位置関係等は、説明を明確にするため、誇張して示している場合もある。
Embodiments for carrying out the present invention will be described below with reference to the drawings. The embodiments described below are for embodying the technical idea of the present invention, and unless there is a specific description, the present invention is not limited to the following.
In each drawing, members having the same function may be designated by the same reference numerals. Although embodiments may be shown separately for convenience in order to explain the main points or facilitate understanding, partial substitution or combination of configurations shown in different embodiments is possible. In the embodiments to be described later, descriptions of common matters with the above-described embodiments will be omitted, and only different points will be explained. In particular, similar effects due to similar configurations will not be mentioned for each embodiment. The sizes, positional relationships, etc. of members shown in each drawing may be exaggerated for clarity of explanation.

(第1の実施形態に係るインダクタ)
はじめに、図1を参照しながら、本発明の第1の実施形態に係るインダクタの説明を行う。図1は、本発明の第1の実施形態に係るインダクタを模式的に示す斜視図及び断面図である。更に詳細に述べれば、図1の(a)はインダクタの外形を示す斜視図であり、(b)は、(a)のA-A断面を示す断面図である。図1では、互いに直交する3方向を、x軸、y軸及びz軸で示している。後述する図2も同様である。
(Inductor according to the first embodiment)
First, an inductor according to a first embodiment of the present invention will be explained with reference to FIG. FIG. 1 is a perspective view and a cross-sectional view schematically showing an inductor according to a first embodiment of the present invention. More specifically, FIG. 1(a) is a perspective view showing the outer shape of the inductor, and FIG. 1(b) is a sectional view taken along the line AA in FIG. 1(a). In FIG. 1, three mutually orthogonal directions are shown as an x-axis, a y-axis, and a z-axis. The same applies to FIG. 2, which will be described later.

本実施形態に係るインダクタ1は、外観形状が略直方体形状の素体2、及び素体2に配置された一対の外部電極4を備える。素体2は、コイル8及びコイル8を埋設する磁性部6を備える。また、一対の外部電極4は、素体2の両側に離間して配置されている。 The inductor 1 according to this embodiment includes an element body 2 having a substantially rectangular parallelepiped external appearance, and a pair of external electrodes 4 disposed on the element body 2. The element body 2 includes a coil 8 and a magnetic section 6 in which the coil 8 is embedded. Further, the pair of external electrodes 4 are arranged at a distance from each other on both sides of the element body 2.

<素体>
素体2は、コイル8及び磁性部6により構成される。素体2は、外観形状が略直方体であり、x軸方向が長手方向であり、y軸方向が短手方向である。素体2は、底面2aと、底面2aに対向する上面2bと、短手方向(y軸方向)に延在する側面2c、2eと、長手方向(x軸方向)に延在する側面2d、2fとを有する。素体2の寸法として、長手方向(x軸方向)の長さが0.5mm以上3.4mm以下、好ましくは1mm以上3mm以下であり、短手方向(y軸方向)の長さが0.5mm以上2.7mm以下、好ましくは0.5mm以上2.5mm以下であり、高さ方向(z軸方向)の長さが0.5mm以上2.0mm以下、好ましくは0.5mm以上1.5mm以下を例示することができるが、これに限られるものではない。
<Body>
The element body 2 is composed of a coil 8 and a magnetic section 6. The element body 2 has a substantially rectangular parallelepiped appearance, with the x-axis direction being the longitudinal direction and the y-axis direction being the lateral direction. The element body 2 includes a bottom surface 2a, an upper surface 2b opposite to the bottom surface 2a, side surfaces 2c and 2e extending in the transverse direction (y-axis direction), and a side surface 2d extending in the longitudinal direction (x-axis direction). 2f. The dimensions of the element body 2 are such that the length in the longitudinal direction (x-axis direction) is 0.5 mm or more and 3.4 mm or less, preferably 1 mm or more and 3 mm or less, and the length in the transverse direction (y-axis direction) is 0.5 mm or more and 3.4 mm or less. The length is 5 mm or more and 2.7 mm or less, preferably 0.5 mm or more and 2.5 mm or less, and the length in the height direction (z-axis direction) is 0.5 mm or more and 2.0 mm or less, preferably 0.5 mm or more and 1.5 mm. Examples include, but are not limited to, the following.

<コイル>
コイル8は、素体2の上面から見て長手方向(x軸方向)に貫通する金属板で形成されている。本実施形態では、コイルの導体が重なることがないので、浮遊容量を低減することできる。コイル8を構成する金属板は、例えば銅等の導電性金属材料で形成される。コイルを構成する金属板は、厚みが例えば0.05mm以上0.2mm以下、好ましくは0.1mm以上0.15mm以下であり、短手方向の長さが例えば0.3mm以上1.0mm以下、好ましくは0.45mm以上0.75mm以下を例示することができるが、これに限られるものではない。
<Coil>
The coil 8 is formed of a metal plate that extends through the element body 2 in the longitudinal direction (x-axis direction) when viewed from the top surface. In this embodiment, since the conductors of the coils do not overlap, stray capacitance can be reduced. The metal plate constituting the coil 8 is made of a conductive metal material such as copper. The metal plate constituting the coil has a thickness of, for example, 0.05 mm or more and 0.2 mm or less, preferably 0.1 mm or more and 0.15 mm or less, and a widthwise length of 0.3 mm or more and 1.0 mm or less, for example. Preferably, it is 0.45 mm or more and 0.75 mm or less, but is not limited to this.

<磁性部>
磁性部6は、磁性粉及び樹脂を含有する。磁性部6の磁性粉は、結晶性の金属磁性粉、特に、結晶質のFe-Si-Cr金属磁性粉を用いるのが好ましい。Fe-Si-Cr金属磁性粉は、Siが1~5wt%、好ましくは3~4wt%、更に好ましくは3~3.5wt%含有し、Crが1~7wt%、好ましくは4~5wt%、更に好ましくは4.5~5wt%含有し、残部がFe及び不可避不純物からなる。このような組成により、金属磁性粉の透磁率を高くすることができる。
<Magnetic part>
The magnetic part 6 contains magnetic powder and resin. As the magnetic powder of the magnetic part 6, it is preferable to use crystalline metal magnetic powder, particularly crystalline Fe--Si--Cr metal magnetic powder. The Fe-Si-Cr metal magnetic powder contains 1 to 5 wt% of Si, preferably 3 to 4 wt%, more preferably 3 to 3.5 wt%, and 1 to 7 wt% of Cr, preferably 4 to 5 wt%. More preferably, the content is 4.5 to 5 wt%, with the remainder consisting of Fe and unavoidable impurities. With such a composition, the magnetic permeability of the metal magnetic powder can be increased.

また、この金属磁性粉は、粒径が1μm以下(主に粒径が0.5~1μm)の小粒子と、粒径がそれより大きい大粒子より構成される。大粒子及び小粒子の混合粒子の粒度分布における体積基準による累積50%値であるD50が、1~5μm、好ましくは2~4μm、更に好ましくは3~4μmである。また、この大粒子及び小粒子の混合粒子の粒度分布において、小粒子を構成する粒径0.5~1μmの体積頻度は、0.001~0.04であることが好ましい。 Further, this metal magnetic powder is composed of small particles with a particle size of 1 μm or less (mainly 0.5 to 1 μm) and large particles with a larger particle size. D50, which is the volume-based cumulative 50% value in the particle size distribution of mixed particles of large particles and small particles, is 1 to 5 μm, preferably 2 to 4 μm, and more preferably 3 to 4 μm. In addition, in the particle size distribution of the mixed particles of large particles and small particles, the volume frequency of particles having a diameter of 0.5 to 1 μm constituting the small particles is preferably 0.001 to 0.04.

