JP7327718B1 - 表面処理鋼板およびその製造方法 - Google Patents

表面処理鋼板およびその製造方法 Download PDF

Info

Publication number
JP7327718B1
JP7327718B1 JP2023532834A JP2023532834A JP7327718B1 JP 7327718 B1 JP7327718 B1 JP 7327718B1 JP 2023532834 A JP2023532834 A JP 2023532834A JP 2023532834 A JP2023532834 A JP 2023532834A JP 7327718 B1 JP7327718 B1 JP 7327718B1
Authority
JP
Japan
Prior art keywords
steel sheet
layer
less
treated steel
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2023532834A
Other languages
English (en)
Other versions
JPWO2023195251A5 (ja
JPWO2023195251A1 (ja
Inventor
卓嗣 植野
祐介 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority claimed from PCT/JP2023/006069 external-priority patent/WO2023195251A1/ja
Application granted granted Critical
Publication of JP7327718B1 publication Critical patent/JP7327718B1/ja
Publication of JPWO2023195251A1 publication Critical patent/JPWO2023195251A1/ja
Publication of JPWO2023195251A5 publication Critical patent/JPWO2023195251A5/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

6価クロムを用いることなく製造することができ、かつ、優れたフィルム耐食性、塗装耐食性、フィルム湿潤密着性、塗料2次密着性、および溶接性を兼ね備えた表面処理鋼板を提供する。鋼板の少なくとも一方の面に、Ni含有層と、前記Ni含有層上に配置された金属Cr層と、前記金属Cr層上に配置された酸化Cr層とを有し、水接触角が50°以下であり、表面に吸着したK、Na、Mg、およびCaの、Crに対する原子比率の合計が、5.0%以下である、表面処理鋼板。

