JP7319828B2 - Wastewater treatment equipment - Google Patents

Wastewater treatment equipment Download PDF

Info

Publication number
JP7319828B2
JP7319828B2 JP2019098268A JP2019098268A JP7319828B2 JP 7319828 B2 JP7319828 B2 JP 7319828B2 JP 2019098268 A JP2019098268 A JP 2019098268A JP 2019098268 A JP2019098268 A JP 2019098268A JP 7319828 B2 JP7319828 B2 JP 7319828B2
Authority
JP
Japan
Prior art keywords
water
sludge
concentration
reduced
lead
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019098268A
Other languages
Japanese (ja)
Other versions
JP2020192489A (en
Inventor
進 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maezawa Industries Inc
Original Assignee
Maezawa Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Maezawa Industries Inc filed Critical Maezawa Industries Inc
Priority to JP2019098268A priority Critical patent/JP7319828B2/en
Publication of JP2020192489A publication Critical patent/JP2020192489A/en
Application granted granted Critical
Publication of JP7319828B2 publication Critical patent/JP7319828B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Activated Sludge Processes (AREA)

Description

本発明は、排水処理装置に関し、詳しくは、無終端水路(ディッチ)を用いた生物学的排水処理方法によって排水の浄化処理を行う排水処理装置に関する。 TECHNICAL FIELD The present invention relates to a wastewater treatment apparatus, and more particularly to a wastewater treatment apparatus that purifies wastewater by a biological wastewater treatment method using an endless ditch.

生物学的な排水処理を行う方法として、オキシデーションディッチ法が広く知られている。このオキシデーションディッチ法は、無端状に形成したディッチと固液分離を行う固液分離手段としての最終沈殿池とを組み合わせ、ディッチ内の水を循環させながら一部で曝気することにより、ディッチ内に好気域と無酸素域とを形成し、有機物の分解だけでなく、好気域での硝化反応と無酸素域での脱窒反応とによって窒素分も除去するようにしている。また、最終沈殿池では、ディッチから抜き出した一部の循環水の固液分離を行って処理水と活性汚泥とを分離し、分離した処理水は放流し、活性汚泥はディッチへ返送している。 The oxidation ditch method is widely known as a method for biological wastewater treatment. In this oxidation ditch method, an endless ditch is combined with a final sedimentation tank as solid-liquid separation means for solid-liquid separation. An aerobic zone and an anoxic zone are formed in the air, and not only organic matter is decomposed, but also nitrogen is removed by nitrification reaction in the aerobic zone and denitrification reaction in the anoxic zone. In the final sedimentation tank, solid-liquid separation is performed on part of the circulating water extracted from the ditch to separate the treated water from the activated sludge, the separated treated water is discharged, and the activated sludge is returned to the ditch. .

このようなオキシデーションディッチ法は、大規模処理場に比べて日間変動が大きい小規模処理場に適しているが、日間変動によってディッチ内における負荷が大きく変動する。すなわち、原水流入量が多い場合には、最終沈殿池の負荷が増大するため、沈殿槽の容量を大きくしたり、沈殿槽を増設したりする必要が生じる。しかし、設備の面積には限界があるため、沈殿槽の大型化や増設は、実施不可能なことが多い。このようなことから、ディッチ内に固液分離装置を設けて活性汚泥を分離沈降させ、分離水を最終沈殿池に導入したり、分離水を、最終沈殿池を介さずに排出したりすることで、最終沈殿池の負荷を軽減することが提案されている(例えば、特許文献1,2参照。)。一方、好気域の上流側と下流側との適当な位置に溶存酸素計(DO計)をそれぞれ設置し、各DO計の測定値(DO値)に基づいて循環水の流速及び酸素の供給量をそれぞれ調節することにより、いわゆる二点DO制御によって好気域と無酸素域とのバランスを負荷に応じて調節することが行われている(例えば、特許文献3参照。)。 Such an oxidation ditch method is suitable for small-scale treatment plants that have greater daily fluctuations than large-scale treatment plants, but the daily fluctuations cause large fluctuations in the load in the ditch. That is, when the raw water inflow is large, the load on the final sedimentation tank increases, so it becomes necessary to increase the capacity of the sedimentation tank or add more sedimentation tanks. However, since there is a limit to the area of the equipment, it is often impossible to increase the size of the sedimentation tank. For this reason, a solid-liquid separation device is installed in the ditch to separate and settle the activated sludge, and the separated water is introduced into the final sedimentation tank, or the separated water is discharged without going through the final sedimentation tank. Therefore, it has been proposed to reduce the load on the final sedimentation tank (see Patent Documents 1 and 2, for example). On the other hand, a dissolved oxygen meter (DO meter) is installed at an appropriate position on the upstream side and downstream side of the aerobic zone, and the flow rate of circulating water and the supply of oxygen based on the measurement value (DO value) of each DO meter By adjusting the respective amounts, so-called two-point DO control is performed to adjust the balance between the aerobic region and the anaerobic region according to the load (see, for example, Patent Document 3).

特開平11-188382号公報JP-A-11-188382 特開2004-25063号公報JP-A-2004-25063 特開2005-52804号公報JP 2005-52804 A

前記特許文献1,2に記載された固液分離装置を設けることにより、最終沈殿池の負荷を軽減することができ、前記特許文献3に記載された処理を適用することにより、負荷変動があっても常に一定の好気域及び無酸素域を形成して被処理水中のアンモニア濃度や硝酸態窒素濃度を最小とすることができる。しかし、いずれの場合でも、オキシデーションディッチ法を適用した下水処理場では、標準活性汚泥法に比べて小さな規模であり、処理量が1000~5000m/日程度であるから、原水流入量が多い場合には、ディッチの後段に設けられている最終沈殿池の負荷が増大するため、沈殿槽の容量を大きくしたり、沈殿槽を増設したりする必要が生じる。しかし、設備の面積には限界があるため、沈殿槽の大型化や増設は、実施不可能なことが多い。また、最終沈殿池を介さずに排出する場合は、汚泥を十分に分離できなかった処理水が排出されることになる。 By providing the solid-liquid separation devices described in Patent Documents 1 and 2, the load on the final sedimentation tank can be reduced, and by applying the treatment described in Patent Document 3, load fluctuations occur. It is possible to always form a constant aerobic zone and anoxic zone even in such a case, thereby minimizing the concentration of ammonia and the concentration of nitrate nitrogen in the water to be treated. However, in any case, the sewage treatment plant to which the oxidation ditch method is applied is smaller in scale than the standard activated sludge method, and the treatment amount is about 1000 to 5000 m 3 /day, so the amount of raw water inflow is large. In this case, the load on the final sedimentation tank installed after the ditch increases, so it becomes necessary to increase the capacity of the sedimentation tank or add more sedimentation tanks. However, since there is a limit to the area of the equipment, it is often impossible to increase the size of the sedimentation tank. Moreover, when discharging without going through the final sedimentation tank, the treated water in which the sludge cannot be sufficiently separated is discharged.

そこで本発明は、原水流入量に大きな増減がある場合も、最終沈殿池の負荷の軽減、平均化を図ることができ、オキシデーションディッチ法において安定した排水処理を行うことができる排水処理装置を提供することを目的としている。 Therefore, the present invention provides a wastewater treatment apparatus that can reduce and equalize the load on the final sedimentation tank even when there is a large increase or decrease in the amount of raw water inflow, and can perform stable wastewater treatment in the oxidation ditch method. intended to provide.