更に、この金属磁性粉の表面のCr量が0.5~2.0at%、好ましくは0.5~1.5at%、更に好ましくは1.0~1.5at%である。金属磁性粉の表面に上記のような量のCr有することより、後述の金属磁性粉表面の酸化被膜のFeの酸化物の量とCrの酸化物の量のバランスを保つことができ、金属磁性粉の絶縁抵抗を高めることができる。 Furthermore, the amount of Cr on the surface of the metal magnetic powder is 0.5 to 2.0 at%, preferably 0.5 to 1.5 at%, and more preferably 1.0 to 1.5 at%. By having the above amount of Cr on the surface of the metal magnetic powder, it is possible to maintain a balance between the amount of Fe oxide and the amount of Cr oxide in the oxide film on the surface of the metal magnetic powder, which will be described later. It can increase the insulation resistance of powder.

また、金属磁性粉表面の酸化被膜が10~50nm、好ましくは10~25nm、更に好ましくは10~15nmである。酸化膜が、金属磁性粉のFeに由来するFeの酸化膜であることが好ましい。特に、金属磁性粉の表面に、Feの酸化物及びCrの酸化物を含む酸化膜が形成されていることが更に好ましい。これにより、金属磁性粉の絶縁抵抗を高めることができる。 Further, the oxide film on the surface of the metal magnetic powder is 10 to 50 nm, preferably 10 to 25 nm, and more preferably 10 to 15 nm. It is preferable that the oxide film is an oxide film of Fe derived from Fe in the metal magnetic powder. In particular, it is more preferable that an oxide film containing an oxide of Fe and an oxide of Cr be formed on the surface of the metal magnetic powder. Thereby, the insulation resistance of the metal magnetic powder can be increased.

以上のように、金属磁性粉の平均粒子径(D50)が1~5μmであり、金属磁性粉の断面の外周に10~50nmの酸化被膜を有することが好ましい。これにより、素体2の高周波領域の透磁率を高くできるので、インダクタ1の高周波領域のインダクタンス値を大きくできる。 As mentioned above, it is preferable that the metal magnetic powder has an average particle diameter (D50) of 1 to 5 μm and has an oxide film of 10 to 50 nm around the outer periphery of the cross section of the metal magnetic powder. Thereby, the magnetic permeability of the element body 2 in the high frequency region can be increased, so that the inductance value of the inductor 1 in the high frequency region can be increased.

磁性部6の樹脂として、熱硬化性樹脂を用いるのが好ましい。熱硬化性樹脂としては、エポキシ樹脂、フェノール樹脂、ポリイミド樹脂、ビスマレイミド樹脂、ユリア(尿素)樹脂、メラミン樹脂、ポリウレタン樹脂、シアネートエステル樹脂、シリコーン樹脂、オキセタン樹脂(オキセタン化合物)、(メタ)アクリレート樹脂、不飽和ポリエステル樹脂、ジアリルフタレート樹脂、ベンゾオキサジン樹脂を例示することができる。これらを、2種以上併用して用いることもできる。 As the resin for the magnetic part 6, it is preferable to use a thermosetting resin. Thermosetting resins include epoxy resins, phenolic resins, polyimide resins, bismaleimide resins, urea resins, melamine resins, polyurethane resins, cyanate ester resins, silicone resins, oxetane resins (oxetane compounds), and (meth)acrylates. Examples include resin, unsaturated polyester resin, diallyl phthalate resin, and benzoxazine resin. Two or more of these can also be used in combination.

また、磁性部6の樹脂として、ポリエチレン樹脂、ポリアミド樹脂、液晶ポリマー等の熱可塑性樹脂を用いることもできる。磁性部6における樹脂の含有量は、0.5wt%~5.0wt%が好ましい。 Further, as the resin for the magnetic part 6, thermoplastic resin such as polyethylene resin, polyamide resin, liquid crystal polymer, etc. can also be used. The resin content in the magnetic part 6 is preferably 0.5 wt% to 5.0 wt%.

<外部電極>
コイル8を形成する金属板は、その長手方向の両側で素体2の外部にまで延びており、外部電極4を形成している。素体2の外に露出した外部電極は、素体2に沿って底面に延在するように形成されている。図1の(b)に示すように、一方の外部電極4は、素体2の側面2c及び底面2aに沿って配置され、他方の外部電極4は、素体2の側面2e及び底面2aに沿って配置されている。素体2の底面2aにおいて、2つの外部電極4の端部は、十分な距離を開けて配置されている。
<External electrode>
The metal plate forming the coil 8 extends to the outside of the element body 2 on both sides in the longitudinal direction, and forms the external electrode 4. The external electrode exposed to the outside of the element body 2 is formed to extend along the base body 2 to the bottom surface. As shown in FIG. 1(b), one external electrode 4 is arranged along the side surface 2c and bottom surface 2a of the element body 2, and the other external electrode 4 is arranged along the side surface 2e and bottom surface 2a of the element body 2. located along. On the bottom surface 2a of the element body 2, the ends of the two external electrodes 4 are arranged with a sufficient distance between them.

(第2の実施形態に係るインダクタ)
次に、図2を参照しながら、本発明の第2の実施形態に係るインダクタの説明を行う。図2は、本発明の第2の実施形態に係るインダクタを模式的に示す斜視図である。
第2の実施形態も、外観形状が略直方体の素体2を有するが、コイル8及び外部電極4の構造が第1の実施形態と異なる。
(Inductor according to second embodiment)
Next, an inductor according to a second embodiment of the present invention will be explained with reference to FIG. FIG. 2 is a perspective view schematically showing an inductor according to a second embodiment of the invention.
The second embodiment also has an element body 2 having a substantially rectangular external shape, but the structures of the coil 8 and external electrodes 4 are different from the first embodiment.

本実施形態のコイル8を形成する導線は、導体の表面に絶縁性を有する被覆層と、被覆層の表面に融着層を有する導線であって、互いに対向する一対の幅広面を有し、断面が矩形形状の導線(いわゆる、平角線)である。コイル8は、1本の導線が最内周で繋がった上段12及び下段14に巻回された巻回部10と、巻回部10の最外周から引き出された一対の引き出し部16とを含んでおり、いわゆるα巻きコイルである。一対の引き出し部16は、先端16aの幅広面が磁性部6から露出しており、それぞれ外部電極4と電気的に接続している。 The conducting wire forming the coil 8 of this embodiment is a conducting wire having an insulating coating layer on the surface of the conductor and a fusion layer on the surface of the coating layer, and has a pair of wide surfaces facing each other, It is a conducting wire (so-called flat wire) with a rectangular cross section. The coil 8 includes a winding part 10 in which a single conducting wire is wound around an upper stage 12 and a lower stage 14 connected at the innermost periphery, and a pair of lead-out parts 16 drawn out from the outermost periphery of the winding part 10. This is a so-called α-wound coil. The pair of lead-out portions 16 have wide surfaces at their tips 16a exposed from the magnetic portion 6, and are electrically connected to the external electrodes 4, respectively.