Description

本発明は、表面処理鋼板に関し、特に、フィルム耐食性、塗装耐食性、フィルム湿潤密着性、塗料2次密着性、および溶接性に優れる表面処理鋼板に関する。本発明の表面処理鋼板は、缶などの容器に好適に用いることができる。また、本発明は、前記表面処理鋼板の製造方法に関する。
Snめっき鋼板(ぶりき)は、耐食性、溶接性、加工性に優れ、製造も容易であることから、飲料缶、食品缶、ペール缶、18リットル缶などの各種金属缶の素材として、200年以上にわたって使用されてきた。
しかし、Snは高価な材料であることから、Snを使用しない表面処理鋼板であるティンフリー鋼板(TFS)が開発された。ティンフリー鋼板は、鋼板の表面に金属Cr層と酸化Cr層が形成された表面処理鋼板であり、通常、6価Crを含む電解液中で鋼板を電解処理することにより製造される(特許文献1~3)。ティンフリー鋼板は、耐食性や塗料密着性に優れていることから、現在では、ぶりきに代わる容器用鋼板として極めて一般的に使用されている。しかし、このティンフリー鋼板は、表層に絶縁皮膜である酸化クロム層を備えるため、溶接性には乏しい。
一方、溶接性に優れ、かつSnを使用しない表面処理鋼板としては、Snの代わりにNiを使用したNiめっき鋼板が知られている(特許文献4、5)。しかし、Niめっき鋼板を溶接缶の素材として使用する場合、耐食性や塗料密着性を確保するために、Niめっき鋼板上に6価Crを含む水溶液を使用してクロメート処理皮膜を付与することが必要となる。
近年、環境に対する意識の高まりから、世界的に6価Crの使用が規制される方向に向かっている。そのため、容器等に用いられる表面処理鋼板の分野においても、6価クロムを使用しない製造方法の確立が求められている。
6価クロムを使用せずに表面処理鋼板を形成する方法としては、例えば、特許文献6、7で提案されている方法が知られている。この方法では、塩基性硫酸クロムなどの3価クロム化合物を含む電解液中で電解処理を行うことによって表面処理層を形成している。
特開昭58-110695号公報 特開昭55-134197号公報 特開昭57-035699号公報 特開平11-117085号公報 特開2007-231394号公報 特表2016-505708号公報 特表2015-520794号公報
特許文献6、7で提案されている方法によれば、6価クロムを用いることなく表面処理層を形成することができる。そして、特許文献6、7によれば、前記方法により、湿潤環境下における樹脂フィルムに対する密着性(以下、「フィルム湿潤密着性」という)および湿潤環境下における塗料に対する密着性(以下、「塗料2次密着性」という)に優れる表面処理鋼板を得ることができる。
しかし、特許文献6、7で提案されているような従来の方法で得られる表面処理鋼板は、フィルム湿潤密着性と塗料2次密着性には優れるものの、溶接性が劣っており、6価クロムを用いた方法で製造される表面処理鋼板の代替として使用するには性能が十分ではなかった。
そのため、6価クロムを用いることなく製造することができ、かつ、優れたフィルム耐食性、塗装耐食性、フィルム湿潤密着性、塗料2次密着性、および溶接性を兼ね備えた表面処理鋼板が求められている。
本発明は、上記実状に鑑みてなされたものであって、その目的は、6価クロムを用いることなく製造することができ、かつ、フィルム耐食性、塗装耐食性、フィルム湿潤密着性、塗料2次密着性、および溶接性に優れる表面処理鋼板を提供することにある。
本発明の発明者らは、上記目的を達成するために鋭意検討を行なった結果、次の(1)および(2)の知見を得た。
(1)Ni含有層上に金属Cr層と酸化Cr層とを有する表面処理鋼板において、水接触角と、表面に吸着したK、Na、Mg、およびCaの、Crに対する原子比率の合計を、それぞれ特定の範囲に制御することにより、フィルム耐食性、塗装耐食性、フィルム湿潤密着性、塗料2次密着性、および溶接性に優れた表面処理鋼板を得ることができる。
(2)上記表面処理鋼板は、3価クロムイオンを含有する特定の方法で調製した電解液中で陰極電解処理を行い、その後、電気伝導度が所定の値以下である水を用いて最終水洗を行うことにより製造することができる。
本発明は、以上の知見に基づいて完成されたものである。本発明の要旨は次のとおりである。
1.鋼板と、
前記鋼板の少なくとも一方の表面上に配置されたNi含有層と、
前記Ni含有層上に配置された金属Cr層と、
前記金属Cr層上に配置された酸化Cr層とを有し、
水接触角が50°以下であり、
表面に吸着したK、Na、Mg、およびCaの、Crに対する原子比率の合計が、5.0%以下である、表面処理鋼板。
2.前記Ni含有層は、Ni付着量が前記鋼板の片面当たり200mg/m以上2000mg/m以下である、上記1に記載の表面処理鋼板。
3.前記金属Cr層は、Cr付着量が前記鋼板の片面当たり2mg/m以上40mg/m未満である、上記1または2に記載の表面処理鋼板。
4.前記酸化Cr層は、Cr付着量が前記鋼板の片面当たり0.1mg/m以上15.0mg/m以下である、上記1~3のいずれか一項に記載の表面処理鋼板。
5.前記表面処理鋼板の表面におけるNiの、Crに対する原子比率が、100%以下である、上記1~4のいずれか一項に記載の表面処理鋼板。
6.鋼板と、前記鋼板の少なくとも一方の表面上に配置されたNi含有層と、前記Ni含有層上に配置された金属Cr層と、前記金属Cr層上に配置された酸化Cr層とを有する表面処理鋼板の製造方法であって、
3価クロムイオンを含有する電解液を調製する電解液調製工程と、
少なくとも一方の面にNi含有層を有する鋼板を前記電解液中で陰極電解処理する陰極電解処理工程と、
前記陰極電解処理後の鋼板を少なくとも1回水洗する水洗工程とを含み、
前記電解液調製工程では、
3価クロムイオン源、カルボン酸化合物、および水を混合し、
pHを4.0~7.0に調整するとともに、温度を40~70℃に調整することによって前記電解液が調製され、
前記水洗工程では、
少なくとも最後の水洗において、電気伝導度100μS/m以下の水を使用する、表面処理鋼板の製造方法。
本発明によれば、6価クロムを使用することなく、フィルム耐食性、塗装耐食性、フィルム湿潤密着性、塗料2次密着性、および溶接性に優れる表面処理鋼板を提供することができる。本発明の表面処理鋼板は、容器等の材料として好適に用いることができる。
以下、本発明を実施する方法について具体的に説明する。なお、以下の説明は、本発明の好適な実施形態の例を示すものであって、本発明はこれに限定されない。
本発明の一実施形態における表面処理鋼板は、鋼板と、前記鋼板の少なくとも一方の表面上に配置されたNi含有層と、前記Ni含有層上に配置された金属Cr層と、前記金属Cr層上に配置された酸化Cr層とを有する表面処理鋼板である。本発明においては、前記表面処理鋼板の水接触角が50°以下であり、かつ、表面に吸着したK、Na、Mg、およびCaの、Crに対する原子比率の合計が、5.0%以下であることが重要である。以下、前記表面処理鋼板の構成要件のそれぞれについて説明する。
[鋼板]
前記鋼板としては、特に限定されることなく任意の鋼板を用いることができる。前記鋼板は、缶用鋼板であることが好ましい。前記鋼板としては、例えば、極低炭素鋼板または低炭素鋼板を用いることができる。前記鋼板の製造方法についても特に限定されず、任意の方法で製造された鋼板を用いることができる。通常は、前記鋼板として冷延鋼板を使用すればよい。前記冷延鋼板は、例えば、熱間圧延、酸洗、冷間圧延、焼鈍、および調質圧延を行う、一般的な製造工程により製造することができる。
前記鋼板の成分組成は特に限定されないが、Cr含有量は0.10質量%以下であることが好ましく、0.08質量%以下であることがより好ましい。前記鋼板のCr含有量を上記の範囲とすれば、鋼板表面に過度にCrが濃化することがなく、その結果、最終的に得られる表面処理鋼板の表面におけるNiのCrに対する原子比率を100%以下とすることができる。さらに、前記鋼板には、本発明の範囲の効果を損なわない範囲でC、Mn、P、S、Si、Cu、Ni、Mo、Al、不可避的不純物を含有してもよい。その際、前記鋼板としては、例えば、ASTM A623M-09に規定される成分組成の鋼板を好適に用いることができる。
本発明の一実施形態においては、質量%で、
C :0.0001~0.13%、
Si:0~0.020%、
Mn:0.01~0.60%
P :0~0.020%、
S :0~0.030%、
Al:0~0.20%、
N :0~0.040%、
Cu:0~0.20%、
Ni:0~0.15%、
Cr:0~0.10%、
Mo:0~0.05%、
Ti:0~0.020%、
Nb:0~0.020%、
B :0~0.020%、
Ca:0~0.020%、
Sn:0~0.020%、
Sb:0~0.020%、
および残部のFeおよび不可避的不純物からなる成分組成を有する鋼板を用いることが好ましい。上記成分組成のうち、Si、P、S、Al、およびNは含有量が低いほど好ましい成分であり、Cu、Ni、Cr、Mo、Ti、Nb、B、Ca、Sn、およびSbは、任意に添加し得る成分である。
前記鋼板の板厚は特に限定されないが、0.60mm以下であることが好ましい。なお、ここで「鋼板」には「鋼帯」を包含するものと定義する。一方、前記板厚の下限についてもとくに限定されないが、0.10mm以上とすることが好ましい。
[Ni含有層]
表面処理鋼板を缶用鋼板として用いる場合、一般的に、ワイヤーシーム溶接等の抵抗溶接で溶接される。Niは鍛接性に優れる元素であるため、Ni含有層を配置することにより溶接性を向上させることができる。すなわち、Ni含有層が存在する場合、より低い抵抗発熱から優れた溶接強度が得られるため、溶接可能な電流の下限が広がる。
前記Ni含有層は、鋼板の少なくとも一方の面に備えられていればよく、両面に備えられていてもよい。前記Ni含有層は、鋼板の少なくとも一部を覆っていればよく、該Ni含有層が設けられた面の全体を覆っていてもよい。また、前記Ni含有層は、連続層であってもよいし、不連続層であってもよい。前記不連続層としては、例えば、島状構造を有する層が挙げられる。
前記Ni含有層としては、ニッケルが含まれている任意の層を用いることができ、例えば、Ni層およびNi合金層の一方または両方を用いることができる。例えば、Niめっき後の拡散焼鈍処理によってNi合金層となっている場合もNi合金層に含める。また、前記Ni合金層としては、例えば、Ni-Fe合金層が挙げられる。
前記Ni含有層は、Ni基めっき層であることが好ましい。ここで、「Ni基めっき層」とは、Ni含有量が50質量%以上であるめっき層を指すものと定義する。言い換えると、前記Ni基めっき層は、Niめっき層、またはNi基合金からなるめっき層である。