上記目的を達成するため、本発明の排水処理装置は、原水流入部及び処理水導出部を備えるとともに循環流発生手段及び酸素供給手段を備え、前記酸素供給手段の下流側に好気域を、該好気域の終端と前記酸素供給手段との間の無酸素域をそれぞれ形成した無終端水路と、前記処理水導出部から導出した循環水の固液分離を行う固液分離手段とを備えた排水処理装置において、前記無終端水路内を循環する循環水の流れ方向の上流側、下流側及び両側面の4面が水密状態で連続した区画壁と、該区画壁内に設けられて前記循環水に含まれる活性汚泥の沈降を促進させて活性汚泥濃度を低減する活性汚泥沈降促進手段と、該活性汚泥沈降促進手段で活性汚泥濃度を低減した汚泥濃度低減水を前記無終端水路外に導出する低減水導出部と、該低減水導出部から導出した汚泥濃度低減水を前記固液分離手段に導入する汚泥濃度低減水経路とを備え、前記原水流入部からの原水流入量に関係なく、あらかじめ設定された量の汚泥濃度低減水を前記汚泥濃度低減水経路に導出する汚泥濃度低減水導出器を、前記無終端水路における前記循環水の水面部に設けたことを特徴としている。 In order to achieve the above object, a wastewater treatment apparatus of the present invention comprises a raw water inlet and a treated water outlet, and also comprises a circulation flow generating means and an oxygen supply means, and an aerobic zone downstream of the oxygen supply means, An endless water channel forming an oxygen-free zone between the end of the aerobic zone and the oxygen supply means, and a solid-liquid separation means for performing solid-liquid separation of the circulating water led out from the treated water lead-out part. In the wastewater treatment apparatus, a partition wall that is continuous in a watertight state on four sides of the upstream side, the downstream side, and both side surfaces in the flow direction of the circulating water circulating in the endless water channel; activated sludge sedimentation promoting means for promoting sedimentation of activated sludge contained in circulating water to reduce the concentration of activated sludge; and a sludge-concentration-reduced water path for introducing the sludge-concentration-reduced water derived from the reduced-water discharge unit into the solid-liquid separation means, regardless of the amount of raw water inflow from the raw water inflow unit. and a sludge-concentration-reducing water lead-out device for drawing out a preset amount of sludge-concentration-reducing water to the sludge-concentration-reducing water path is provided at the surface of the circulating water in the endless water channel.

さらに、本発明の排水処理装置は、前記汚泥濃度低減水導出器の少なくとも前記循環水の流れ方向上流側先端が流線形状に形成されていること、前記汚泥濃度低減水導出器が前記無終端水路を遮蔽する断面積が流路断面積に対して1/2以下に設定されていること、前記汚泥濃度低減水導出器が、前記無終端水路における前記酸素供給手段の下流側で、かつ、前記固液分離手段で分離した返送汚泥の流入部及び前記原水流入部より上流側に設けられていること、前記汚泥濃度低減水導出器は、該汚泥濃度低減水導出器の外側面と前記無終端水路の内側面との間に、100~1000mmの循環水流路が形成されていることを特徴としている。 Further, in the wastewater treatment apparatus of the present invention, at least the upstream end of the sludge concentration-reducing water lead-out device in the flow direction of the circulating water is formed in a streamlined shape, and the sludge concentration-reducing water lead-out device is formed in the endless The cross-sectional area that shields the water channel is set to 1/2 or less of the cross-sectional area of the channel, the sludge concentration reducing water lead-out device is located downstream of the oxygen supply means in the endless water channel, and provided upstream of the inflow portion of the returned sludge separated by the solid-liquid separation means and the raw water inflow portion; A circulating water channel of 100 to 1000 mm is formed between the inner surface of the terminal water channel.

また、前記汚泥濃度低減水導出器は、前記無終端水路に設けられた支持手段によって上下動可能に保持されていること、前記汚泥濃度低減水導出器は、該汚泥濃度低減水導出器に浮力を与えるための浮子を備えていること、前記汚泥濃度低減水導出器は、高さ位置調節手段を備えていること、前記活性汚泥沈降促進手段は、整流板、傾斜管、傾斜板、渦流を発生させるチャンネル・フィンの少なくともいずれか1種からなることを特徴としている。 Further, the sludge concentration-reducing water lead-out device is vertically movably held by support means provided in the endless water channel, and the sludge-concentration-reducing water lead-out device is buoyant to the sludge concentration-reducing water lead-out device. said sludge concentration reducing water lead-out device is provided with height position adjusting means; and said activated sludge sedimentation promoting means comprises a rectifying plate, an inclined pipe, an inclined plate and a vortex. It is characterized by comprising at least one type of generated channel fins.

さらに、前記低減水導出部は、区画壁内の汚泥濃度低減水を越流させる越流トラフを備えていること、前記越流トラフは、前記活性汚泥沈降促進手段を一体的に備えていること、前記汚泥濃度低減水導出器は、あらかじめ設定された越流トラフにおける時間ごとの越流水量設定値に基づいて上下位置が調節されること、前記汚泥濃度低減水導出器は、前記越流トラフにおける越流水深レベルがあらかじめ設定されたレベルになる高さ位置に上下位置が調節されることを特徴としている。 Further, the reduced water outlet section has an overflow trough for overflowing the sludge concentration reduced water in the partition wall, and the overflow trough integrally includes the activated sludge sedimentation promoting means. , the vertical position of the sludge-concentration-reducing water lead-out device is adjusted based on a preset overflow water volume setting value for each hour in the overflow trough; It is characterized in that the vertical position is adjusted to a height position where the overflow water depth level in the is a preset level.

本発明の排水処理装置によれば、循環水の水面部に設けた汚泥濃度低減水導出器で活性汚泥を低減した汚泥濃度低減水のあらかじめ設定された量を無終端水路から導出して固液分離手段に導入するので、無終端水路への原水流入量に大きな増減がある場合でも、固液分離手段の負荷の軽減、平均化を図ることができ、安定した排水処理を行うことができる。 According to the wastewater treatment apparatus of the present invention, a preset amount of sludge-concentration-reduced water with reduced activated sludge is led out from the endless water channel by the sludge-concentration-reduced water lead-out device provided on the water surface of the circulating water, and solid-liquid Since it is introduced into the separation means, even if there is a large increase or decrease in the amount of raw water flowing into the endless water channel, the load on the solid-liquid separation means can be reduced and averaged, and stable wastewater treatment can be performed.

本発明の排水処理装置の一形態例を示す平面図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a top view which shows one form example of the waste water treatment apparatus of this invention. 同じく正面断面図である。It is a front cross-sectional view of the same. 汚泥濃度低減水導出器の第1形態例を示す断面正面図である。1 is a cross-sectional front view showing a first embodiment of a sludge concentration reducing water lead-out device; FIG. 同じく平面図である。It is also a plan view. 一日の流入水量の変動状態の一例を示す図である。It is a figure which shows an example of the fluctuation|variation state of the amount of inflow water in a day. 汚泥濃度低減水導出器から一定量の循環水を導出したときのディッチ内水位の変動状態の一例を示す図である。FIG. 10 is a diagram showing an example of the change state of the water level in the ditch when a constant amount of circulating water is drawn out from the sludge concentration reducing water lead-out device; 汚泥濃度低減水導出器の第2形態例を示す断面正面図である。Fig. 10 is a cross-sectional front view showing a second embodiment of the sludge concentration reducing water lead-out device; 図7のVIII-VIII断面図である。8 is a cross-sectional view taken along line VIII-VIII of FIG. 7; FIG. 図7のIX-IX断面図である。FIG. 8 is a cross-sectional view taken along line IX-IX of FIG. 7; 汚泥濃度低減水導出器の第3形態例を示す断面正面図である。Fig. 10 is a cross-sectional front view showing a third embodiment of the sludge concentration reducing water lead-out device; 第3形態例で使用した活性汚泥沈降促進手段の平面図である。It is a top view of the activated sludge sedimentation acceleration|stimulation means used by the example of the 3rd form. 排水処理装置の第4形態例における汚泥濃度低減水導出器に用いた活性汚泥沈降促進手段一体式越流トラフの一例を示す断面図である。FIG. 10 is a cross-sectional view showing an example of an overflow trough integrated with activated sludge sedimentation accelerating means used in the sludge concentration reducing water lead-out device in the fourth embodiment of the wastewater treatment apparatus. 排水処理装置の第5形態例における汚泥濃度低減水導出器に用いた活性汚泥沈降促進手段一体式越流トラフの一例を示す断面図である。FIG. 11 is a cross-sectional view showing an example of an overflow trough integrated with activated sludge sedimentation promoting means used in the sludge concentration reducing water lead-out device in the fifth embodiment of the wastewater treatment apparatus.