導線を構成する導体は、例えば銅等で形成される。被覆層は、ポリアミドイミド等の絶縁性樹脂で形成される。融着層は、巻回部10を構成する導線同士を固定できる様に、自己融着成分を含む熱可塑性樹脂または熱硬化性樹脂等で形成さる。
巻回部10は、上記の導線をその幅広面が巻軸A1と略平行になるように巻回して形成されている。巻回部10は、巻軸A1が素体2の底面2aと略直交するように素体2内に配置されている。引き出し部16の先端16aは、その一方の幅広面が素体2の短手方向の側面2c、2eに露出するように曲げられている。
The conductor constituting the conductive wire is made of copper or the like, for example. The covering layer is formed of an insulating resin such as polyamideimide. The fusing layer is formed of a thermoplastic resin, a thermosetting resin, or the like containing a self-fusing component so that the conductive wires constituting the winding portion 10 can be fixed to each other.
The winding portion 10 is formed by winding the above-mentioned conducting wire so that its wide surface is substantially parallel to the winding axis A1. The winding portion 10 is arranged within the element body 2 such that the winding axis A1 is substantially perpendicular to the bottom surface 2a of the element body 2. The distal end 16a of the drawer portion 16 is bent so that one wide side thereof is exposed to the lateral sides 2c and 2e of the element body 2 in the lateral direction.

一対の外部電極4は、素体2の表面に形成され、互いに離隔して配置されている。本実施形態では、一方の外部電極4は、素体2の短手方向の側面2cとそれに隣接する4つの面2a、2b、2d、2fの一部とを覆っており、磁性部6から露出した引き出し部16の先端16aの幅広面と電気的に接続されている。また、他方の外部電極4は、素体2の側面2eとそれに隣接する4つの面2a、2b、2d、2fの一部とを覆っており、磁性部6から露出した引き出し部16の先端16aの幅広面と電気的に接続されている。外部電極4は、例えば、金属粒子及び樹脂を含有する導電性樹脂により形成される。金属粒子として、例えば銀が用いられる。樹脂として、例えばエポキシ樹脂が用いられる。また、外部電極4は、金属粒子及び樹脂を含有する導電性樹脂上には、ニッケルから形成される第1層と、第1層上に形成され、スズから形成される第2層とを備えるめっき層が形成されてもよい。素体2の寸法としては、長手方向(x軸方向)の長さが1.0mm以上4.0mm以下であり、短手方向(y軸方向)の長さが0.5mm以上4.0mm以下であり、高さ方向(z軸方向)の長さが0.5mm以上2.0mm以下を例示することができるが、これに限られるものではない。 A pair of external electrodes 4 are formed on the surface of the element body 2 and are spaced apart from each other. In this embodiment, one external electrode 4 covers the side surface 2c of the element body 2 in the transverse direction and a portion of the four adjacent surfaces 2a, 2b, 2d, and 2f, and is exposed from the magnetic part 6. It is electrically connected to the wide surface of the tip 16a of the drawn-out portion 16. Further, the other external electrode 4 covers the side surface 2e of the element body 2 and a portion of the four surfaces 2a, 2b, 2d, and 2f adjacent thereto, and the tip 16a of the lead-out portion 16 exposed from the magnetic portion 6. electrically connected to the wide side of the The external electrode 4 is formed of, for example, a conductive resin containing metal particles and resin. For example, silver is used as the metal particles. For example, epoxy resin is used as the resin. Further, the external electrode 4 includes a first layer made of nickel on the conductive resin containing metal particles and resin, and a second layer formed on the first layer and made of tin. A plating layer may be formed. The dimensions of the element body 2 are such that the length in the longitudinal direction (x-axis direction) is 1.0 mm or more and 4.0 mm or less, and the length in the transverse direction (y-axis direction) is 0.5 mm or more and 4.0 mm or less. For example, the length in the height direction (z-axis direction) is 0.5 mm or more and 2.0 mm or less, but is not limited to this.

磁性部6を形成する金属磁性粉及び樹脂については、上記の第1の実施形態と同様であり、更なる説明は省略する。 The metal magnetic powder and resin that form the magnetic part 6 are the same as those in the first embodiment, and further explanation will be omitted.

(磁性粉の分布状態の測定)
磁性部の磁性粉の分布状態を測定するため、上記の実施形態に係るインダクタ1の素体2を長手方向に切断して、その断面を研磨することにより平滑な断面を得た。そして、走査電子顕微鏡(SEM)を用いて、所定の倍率(例えば、5000倍)でその視野に磁性粉の断面が100個以上入るように3か所撮影して、素体の断面の画像を取得した。具体的には、第1の実施形態に係るインダクタでは、図1に示す様に、素体2の上面から見て金属板が埋設されている位置と対応する位置において、金属板の延在方向に沿って、素体の長手方向に延在する平滑な断面を得、図1の(b)に示す点線で囲まれた領域を撮影することにより素体の断面の画像を取得した。第2の実施形態に係るインダクタでは、図2に示す様に、素体2において、コイルの巻軸を含んで、素体の長手方向に延在する平滑な断面を得、素体の断面のコイルの巻軸領域を撮影することにより素体の断面の画像を取得した。
(Measurement of magnetic powder distribution state)
In order to measure the distribution state of magnetic powder in the magnetic part, the element body 2 of the inductor 1 according to the above embodiment was cut in the longitudinal direction, and the cross section was polished to obtain a smooth cross section. Then, using a scanning electron microscope (SEM), images are taken at three locations at a predetermined magnification (for example, 5000x) so that 100 or more cross-sections of the magnetic powder are included in the field of view, and images of the cross-sections of the element are obtained. Obtained. Specifically, in the inductor according to the first embodiment, as shown in FIG. A smooth cross section extending in the longitudinal direction of the element body was obtained along the lines, and an image of the cross section of the element body was obtained by photographing the area surrounded by the dotted line shown in FIG. 1(b). In the inductor according to the second embodiment, as shown in FIG. 2, the element body 2 has a smooth cross section extending in the longitudinal direction of the element body including the winding axis of the coil. An image of the cross section of the element body was obtained by photographing the winding shaft region of the coil.

そして、既知の画像解析式粒度分布ソフトウエアを用いて、撮影視野内の磁性粉の全粒子のヘイウッド径を測定して、磁性粉の平均粒子径を求めた。次に、画像解析式粒度分布ソフトウエアを用いて、撮影視野内における磁性粉のヘイウッド径が1μm以下の粒子を小粒子とし、その他の粒子(基本的に粒径が1μmより大きい粒子)を大粒子とした。そして、小粒子の合計面積Asを算出し、撮影視野内の全磁性粉の合計面積Atを算出し、撮影視野内の全磁性粉の合計面積に対する小粒子の合計面積の割合である小粒子比率As/Atを算出した。 Then, using known image analysis type particle size distribution software, the Heywood diameter of all particles of the magnetic powder within the photographic field of view was measured to determine the average particle diameter of the magnetic powder. Next, using image analysis type particle size distribution software, particles with a Heywood diameter of 1 μm or less of the magnetic powder within the imaging field are classified as small particles, and other particles (basically particles with a particle size larger than 1 μm) are classified as large particles. It was made into particles. Then, the total area As of the small particles is calculated, the total area At of all the magnetic powders within the imaging field is calculated, and the small particle ratio is the ratio of the total area of small particles to the total area of all the magnetic powders within the imaging field. As/At was calculated.