前記Ni基めっき層は、マトリックスとしてのNiまたはNi基合金中に、固体微粒子が分散した分散めっき層(複合めっき層)であってもよい。前記固体微粒子としては、とくに限定されることなく任意の材質の微粒子を用いることができる。前記微粒子は、無機微粒子および有機微粒子のいずれであってもよい。前記有機微粒子としては、例えば、樹脂からなる微粒子が挙げられる。前記樹脂としては、任意の樹脂を使用できるが、フッ素樹脂を用いることが好ましく、ポリテトラフルオロエチレン(PTFE)を用いることがより好ましい。前記無機微粒子としては、とくに限定されることなく任意の無機材料からなる微粒子を使用することができる。前記無機材料は、例えば、金属(合金を含む)であってもよく、化合物であってもよく、その他の単体であってもよい。中でも、酸化物、窒化物、および炭化物からなる群より選択される少なくとも1つからなる微粒子を用いることが好ましく、金属酸化物の微粒子を用いることが好ましい。前記金属酸化物としては、例えば、酸化アルミニウム、酸化クロム、酸化チタン、酸化亜鉛などが挙げられる。
前記分散めっきに用いる微粒子の粒径は特に限定されず、任意のサイズの粒子を使用することができる。しかし、微粒子の直径が、Ni含有層としての分散めっき層の厚さを超えないことが好ましい。典型的には、前記微粒子の直径を、1nm~50μmとすることが好ましく、10nm~1000nmとすることがより好ましい。
前記Ni含有層におけるNi付着量は、特に限定されることなく任意の量とすることができる。しかし、表面処理鋼板の溶接性と耐食性をさらに向上させるという観点からは、Ni付着量を鋼板片面当たり200mg/m以上とすることが好ましく、250mg/m以上とすることがより好ましい。一方、前記Ni付着量が2000mg/mを超えると溶接性を向上させる効果が飽和する。そのため、過剰なコストを削減するという観点で、前記Ni付着量を2000mg/m以下とすることが好ましく、1800mg/m以下とすることがより好ましい。
前記Ni含有層のNi付着量は蛍光X線による検量線法で測定する。Ni付着量が既知である複数の鋼板を準備し、Niに由来する蛍光X線強度を事前に測定し、測定した蛍光X線の強度とNi付着量との関係を線形近似して検量線とする。表面処理鋼板のNiに由来する蛍光X線強度を測定し、上述の検量線を用いて前記Ni含有層のNi付着量を測定することができる。
前記Ni含有層の形成は、特に限定されることなく、電気めっき法など、任意の方法で行うことができる。電気めっき法によりNi含有層を形成する場合、任意のめっき浴を用いることができる。使用できるめっき浴としては、例えば、ワット浴、スルファミン酸浴、またはウッド浴などを挙げることができる。Ni含有層としてNi-Fe合金層を形成する場合、電気めっき等の方法により鋼板表面上にNi層を形成した後、焼鈍することによりNi-Fe合金層を形成できる。
前記Ni含有層の表面側にはNi酸化物を含有してもよいし、全く含有しなくてもよいが、塗料2次密着性と耐硫化黒変性をさらに向上させる観点からは、Ni含有層の表面側にはNi酸化物を含有しないことが好ましい。Ni酸化物はNiめっき後の水洗水中に含有される溶存酸素などによっても形成されうるが、後述する前処理などで前記Ni含有層に含有するNi酸化物を除去することが好ましい。
[金属Cr層]
前記Ni含有層上には金属Cr層が存在する。
前記金属Cr層の付着量は特に限定されず、任意の値とすることができる。しかし、耐食性をさらに向上させるという観点からは、金属Cr層の付着量を、前記鋼板の片面当たりのCr付着量で2mg/m以上とすることが好ましく、4mg/m以上とすることがより好ましい。一方、前記金属Cr層の付着量の上限についても特に限定されないが、前記金属Cr層の付着量が過剰であると、接触抵抗が大きくなり、溶接性が損なわれる場合がある。そのため、より安定して溶接性を確保するという観点からは、金属Cr層の付着量を、前記鋼板の片面当たりのCr付着量で40mg/m未満とすることが好ましく、35mg/m以下とすることがより好ましい。
なお、金属Cr層におけるCr付着量は、蛍光X線法により測定することができる。具体的には、まず、蛍光X線装置を用いて表面処理鋼板におけるCr量(全Cr量)を測定する。次いで、前記表面処理鋼板に、90℃の7.5N-NaOH中に10分間浸漬するアルカリ処理を施した後、十分に水洗する。その後、再び、蛍光X線装置を用いてCr量(アルカリ処理後Cr量)を測定する。さらに、金属Cr層と酸化Cr層を剥離した後の鋼板について、蛍光X線装置を用いて、Cr量(原板Cr量)を測定する。金属Cr層と酸化Cr層の剥離には、例えば、市販されている塩酸系などのクロムめっき剥離剤が使用できる。アルカリ処理後Cr量から原板Cr量を差し引いた値を、金属Cr層の前記鋼板の片面当たりのCr付着量とする。なお、前記全Cr量は、後述する酸化Cr層としてのCr付着量の算出に用いる。
前記金属Cr層を構成する金属Crは、非晶質Crであってもよく、結晶性Crであってもよい。すなわち、前記金属Cr層は、非晶質Crおよび結晶性Crの一方または両方を含有することができる。後述する方法で製造される金属Cr層は、一般的には非晶質Crを含有しており、さらに結晶性Crを含有している場合もある。金属Cr層の形成メカニズムは明らかではないが、非晶質Crが形成される際に部分的に結晶化が進むことで、非晶質と結晶相の両者を含む金属Cr層となると考えられる。
金属Cr層に含まれる非晶質Crおよび結晶性Crの合計に対する結晶性Crの割合は、0%以上80%以下であることが好ましく、0%以上50%以下であることがより好ましい。ここで、前記結晶性Crの割合は、金属Cr層を走査型透過電子顕微鏡(STEM)で観察することにより測定することができる。具体的には、まず、1nm以下の分解能が得られるビーム径にて、200万倍から1000万倍程度の倍率でSTEM像を取得する。得られたSTEM像において、格子縞の確認できる領域を結晶相とし、メイズパターンの確認できる領域を非晶質として、両者の面積を求める。その結果から、非晶質Crおよび結晶性Crの合計面積に対する結晶性Crの面積の比を算出する。
[酸化Cr層]
前記金属Cr層上には酸化Cr層が存在する。前記酸化Cr層の付着量は特に限定されず、任意の値とすることができる。しかし、耐食性をさらに向上させるという観点からは、酸化Cr層の付着量を、鋼板の片面当たりのCr付着量で0.1mg/m以上とすることが好ましい。一方、前記酸化Cr層の付着量の上限についても特に限定されないが、前記酸化Cr層の付着量が過剰であると、接触抵抗が大きくなり、溶接性が損なわれる場合がある。そのため、より安定して溶接性を確保するという観点からは、酸化Cr層の付着量を、鋼板の片面当たりのCr付着量で15.0mg/m以下とすることが好ましい。なお、酸化Cr層におけるCr付着量は、蛍光X線法により測定することができる。具体的には、前述の蛍光X線装置を用いて測定した全Cr量からアルカリ処理後Cr量を差し引くことにより、酸化Cr層におけるCr付着量を求めることができる。
上記金属Cr層および酸化Cr層の一方または両方には、Cが含有されていてもよい。しかし、金属Cr層および酸化Cr層中にCを過剰に含有すると、溶接を行う際に溶接熱影響部が硬化し、割れを生じる場合がある。そのため、金属Cr層中のC含有量は、Crに対する原子比率として、40%以下であることが好ましく、35%以下であることがより好ましい。同様に、酸化Cr層中のC含有量についても、Crに対する原子比率として、40%以下であることが好ましく、35%以下であることがより好ましい。金属Cr層および酸化Cr層はCを含んでいなくてもよく、したがって、金属Cr層および酸化Cr層に含まれるC含有量の下限は、それぞれ、Crに対する原子比率で0%であってよい。
金属Cr層中のC含有量および酸化Cr層中のC含有量は、それぞれ、X線光電子分光(XPS)により測定することができる。XPSによるC含有量の測定は、具体的には、XPSにより測定したCr2pとC1sのナロースペクトルの積分強度から、相対感度係数法でC原子比率およびCr原子比率を求め、C原子比率/Cr原子比率を算出することにより実施できる。
なお、表面処理鋼板の最表層からはコンタミネーション由来のCが検出されてしまうため、酸化Cr層中のCの含有量を正確に測定するために最表層からSiO換算で例えば0.2nmの深さ以上スパッタした後に測定を行えばよい。一方、金属Cr層中のCの含有量は、上述したアルカリ処理後の最表層から金属Cr層の厚さの1/2の深さまでスパッタした後に測定すればよい。
上記の測定に用いる金属Cr層の厚みは、以下の手順で求めることができる。まず、アルカリ処理後の最表層から深さ方向に1nmごとにXPSによる測定を行い、Cr原子比率およびNi原子比率を測定する。次いで、アルカリ処理後の最表層からの深さに対する、Ni原子比率/Cr原子比率の関係を近似する3次式を最小二乗法により求める。得られた3次式を用いて、Ni原子比率/Cr原子比率が1となる最表層からの深さを算出し、これを金属Cr層の厚みとする。
前記測定には、例えば、アルバックファイ社製の走査型X線光電子分光分析装置PHI X-toolを使用することができる。X線源はモノクロAlKα線、電圧は15kV、ビーム径は100μmφ、取出角は45°とし、スパッタ条件はArイオンを加速電圧1kV、スパッタレートはSiO換算で1.50nm/minとすればよい。
金属Cr層および酸化Cr層にCが含有されるメカニズムは明らかではないが、鋼板に金属Cr層と酸化Cr層を形成する工程で、電解液中に含まれるカルボン酸化合物が分解し、皮膜に取り込まれると考えられる。
金属Cr層および酸化Cr層中のCの存在形態は特に限定されないが、析出物として存在すると局部電池の形成によって耐食性が低下する場合がある。このため明確な結晶構造を有する炭化物やクラスターの体積分率の和が10%以下であることが好ましく、まったく含有しない(0%)ことがより好ましい。炭化物の有無は例えば走査型電子顕微鏡(SEM)や透過型電子顕微鏡(TEM)に付属のエネルギー分散型X線分光(EDS)や波長分散型X線分光(WDS)による組成分析により確認することが出来る。クラスターの有無に関しては、例えば3次元アトムプローブ(3DAP)による3次元組成分析後のデータに対して、クラスター解析を行う事で確認することができる。
金属Cr層にはOが含有されていてもよい。金属Cr層中のO含有量の上限は特に限定されないが、O含有量が高い場合には酸化Crが析出し、局部電池の形成によって耐食性が低下する場合がある。このため、O含有量はCrに対する原子比率として、30%以下であることが好ましく、25%以下であることがより好ましい。金属Cr層はOを含んでいなくてもよく、したがって、金属Cr層に含まれるCrに対する下限は特に限定されず、0%であってもよい。
金属Cr層中のOの含有量は、SEMやTEMに付属のEDSおよびWDS、もしくは3DAPなどの組成分析により測定することが出来る。