図1乃至図4は、本発明の排水処理装置の第1形態例を示している。本形態例に示す排水処理装置は、仕切り壁11aで区画形成した無終端水路からなるディッチ11に一対のドラム式の循環流発生手段12と酸素供給手段である曝気装置13とを設け、ディッチ11内に矢印で示す方向の循環流を形成することにより、曝気装置13から所定の距離までを好気性水域14とし、この好気性水域14の終端から曝気装置13までを無酸素水域15としている。また、好気性水域14の下流部分には、処理水の一部を最終沈殿池16に向けて抜き出す処理水導出部17が設けられ、無酸素水域15の上流部分には、最終沈殿池16からの返送汚泥が導入される返送汚泥導入部18及び被処理水としての下排水が導入される原水流入部19がそれぞれ設けられている。 1 to 4 show a first embodiment of the wastewater treatment apparatus of the present invention. In the wastewater treatment apparatus shown in this embodiment, a pair of drum-type circulating flow generating means 12 and an aeration device 13 as an oxygen supply means are provided in a ditch 11 consisting of an endless water channel partitioned by a partition wall 11a. By forming a circulating flow in the direction indicated by the arrow inside, an aerobic water area 14 is formed up to a predetermined distance from the aerator 13, and an oxygen-free water area 15 is formed from the end of this aerobic water area 14 to the aerator 13. In addition, in the downstream part of the aerobic water area 14, a treated water outlet part 17 is provided for extracting a part of the treated water toward the final sedimentation tank 16, and in the upstream part of the oxygen-free water area 15, from the final sedimentation tank 16 A return sludge introduction section 18 into which the returned sludge is introduced and a raw water inflow section 19 into which sewage as the water to be treated is introduced are respectively provided.

原水流入部19からディッチ11に流入した原水は、循環流発生手段12で形成された循環流によって返送汚泥導入部18から流入した汚泥と共にディッチ11内を循環し、曝気装置13から供給される酸素を溶存させた好気性水域14と、溶存酸素が消費された後の無酸素水域15とでそれぞれ処理されることにより、有機物や窒素が除去された処理水となり、この処理水の一部が処理水導出部17から最終沈殿池16に導出される。最終沈殿池16で汚泥から分離した処理水は流出経路20から流出し、沈殿した汚泥は、一部が余剰汚泥として汚泥抜出経路21から抜き取られ、残部が返送汚泥導入部18を経てディッチ11に返送される。 The raw water that has flowed into the ditch 11 from the raw water inflow part 19 circulates in the ditch 11 together with the sludge that has flowed in from the return sludge introduction part 18 by the circulation flow formed by the circulation flow generating means 12, and the oxygen supplied from the aeration device 13. is dissolved in the aerobic water area 14 and the oxygen-free water area 15 after the dissolved oxygen is consumed, thereby obtaining treated water from which organic matter and nitrogen have been removed, and part of this treated water is treated It is drawn out from the water outlet 17 to the final sedimentation tank 16 . The treated water separated from the sludge in the final sedimentation tank 16 flows out through an outflow route 20, part of the precipitated sludge is extracted as excess sludge from a sludge extraction route 21, and the remainder passes through a return sludge introduction section 18 and into the ditch 11. sent back to

さらに、ディッチ11における前記曝気装置13の下流側で、かつ、前記返送汚泥導入部18及び原水流入部19の上流側には、汚泥濃度低減水導出器22が設けられており、前記好気性水域14の上流側と下流側とには、循環水中の溶存酸素濃度を測定する上流側溶存酸素計23と下流側溶存酸素計24とが設けられている。 Furthermore, a sludge concentration reducing water lead-out device 22 is provided downstream of the aeration device 13 in the ditch 11 and upstream of the return sludge introduction part 18 and the raw water inflow part 19, and the aerobic water area An upstream dissolved oxygen meter 23 and a downstream dissolved oxygen meter 24 for measuring the dissolved oxygen concentration in the circulating water are provided upstream and downstream of 14 .

前記汚泥濃度低減水導出器22は、図3及び図4に示すように、ディッチ11内を循環する循環水の流れ方向に対して上流側、下流側及び両側面の4面が長短2枚ずつの側板25a,25bによって水密状態で連続する平面視矩形状の区画壁25と、該区画壁25内に設けられて前記循環水に含まれる活性汚泥の濃度を低減する活性汚泥沈降促進手段26と、該活性汚泥沈降促進手段26で汚泥濃度を低減した汚泥濃度低減水をディッチ11外に導出する低減水導出部となる複数の越流トラフ27と、該越流トラフ27の下部に設けられた連通路27aから導出した汚泥濃度低減水を前記最終沈殿池16に導入する汚泥濃度低減水経路28とを備えている。さらに、汚泥濃度低減水導出器22は、上流側及び下流側にそれぞれ設けられた一対の支柱29によって循環水の流れ方向に対して所定位置で上下動可能に保持されるとともに、区画壁25の上流側及び下流側には、汚泥濃度低減水導出器22に適度な浮上力を与えるための浮子30がそれぞれ設けられている。 As shown in FIGS. 3 and 4, the sludge concentration reducing water lead-out device 22 has two long and short four faces on the upstream side, the downstream side, and both sides with respect to the flow direction of the circulating water circulating in the ditch 11. A partition wall 25 having a rectangular shape in a plan view and continuing in a watertight state by the side plates 25a and 25b of the above; , a plurality of overflow troughs 27 serving as reduced water lead-out portions for leading out of the ditch 11 the sludge concentration-reduced water whose sludge concentration has been reduced by the activated sludge sedimentation promoting means 26; A sludge-concentration-reducing water path 28 for introducing the sludge-concentration-reducing water led out from the communication passage 27a into the final sedimentation tank 16 is provided. Furthermore, the sludge concentration reducing water lead-out device 22 is held at a predetermined position so as to be vertically movable in the direction of flow of the circulating water by a pair of struts 29 provided respectively on the upstream side and the downstream side. A float 30 is provided on each of the upstream and downstream sides to give the sludge concentration reducing water lead-out device 22 an appropriate floating force.

また、前記支柱29の上部には、汚泥濃度低減水導出器22の上限を規制する上限規制部29aが設けられ、下部には、下限を規制する下限規制部29bが設けられている。さらに、汚泥濃度低減水導出器22の上流側及び下流側には、循環水の流れを円滑にするための流線形状のカバー31がそれぞれ設けられ、各カバー31の先端部に支柱係合部31aが設けられている。 Further, an upper limit regulating portion 29a for regulating the upper limit of the sludge concentration reducing water lead-out device 22 is provided on the upper portion of the pillar 29, and a lower limit regulating portion 29b for regulating the lower limit is provided on the lower portion. Furthermore, upstream and downstream sides of the sludge concentration reducing water lead-out device 22 are provided with streamlined covers 31 for facilitating the flow of circulating water. 31a is provided.