また、画像解析式粒度分布ソフトウエアを用いて、撮影視野内における全磁性粉について円形度係数を算出し、円形度係数が0.9を超える粒子の個数Nrを算出した。そして、磁性粉の総個数Ntを算出して、撮影視野内の全磁性粉の個数に対する円形度係数が0.9を超える磁性粉の個数の割合である球形粒子比率Nr/Ntを算出した。
なお、一般的に、溶融した金属に高圧のガスや水を吹き付けて凝固させるアトマイズ法で金属磁性粉を作成するが、温度条件、吹付量、吹付圧力等を調整することにより、形成される磁性粉の球形度を調整することができる。
Further, using image analysis type particle size distribution software, the circularity coefficient was calculated for all magnetic powders within the imaging field, and the number Nr of particles with a circularity coefficient exceeding 0.9 was calculated. Then, the total number Nt of magnetic particles was calculated, and the spherical particle ratio Nr/Nt, which is the ratio of the number of magnetic particles with a circularity coefficient exceeding 0.9 to the total number of magnetic particles in the imaging field, was calculated.
Generally, metal magnetic powder is created by the atomization method, in which molten metal is sprayed with high-pressure gas or water to solidify it, but by adjusting the temperature conditions, spray amount, spray pressure, etc., the magnetic The sphericity of the powder can be adjusted.

更に、小粒子比率As/At×球形粒子比率Nr/Nt×10000で定義される球形小粒子比率Rsを算出した。これらの値に基づく金属磁性粉の分布状態及びインダクタの特性について、以下に検討を行う。 Furthermore, the spherical small particle ratio Rs defined by the small particle ratio As/At x the spherical particle ratio Nr/Nt x 10,000 was calculated. The distribution state of the metal magnetic powder and the characteristics of the inductor will be discussed below based on these values.

(磁性粉の分布状態に関する検討)
次に、図3及び図4を参照しながら、磁性粉の小粒子及び大粒子の分布状態とインダクタの特性との関係について検討を行う。図3は、従来例のインダクタの素体又は磁芯の断面における磁性粉の小粒子及び大粒子の分布状態を模式的に示す図である。図4は、本発明の実施形態に係るインダクタの素体又は磁芯の断面における磁性粉の小粒子及び大粒子の分布状態を模式的に示す図である。黒色の円または楕円が小粒子を示し、白色の円または楕円が大粒子を示す。
(Study on the distribution state of magnetic powder)
Next, with reference to FIGS. 3 and 4, the relationship between the distribution state of small particles and large particles of magnetic powder and the characteristics of the inductor will be discussed. FIG. 3 is a diagram schematically showing the distribution state of small particles and large particles of magnetic powder in a cross section of an element body or a magnetic core of a conventional inductor. FIG. 4 is a diagram schematically showing the distribution state of small particles and large particles of magnetic powder in a cross section of an element body or a magnetic core of an inductor according to an embodiment of the present invention. Black circles or ellipses indicate small particles, white circles or ellipses indicate large particles.

小粒子比率As/Atが小さい場合、つまり小粒子が少ない場合には、図3の(a)に示すように、素体又は磁芯内において、大粒子の間に存在する小粒子の量が少ないので、磁性粉の充填率が低くなる。よって、素体又は磁芯の透磁率も低下し、延いてはインダクタのインダクタンス値も低下する。一方、小粒子比率As/Atが大きすぎる場合には、図3の(c)に示すように、素体又は磁芯内において、大粒子の間に存在する小粒子の量が過多となり、小粒子が凝集し、素体又は磁芯の絶縁性が低下する虞がある。 When the small particle ratio As/At is small, that is, when there are few small particles, the amount of small particles existing between large particles in the element body or magnetic core is Since the amount is small, the filling rate of magnetic powder becomes low. Therefore, the magnetic permeability of the element body or the magnetic core also decreases, and the inductance value of the inductor also decreases. On the other hand, if the small particle ratio As/At is too large, the amount of small particles existing between large particles in the element body or magnetic core becomes excessive, as shown in FIG. There is a possibility that the particles will aggregate and the insulation of the element body or magnetic core will deteriorate.

球形粒子比率Nr/Ntが小さい場合、つまり、いびつな形状の磁性粉が多い場合には、図3の(b)に示すように、素体又は磁芯内において、いびつな形状の磁性粉の突出部分と隣接する磁性粉間の間隔が狭くなる、磁性粉間の間隔の偏りの発生領域が大きくなり、球形粒子比率Nr/Ntが大きすぎる場合には、素体又は磁芯内において、磁性粉間の間隔が大きくなり、インダクタンス値と絶縁性のバランスを取ることが困難となる。 When the spherical particle ratio Nr/Nt is small, that is, when there is a large amount of irregularly shaped magnetic powder, as shown in FIG. If the spacing between the protruding portion and the adjacent magnetic powder becomes narrow, the area where the spacing between the magnetic particles becomes uneven, and the spherical particle ratio Nr/Nt is too large, the magnetic The spacing between powders becomes large, making it difficult to balance inductance and insulation.

球形小粒子比率Rsが小さい場合も、球形小粒子比率Rsが大きすぎる場合も、素体又は磁芯内において、大粒子と小粒子の配置に偏りが発生しやすくなり、インダクタンス値と絶縁性のバランスを取ることが困難となる。 Whether the small spherical particle ratio Rs is small or the small spherical particle ratio Rs is too large, the arrangement of large particles and small particles tends to be biased in the element body or magnetic core, and the inductance value and insulation It becomes difficult to maintain balance.

以上のように、十分な絶縁性を有するとともに、素体又は磁芯の透磁率を高め、延いてはインダクタのインダクタンス値を向上させるため、小粒子比率As/At、球形粒子比率Nr/Nt及び球形小粒子比率Rsの全ての項目について、適切な範囲内に収めることが重要である。
小粒子比率As/At、球形粒子比率Nr/Nt及び球形小粒子比率Rsを適切な範囲内に収めることにより、製造中の樹脂中において大粒子及び小粒子の状態に偏りをなくすことができ、図4に示すように、素体又は磁芯内において、大粒子と小粒子の配置に偏りがなくなり、磁性粉間の間隔の偏りもなくなる。また、素体の樹脂及び金属磁性粉の合計の重量に対する、金属磁性粉の重量を大きくできるので、素体又は磁芯の透磁率を向上させ、インダクタのインダクタンス値を向上させることができる。
As described above, in order to have sufficient insulation, increase the magnetic permeability of the element body or magnetic core, and eventually improve the inductance value of the inductor, the small particle ratio As/At, the spherical particle ratio Nr/Nt, and the It is important to keep all items of the small spherical particle ratio Rs within appropriate ranges.
By keeping the small particle ratio As/At, the spherical particle ratio Nr/Nt, and the spherical small particle ratio Rs within appropriate ranges, it is possible to eliminate bias in the state of large particles and small particles in the resin being manufactured, As shown in FIG. 4, there is no deviation in the arrangement of large particles and small particles in the element body or magnetic core, and there is no deviation in the spacing between magnetic particles. Further, since the weight of the metal magnetic powder can be increased relative to the total weight of the resin and metal magnetic powder of the element body, the magnetic permeability of the element body or the magnetic core can be improved, and the inductance value of the inductor can be improved.

(実施例)
小粒子比率As/At、球形粒子比率Nr/Nt及び球形小粒子比率Rsの適切な範囲を見出すため、異なる組成の磁性体を試作して、透磁率及び絶縁性の測定を行った。詳細を下記に示す。
(Example)
In order to find appropriate ranges for the small particle ratio As/At, the spherical particle ratio Nr/Nt, and the spherical small particle ratio Rs, magnetic bodies with different compositions were prototyped and their magnetic permeability and insulation properties were measured. Details are shown below.