上記金属Cr層および酸化Cr層の一方または両方には、Niが含有されていてもよい。金属Cr層中のNi含有量の上限は特に限定されないが、Crに対する原子比率として、100%未満であることが好ましい。同様に、酸化Cr層中のNi含有量の上限は特に限定されないが、Crに対する原子比率として、100%未満であることが好ましい。金属Cr層および酸化Cr層はNiを含んでいなくてもよく、したがって、前記NiのCrに対する原子比率の下限は特に限定されず、0%であってよい。
表面処理鋼板の表面、すなわち酸化Cr層の表面におけるNi含有量は特に限定されないが、低ければ低いほどフィルム湿潤密着性と塗料2次密着性に優れる。そのため、表面処理鋼板の表面におけるNiの、Crに対する原子比率を100%以下とすることが好ましく、80%以下とすることがより好ましい。
金属Cr層および酸化Cr層中のNiの含有量は、Cの含有量と同様、XPSにより測定することができる。表面処理鋼板の表面、すなわち酸化Cr層の表面におけるNiの、Crに対する原子比率は、表面処理鋼板の表面のXPSにより測定することができる。原子比率の算出にはCr2pとNi2pのナロースペクトルを用いればよい。
金属Cr層および酸化Cr層にNiが含有されるメカニズムは明らかではないが、鋼板に金属Cr層と酸化Cr層を形成する工程で、Ni含有層に含まれるNiが電解液に微量に溶解し、Niが皮膜に取り込まれると考えられる。
上記金属Cr層および酸化Cr層には、Cr、O、Ni、Cと後述するK、Na、MgおよびCa以外には、水溶液中に含まれるCu、Zn、Sn、Fe等の金属不純物や、S、N、Cl、Br等が含まれる場合がある。しかし、それらの元素が存在すると、フィルム湿潤密着性と塗料2次密着性が低下する場合がある。そのため、金属Cr層および酸化Cr層中のFeの含有量は、Crに対する原子比率として、10%以下であることが好ましく、まったく含有しない(0%)ことがより好ましい。Cr、O、Ni、C、K、Na、Mg、Ca、Fe以外の元素の合計は、Crに対する原子比率として、3%以下であることが好ましく、まったく含有しない(0%)ことがより好ましい。上記元素の含有量は、特に限定されないが、例えば、Cの含有量と同様にXPSで測定することができる。特に、Fe元素の含有量をXPSで測定する場合は、Fe2pのナロースペクトルを用いるが、NiLLMピークと重なりFe含有量の定量値が実際より高めに算出される場合があるため、上述したように、Fe含有量は他の元素とは異なり、Crに対する原子比率として、10%以下に制御することが好ましい。
上記金属Cr層および酸化Cr層は、クラックフリーであることが好ましい。クラックの有無は、例えば、皮膜断面を収束イオンビーム(FIB)等で切り出し、透過型電子顕微鏡(TEM)により直接観察することで確認できる。
また、本発明の表面処理鋼板の表面粗さは、金属Cr層および酸化Cr層の形成で大きく変化せず、通常は使用した下地鋼板の表面粗さとほぼ同等である。表面処理鋼板の表面粗さは特に限定されないが、算術平均粗さRaが0.1μm以上4μm以下であることが好ましい。また、十点平均粗さRzは0.2μm以上6μm以下であることが好ましい。
[水接触角]
本発明においては、表面処理鋼板の水接触角が50°以下であることが重要である。水接触角が50°以下となるよう表面処理鋼板の表面を高度に親水化することにより、塗料に含まれる樹脂と表面処理鋼板との間に強固な水素結合が形成され、その結果、湿潤環境下においても高い密着性を得ることができる。塗料2次密着性をさらに向上させるという観点からは、水接触角を48°以下とすることが好ましく、45°以下とすることがより好ましい。前記水接触角は、密着性向上の観点からは低ければ低いほど好ましいため、その下限はとくに限定されず、0°であってもよい。しかし、製造しやすさなどの観点からは、3°以上とすることが好ましく、6°以上とすることがより好ましい。なお、前記水接触角は、実施例に記載した方法で測定することができる。
表面処理鋼板の表面が親水化するメカニズムは明らかではないが、電解液中で陰極電解することによって金属Cr層と酸化Cr層を形成する際に、電解液に含まれるカルボン酸あるいはカルボン酸塩が分解し、皮膜に取り込まれることによって、カルボキシル基等の親水性の官能基が表面に付与されるためだと考えられる。ただし、後述するように特定の条件で電解液を調製しなかった場合は、電解液にカルボン酸あるいはカルボン酸塩が含有されていたとしても、表面処理鋼板の表面は親水化しない。表面処理鋼板の表面の親水化に、電解液の調製条件が影響するメカニズムは明らかではないが、後述する条件で適切に電解液を調製した場合は、カルボキシル基等の親水性の官能基が表面に付与されやすいような錯体が形成されるためであると推定している。
なお、特許文献1~5で提案されているような従来の6価クロム浴を用いて製造される表面処理鋼板においては、表層に存在するクロム水和酸化物層の組成が湿潤環境下での塗料またはフィルムに対する密着性に大きく影響を及ぼすことが報告されている。湿潤環境下では、塗膜やフィルム中を浸透してきた水が、塗膜またはフィルムとクロム水和酸化物層との間の界面の接着を阻害する。そのため、親水性であるOH基がクロム水和酸化物層に多く存在する場合は、界面における水の拡張濡れが促進され、接着力が低下すると考えられていた。したがって、従来の表面処理鋼板においては、クロム水和酸化物のオキソ化の進行によるOH基の減少、すなわち表面の疎水化によって湿潤環境下での塗料やフィルムとの密着性を向上させていた。
これに対して本発明は、表面を超親水性に近いレベルまで親水化させることによって、塗膜と表面処理鋼板との間の界面に強固な水素結合を形成させ、それにより湿潤環境下でも高い密着性を維持するという、上述した従来技術とはまったく逆の技術的思想に基づくものである。
[吸着元素の原子比率]
上述したように、本発明の表面処理鋼板は水接触角が50°以下という高い親水性を有しており、その表面は化学的に活性である。そのため、前記表面処理鋼板の表面には、K、Na、Mg、およびCaなどの元素のカチオンが吸着しやすい。本発明者らは、単純に水接触角を50°以下とするのみでは、吸着した前記カチオンの影響のため、本来の密着性が発揮されないことを見出した。本発明では、表面処理鋼板の表面に吸着した前記カチオンの量を低減することにより、樹脂に対する密着性を向上させ、優れたフィルム湿潤密着性と塗料2次密着性を実現することができる。
具体的には、表面処理鋼板の表面に吸着したK、Na、Mg、およびCaの、Crに対する原子比率の合計を、5.0%以下、好ましくは3.0%以下、より好ましくは1.0%以下とする。前記原子比率の合計は低ければ低いほどよいため、下限は特に限定されず、0%であってよい。前記原子比率の合計は、実施例に記載した方法で測定することができる。
[製造方法]
本発明の一実施形態における表面処理鋼板の製造方法では、以下に説明する方法で、上記特性を備えた表面処理鋼板を製造することができる。
本発明の一実施形態における表面処理鋼板の製造方法は、鋼板の少なくとも一方の面に、Ni含有層と、前記Ni含有層上に配置された金属Cr層と、前記金属Cr層上に配置された酸化Cr層とを有する表面処理鋼板の製造方法であって、次の(1)~(3)の工程を含む。以下、各工程について説明する。
(1)3価クロムイオンを含有する電解液を調製する電解液調製工程
(2)Ni含有層を有する鋼板を前記電解液中で陰極電解処理する陰極電解処理工程
(3)前記陰極電解処理後の鋼板を少なくとも1回水洗する水洗工程
[電解液調製工程]
(i)混合
上記電解液調製工程では、まず、3価クロムイオン源、カルボン酸化合物、および水を混合して水溶液とする。
前記3価クロムイオン源としては、3価クロムイオンを供給できる化合物であれば、任意のものを使用できる。前記3価クロムイオン源としては、例えば、塩化クロム、硫酸クロム、および硝酸クロムからなる群より選択される少なくとも1つを使用することができる。
前記水溶液における3価クロムイオン含有源の含有量は特に限定されないが、3価クロムイオン換算で3g/L以上50g/L以下であることが好ましく、5g/L以上40g/L以下であることがより好ましい。前記3価クロムイオン源としては、Atotech社のBluCr(登録商標)TFS Aを使用することができる。
前記カルボン酸化合物としては、特に限定されることなく、任意のカルボン酸化合物を使用できる。前記カルボン酸化合物は、カルボン酸およびカルボン酸塩の少なくとも一方であってよく、脂肪族カルボン酸および脂肪族カルボン酸の塩の少なくとも一方であることが好ましい。前記脂肪族カルボン酸の炭素数は、1~10であることが好ましく、1~5であることがより好ましい。また、前記脂肪族カルボン酸塩の炭素数は、1~10であることが好ましく、1~5であることが好ましい。前記カルボン酸化合物の含有量は特に限定されないが、0.1mol/L以上5.5mol/L以下であることが好ましく、0.15mol/L以上5.3mol/L以下であることがより好ましい。前記カルボン酸化合物としては、Atotech社のBluCr(登録商標)TFS Bを使用することができる。
本発明では、電解液を調製するための溶媒として水を使用する。前記水としては、イオン交換樹脂等であらかじめカチオンを除去したイオン交換水や、蒸留水のような純度の高い水を用いることが好ましい。後述するように、電解液中に含まれるK、Na、Mg、およびCaの量を低減するという観点からは、電気伝導度が30μS/m以下である水を使用することが好ましい。
表面処理鋼板の表面に吸着するK、Na、Mg、およびCaを減少させるため、上述の水溶液中には、K、Na、Mg、およびCaを、意図的に含有しないことが好ましい。そのため、上述の3価クロムイオン源、カルボン酸化合物、および以下に詳述するpH調整剤などの、水溶液に添加する成分には、K、Na、Mg、およびCaを含まないことが好ましい。pH調整剤としては、pH低下には塩酸、硫酸、硝酸等を使用し、pH上昇にはアンモニア水等を使用することが好ましい。水溶液や電解液中に不可避的に混入したK、Na、Mg、およびCaは許容されるが、K、Na、Mg、およびCaの合計濃度は2.0mol/L以下であることが好ましく、1.5mol/L以下であることがより好ましく、1.0mol/L以下であることがさらに好ましい。
陰極電解処理工程における陽極での6価クロム生成を効果的に抑制し、上述の電解液の安定性を向上させるため、前記水溶液中にはさらに少なくとも1種のハロゲン化物イオンを含有させることが好ましい。ハロゲン化物イオンの含有量は特に限定されないが、0.05mol/L以上3.0mol/L以下であることが好ましく、0.10mol/L以上2.5mol/L以下であることがより好ましい。前記ハロゲン化物イオンを含有させるには、Atotech社のBluCr(登録商標)TFS C1およびBluCr(登録商標)TFS C2を使用することができる。
上述の水溶液には、6価クロムを添加しないことが好ましい。陰極電解処理工程において陽極で形成する極微量の6価クロムを除き、上述の電解液中には6価クロムを含有しない。陰極電解処理工程において陽極で形成する極微量の6価クロムは3価クロムに還元されるため、電解液中の6価クロム濃度は増加しない。