さらに、ディッチ11内の循環水の流れを阻害しないように、汚泥濃度低減水導出器22の大きさは、ディッチ11を遮蔽する断面積が、ディッチ11の流路断面積に対して1/2以下に設定されるとともに、汚泥濃度低減水導出器22の側壁外面とディッチ11の側壁内面との間、汚泥濃度低減水導出器22の側壁外面と仕切り壁11aの外面との間には、100~1000mmの循環水流路を形成するようにしている。また、ディッチ11の水面積に対する汚泥濃度低減水導出器22の水面積は、5~30%の範囲とすることが好ましい。 Furthermore, in order not to hinder the flow of circulating water in the ditch 11, the size of the sludge concentration reducing water lead-out device 22 is such that the cross-sectional area shielding the ditch 11 is half the cross-sectional area of the ditch 11. 100 between the outer surface of the side wall of the sludge concentration reducing water outlet 22 and the inner surface of the side wall of the ditch 11, and between the outer surface of the side wall of the sludge concentration reducing water outlet 22 and the outer surface of the partition wall 11a. A circulating water flow path of up to 1000 mm is formed. Further, the water area of the sludge concentration reducing water lead-out device 22 with respect to the water area of the ditch 11 is preferably in the range of 5 to 30%.

そして、上流側の支柱29の上端部には、ディッチ11内における汚泥濃度低減水導出器22の高さ位置を調節するための高さ位置調節手段32が設けられ、汚泥濃度低減水導出器22の上部には、越流トラフ27の越流水深を測定する水位測定手段33が設けられている。高さ位置調節手段32は、ロッドなどの連結手段32aを介して汚泥濃度低減水導出器22に連結されており、水位測定手段33によって測定した越流水深に応じて汚泥濃度低減水導出器22を上下動させ、越流トラフ27における越流水量が、あらかじめ設定された量になるようにしている。 A height position adjusting means 32 for adjusting the height position of the sludge concentration-reducing water lead-out device 22 in the ditch 11 is provided at the upper end of the pillar 29 on the upstream side. A water level measuring means 33 for measuring the overflow water depth of the overflow trough 27 is provided at the upper part of the . The height position adjusting means 32 is connected to the sludge concentration reducing water lead-out device 22 via connecting means 32 a such as a rod, and the sludge concentration reducing water lead-out device 22 is adjusted according to the overflow water depth measured by the water level measuring means 33 . is vertically moved so that the amount of overflow water in the overflow trough 27 becomes a preset amount.

前記活性汚泥沈降促進手段26は、複数の整流板26aを、短辺側の区画壁25と同じ方向で、斜めに傾斜させて配列した斜板式と呼ばれるものであって、循環水の流れ方向に対して、整流板26aの上部が上流側に、下部が下流側に向かうように配置されている。整流板26aの角度や間隔は、循環水中の汚泥の状態などの条件に応じて設定されている。 The activated sludge sedimentation promoting means 26 is a swash plate type in which a plurality of rectifying plates 26a are arranged obliquely in the same direction as the partition wall 25 on the short side. On the other hand, the straightening plate 26a is arranged such that the upper portion faces the upstream side and the lower portion faces the downstream side. The angle and spacing of the straightening vanes 26a are set according to conditions such as the state of sludge in the circulating water.

ディッチ11内で処理されている循環水の一部は、汚泥濃度低減水導出器22の下部から活性汚泥沈降促進手段26の整流板26a間に流入して上昇しながら整流板26aの作用で汚泥の沈降が促進されて分離される。活性汚泥沈降促進手段26で汚泥を沈降分離させて汚泥濃度を低減させた汚泥濃度低減水は、活性汚泥沈降促進手段26の上方に至り、前記越流トラフ27の側壁を越えてトラフ内に流入し、各越流トラフ27の下部に連通した状態で設けられた連通路27aを介して汚泥濃度低減水経路28から前記最終沈殿池16に導入される。 Part of the circulating water treated in the ditch 11 flows from the lower part of the sludge-concentration-reduced water lead-out device 22 into between the rectifying plates 26a of the activated sludge sedimentation promoting means 26, and while rising, the sludge is removed by the action of the rectifying plates 26a. sedimentation is promoted and separated. The sludge concentration-reduced water, the sludge concentration of which has been reduced by sedimentation and separation of the sludge by the activated sludge sedimentation promotion means 26, reaches above the activated sludge sedimentation promotion means 26, crosses the side wall of the overflow trough 27, and flows into the trough. Then, it is introduced into the final sedimentation tank 16 from the sludge concentration reduction water path 28 through the communication passage 27a provided in a state of communicating with the lower part of each overflow trough 27. As shown in FIG.

汚泥濃度低減水導出器22によってディッチ11から抜き出す汚泥濃度低減水の導出量は、前記原水流入部19からの原水流入量の変動に関係なく、あらかじめ設定された量の範囲内になるようにしている。例えば、原水流入部19からの原水流入量の日間流入量の平均値を汚泥濃度低減水の導出量に設定している。 The amount of sludge-concentration-reduced water extracted from the ditch 11 by the sludge-concentration-reduced water extractor 22 is set within a preset range regardless of fluctuations in the amount of raw water inflow from the raw water inlet 19. there is For example, the average daily inflow of raw water from the raw water inflow unit 19 is set as the derivation amount of sludge concentration-reduced water.

例えば、規模が1500m/日で、計画水深が2.5mのディッチ11において、図5は1日の原水流入水量[m/h]の変動状態の一例を示しており、このときの平均流入量は62.5m/hである。また、図6は、汚泥濃度低減水導出器22から日間流入量の平均値である62.5m/hの循環水を連続して導出したときのディッチ内水位[m]の変動状態の一例を示すもので、計画水位の2.5mを0.00mとして水位の低下量を表している。 For example, in a ditch 11 with a scale of 1500 m 3 / day and a planned water depth of 2.5 m, FIG. The inflow is 62.5 m 3 /h. FIG. 6 shows an example of the fluctuation state of the water level [m] in the ditch when circulating water of 62.5 m 3 /h, which is the average daily inflow amount, is continuously drawn out from the sludge concentration reducing water lead-out device 22. , where the planned water level of 2.5m is taken as 0.00m to represent the amount of water level drop.

図5及び図6から、汚泥濃度低減水導出器22を設けていないときは、8時~10時の間は、時間当たり平均量の1.5~2.5倍の多大な流入水量に対応する循環水をそのまま処理水導出部17から最終沈殿池16に送ることになり、最終沈殿池16での汚泥界面の上昇など、重篤な固液分離障害を招くおそれがある。すなわち、ディッチ11における循環水導出高さ位置が固定されている従来のものでは、循環水の導出量が原水の流入量によって大きく変動するため、後段の最終沈殿池16における負荷変動が大きく、十分な固液分離が行えなくおそれがある。 5 and 6, when the sludge concentration reducing water lead-out device 22 is not installed, the circulation corresponding to a large amount of inflow water, which is 1.5 to 2.5 times the average amount per hour, between 8:00 and 10:00 Since the water is directly sent from the treated water outlet 17 to the final sedimentation tank 16, there is a risk of causing a serious solid-liquid separation failure such as an increase of the sludge interface in the final sedimentation tank 16. That is, in the conventional ditch 11 in which the circulating water outlet height position is fixed, the amount of circulating water drawn out varies greatly depending on the inflow of raw water, so the load fluctuation in the final sedimentation tank 16 in the latter stage is large and sufficient. solid-liquid separation may not be possible.