金属磁性粉として、結晶質のFe-Si-Cr金属磁性粉である試料A、B及びCを準備した。試料A、B及びCの体積基準粒度分布を測定したところ、図5に示すような粒度分布が示された。図5は、実施例における金属磁性粉の粒度分布を示すグラフである。試料A、B及びCの何れも、粒径が3μm近傍をピークとする粒度分布を有する。試料A、B及びCの粒度分布における累積10%値をD10、累積50%値をD50、累積90%値をD90とすると、下記の表1に示すような値となった。また、粒径が1μm以下の小粒子の累積%も、表1に示すようになった。 Samples A, B, and C, which are crystalline Fe-Si-Cr metal magnetic powders, were prepared as metal magnetic powders. When the volume-based particle size distributions of Samples A, B, and C were measured, particle size distributions as shown in FIG. 5 were shown. FIG. 5 is a graph showing the particle size distribution of metal magnetic powder in Examples. Samples A, B, and C all have particle size distributions in which the particle size peaks around 3 μm. Assuming that the cumulative 10% value in the particle size distribution of samples A, B, and C is D10, the cumulative 50% value is D50, and the cumulative 90% value is D90, the values were as shown in Table 1 below. Furthermore, the cumulative percentage of small particles with a particle size of 1 μm or less is also shown in Table 1.

[表1]

Figure 0007342787000001
[Table 1]
Figure 0007342787000001

材料A、B及びCの組成を、ICP発光分光分析(ICP-AES:ICP-Atomic Emission Spectrometry)やX線光電子分光(XPS:X-ray photoelectron spectroscopy)を用いて解析したところ、下記の表2及び表3示す結果が得られた。 The compositions of materials A, B, and C were analyzed using ICP-Atomic Emission Spectrometry (ICP-AES) and X-ray photoelectron spectroscopy (XPS), as shown in Table 2 below. The results shown in Table 3 were obtained.

[表2] [at%]

Figure 0007342787000002
[Table 2] [at%]
Figure 0007342787000002

[表3] [at%]

Figure 0007342787000003
[Table 3] [at%]
Figure 0007342787000003

また、この材料A、B及びCの金属磁性粉の表面のCr量を測定したところ、それぞれ、1.2at%、0.5at%、1.7at%であった。さらに、この材料A、B及びCの酸化膜厚を測定したところ、材料A、Bは10~15nm、材料Cは5~10nmであった。 以上のような金属磁性粉の材料A、B及びCに対して、それぞれ2.5wt%の樹脂を加え、金型を使用し、10tで加圧、成型して、それぞれインダクタの素体又は磁芯を作成した。
そして、それぞれの素体又は磁芯の断面の磁性粉の分布状態を測定したところ表4に示す結果が得られた。
Furthermore, when the Cr content on the surface of the metal magnetic powder of materials A, B, and C was measured, they were 1.2 at%, 0.5 at%, and 1.7 at%, respectively. Furthermore, when the oxide film thicknesses of these materials A, B, and C were measured, they were 10 to 15 nm for materials A and B, and 5 to 10 nm for material C. Add 2.5wt% of resin to each of the metal magnetic powder materials A, B, and C, and press and mold them using a mold at 10 tons to form an inductor element or magnetic material, respectively. I created the core.
Then, the distribution state of magnetic powder in the cross section of each element body or magnetic core was measured, and the results shown in Table 4 were obtained.

材料Bを用いた試料1では、素体又は磁芯の断面の画像を取得し、既知の画像解析式粒度分布ソフトウエアを用いて、撮影視野内の磁性粉の全粒子のヘイウッド径を測定して、磁性粉の平均粒子径を求めたところ、磁性粉の平均粒子径は3.2μmとなり、小粒子比率As/At、球形粒子比率Nr/Nt、球形小粒子比率Rsを算出したところ、小粒子比率As/Atが0.001、球形粒子比率Nr/Ntが0.18、球形小粒子比率Rsが1.8となった。また、素体又は磁芯の断面に露出した金属磁性粉の断面の外周に、10~15nmの厚みの酸化膜が形成されていた。 For sample 1 using material B, an image of the cross section of the element body or magnetic core was acquired, and the Heywood diameter of all particles of magnetic powder within the imaging field was measured using known image analysis particle size distribution software. The average particle diameter of the magnetic powder was determined to be 3.2 μm, and the small particle ratio As/At, the spherical particle ratio Nr/Nt, and the spherical small particle ratio Rs were calculated. The particle ratio As/At was 0.001, the spherical particle ratio Nr/Nt was 0.18, and the spherical small particle ratio Rs was 1.8. Further, an oxide film with a thickness of 10 to 15 nm was formed on the outer periphery of the cross section of the metal magnetic powder exposed on the cross section of the element body or magnetic core.

また、材料Aを用いた試料2では、素体又は磁芯の断面の画像を取得し、既知の画像解析式粒度分布ソフトウエアを用いて、撮影視野内の磁性粉の全粒子のヘイウッド径を測定して、磁性粉の平均粒子径を求めたところ、磁性粉の平均粒子径は3.2μmとなり、小粒子比率As/At、球形粒子比率Nr/Nt、球形小粒子比率Rsを算出したところ、小粒子比率As/Atが0.007、球形粒子比率Nr/Ntが0.18、球形小粒子比率Rsが12.6となった。また、素体又は磁芯の断面に露出した金属磁性粉の断面の外周に、10~15nmの厚みの酸化膜が形成されていた。 In addition, for sample 2 using material A, an image of the cross section of the element body or magnetic core was acquired, and the Heywood diameter of all particles of magnetic powder within the imaging field was calculated using known image analysis type particle size distribution software. When the average particle diameter of the magnetic powder was determined by measurement, the average particle diameter of the magnetic powder was 3.2 μm, and the small particle ratio As/At, the spherical particle ratio Nr/Nt, and the spherical small particle ratio Rs were calculated. , the small particle ratio As/At was 0.007, the spherical particle ratio Nr/Nt was 0.18, and the spherical small particle ratio Rs was 12.6. Further, an oxide film with a thickness of 10 to 15 nm was formed on the outer periphery of the cross section of the metal magnetic powder exposed on the cross section of the element body or magnetic core.

さらに、材料Cを用いた試料3では、素体又は磁芯の断面の画像を取得し、既知の画像解析式粒度分布ソフトウエアを用いて、撮影視野内の磁性粉の全粒子のヘイウッド径を測定して、磁性粉の平均粒子径を求めたところ、磁性粉の平均粒子径は3.2μmとなり、小粒子比率As/At、球形粒子比率Nr/Nt、球形小粒子比率Rsを算出したところ、小粒子比率As/Atが0.046、球形粒子比率Nr/Ntが0.08、球形小粒子比率Rsが36.8となった。また、素体又は磁芯の断面に露出した金属磁性粉の断面の外周に、5~10nmの厚みの酸化膜が形成されていた。 Furthermore, for sample 3 using material C, an image of the cross section of the element body or magnetic core was acquired, and the Heywood diameter of all particles of magnetic powder within the imaging field was calculated using known image analysis type particle size distribution software. When the average particle diameter of the magnetic powder was determined by measurement, the average particle diameter of the magnetic powder was 3.2 μm, and the small particle ratio As/At, the spherical particle ratio Nr/Nt, and the spherical small particle ratio Rs were calculated. , the small particle ratio As/At was 0.046, the spherical particle ratio Nr/Nt was 0.08, and the spherical small particle ratio Rs was 36.8. Further, an oxide film with a thickness of 5 to 10 nm was formed on the outer periphery of the cross section of the metal magnetic powder exposed on the cross section of the element body or magnetic core.