上述の水溶液は、3価クロムイオン以外の金属イオンを意図的に添加しないことが好ましい。上記金属イオンは限定されないが、Cuイオン、Znイオン、Niイオン、Feイオン、Snイオン等が挙げられ、それぞれ、0mg/L以上40mg/L以下であることが好ましく、0mg/L以上20mg/L以下であることがさらに好ましく、0mg/L以上10mg/L以下であることが最も好ましい。上記金属イオンのうち、Niイオンについては、陰極電解処理工程において上述の電解液中への鋼板の浸漬で電解液中に溶解し、皮膜中に共析することがあるが、フィルム湿潤密着性と塗料2次密着性と溶接性には影響しない。Niイオンは0mg/L以上40mg/L以下であることが好ましく、0mg/L以上20mg/L以下であることがさらに好ましく、0mg/L以上10mg/L以下であることが最も好ましい。なお、Niイオン濃度は、建浴時に上記範囲とすることが好ましいが、陰極電解処理工程においても、電解液中のNiイオン濃度を上記範囲に維持することが好ましい。Niイオンは、上記の範囲内で制御すれば、金属Cr層と酸化Cr層の形成を阻害せず、必要な厚さの金属Cr層および酸化Cr層を形成することができる。
(ii)pHと温度の調整
次に、前記水溶液のpHを4.0~7.0に調整するとともに、前記水溶液の温度を40~70℃に調整することによって前記電解液を調製する。上述した表面処理鋼板を製造するためには、単に3価クロムイオン源とカルボン酸化合物を水に溶解させるだけでは不十分であり、上記のとおりpHと温度を適正に制御することが重要である。
pH:4.0~7.0
前記電解液調製工程においては、混合後の水溶液のpHを4.0~7.0に調整する。pHが4.0未満または7.0超であると、得られた電解液を用いて製造した表面処理鋼板の水接触角は50°より高くなる。pHは、4.5~6.5とすることが好ましい。
温度:40~70℃
前記電解液調製工程では、混合後の水溶液の温度を40~70℃に調整する。温度が40℃未満、あるいは70℃超であると、得られた電解液を用いて製造した表面処理鋼板の水接触角が50°より大きくなる。なお、40~70℃の温度域での保持時間は特に限定されない。
以上の手順により、次の陰極電解処理工程において使用する電解液を得ることができる。なお、上記の手順で製造された電解液は室温で保管することができる。
[陰極電解処理工程]
次に、少なくとも一方の面にNi含有層を有する鋼板を上記電解液調製工程で得られた電解液中で陰極電解処理する。前記陰極電解処理により、前記Ni含有層上に金属Cr層と酸化Cr層とを形成することができる。
陰極電解処理を行う際の電解液の温度は、特に限定されないが、金属Cr層と酸化Cr層を効率的に形成するために、40℃以上70℃以下の温度域とすることが好ましい。上述した表面処理鋼板を安定的に製造するためという観点からは、陰極電解処理工程において、電解液の温度をモニターし、上記の温度域に維持することが好ましい。
陰極電解処理を行う際の電解液のpHは特に限定されないが、4.0以上とすることが好ましく、4.5以上とすることがより好ましい。また、前記pHは、7.0以下とすることが好ましく、6.5以下とすることがより好ましい。上述した表面処理鋼板を安定的に製造するためという観点からは、陰極電解処理工程において、電解液のpHをモニターし、上記pHの範囲に維持することが好ましい。
上記陰極電解処理における電流密度は特に限定されず、所望の表面処理層が形成されるよう適宜調整すればよい。しかし、過度に電流密度が高いと、金属Cr層中のC含有量が増加し、溶接性を劣化させる場合がある。そのため、電流密度は5.0A/dm未満とすることが好ましく、3.0A/dm以下とすることがより好ましい。電流密度の下限については特に限定されないが、過度に電流密度が低いと電解液中で6価Crが生成し、浴の安定性が崩れるおそれがある。そのため、電流密度は0.01A/dm以上とすることが好ましく、0.03A/dm以上とすることがより好ましい。
鋼板に陰極電解処理を施す回数は特に限定されず、任意の回数とすることができる。言い換えると、1また2以上の任意の数のパスを有する電解処理装置を用いて陰極電解処理を行うことができる。例えば、鋼板(鋼帯)を搬送しながら複数のパスを通過させることによって連続的に陰極電解処理を実施することも好ましい。なお、陰極電解処理の回数(すなわち、パス数)を増加させると、それに見合った数の電解槽が必要となるため、陰極電解処理の回数(パス数)は20以下とすることが好ましい。
1パスあたりの電解時間は、特に限定されない。しかし、1パスあたりの電解時間が長すぎると、鋼板の搬送速度(ラインスピード)が下がって生産性が低下する。そのため、1パス当たりの電解時間は5秒以下とすることが好ましく、3秒以下とすることがより好ましい。1パスあたりの電解時間の下限についても特に限定されないが、電解時間を過度に短くすると、それに合わせてラインスピードを上げる必要が生じ、制御が困難となる。そのため、1パス当たりの電解時間は0.005秒以上とすることが好ましく、0.01秒以上とすることがより好ましい。
陰極電解処理によって形成される金属Cr量は、電流密度と電解時間とパス数の積で表されるトータルの電気量密度で制御することができる。上述したように、金属Cr量が過度に多いと、接触抵抗が大きくなり、溶接性が損なわれる場合があり、金属Cr層が過度に少ないと耐食性が損なわれる場合があるため、金属Cr層の前記鋼板の片面当たりのCr付着量を2mg/m以上40mg/m未満とするようにトータルの電気量密度を制御することが好ましい。ただし、金属Cr層量とトータルの電気量密度の関係は、陰極電解処理工程に使用する装置の構成で変わるため、実際の電解処理条件は装置に合わせて調整すればよい。
陰極電解処理を実施する際に使用する陽極の種類は特に限定されず、任意の陽極を使用できる。前記陽極としては、不溶性陽極を用いることが好ましい。前記不溶性陽極としては、Tiに白金族金属および白金族金属の酸化物の一方または両方を被覆した陽極、ならびにグラファイト陽極からなる群より選択される少なくとも1つを用いることが好ましい。より具体的には、前記不溶性陽極としては、基体としてのTiの表面に、白金、酸化イリジウム、または酸化ルテニウムを被覆した陽極が例示される。
上記陰極処理工程では、鋼板への金属Cr層と酸化Cr層の形成、液の持ち出しや持ち込み、水の蒸発等の影響で、電解液の濃度は常に変化する。陰極電解処理工程における電解液の濃度変化は、装置の構成や製造条件で変わるため、表面処理鋼板をより安定的に製造するという観点からは、陰極電解処理工程において電解液に含まれる成分の濃度をモニターし、上述した濃度範囲に維持することが好ましい。
なお、前記陰極電解処理に先だって、Ni含有層を有する鋼板に対して任意に前処理を施すことができる。前処理を行うことにより、Ni含有層の表面に存在する自然酸化膜を除去し、表面を活性化することができる。前記前処理の方法は特に限定されず、任意の方法を用いることができるが、例えば希硫酸への浸漬による酸洗などを行うことができる。
前記前処理を行った後には、表面に付着した前処理液を除去する観点で水洗することが好ましい。
また、下地鋼板の表面にNi含有層を形成する際には、下地鋼板に対して前処理を施すことが好ましい。前記前処理としては、任意の処理を行うことができるが、脱脂、酸洗、および水洗の少なくとも1つを行うことが好ましい。
脱脂を行うことにより、鋼板に付着した圧延油や防錆油等を除去することができる。前記脱脂は、特に限定されず任意の方法で行うことができる。脱脂後は鋼板表面に付着した脱脂処理液を除去するために水洗を行うことが好ましい。
また、酸洗を行うことにより、鋼板の表面に存在する自然酸化膜を除去し、表面を活性化することができる。前記酸洗は、特に限定されず任意の方法で行うことができる。酸洗後は鋼板表面に付着した酸洗処理液を除去するために水洗することが好ましい。
[水洗工程]
次に、上記陰極電解処理後の鋼板を少なくとも1回水洗する。水洗を行うことにより、鋼板の表面に残留している電解液を除去することができる。前記水洗は、特に限定されることなく任意の方法で行うことができる。例えば、陰極電解処理を行うための電解槽の下流に水洗タンクを設け、陰極電解処理後の鋼板を連続的に水に浸漬することができる。また、陰極電解処理後の鋼板にスプレーで水を吹き付けることによって水洗を行ってもよい。
水洗を行う回数は特に限定されず、1回でも、2回以上でもよい。しかし、水洗タンクの数が過剰に多くなることを避けるため、水洗の回数は5回以下とすることが好ましい。また、水洗処理を2回以上行う場合、各水洗は、同じ方法で行ってもよく、異なる方法で行ってもよい。
本発明においては、前記水洗処理工程の少なくとも最後の水洗において、電気伝導度100μS/m以下の水を使用することが重要である。これにより、表面処理鋼板の表面に吸着するK、Na、Mg、およびCaの量を低減し、その結果として密着性を向上させることができる。電気伝導度100μS/m以下の水は、任意の方法で製造することができる。前記電気伝導度100μS/m以下の水は、例えば、イオン交換水または蒸留水であってよい。一方、前記電気伝導度の下限はとくに限定されないが、過度の低減は製造コストの増加を招く。そのため、製造コストの観点からは、前記電気伝導度を1μS/m以上とすることが好ましく、5μS/m以上とすることがより好ましく、10μS/m以上とすることがさらに好ましい。
なお、前記水洗処理工程において2回以上の水洗を行う場合、最後の水洗に電気伝導度100μS/m以下の水を使用すれば上述した効果が得られるため、最後の水洗以外の水洗には、任意の水を用いることができる。最後の水洗以外の水洗にも電気伝導度100μS/m以下の水を用いても良いが、コストを低減するという観点からは、最後の水洗にのみ電気伝導度100μS/m以下の水を使用し、最後の水洗以外の水洗には、水道水、工業用水など、通常の水を使用することが好ましい。
表面処理鋼板の表面に吸着するK、Na、Mg、およびCaの量をさらに低減するという観点からは、最後の水洗に使用する水の電気伝導度は50μS/m以下とすることが好ましく、30μS/m以下とすることがより好ましい。
水洗処理に用いる水の温度は、特に限定されず、任意の温度であってよい。しかし、過度に温度が高いと水洗設備に過剰な負担がかかるため、水洗に使用する水の温度は95℃以下とすることが好ましい。一方、水洗に使用する水の温度の下限も特に限定されないが、0℃以上であることが好ましい。前記水洗に使用する水の温度は室温であってもよい。
水洗処理1回あたりの水洗時間は、特に限定されないが、水洗処理の効果を高めるという観点からは0.1秒以上が好ましく、0.2秒以上がさらに好ましい。また、水洗処理の1回あたりの水洗時間の上限も、特に限定されないが、連続ラインで製造を行う場合は、ラインスピードが下がって生産性が低下するという理由から、10秒以下が好ましく、8秒以下がさらに好ましい。