一方、汚泥濃度低減水導出器22から62.5m/hの循環水を連続して導出したときには、7~8時の間で水位が最も低下して水深が2.136mになるが、この程度ならば、好気性水域14と無酸素水域15とに循環水を十分に循環させることができ、流入原水の処理を確実に行うことができる。そして、流入水量の大きな変動があっても、1日を通してディッチ11内の水位を2.136~2.5mの範囲としてディッチ11内で確実な処理を行いながら、最終沈殿池16には、安定した量の循環水を汚泥を低減した状態で送ることができる。これにより、最終沈殿池16における固液分離に悪影響を与えることがなく、ディッチ11及び最終沈殿池16による下排水の処理を安定した状態で確実に行うことができる。 On the other hand, when 62.5 m 3 /h of circulating water is continuously drawn out from the sludge concentration reducing water lead-out device 22, the water level is the lowest between 7 and 8 o'clock and the water depth is 2.136 m. Thus, the circulating water can be sufficiently circulated in the aerobic water area 14 and the oxygen-free water area 15, and the inflow raw water can be reliably treated. Even if there is a large fluctuation in the amount of inflow water, the water level in the ditch 11 is kept within the range of 2.136 to 2.5 m throughout the day, and the final sedimentation tank 16 is stably treated while performing reliable treatment in the ditch 11. It is possible to send a reduced amount of circulating water with reduced sludge. As a result, solid-liquid separation in the final sedimentation tank 16 is not adversely affected, and sewage treatment by the ditch 11 and the final sedimentation tank 16 can be reliably performed in a stable state.

また、上流側溶存酸素計23及び下流側溶存酸素計24でそれぞれ測定した溶存酸素濃度と、あらかじめ設定されている各溶存酸素濃度基準値とに基づいて循環流発生手段12による循環水の流速や、曝気装置13における曝気量をあらかじめ設定された手順で調節することにより、流入水量の増減、ディッチ11内の水位、原水の性状などに応じた水処理をより確実に行うことができる。 In addition, based on the dissolved oxygen concentration measured by the upstream dissolved oxygen meter 23 and the downstream dissolved oxygen meter 24, and each dissolved oxygen concentration reference value set in advance, the flow rate of the circulating water by the circulating flow generating means 12, By adjusting the amount of aeration in the aeration device 13 according to a preset procedure, it is possible to more reliably perform water treatment according to changes in the amount of inflow water, the water level in the ditch 11, the properties of the raw water, and the like.

このように、ディッチ11内に、活性汚泥沈降促進手段26を備えた汚泥濃度低減水導出器22を設け、あらかじめ設定された量の循環水を、汚泥量を低減させた状態で最終沈殿池16に導出することにより、MLSS濃度を高めに設定したディッチ11内での処理状態を損なうことなく、最終沈殿池16における固液分離を安定して行うことができ、下排水の処理を効果的に、確実に行うことができる。 In this way, the sludge concentration reduction water lead-out device 22 equipped with the activated sludge sedimentation promotion means 26 is provided in the ditch 11, and a preset amount of circulating water is supplied to the final sedimentation tank 16 with the sludge amount reduced. By deriving to , solid-liquid separation in the final sedimentation tank 16 can be stably performed without impairing the treatment state in the ditch 11 where the MLSS concentration is set high, and sewage treatment can be effectively performed. can be done with certainty.

図7乃至図9は本発明の水処理設備における汚泥濃度低減水導出器の第2形態例を示している。なお、以下の説明において、前記第1形態例に示した排水処理装置の構成要素と同一の構成要素には同一の符号を付して詳細な説明は省略する。 7 to 9 show a second embodiment of the sludge concentration reducing water lead-out device in the water treatment facility of the present invention. In the following description, the same components as those of the waste water treatment apparatus shown in the first embodiment are denoted by the same reference numerals, and detailed description thereof will be omitted.

本形態例に示す汚泥濃度低減水導出器41は、ディッチ11の流路幅方向に設けた4本の越流トラフ42と、該越流トラフ42の下方に設けられた活性汚泥沈降促進手段43とを隔壁25内に配置したもので、越流トラフ42には、各越流トラフ42の下部中央に連通するように設けられた連通路42aと、該連通路42aの下部中央に連通した流出路42bとを備えており、流出路42bが前記汚泥濃度低減水経路28に接続されて最終沈殿池16に汚泥濃度低減水を送り出すようにしている。 The sludge concentration reducing water lead-out device 41 shown in this embodiment includes four overflow troughs 42 provided in the width direction of the flow path of the ditch 11 and activated sludge sedimentation acceleration means 43 provided below the overflow troughs 42. and are arranged in the partition wall 25. The overflow troughs 42 are provided with communication passages 42a provided so as to communicate with the lower centers of the respective overflow troughs 42, and outflow The outflow path 42b is connected to the sludge concentration-reduced water path 28 to send out the sludge concentration-reduced water to the final sedimentation tank 16.

また、活性汚泥沈降促進手段43は、両端部を斜めにカットした多数の角パイプ43aを互いに平行に隣接させて配列した傾斜管式と呼ばれるもので、前記斜板式と同様に、上部が上流側を、下部が下流側を向く状態で設けられている。さらに、隔壁25の上流側には、前記同様の流線型のカバー31が取り付けられている。 The activated sludge sedimentation promoting means 43 is of a tilted pipe type, in which a large number of square pipes 43a with both ends obliquely cut are arranged adjacent to each other in parallel. is provided with the lower part facing the downstream side. Furthermore, a streamlined cover 31 similar to that described above is attached to the upstream side of the partition wall 25 .

本形態例に示す汚泥濃度低減水導出器41においても、下方の傾斜管式の活性汚泥沈降促進手段43で循環水中の汚泥濃度を低減した汚泥濃度低減水を、あらかじめ設定された流量で越流トラフ42から導出して最終沈殿池16に送出することにより、前記第1形態例と同様に、原水流入量の変動が大きなディッチ11及び最終沈殿池16からなる排水処理装置においても、下排水の処理を効果的に、確実に行うことができる。 In the sludge-concentration-reduced water lead-out device 41 shown in the present embodiment, the sludge-concentration-reduced water, which is obtained by reducing the sludge concentration in the circulating water by the inclined pipe type activated sludge sedimentation promotion means 43 below, overflows at a preset flow rate. By leading out from the trough 42 and sending it to the final sedimentation tank 16, as in the first embodiment, even in the wastewater treatment apparatus consisting of the ditch 11 and the final sedimentation tank 16, which have large fluctuations in the amount of raw water inflow, sewage Processing can be performed effectively and reliably.

図10及び図11は、本発明の水処理設備における汚泥濃度低減水導出器の第3形態例を示している。本形態例では、前記第1形態例と同様に形成された区画壁25の内方上部に前記同様の越流トラフ27を設けるとともに、該越流トラフ27の下方にフィン式の活性汚泥沈降促進手段51を配置している。 10 and 11 show a third embodiment of the sludge concentration reducing water lead-out device in the water treatment facility of the present invention. In this embodiment, an overflow trough 27 similar to that described above is provided in the inner upper part of the partition wall 25 formed in the same manner as in the first embodiment, and a fin-type activated sludge sedimentation promotion is provided below the overflow trough 27. A means 51 is arranged.

フィン式の活性汚泥沈降促進手段51は、前記同様に形成された区画壁25の内部に、循環水の流れ方向に平行な方向の複数のフィン付き基板部材52を、隣接するフィン付き基板部材52同士のフィン52aが互い違いに対向するように配列している。 The fin-type activated sludge sedimentation promoting means 51 has a plurality of substrate members 52 with fins arranged in a direction parallel to the flow direction of the circulating water inside the partition wall 25 formed in the same manner as described above. The fins 52a are arranged so as to alternately face each other.

このようなフィン式の活性汚泥沈降促進手段51を用いても、前記同様に循環水中の汚泥濃度を低減した汚泥濃度低減水を最終沈殿池16に送出でき、ディッチを使用した排水処理効率を向上させることができる。 Even if such a fin-type activated sludge sedimentation promoting means 51 is used, sludge concentration-reduced water with a reduced sludge concentration in the circulating water can be sent to the final sedimentation tank 16 in the same manner as described above, and the wastewater treatment efficiency using the ditch can be improved. can be made

図12は、本発明の水処理設備における汚泥濃度低減水導出器の第4形態例を示している。図12(A)は概略断面図、図12Bは平面図であって、本形態例では、越流トラフ61に活性汚泥沈降促進手段62を一体的に設けた活性汚泥沈降促進手段一体式越流トラフ63を使用している。 FIG. 12 shows a fourth embodiment of the sludge concentration reducing water lead-out device in the water treatment facility of the present invention. 12(A) is a schematic cross-sectional view, and FIG. 12B is a plan view. A trough 63 is used.