[表4]

Figure 0007342787000004
[Table 4]
Figure 0007342787000004

この試料1、2、3で得られた測定結果に基づくと、小粒子比率As/At、球形粒子比率Nr/Nt及び球形小粒子比率Rsと透磁率と絶縁抵抗の間で、図6から図8に示すような関係を有することが明らかになった。図6は、小粒子比率と透磁率と絶縁抵抗の関係を示すグラフであり、図7は、球形粒子比率と透磁率と絶縁抵抗の関係を示すグラフであり、図8は、球形小粒子比率と透磁率との関係を示すグラフである。なお、図6から図8において、実線は透磁率の特性、点線は絶縁抵抗の特性を示す。 Based on the measurement results obtained for Samples 1, 2, and 3, the relationship between the small particle ratio As/At, the spherical particle ratio Nr/Nt, the spherical small particle ratio Rs, magnetic permeability, and insulation resistance is as shown in FIG. It has become clear that there is a relationship as shown in 8. FIG. 6 is a graph showing the relationship between small particle ratio, magnetic permeability, and insulation resistance, FIG. 7 is a graph showing the relationship between spherical particle ratio, magnetic permeability, and insulation resistance, and FIG. 8 is a graph showing the relationship between spherical particle ratio, magnetic permeability, and insulation resistance. It is a graph showing the relationship between magnetic permeability and magnetic permeability. In addition, in FIGS. 6 to 8, the solid line indicates the magnetic permeability characteristic, and the dotted line indicates the insulation resistance characteristic.

図6に示すように、透磁率は、小粒子比率As/Atの値が0.001の時19.5であったものが、小粒子比率As/Atの値が0.002の時20、小粒子比率As/Atの値が0.007の時22.4と増加し、小粒子比率As/Atの値が0.046の時24まで増加した。絶縁抵抗は、小粒子比率As/Atの値が0.001の時6.5MΩ/mmあったものが、小粒子比率As/Atの値が0.007の時2.39MΩ/mmと低下し、小粒子比率As/Atの値が0.04の時0.4MΩ/mm、小粒子比率As/Atの値が0.046の時0.04MΩ/mmまで低下した。従って、小粒子比率As/Atの値が0.002よりも小さくなると透磁率が20未満となって、所定のインダクタンス値が得られなくなり、小粒子比率As/Atの値が0.04よりも大きくなると絶縁抵抗が0.4MΩ/mm未満となって、端子間にショートが発生した。 As shown in FIG. 6, the magnetic permeability was 19.5 when the small particle ratio As/At was 0.001, but was 20 when the small particle ratio As/At was 0.002. When the value of the small particle ratio As/At was 0.007, it increased to 22.4, and when the value of the small particle ratio As/At was 0.046, it increased to 24. The insulation resistance was 6.5 MΩ/mm when the small particle ratio As/At was 0.001, but decreased to 2.39 MΩ/mm when the small particle ratio As/At was 0.007. When the value of the small particle ratio As/At was 0.04, it decreased to 0.4 MΩ/mm, and when the value of the small particle ratio As/At was 0.046, it decreased to 0.04 MΩ/mm. Therefore, when the value of the small particle ratio As/At becomes smaller than 0.002, the magnetic permeability becomes less than 20, and a predetermined inductance value cannot be obtained, and when the value of the small particle ratio As/At becomes smaller than 0.04. When the resistance increased, the insulation resistance became less than 0.4 MΩ/mm, and a short circuit occurred between the terminals.

また、図7に示すように、透磁率は、球形粒子比率Nr/Ntの値が0.08の時24であったものが、球形粒子比率Nr/Ntの値が0.18の時22.4、球形粒子比率Nr/Ntの値が0.3の時20と低下し、球形粒子比率Nr/Ntの値が0.3よりも大きくなると20未満になった。絶縁抵抗は、球形粒子比率Nr/Ntの値が0.08の時0.04MΩ/mmだったものが、球形粒子比率Nr/Ntの値が0.1の時0.4MΩ/mm、球形粒子比率Nr/Ntの値が0.18の時2.39MΩ/mm、球形粒子比率Nr/Ntの値が5MΩ/mmと大きくなった。従って、球形粒子比率Nr/Ntの値が0.1よりも小さくなると絶縁抵抗が0.4MΩ/mm未満となって、端子間にショートが発生し、球形粒子比率Nr/Ntの値が0.3よりも大きくなると透磁率が20未満となって、所定のインダクタンス値が得られなくなった。 Further, as shown in FIG. 7, the magnetic permeability was 24 when the value of the spherical particle ratio Nr/Nt was 0.08, but was 22 when the value of the spherical particle ratio Nr/Nt was 0.18. 4. When the value of the spherical particle ratio Nr/Nt was 0.3, it decreased to 20, and when the value of the spherical particle ratio Nr/Nt was greater than 0.3, it became less than 20. The insulation resistance was 0.04 MΩ/mm when the value of the spherical particle ratio Nr/Nt was 0.08, but it was 0.4 MΩ/mm when the value of the spherical particle ratio Nr/Nt was 0.1. When the value of the ratio Nr/Nt was 0.18, it was 2.39 MΩ/mm, and the value of the spherical particle ratio Nr/Nt was as large as 5 MΩ/mm. Therefore, when the value of the spherical particle ratio Nr/Nt becomes less than 0.1, the insulation resistance becomes less than 0.4 MΩ/mm, a short circuit occurs between the terminals, and the value of the spherical particle ratio Nr/Nt becomes 0.1. When it is larger than 3, the magnetic permeability becomes less than 20, making it impossible to obtain a predetermined inductance value.

さらに、図8に示すように、透磁率は、球形小粒子比率Rsの値が1.8の時19.5であったものが、球形小粒子比率Rsの値が3の時20、球形小粒子比率Rsの値が12.6の時22.4と増加し、球形小粒子比率Rsの値が36の時24まで増加した。絶縁抵抗は、球形小粒子比率Rsの値が1.8の時6.56MΩ/mmだったものが、球形小粒子比率Rsの値が12.6の時2.39MΩ/mm、球形小粒子比率Rsの値が33の時0.4MΩ/mm、球形小粒子比率Rsの値が36.8の時0.04MΩ/mmと低下した。従って、球形小粒子比率Rsの値が3よりも小さくなると透磁率が20未満となって、所定のインダクタンス値が得られなくなり、球形小粒子比率Rsの値が33よりも大きくなると絶縁抵抗が0.4MΩ/mm未満となって、端子間にショートが発生した。 Furthermore, as shown in Figure 8, the magnetic permeability was 19.5 when the value of the small spherical particle ratio Rs was 1.8, but when the value of the small spherical particle ratio Rs was 3, the magnetic permeability was 19.5. When the value of the particle ratio Rs was 12.6, it increased to 22.4, and when the value of the spherical small particle ratio Rs was 36, it increased to 24. The insulation resistance was 6.56 MΩ/mm when the spherical small particle ratio Rs was 1.8, but it was 2.39 MΩ/mm when the spherical small particle ratio Rs was 12.6. When the value of Rs was 33, it was 0.4 MΩ/mm, and when the value of spherical small particle ratio Rs was 36.8, it was 0.04 MΩ/mm. Therefore, when the value of the small spherical particle ratio Rs becomes less than 3, the magnetic permeability becomes less than 20, making it impossible to obtain a predetermined inductance value, and when the value of the small spherical particle ratio Rs becomes greater than 33, the insulation resistance becomes 0. It became less than .4 MΩ/mm, and a short circuit occurred between the terminals.