上記水洗処理工程の後には、任意に乾燥を行ってもよい。乾燥の方式は特に限定されず、例えば、通常のドライヤーや電気炉乾燥方式が適用できる。乾燥処理の際の温度としては、100℃以下が好ましい。上記範囲内であれば、表面処理皮膜の変質を抑制できる。なお、下限は特に限定されないが、通常、室温程度である。
本発明の表面処理鋼板の用途は特に限定されないが、例えば、食缶、飲料缶、ペール缶、18リットル缶など種々の容器の製造に使用される容器用表面処理鋼板として特に好適である。
本発明の効果を確認するために、以下に述べる手順で表面処理鋼板を製造し、その特性を評価した。
(電解液調製工程)
まず、表1に示す組成A~Gを有する電解液を、表1に示した各条件で調製した。すなわち、表1に示した各成分を水と混合して水溶液とし、次いで前記水溶液を表1に示したpHおよび温度に調整した。なお、電解液Gは、特許文献6の実施例で使用されている電解液に相当する。pHの上昇にはいずれもアンモニア水を使用し、pHの低下には電解液A、B、Gには硫酸、電解液C、Dには塩酸、電解液E、Fには硝酸を使用した。
(Ni含有層の形成)
一方、鋼板に両面に電気Niめっきを施して、前記鋼板の両面にNi含有層としてのNiめっき層を備えるNiめっき鋼板を得た。前記電気Niめっきには、ワット浴を使用した。また、前記電気Niめっきに先だって、前記鋼板には電解脱脂、水洗、希硫酸への浸漬による酸洗、および水洗を順次施した。前記電気Niめっきにおいては、電気量密度を変えることによりNiめっき層のNi付着量を表2、3に示す値とした。前記Ni含有層のNi付着量は、上述した蛍光X線による検量線法で測定した。Niめっき層形成後は水洗を施し、キープウェットのまま次の陰極電解処理工程に供した。なお、一部の実施例においては、Ni含有層としてNi-Fe合金層を形成した。すなわち、上述した方法によりNiめっき層を形成した後、焼鈍することによりNi-Fe合金層を形成した。
前記鋼板としては、Cr含有量が表2、3に示す値であり、板厚が0.17mmである缶用鋼板(T4原板)を使用した。
(陰極電解処理工程)
次に、前記Niめっき鋼板に対して、表2、3に示す条件で陰極電解処理を施した。なお、陰極電解処理の際の電解液は表1に示したpHと温度に保持した。陰極電解処理時の電気量密度は表2、3に示す値であり、電解時間とパス数は適宜変化させた。陰極電解処理時の陽極としては、基体としてのTiに酸化イリジウムをコーティングした不溶性陽極を使用した。陰極電解処理を行った後は、水洗処理を行い、ブロアを用いて室温で乾燥を行った。
(水洗工程)
次いで、上記陰極電解処理後の鋼板に水洗処理を施した。前記水洗処理は、表2、3に示した条件で1~5回行った。各回の水洗の方法と、使用した水の電気伝導度は表2、3に示したとおりとした。
得られた表面処理鋼板のそれぞれについて、前述の方法で金属Cr層の前記鋼板の片面当たりのCr付着量、酸化Cr層の前記鋼板の片面当たりのCr付着量を測定した。同様に、前述した方法で金属Cr層のC原子比率を測定した。なお、表4、5に示した金属Cr層の「C原子比率」は、金属Cr層中のC含有量を、Crに対する原子比率で表した値である。また、得られた表面処理鋼板のそれぞれについて、水接触角、吸着元素量、および最表面におけるNiの原子比率下記の方法で測定した。測定結果は表4、5に示す。
(水接触角)
水接触角は、協和界面科学社製の自動接触角計CA-VP型を用いて測定した。表面処理鋼板の表面温度を20℃±1℃とし、水は20±1℃の蒸留水を使用し、2μlの液滴量で蒸留水を表面処理鋼板の表面に滴下し、1秒後にθ/2法によって接触角を測定し、5滴分の接触角の相加平均値を水接触角とした。
(吸着元素量)
表面処理鋼板の表面に吸着したK、Na、Mg、およびCaの、Crに対する原子比率の合計を、XPSにより測定した。測定においては、スパッタは行わなかった。試料最表面のK2p、Na1s、Ca2p、Mg1s、およびCr2pのナロースペクトルの積分強度から、相対感度係数法により原子比率を定量化し、(K原子比率+Na原子比率+Ca原子比率+Mg原子比率)/Cr原子比率を算出した。XPSの測定には、アルバックファイ社製走査型X線光電子分光分析装置PHI X-toolを用い、X線源はモノクロAlKα線、電圧は15kV、ビーム径は100μmφ、取出角は45°とした。
(最表面におけるNiの原子比率)
表面処理鋼板の最表面におけるNi含有量のCrに対する原子比率を、XPSにより測定した。測定においては、スパッタは行わなかった。試料最表面のNi2pおよびCr2pのナロースペクトルの積分強度から、相対感度係数法により原子比率を定量化し、Ni原子比率/Cr原子比率を算出した。XPSの測定には、アルバックファイ社製走査型X線光電子分光分析装置PHI X-toolを用い、X線源はモノクロAlKα線、電圧は15kV、ビーム径は100μmφ、取出角は45°とした。
さらに、得られた表面処理鋼板について、以下の方法でフィルム湿潤密着性、塗料2次密着性、溶接性を評価した。評価結果を表4、5に併記する。
(サンプルの作製)
フィルム耐食性およびフィルム湿潤密着性の評価に使用するサンプルとしてのラミネート鋼板を、以下の手順で作製した。
得られた表面処理鋼板の両面に、延伸倍率:3.1×3.1、厚さ25μm、共重合比12モル%、融点224℃のイソフタル酸共重合ポリエチレンテレフタラートフィルムをラミネートしてラミネート鋼板を作製した。前記ラミネートは、樹脂フィルムの結晶化度が10%以下となる条件、具体的には、鋼板の送り速度:40m/min、ゴムロールのニップ長:17mm、圧着後水冷までの時間:1secで実施した。なお、樹脂フィルムの結晶化度は、JIS K7112に準拠した密度勾配管法により求めた。また、ニップ長とは、ゴムロールと鋼板が接する部分の搬送方向の長さのことである。
また、塗装耐食性および塗料2次密着性の評価に使用するサンプルとしての塗装鋼板を、以下の手順で作製した。
得られた表面処理鋼板の表面に、エポキシフェノール系塗料を塗布し、210℃で10分間の焼付を行って塗装鋼板を作製した。塗装の付着量は50mg/dmとした。
(フィルム耐食性、塗装耐食性)
作製したラミネート鋼板のフィルム面および塗装鋼板の塗装面に、カッターを用いて地鉄(鋼板)に達する深さのクロスカットを入れた。クロスカットを入れたラミネート鋼板および塗装鋼板を、1.5質量%クエン酸と1.5質量%食塩とを含有する混合水溶液からなる55℃の試験液に、96時間浸漬した。浸漬後、洗浄および乾燥をした後、ラミネート鋼板のフィルム面、および塗装鋼板の塗装面にセロハン粘着テープを貼り付け、引き剥がすテープ剥離を行った。フィルム耐食性については、ラミネート鋼板のクロスカット部の任意の4箇所についてフィルム剥離幅(カット部から広がる左右の合計幅)を測定し、4箇所の平均値を求め、腐食幅とみなした。塗装耐食性については、塗装鋼板のクロスカット部の任意の4箇所について塗装剥離幅(カット部から広がる左右の合計幅)を測定し、4箇所の平均値を求め、腐食幅とみなした。フィルム耐食性および塗装耐食性は、下記の4水準で評価した。実用上、評価が1~3であれば、耐食性に優れるといえる。
1:腐食幅0.3mm未満
2:腐食幅0.3mm以上0.5mm未満
3:腐食幅0.5mm以上1.0mm未満
4:腐食幅1.0mm以上
(フィルム湿潤密着性)
フィルム湿潤密着性は、上記ラミネート鋼板を使用して、温度130℃、相対湿度100%のレトルト雰囲気における180°ピール試験により評価した。具体的な手順は以下の通りとした。
まず、上記ラミネート鋼板のそれぞれから、表面を対象面とする試験片3枚と、裏面を対象面とする試験片3枚の、合計6枚の試験片を切り出した。各試験片のサイズは、幅30mm、長さ100mmとした。次に、各試験片の長さ方向の上部から15mmの位置で、対象面のフィルムを残し、対象面と反対側の面のフィルムと鋼板とを切断した。切断後の試験片を、鋼板が地面と垂直となるように、試験片の長さ方向で下部から15mmまでの部分を固定し、切断位置より上方の幅30mm、長さ15mmの部位が、対象面のフィルムでつながった状態で垂れ下がるようにした。そして、垂れ下がっている幅30mm長さ15mmの部位に、100gの錘を装着した。
この状態の試験片を、温度130°、相対湿度100%のレトルト雰囲気中に30分間放置した後、大気開放した。対象面のフィルムが表面処理鋼板から剥離した長さをフィルム剥離長とし、各ラミネート鋼板について、6つの試験片におけるフィルム剥離長の平均値を求めた。得られたフィルム剥離長の平均値を用いて、以下の4水準でフィルム湿潤密着性を評価した。実用上、評価が1~3であれば、フィルム湿潤密着性に優れるといえる。
1:剥離長20mm未満
2:剥離長20mm以上40mm未満
3:剥離長40mm以上60mm未満
4:剥離長60mm以上
(塗料2次密着性)
同じ条件で作製した塗装鋼板2枚を、ナイロン接着フィルムを挟んで塗装面が向かい合わせになるように積層した後、圧力2.94×10Pa、温度190℃、圧着時間30秒の圧着条件下で貼り合わせた。その後、これを5mm幅の試験片に分割した。分割した試験片は、1.5質量%クエン酸と1.5質量%食塩とを含有する混合水溶液からなる55℃の試験液に、168時間浸漬した。浸漬後、洗浄および乾燥をした後、分割した試験片の2枚の鋼板を引張試験機で引き剥がし、引き剥がしたときの引張強度を測定した。3つの試験片の平均値を下記の4水準で評価した。実用上、評価が1~3であれば、塗料2次密着性に優れるといえる。
1:2.5kgf以上
2:2.0kgf以上2.5kgf未満
3:1.5kgf以上2.0kgf未満
4:1.5kgf未満
(溶接性)
得られた表面処理鋼板について、塗装焼付工程を想定して210℃×10分の熱処理を施した後、2枚のサンプルを、DR型1質量%Cr-Cu電極(先端径2.3mm、曲率R40mmとして加工した電極)で挟み込み、下記条件で通電した。
・アマダミヤチ社製トランジスタ式電源:MDA-8000A
・溶接ヘッド:AH-200
・加圧:40kgf
・通電時間:1.6msec.(スロープ0.2msec.)
・波形:矩形波
充分な強度が得られる下限電流と、チリ発生しない上限電流とから、適正電流範囲(=上限電流―下限電流)を求め、下記の4水準で評価した。実用上、評価が1~3であれば、溶接性に優れるといえる。
1:2.5kA以上
2:2.0kA以上、2.5kA未満
3:1.5kA以上、2.0kA未満
4:1.5kA未満
表4、5に示した結果から明らかなように、本発明の条件を満たす表面処理鋼板は、いずれも6価クロムを用いず製造したにもかかわらず、優れたフィルム耐食性、塗装耐食性、フィルム湿潤密着性、塗料2次密着性、および溶接性を兼ね備えていた。
Figure 0007327718000001
Figure 0007327718000002
Figure 0007327718000003
Figure 0007327718000004
Figure 0007327718000005