越流トラフ61の本体は断面U字状に形成されており、両側壁61aの外面に、活性汚泥沈降促進手段62として、先端が下方に傾斜した斜板62aを複数枚設けている。循環水と共に上昇する活性汚泥は、斜板62aの作用によって沈降が促進される。 The main body of the overflow trough 61 has a U-shaped cross section, and a plurality of swash plates 62a with downwardly inclined tips are provided on the outer surfaces of both side walls 61a as activated sludge sedimentation acceleration means 62. As shown in FIG. The activated sludge that rises with the circulating water is accelerated to settle by the action of the swash plate 62a.

また、図13は、本発明の水処理設備における汚泥濃度低減水導出器の第5形態例を示している。図13(A)は概略断面図、図13Bは平面図であって、本形態例では、越流トラフ65の両側壁の外面に、循環水の流れに直交する方向の抵抗板66aを複数枚設けて活性汚泥沈降促進手段66としている。この活性汚泥沈降促進手段一体式越流トラフ67では、抵抗板66a間で循環水が渦流を形成することによって活性汚泥の沈降が促進される。 Also, FIG. 13 shows a fifth embodiment of the sludge concentration reducing water lead-out device in the water treatment facility of the present invention. FIG. 13A is a schematic cross-sectional view, and FIG. 13B is a plan view. It is provided as an activated sludge sedimentation acceleration means 66 . In the overflow trough 67 integrated with the activated sludge sedimentation promoting means, sedimentation of the activated sludge is promoted by circulating water forming a whirlpool between the resistance plates 66a.

したがって、両形態例で示した活性汚泥沈降促進手段一体式越流トラフ63、67のいずれにおいても、活性汚泥を沈降分離した汚泥濃度低減水が越流トラフ61,65の側壁を越えて最終沈殿池16に向かって送り出される。これにより、前記各形態例で示した汚泥濃度低減水導出器と同様に、循環水中の汚泥濃度を低減した汚泥濃度低減水を最終沈殿池16に送出できるので、ディッチを使用した排水処理効率を向上させることができる。 Therefore, in both of the overflow troughs 63 and 67 integrated with the activated sludge sedimentation promoting means shown in the two embodiments, the sludge concentration-reduced water obtained by sedimentation and separation of the activated sludge crosses the side walls of the overflow troughs 61 and 65 for final sedimentation. It is sent out towards the pond 16 . As a result, similarly to the sludge concentration-reduced water lead-out device shown in each of the above embodiments, sludge concentration-reduced water with reduced sludge concentration in the circulating water can be sent to the final sedimentation tank 16, so the wastewater treatment efficiency using the ditch can be improved. can be improved.

なお、汚泥濃度低減水導出器の形状や構造は任意であり、ディッチ11の規模などの条件に応じて最適な構成を採用することができる。また、汚泥濃度低減水導出器の位置(設置高さ)は、流入原水の変動を予測して単位時間ごとに設定した越流水量設定値に基づいて変化させることもでき、流入原水量が少ない時間帯には汚泥濃度低減水の導出量を少なめにしたりすることもできる。さらに、活性汚泥沈降促進手段も活性汚泥濃度などの条件に応じて選択することができ、複数種を併用することもできる。 The shape and structure of the sludge-concentration-reducing water lead-out device are arbitrary, and an optimum configuration can be adopted according to conditions such as the scale of the ditch 11 . In addition, the position (installation height) of the sludge concentration reduction water outlet can be changed based on the set value of the overflow water amount set per unit time by predicting the fluctuation of the inflow raw water, so the inflow raw water amount is small. It is also possible to reduce the amount of sludge concentration-reduced water to be drawn out during the time period. Furthermore, the activated sludge sedimentation promoting means can also be selected according to conditions such as the activated sludge concentration, and multiple types can be used in combination.

11…ディッチ、11a…仕切り壁、12…循環流発生手段、13…曝気装置、14…好気性水域、15…無酸素水域、16…最終沈殿池、17…処理水導出部、18…返送汚泥導入部、19…原水流入部、20…流出経路、21…汚泥抜出経路、22…汚泥濃度低減水導出器、23…上流側溶存酸素計、24…下流側溶存酸素計、25…区画壁、26…活性汚泥沈降促進手段、26a…整流板、27…越流トラフ、27a…連通路、28…汚泥濃度低減水経路、29…支柱、29a…上限規制部、29b…下限規制部、30…浮子、31…カバー、31a…支柱係合部、32…高さ位置調節手段、32a…連結手段、33…水位測定手段、41…汚泥濃度低減水導出器、42…越流トラフ、42a…連通路、42b…流出路、43…活性汚泥沈降促進手段、43a…角パイプ、51…活性汚泥沈降促進手段、52…フィン付き基板部材、52a…フィン、61…越流トラフ、61a…側壁、62…活性汚泥沈降促進手段、62a…斜板、63…活性汚泥沈降促進手段一体式越流トラフ、65…越流トラフ、66…活性汚泥沈降促進手段、66a…抵抗板、67…活性汚泥沈降促進手段一体式越流トラフ DESCRIPTION OF SYMBOLS 11... Ditch, 11a... Partition wall, 12... Circulating-flow generating means, 13... Aerator, 14... Aerobic water area, 15... Anoxic water area, 16... Final sedimentation tank, 17... Treated-water derivation|leading-out part, 18... Return sludge Introduction part 19 Raw water inflow part 20 Outflow path 21 Sludge extraction path 22 Sludge concentration reduction water derivation device 23 Upstream dissolved oxygen meter 24 Downstream dissolved oxygen meter 25 Partition wall , 26 Activated sludge sedimentation promotion means 26a Current plate 27 Overflow trough 27a Communicating passage 28 Sludge concentration reducing water path 29 Column 29a Upper limit regulating part 29b Lower limit regulating part 30 Float 31 Cover 31a Strut engaging portion 32 Height position adjusting means 32a Connecting means 33 Water level measuring means 41 Sludge concentration reducing water lead-out device 42 Overflow trough 42a Communicating path 42b Outflow path 43 Activated sludge sedimentation promotion means 43a Square pipe 51 Activated sludge sedimentation promotion means 52 Substrate member with fins 52a Fins 61 Overflow trough 61a Side wall, 62 activated sludge sedimentation promoting means 62a swash plate 63 activated sludge sedimentation promoting means integrated overflow trough 65 overflow trough 66 activated sludge sedimentation promoting means 66a resistance plate 67 activated sludge sedimentation Accelerating means integrated overflow trough

Claims (14)