以上を考慮すると、小粒子比率As/Atの値が0.002以上0.04以下の範囲にあり、球形粒子比率Nr/Ntの値が0.1以上0.3以下の範囲にあり、かつ球形小粒子比率Rsが3以上33以下の範囲にある場合には、十分な絶縁性を有するとともに、素体又は磁芯の透磁率が向上し、延いてはインダクタンス値が向上することが明らかになった。 Considering the above, the value of the small particle ratio As/At is in the range of 0.002 or more and 0.04 or less, the value of the spherical particle ratio Nr/Nt is in the range of 0.1 or more and 0.3 or less, and It is clear that when the spherical small particle ratio Rs is in the range of 3 or more and 33 or less, it has sufficient insulation and the magnetic permeability of the element body or magnetic core improves, which in turn improves the inductance value. became.

従って、素体又は磁芯の断面において、磁性粉はヘイウッド径が1μm以下の小粒子を含み、小粒子の合計面積をAsとし、磁性粉の総面積をAtとすると、小粒子比率As/Atは、0.002 ≦ As/At ≦ 0.04の関係を有し、磁性粉のうち円形度係数が0.9を超える粒子の個数をNrとし、磁性粉の総個数をNtとすると、球形粒子比率Nr/Ntは、0.1 ≦ Nr/Nt ≦ 0.3の関係を有し、小粒子比率As/At×球形粒子比率Nr/Nt×10000で定義される球形小粒子比率Rsは、3 ≦ Rs ≦ 33の関係を有する場合には、インダクタンス値及び絶縁性ともに優れた特性を得ることができる。 Therefore, in the cross section of the element body or magnetic core, the magnetic powder contains small particles with a Heywood diameter of 1 μm or less, and if the total area of the small particles is As and the total area of the magnetic powder is At, then the small particle ratio As/At has a relationship of 0.002 ≦ As/At ≦ 0.04, and if the number of particles with a circularity coefficient exceeding 0.9 among magnetic powders is Nr, and the total number of magnetic particles is Nt, then spherical The particle ratio Nr/Nt has a relationship of 0.1 ≦ Nr/Nt ≦ 0.3, and the spherical small particle ratio Rs, which is defined by the small particle ratio As/At x the spherical particle ratio Nr/Nt x 10000, is When the relationship of 3≦Rs≦33 is satisfied, excellent characteristics can be obtained in both the inductance value and the insulation property.

以上、本発明の実施形態及び実施例を説明したが、開示内容は構成の細部において変化してもよく、実施形態及び実施例における要素の組合せや順序の変化等は請求された本発明の範囲及び思想を逸脱することなく実現し得るものである。
例えば、インダクタは、結晶質の金属磁性粉を含有する磁性粉と、樹脂とでトロイダル形状、ドラム形状に形成された磁芯に導線を巻回して形成されてもよく、このインダクタ用磁芯は、磁芯の断面において、磁性粉はヘイウッド径が1μm以下の小粒子を含み、小粒子の合計面積をAsとし、磁性粉の総面積をAtとすると、小粒子比率As/Atは、
0.002 ≦ As/At ≦ 0.04の関係を有し、磁性粉のうち円形度係数が0.9を超える粒子の個数をNrとし、磁性粉の総個数をNtとすると、球形粒子比率Nr/Ntは、0.1 ≦ Nr/Nt ≦ 0.3の関係を有し、小粒子比率As/At×球形粒子比率Nr/Nt×10000で定義される球形小粒子比率Rsは、3 ≦ Rs ≦ 33の関係を有する。
Although the embodiments and examples of the present invention have been described above, the disclosed content may change in the details of the configuration, and changes in the combination and order of elements in the embodiments and examples are within the scope of the claimed invention. and can be realized without deviating from the idea.
For example, an inductor may be formed by winding a conducting wire around a magnetic core formed in a toroidal or drum shape using magnetic powder containing crystalline metal magnetic powder and resin. , in the cross section of the magnetic core, the magnetic powder contains small particles with a Heywood diameter of 1 μm or less, the total area of the small particles is As, and the total area of the magnetic powder is At, the small particle ratio As/At is:
0.002 ≦ As/At ≦ 0.04, where Nr is the number of particles with a circularity coefficient exceeding 0.9 among magnetic powders, and Nt is the total number of magnetic particles, the spherical particle ratio is Nr/Nt has a relationship of 0.1 ≦ Nr/Nt ≦ 0.3, and the spherical small particle ratio Rs defined by the small particle ratio As/At x the spherical particle ratio Nr/Nt x 10000 is 3 ≦ There is a relationship of Rs≦33.

1 インダクタ
2 素体
2a 底面
2b 上面
2c、2d、2e、2f 側面
4 外部電極
6 磁性部
8 コイル
10 巻回部
12 上段
14 下段
16 引き出し部
16a 先端
1 Inductor 2 Element body 2a Bottom surface 2b Top surface 2c, 2d, 2e, 2f Side surface 4 External electrode 6 Magnetic section 8 Coil 10 Winding section 12 Upper stage 14 Lower stage 16 Pull-out section 16a Tip

Claims (7)