Claims (10)

  1. 鋼板と、
    前記鋼板の少なくとも一方の表面上に配置されたNi含有層と、
    前記Ni含有層上に配置された金属Cr層と、
    前記金属Cr層上に配置された酸化Cr層とを有し、
    水接触角が50°以下であり、
    表面に吸着したK、Na、Mg、およびCaの、Crに対する原子比率の合計が、5.0%以下である、表面処理鋼板。
  2. 前記Ni含有層は、Ni付着量が前記鋼板の片面当たり200mg/m以上2000mg/m以下である、請求項1に記載の表面処理鋼板。
  3. 前記金属Cr層は、Cr付着量が前記鋼板の片面当たり2mg/m以上40mg/m未満である、請求項1または2に記載の表面処理鋼板。
  4. 前記酸化Cr層は、Cr付着量が前記鋼板の片面当たり0.1mg/m以上15.0mg/m以下である、請求項1または2に記載の表面処理鋼板。
  5. 前記酸化Cr層は、Cr付着量が前記鋼板の片面当たり0.1mg/m 以上15.0mg/m 以下である、請求項3に記載の表面処理鋼板。
  6. 前記表面処理鋼板の表面におけるNiの、Crに対する原子比率が、100%以下である、請求項1または2に記載の表面処理鋼板。
  7. 前記表面処理鋼板の表面におけるNiの、Crに対する原子比率が、100%以下である、請求項3に記載の表面処理鋼板。
  8. 前記表面処理鋼板の表面におけるNiの、Crに対する原子比率が、100%以下である、請求項4に記載の表面処理鋼板。
  9. 前記表面処理鋼板の表面におけるNiの、Crに対する原子比率が、100%以下である、請求項5に記載の表面処理鋼板。
  10. 鋼板と、前記鋼板の少なくとも一方の表面上に配置されたNi含有層と、前記Ni含有層上に配置された金属Cr層と、前記金属Cr層上に配置された酸化Cr層とを有する表面処理鋼板の製造方法であって、
    3価クロムイオンを含有する電解液を調製する電解液調製工程と、
    少なくとも一方の面にNi含有層を有する鋼板を前記電解液中で陰極電解処理する陰極電解処理工程と、
    前記陰極電解処理後の鋼板を少なくとも1回水洗する水洗工程とを含み、
    前記電解液調製工程では、
    3価クロムイオン源、カルボン酸化合物、および水を混合し、
    pHを4.0~7.0に調整するとともに、温度を40~70℃に調整することによって前記電解液が調製され、
    前記水洗工程では、
    少なくとも最後の水洗において、電気伝導度100μS/m以下の水を使用する、表面処理鋼板の製造方法。
JP2023532834A 2022-04-08 2023-02-20 表面処理鋼板およびその製造方法 Active JP7327718B1 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2022064801 2022-04-08
JP2022064801 2022-04-08
PCT/JP2023/006069 WO2023195251A1 (ja) 2022-04-08 2023-02-20 表面処理鋼板およびその製造方法