原水流入部及び処理水導出部を備えるとともに循環流発生手段及び酸素供給手段を備え、前記酸素供給手段の下流側に好気域を、該好気域の終端と前記酸素供給手段との間の無酸素域をそれぞれ形成した無終端水路と、前記処理水導出部から導出した循環水の固液分離を行う固液分離手段とを備えた排水処理装置において、前記無終端水路内を循環する循環水の流れ方向の上流側、下流側及び両側面の4面が水密状態で連続した区画壁と、該区画壁内に設けられて前記循環水に含まれる活性汚泥の沈降を促進させて活性汚泥濃度を低減する活性汚泥沈降促進手段と、該活性汚泥沈降促進手段で活性汚泥濃度を低減した汚泥濃度低減水を前記無終端水路の外に導出する低減水導出部と、該低減水導出部から導出した汚泥濃度低減水を前記固液分離手段に導入する汚泥濃度低減水経路とを備え、前記原水流入部からの原水流入量に関係なく、あらかじめ設定された量の汚泥濃度低減水を前記汚泥濃度低減水経路に導出する汚泥濃度低減水導出器を、前記無終端水路における前記循環水の水面部に設け
前記汚泥濃度低減水導出器は、少なくとも、前記循環水の流れ方向上流側先端が流線形状に形成されていることを特徴とする排水処理装置。
A raw water inlet and a treated water outlet are provided, as well as a circulating flow generating means and an oxygen supply means, an aerobic zone downstream of the oxygen supply means, and an aerobic zone between the end of the aerobic zone and the oxygen supply means. A wastewater treatment apparatus comprising endless water channels each forming an oxygen-free region and solid-liquid separation means for performing solid-liquid separation of the circulating water discharged from the treated water lead-out part, wherein circulation circulates in the endless water channel. A partition wall that is watertight on four sides, that is, the upstream side, the downstream side, and both side surfaces in the water flow direction, and the activated sludge provided in the partition wall to promote sedimentation of the activated sludge contained in the circulating water. activated sludge sedimentation promoting means for reducing the concentration, a reduced water outlet for discharging sludge concentration-reduced water, the concentration of which has been reduced by the activated sludge sedimentation promoting means, to the outside of the endless water channel, and from the reduced water outlet. a sludge-concentration-reduced water path for introducing the derived sludge-concentration-reduced water to the solid-liquid separation means, wherein a predetermined amount of sludge-concentration-reduced water is supplied to the sludge regardless of the amount of raw water inflow from the raw water inlet. A sludge concentration-reduced water lead-out device for leading out to the concentration-reduced water path is provided at the water surface portion of the circulating water in the endless water channel ,
A wastewater treatment apparatus, wherein the sludge concentration-reducing water lead-out device has at least an upstream end in a flow direction of the circulating water formed in a streamline shape.
前記汚泥濃度低減水導出器は、該汚泥濃度低減水導出器の外側面と前記無終端水路の内側面との間に、100~1000mmの循環水流路が形成されていることを特徴とする請求項記載の排水処理装置。 A circulating water flow path of 100 to 1000 mm is formed between the outer surface of the sludge concentration-reducing water outlet and the inner surface of the endless water path in the sludge concentration-reducing water outlet. Item 1. Wastewater treatment equipment according to item 1 . 原水流入部及び処理水導出部を備えるとともに循環流発生手段及び酸素供給手段を備え、前記酸素供給手段の下流側に好気域を、該好気域の終端と前記酸素供給手段との間の無酸素域をそれぞれ形成した無終端水路と、前記処理水導出部から導出した循環水の固液分離を行う固液分離手段とを備えた排水処理装置において、前記無終端水路内を循環する循環水の流れ方向の上流側、下流側及び両側面の4面が水密状態で連続した区画壁と、該区画壁内に設けられて前記循環水に含まれる活性汚泥の沈降を促進させて活性汚泥濃度を低減する活性汚泥沈降促進手段と、該活性汚泥沈降促進手段で活性汚泥濃度を低減した汚泥濃度低減水を前記無終端水路の外に導出する低減水導出部と、該低減水導出部から導出した汚泥濃度低減水を前記固液分離手段に導入する汚泥濃度低減水経路とを備え、前記原水流入部からの原水流入量に関係なく、あらかじめ設定された量の汚泥濃度低減水を前記汚泥濃度低減水経路に導出する汚泥濃度低減水導出器を、前記無終端水路における前記循環水の水面部に設け、 A raw water inlet and a treated water outlet are provided, as well as a circulating flow generating means and an oxygen supply means, an aerobic zone downstream of the oxygen supply means, and an aerobic zone between the end of the aerobic zone and the oxygen supply means. A wastewater treatment apparatus comprising endless water channels each forming an oxygen-free region and solid-liquid separation means for performing solid-liquid separation of the circulating water discharged from the treated water lead-out part, wherein circulation circulates in the endless water channel. A partition wall that is watertight on four sides, that is, the upstream side, the downstream side, and both side surfaces in the water flow direction, and the activated sludge provided in the partition wall to promote sedimentation of the activated sludge contained in the circulating water. activated sludge sedimentation promoting means for reducing the concentration, a reduced water outlet for discharging sludge concentration-reduced water, the concentration of which has been reduced by the activated sludge sedimentation promoting means, to the outside of the endless water channel, and from the reduced water outlet. a sludge-concentration-reduced water path for introducing the derived sludge-concentration-reduced water to the solid-liquid separation means, wherein a predetermined amount of sludge-concentration-reduced water is supplied to the sludge regardless of the amount of raw water inflow from the raw water inlet. A sludge concentration-reduced water lead-out device for leading out to the concentration-reduced water path is provided at the water surface portion of the circulating water in the endless water channel,
前記汚泥濃度低減水導出器は、該汚泥濃度低減水導出器の外側面と前記無終端水路の内側面との間に、100~1000mmの循環水流路が形成されていることを特徴とする排水処理装置。 A circulating water flow path of 100 to 1000 mm is formed between the outer surface of the sludge concentration-reducing water lead-out device and the inner surface of the endless water channel in the sludge concentration-reducing water lead-out device. processing equipment.
原水流入部及び処理水導出部を備えるとともに循環流発生手段及び酸素供給手段を備え、前記酸素供給手段の下流側に好気域を、該好気域の終端と前記酸素供給手段との間の無酸素域をそれぞれ形成した無終端水路と、前記処理水導出部から導出した循環水の固液分離を行う固液分離手段とを備えた排水処理装置において、前記無終端水路内を循環する循環水の流れ方向の上流側、下流側及び両側面の4面が水密状態で連続した区画壁と、該区画壁内に設けられて前記循環水に含まれる活性汚泥の沈降を促進させて活性汚泥濃度を低減する活性汚泥沈降促進手段と、該活性汚泥沈降促進手段で活性汚泥濃度を低減した汚泥濃度低減水を前記無終端水路の外に導出する低減水導出部と、該低減水導出部から導出した汚泥濃度低減水を前記固液分離手段に導入する汚泥濃度低減水経路とを備え、前記原水流入部からの原水流入量に関係なく、あらかじめ設定された量の汚泥濃度低減水を前記汚泥濃度低減水経路に導出する汚泥濃度低減水導出器を、前記無終端水路における前記循環水の水面部に設け、 A raw water inlet and a treated water outlet are provided, as well as a circulating flow generating means and an oxygen supply means, an aerobic zone downstream of the oxygen supply means, and an aerobic zone between the end of the aerobic zone and the oxygen supply means. A wastewater treatment apparatus comprising endless water channels each forming an oxygen-free region and solid-liquid separation means for performing solid-liquid separation of the circulating water discharged from the treated water lead-out part, wherein circulation circulates in the endless water channel. A partition wall that is watertight on four sides, that is, the upstream side, the downstream side, and both side surfaces in the water flow direction, and the activated sludge provided in the partition wall to promote sedimentation of the activated sludge contained in the circulating water. activated sludge sedimentation promoting means for reducing the concentration, a reduced water outlet for discharging sludge concentration-reduced water, the concentration of which has been reduced by the activated sludge sedimentation promoting means, to the outside of the endless water channel, and from the reduced water outlet. a sludge-concentration-reduced water path for introducing the derived sludge-concentration-reduced water to the solid-liquid separation means, wherein a predetermined amount of sludge-concentration-reduced water is supplied to the sludge regardless of the amount of raw water inflow from the raw water inlet. A sludge concentration-reduced water lead-out device for leading out to the concentration-reduced water path is provided at the water surface portion of the circulating water in the endless water channel,
前記低減水導出部は、区画壁内の汚泥濃度低減水を越流させる越流トラフを備え、 The reduced water outlet section includes an overflow trough for overflowing the sludge concentration reduced water in the partition wall,
前記越流トラフは、前記活性汚泥沈降促進手段を一体的に備えていることを特徴とする排水処理装置。 A wastewater treatment apparatus, wherein the overflow trough is integrally provided with the activated sludge sedimentation promoting means.
前記汚泥濃度低減水導出器は、少なくとも、前記循環水の流れ方向上流側先端が流線形状に形成されていることを特徴とする請求項記載の排水処理装置。 5. The wastewater treatment apparatus according to claim 4 , wherein the sludge concentration-reducing water lead-out device has at least an upstream end in the flow direction of the circulating water formed in a streamline shape. 前記汚泥濃度低減水導出器は、該汚泥濃度低減水導出器の外側面と前記無終端水路の内側面との間に、100~1000mmの循環水流路が形成されていることを特徴とする請求項4又は5記載の排水処理装置。 A circulating water flow path of 100 to 1000 mm is formed between the outer surface of the sludge concentration-reducing water outlet and the inner surface of the endless water path in the sludge concentration-reducing water outlet. 6. Wastewater treatment equipment according to item 4 or 5 . 前記汚泥濃度低減水導出器は、あらかじめ設定された越流トラフにおける時間ごとの越
流水量設定値に基づいて上下位置が調節されることを特徴とする請求項4乃至6のいずれか1項記載の排水処理装置。
7. The vertical position of said sludge concentration reducing water lead-out device is adjusted based on a predetermined hourly set value of overflow water in the overflow trough. wastewater treatment equipment.
前記汚泥濃度低減水導出器は、前記越流トラフにおける越流水深レベルがあらかじめ設定されたレベルになる高さ位置に上下位置が調節されることを特徴とする請求項4乃至6のいずれか1項記載の排水処理装置。 7. The vertical position of said sludge concentration reducing water lead-out device is adjusted to a height position at which an overflow water depth level in said overflow trough becomes a preset level. Wastewater treatment equipment according to the above . 前記汚泥濃度低減水導出器は、前記無終端水路を遮蔽する断面積が流路断面積に対して1/2以下に設定されていることを特徴とする請求項1乃至8のいずれか1項記載の排水処理装置。 9. The sludge concentration reducing water lead-out device according to any one of claims 1 to 8, characterized in that the cross-sectional area that shields the endless water channel is set to 1/2 or less of the cross-sectional area of the channel. A wastewater treatment device as described. 前記汚泥濃度低減水導出器は、前記無終端水路における前記酸素供給手段の下流側で、かつ、前記固液分離手段で分離した返送汚泥の流入部及び前記原水流入部より上流側に設けられていることを特徴とする請求項1乃至9のいずれか1項記載の排水処理装置。 The sludge concentration reducing water lead-out device is provided downstream of the oxygen supply means in the endless water channel and upstream of the inflow part of the return sludge separated by the solid-liquid separation means and the raw water inflow part. 10. Wastewater treatment equipment according to any one of claims 1 to 9, characterized in that 前記汚泥濃度低減水導出器は、前記無終端水路に設けられた支持手段によって上下動可能に保持されていることを特徴とする請求項1乃至10のいずれか1項記載の排水処理装置。 11. A waste water treatment apparatus according to any one of claims 1 to 10 , wherein said sludge concentration reducing water lead-out device is held vertically movable by support means provided in said endless water channel. 前記汚泥濃度低減水導出器は、該汚泥濃度低減水導出器に浮力を与えるための浮子を備えていることを特徴とする請求項1乃至11のいずれか1項記載の排水処理装置。 12. A waste water treatment apparatus according to any one of claims 1 to 11, wherein said sludge concentration reducing water lead-out device has a float for giving buoyancy to said sludge concentration reducing water lead-out device. 前記汚泥濃度低減水導出器は、高さ位置調節手段を備えていることを特徴とする請求項1乃至12のいずれか1項記載の排水処理装置。 13. A waste water treatment apparatus according to any one of claims 1 to 12 , wherein said sludge concentration reducing water lead-out device is provided with height position adjusting means. 前記活性汚泥沈降促進手段は、整流板、傾斜管、傾斜板、渦流を発生させるチャンネル・フィンの少なくともいずれか1種からなることを特徴とする請求項1乃至13のいずれか1項記載の排水処理装置。 14. The drainage according to any one of claims 1 to 13, wherein said activated sludge sedimentation promoting means comprises at least one of flow straightening plates, inclined pipes, inclined plates, and channel fins that generate a vortex. processing equipment.
JP2019098268A 2019-05-27 2019-05-27 Wastewater treatment equipment Active JP7319828B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019098268A JP7319828B2 (en) 2019-05-27 2019-05-27 Wastewater treatment equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019098268A JP7319828B2 (en) 2019-05-27 2019-05-27 Wastewater treatment equipment