結晶質の金属磁性粉を含有する磁性粉と、樹脂とを有する磁性部と、磁性部内に埋設されたコイルを有する素体と、前記素体に配置された外部電極を備えるインダクタであって、
前記素体の断面において、
前記磁性粉はヘイウッド径が1μm以下の小粒子を含み、
前記小粒子の合計面積をAsとし、前記磁性粉の総面積をAtとすると、
小粒子比率As/Atが、
0.002 ≦ As/At ≦ 0.033
の範囲にあり、
前記磁性粉のうち円形度係数が0.9を超える粒子の個数をNrとし、前記磁性粉の総個数をNtとすると、
球形粒子比率Nr/Ntが、
0.1 ≦ Nr/Nt ≦ 0.3
の範囲にあり、かつ
前記小粒子比率As/At×前記球形粒子比率Nr/Nt×10000で定義される球形小粒子比率Rsが、
3 ≦ Rs ≦ 33
の範囲にあることを特徴とするインダクタ。
An inductor comprising a magnetic part having magnetic powder containing crystalline metal magnetic powder and a resin, an element body having a coil embedded in the magnetic part, and an external electrode disposed in the element body,
In the cross section of the element body,
The magnetic powder includes small particles with a Heywood diameter of 1 μm or less,
If the total area of the small particles is As, and the total area of the magnetic powder is At,
The small particle ratio As/At is
0.002≦As/At≦ 0.033
is within the range of
If the number of particles having a circularity coefficient exceeding 0.9 among the magnetic powders is Nr, and the total number of the magnetic powders is Nt,
The spherical particle ratio Nr/Nt is
0.1 ≦ Nr/Nt ≦ 0.3
and the spherical small particle ratio Rs defined by the small particle ratio As/At x the spherical particle ratio Nr/Nt x 10000,
3 ≦ Rs ≦ 33
An inductor characterized by being in the range of.
前記金属磁性粉の表面に、Feの酸化物及びCrの酸化物を含む酸化膜が形成されている請求項1に記載のインダクタ。
The inductor according to claim 1, wherein an oxide film containing an oxide of Fe and an oxide of Cr is formed on the surface of the metal magnetic powder.
前記金属磁性粉の平均粒子径が1~5μmであり、前記金属磁性粉の断面の外周に10~50nmの酸化被膜を有する請求項1又は請求項2に記載のインダクタ。
The inductor according to claim 1 or 2, wherein the metal magnetic powder has an average particle diameter of 1 to 5 μm, and has an oxide film of 10 to 50 nm around the outer periphery of the cross section of the metal magnetic powder.
前記素体は、底面と、底面に対向する上面と、短手方向に延在する側面と、長手方向に延在する側面とを有し、
前記コイルは、前記素体の上面から見て長手方向に貫通する金属板で形成される請求項1に記載のインダクタ。
The element body has a bottom surface, an upper surface opposite to the bottom surface, a side surface extending in the transverse direction, and a side surface extending in the longitudinal direction,
The inductor according to claim 1, wherein the coil is formed of a metal plate that extends through the element body in the longitudinal direction when viewed from the top surface of the element body.
結晶質の金属磁性粉を含有する磁性粉と、樹脂とを有するインダクタ用磁芯であって、
前記磁芯の断面において、
前記磁性粉はヘイウッド径が1μm以下の小粒子を含み、
前記小粒子の合計面積をAsとし、前記磁性粉の総面積をAtとすると、
小粒子比率As/Atが、
0.002 ≦ As/At ≦ 0.033
の範囲にあり、
前記磁性粉のうち円形度係数が0.9を超える粒子の個数をNrとし、前記磁性粉の総個数をNtとすると、
球形粒子比率Nr/Ntが、
0.1 ≦ Nr/Nt ≦ 0.3
の範囲にあり、かつ
前記小粒子比率As/At×前記球形粒子比率Nr/Nt×10000で定義される球形小粒子比率Rsが、
3 ≦ Rs ≦ 33
の範囲にあることを特徴とするインダクタ用磁芯。
A magnetic core for an inductor comprising magnetic powder containing crystalline metal magnetic powder and resin,
In the cross section of the magnetic core,
The magnetic powder includes small particles with a Heywood diameter of 1 μm or less,
If the total area of the small particles is As, and the total area of the magnetic powder is At,
The small particle ratio As/At is
0.002≦As/At≦ 0.033
is within the range of
When the number of particles having a circularity coefficient exceeding 0.9 among the magnetic powders is Nr, and the total number of the magnetic powders is Nt,
The spherical particle ratio Nr/Nt is
0.1 ≦ Nr/Nt ≦ 0.3
and the spherical small particle ratio Rs defined by the small particle ratio As/At x the spherical particle ratio Nr/Nt x 10000,
3 ≦ Rs ≦ 33
A magnetic core for an inductor characterized by being in the range of.
前記金属磁性粉の表面に、Feの酸化物及びCrの酸化物を含む酸化膜が形成されている請求項5に記載のインダクタ用磁芯。
The magnetic core for an inductor according to claim 5, wherein an oxide film containing an oxide of Fe and an oxide of Cr is formed on the surface of the metal magnetic powder.
前記金属磁性粉の平均粒子径が1~5μmであり、前記金属磁性粉の断面の外周に10~50nmの酸化被膜を有する請求項5又は請求項6に記載のインダクタ用磁芯。 The magnetic core for an inductor according to claim 5 or 6, wherein the metal magnetic powder has an average particle diameter of 1 to 5 μm, and has an oxide film of 10 to 50 nm on the outer periphery of the cross section of the metal magnetic powder.
JP2020091574A 2020-05-26 2020-05-26 Inductors and magnetic cores for inductors Active JP7342787B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020091574A JP7342787B2 (en) 2020-05-26 2020-05-26 Inductors and magnetic cores for inductors

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020091574A JP7342787B2 (en) 2020-05-26 2020-05-26 Inductors and magnetic cores for inductors

Publications (2)

Publication Number Publication Date
JP2021190472A JP2021190472A (en) 2021-12-13
JP7342787B2 true JP7342787B2 (en) 2023-09-12

Family

ID=78847444

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020091574A Active JP7342787B2 (en) 2020-05-26 2020-05-26 Inductors and magnetic cores for inductors

Country Status (1)

Country Link
JP (1) JP7342787B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009070885A (en) 2007-09-11 2009-04-02 Sumitomo Electric Ind Ltd Core for reactor, its production process, and reactor
JP2010131768A (en) 2008-12-02 2010-06-17 Tdk Corp Method for manufacturing insert molding, and apparatus for manufacturing insert molding
WO2018179812A1 (en) 2017-03-27 2018-10-04 Tdk株式会社 Dust core
JP2018190831A (en) 2017-05-08 2018-11-29 古河電子株式会社 Composition, mold, and method for manufacturing mold
JP2020072182A (en) 2018-10-31 2020-05-07 Tdk株式会社 Magnetic core and coil component
JP2021077863A (en) 2019-10-31 2021-05-20 Tdk株式会社 Magnetic core and coil component

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009070885A (en) 2007-09-11 2009-04-02 Sumitomo Electric Ind Ltd Core for reactor, its production process, and reactor
JP2010131768A (en) 2008-12-02 2010-06-17 Tdk Corp Method for manufacturing insert molding, and apparatus for manufacturing insert molding
WO2018179812A1 (en) 2017-03-27 2018-10-04 Tdk株式会社 Dust core
JP2018190831A (en) 2017-05-08 2018-11-29 古河電子株式会社 Composition, mold, and method for manufacturing mold
JP2020072182A (en) 2018-10-31 2020-05-07 Tdk株式会社 Magnetic core and coil component
JP2021077863A (en) 2019-10-31 2021-05-20 Tdk株式会社 Magnetic core and coil component

Also Published As

Publication number Publication date
JP2021190472A (en) 2021-12-13

Similar Documents

Publication Publication Date Title
US11680307B2 (en) Magnetic core and coil component
KR102118260B1 (en) Composite magnetic material and coil component using same
US20180182531A1 (en) Surface-mount inductor
JP2018011043A (en) Magnetic material and electronic component
CN111755199A (en) Composite magnetic body and inductor using the same
US10984941B2 (en) Inductor element
JP2023158174A (en) Magnetic core and coil component
JP2019125689A (en) Coil component
JP7342787B2 (en) Inductors and magnetic cores for inductors
US20220375675A1 (en) Coil-embedded magnetic core and coil device
US10886056B2 (en) Inductor element
JP7192826B2 (en) Magnetic cores for inductors and inductors
US20220199313A1 (en) Coil component
JP7255754B2 (en) coil parts
WO2022220004A1 (en) Powder magnetic core and method for producing powder magnetic core
US20230326650A1 (en) Coil component
US20230317343A1 (en) Coil component
JP7436960B2 (en) Composite magnetic materials and electronic components
WO2024004507A1 (en) Dust core and method for manufacturing dust core
JP2021052146A (en) Inductor and method for manufacturing inductor
JP7482412B2 (en) Powder core and method for manufacturing powder core
US11600426B2 (en) DC-DC converter multilayer coil array and DC-DC converter
JP2021057470A (en) Inductor
KR20230100582A (en) Magnetic powder and magentic component
KR20230100619A (en) Magnetic particle and magentic component

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221101

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221102

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221226

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230425

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230516

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20230525

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230801

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230814

R150 Certificate of patent or registration of utility model

Ref document number: 7342787

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150