Publications (3)

Publication Number Publication Date
JP7327718B1 true JP7327718B1 (ja) 2023-08-16
JPWO2023195251A1 JPWO2023195251A1 (ja) 2023-10-12
JPWO2023195251A5 JPWO2023195251A5 (ja) 2024-03-15

Family

ID=87563008

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2023532834A Active JP7327718B1 (ja) 2022-04-08 2023-02-20 表面処理鋼板およびその製造方法

Country Status (1)

Country Link
JP (1) JP7327718B1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007129979A1 (en) * 2006-05-09 2007-11-15 Sandvik Intellectual Property Ab Flapper valve material, production and use thereof
JP2009035806A (ja) * 2007-07-12 2009-02-19 Okuno Chem Ind Co Ltd 3価クロムめっき浴及びその製造方法
JP2014513214A (ja) * 2011-05-03 2014-05-29 アトテツク・ドイチユラント・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング 電気めっき浴及び黒色クロム層の製造方法
CN105386089A (zh) * 2015-12-25 2016-03-09 武汉迪赛环保新材料股份有限公司 一种三价铬硬铬电镀溶液及其在硬铬电镀中的应用
JP2020109205A (ja) * 2018-12-13 2020-07-16 ティッセンクルップ ラッセルシュタイン ゲー エム ベー ハー 三価クロム化合物を含む電解液を使用してクロムおよび酸化クロムのコーティングで被覆された金属ストリップの製造方法
JP2020200533A (ja) * 2019-06-06 2020-12-17 Jfeスチール株式会社 缶用鋼板およびその製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007129979A1 (en) * 2006-05-09 2007-11-15 Sandvik Intellectual Property Ab Flapper valve material, production and use thereof
JP2009035806A (ja) * 2007-07-12 2009-02-19 Okuno Chem Ind Co Ltd 3価クロムめっき浴及びその製造方法
JP2014513214A (ja) * 2011-05-03 2014-05-29 アトテツク・ドイチユラント・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング 電気めっき浴及び黒色クロム層の製造方法
CN105386089A (zh) * 2015-12-25 2016-03-09 武汉迪赛环保新材料股份有限公司 一种三价铬硬铬电镀溶液及其在硬铬电镀中的应用
JP2020109205A (ja) * 2018-12-13 2020-07-16 ティッセンクルップ ラッセルシュタイン ゲー エム ベー ハー 三価クロム化合物を含む電解液を使用してクロムおよび酸化クロムのコーティングで被覆された金属ストリップの製造方法
JP2020200533A (ja) * 2019-06-06 2020-12-17 Jfeスチール株式会社 缶用鋼板およびその製造方法

Also Published As

Publication number Publication date
JPWO2023195251A1 (ja) 2023-10-12

Similar Documents

Publication Publication Date Title
JP5884947B2 (ja) Niめっき鋼板及びNiめっき鋼板の製造方法
JP5760355B2 (ja) 容器用鋼板
JP7070823B1 (ja) 表面処理鋼板およびその製造方法
WO2022138006A1 (ja) 表面処理鋼板およびその製造方法
TW201641705A (zh) 表面處理鋼板、金屬容器及表面處理鋼板之製造方法
JP7327718B1 (ja) 表面処理鋼板およびその製造方法
JP6098763B2 (ja) Snめっき鋼板及び化成処理鋼板並びにこれらの製造方法
JP7327719B1 (ja) 表面処理鋼板およびその製造方法
JP6098709B2 (ja) 容器用鋼板
JP7070822B1 (ja) 表面処理鋼板およびその製造方法
WO2023195251A1 (ja) 表面処理鋼板およびその製造方法
TWI845179B (zh) 表面處理鋼板及其製造方法
TWI840140B (zh) 表面處理鋼板及其製造方法
WO2023195252A1 (ja) 表面処理鋼板およびその製造方法
JP7435924B1 (ja) 表面処理鋼板およびその製造方法
JP7435925B1 (ja) 表面処理鋼板およびその製造方法
WO2022138005A1 (ja) 表面処理鋼板およびその製造方法
JP7401039B1 (ja) 表面処理鋼板およびその製造方法
WO2021261155A1 (ja) 表面処理鋼板、金属容器および表面処理鋼板の製造方法
JP2010013706A (ja) 錫めっき鋼板の製造方法および錫めっき鋼板
WO2024111159A1 (ja) 表面処理鋼板およびその製造方法
WO2024111158A1 (ja) 表面処理鋼板およびその製造方法
WO2024111157A1 (ja) 表面処理鋼板およびその製造方法
TW202421845A (zh) 表面處理鋼板及其製造方法
TW202421844A (zh) 表面處理鋼板及其製造方法

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230530

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230530

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20230530

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230704

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230717

R150 Certificate of patent or registration of utility model

Ref document number: 7327718

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150