Publications (2)

Publication Number Publication Date
JP2020192489A JP2020192489A (en) 2020-12-03
JP7319828B2 true JP7319828B2 (en) 2023-08-02

Family

ID=73546120

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019098268A Active JP7319828B2 (en) 2019-05-27 2019-05-27 Wastewater treatment equipment

Country Status (1)

Country Link
JP (1) JP7319828B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007326030A (en) 2006-06-07 2007-12-20 Maezawa Ind Inc Operation method of oxidation ditch

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58101793A (en) * 1981-12-11 1983-06-17 Hitachi Ltd Oxidation ditch controller
US4634526A (en) * 1985-10-24 1987-01-06 Lakeside Equipment Corporation Sidewall mounted clarifier
JP3025297B2 (en) * 1990-11-29 2000-03-27 日本下水道事業団 Sewage treatment equipment
JP2544269Y2 (en) * 1991-05-17 1997-08-13 充弘 藤原 Discharge structure in scum removal device
JPH11188382A (en) * 1997-12-26 1999-07-13 Hitachi Kiden Kogyo Ltd Apparatus for controlling sludge discharge from aerator

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007326030A (en) 2006-06-07 2007-12-20 Maezawa Ind Inc Operation method of oxidation ditch

Also Published As

Publication number Publication date
JP2020192489A (en) 2020-12-03

Similar Documents

Publication Publication Date Title
JP2008155080A (en) Sewage treatment apparatus and its method
US7731842B2 (en) Submerged fixed film anoxic bioreactor
JP2020006341A (en) Sewage treatment method and apparatus
JP4230310B2 (en) Waste water treatment apparatus and operation method thereof
JP2012076081A (en) Membrane separation type activated sludge treatment apparatus and method thereof
JP7319828B2 (en) Wastewater treatment equipment
JP4528828B2 (en) Water treatment process and apparatus by fluid flow
EP0048630A1 (en) Treatment of sewage
CN205347124U (en) City river drain sewage treatment device
JP5436350B2 (en) Air lift pump device and sewage treatment facility
CN210261290U (en) Integrated wastewater treatment device
JP5725869B2 (en) Waste water treatment apparatus and operation method thereof
CN110713256A (en) Biological pipe culvert reaction unit
JP2009261994A (en) Treatment method and treatment apparatus of drainage
JP2014113511A (en) Membrane separation apparatus, and operation method of membrane separation apparatus
CN113896326B (en) Sewage treatment reactor and treatment method thereof
JP7262332B2 (en) Water treatment method and water treatment equipment
CN212712935U (en) Circular integrated vertical flow labyrinth structure and sewage treatment device and system
KR100537049B1 (en) A sewage and wastewater treatment activated sludge process equipped 2-stage clarifier
JP3169117B2 (en) Biological wastewater treatment equipment
JP6394980B2 (en) Carrier input type sewage treatment equipment
CN209740913U (en) nitro-nitrogen nitration and denitrification reaction column for high-salinity wastewater treatment
KR100636293B1 (en) Nitrogen and phosphorus removal apparatus with zero power consumption inner recycle and method thereby
CN220723760U (en) Sewage integration equipment based on advanced treatment
CN217780848U (en) Villages and small towns domestic sewage treatment device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220512

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230328

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230414

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230718

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230721

R150 Certificate of patent or registration of utility model

Ref document number: 7319828

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150