JP4230310B2 - Waste water treatment apparatus and operation method thereof - Google Patents

Waste water treatment apparatus and operation method thereof Download PDF

Info

Publication number
JP4230310B2
JP4230310B2 JP2003289234A JP2003289234A JP4230310B2 JP 4230310 B2 JP4230310 B2 JP 4230310B2 JP 2003289234 A JP2003289234 A JP 2003289234A JP 2003289234 A JP2003289234 A JP 2003289234A JP 4230310 B2 JP4230310 B2 JP 4230310B2
Authority
JP
Japan
Prior art keywords
dissolved oxygen
water
oxygen supply
circulating water
upstream
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003289234A
Other languages
Japanese (ja)
Other versions
JP2005052804A (en
Inventor
洋 津野
拓 藤原
邦雄 大年
文武 西村
正章 吉野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maezawa Industries Inc
Original Assignee
Maezawa Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Maezawa Industries Inc filed Critical Maezawa Industries Inc
Priority to JP2003289234A priority Critical patent/JP4230310B2/en
Publication of JP2005052804A publication Critical patent/JP2005052804A/en
Application granted granted Critical
Publication of JP4230310B2 publication Critical patent/JP4230310B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Aeration Devices For Treatment Of Activated Polluted Sludge (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
  • Activated Sludge Processes (AREA)

Description

本発明は、排水処理装置及びその運転方法に関し、詳しくは、オキシデーションディッチ法によって窒素の除去を含む排水の浄化処理を行う排水処理装置及びその運転方法に関する。   The present invention relates to a wastewater treatment apparatus and an operation method thereof, and more particularly, to a wastewater treatment apparatus that performs purification treatment of wastewater including removal of nitrogen by an oxidation ditch method and an operation method thereof.

生物学的な排水処理を行う方法として、オキシデーションディッチ法が広く知られている。このオキシデーションディッチ法は、無端状に形成したディッチ(無終端水路)内の水を循環させながら一部で曝気することにより、ディッチ内に好気性水域と無酸素水域とを形成し、有機物の分解だけでなく、好気性水域での硝化反応と無酸素水域での脱窒反応とによって窒素分も除去するようにしている。   The oxidation ditch method is widely known as a biological wastewater treatment method. This oxidation ditch method forms aerobic water and anoxic water in the ditch by circulating a part of the water in the endlessly formed ditch (endless water channel), thereby forming organic aerobic water. In addition to decomposition, nitrogen is also removed by nitrification reaction in aerobic water and denitrification reaction in anoxic water.

オキシデーションディッチ法は、大規模処理場に比べて日間変動が大きい小規模処理場に適しているが、日間変動によってディッチ内における負荷が大きく変動するため、負荷に応じてディッチ内の流速や酸素供給量(曝気量)を調節し、前記好気性水域と無酸素水域とのバランスを適正に保つことが重要となる。このため、好気性水域の適当な位置に溶存酸素計(DO計)を設置し、このDO計の測定値(DO値)に基づいて酸素供給量を調節することにより、好気性水域と無酸素水域とのバランスを適正に保つようにしている(例えば、特許文献1参照。)。
特開2002−336893号公報
The oxidation ditch method is suitable for small-scale treatment plants that have large daily fluctuations compared to large-scale treatment plants, but the load in the ditch varies greatly due to daily fluctuations. It is important to adjust the supply amount (aeration amount) and maintain a proper balance between the aerobic water region and the anoxic water region. For this reason, by installing a dissolved oxygen meter (DO meter) at an appropriate position in the aerobic water area and adjusting the oxygen supply amount based on the measured value (DO value) of this DO meter, The balance with the water area is appropriately maintained (see, for example, Patent Document 1).
JP 2002-336893 A

しかしながら、従来は、DO計をディッチ内の1箇所にだけ設置しているため、このDO計を設置した地点におけるDO値は、常に適正に制御することができるが、その上流側や下流側におけるDO値が常に適正な範囲にあるとはいえなかった。例えば、図9乃至図11は、ディッチ一周分の流れ方向におけるDO値の変化をDO減少直線として示すものであり、横軸両端が曝気装置設置点(曝気点)の一周分を示し、横軸中央のディッチ長さに対して曝気点から50%の位置を好気性水域と嫌気性水域との最適な分岐点としている。そして、好気性水域の終端近く、ディッチ長さに対して曝気点から40%の位置にDO計を設置し、この測定点において測定したDO値(測定値)と、あらかじめ設定した上限DO値(DOH:上限値)及び下限DO値(DOL:下限値)とを比較し、比較結果に基づいて曝気装置の曝気量を増減させる制御を行う例を示している。なお、ディッチ内におけるDO値は、実際には下に凸の緩やかな曲線を描くが、ここでは近似的な直線、即ちDO減少直線として表している(以下同様)。   However, in the past, since the DO meter is installed only at one location in the ditch, the DO value at the point where this DO meter is installed can always be properly controlled. The DO value was not always in the proper range. For example, FIG. 9 to FIG. 11 show the change in DO value in the flow direction for one cycle of the ditch as a DO decreasing straight line, both ends of the horizontal axis show one round of the aeration apparatus installation point (aeration point), and the horizontal axis The position 50% from the aeration point with respect to the central ditch length is the optimum branch point between the aerobic water area and the anaerobic water area. Then, near the end of the aerobic water area, a DO meter is installed at a position 40% from the aeration point with respect to the ditch length, and the DO value (measurement value) measured at this measurement point and the preset upper limit DO value ( DOH: upper limit value) and lower limit DO value (DOL: lower limit value) are compared, and an example of performing control to increase or decrease the aeration amount of the aeration apparatus based on the comparison result is shown. Note that the DO value in the ditch actually draws a gentle downward convex curve, but is represented here as an approximate straight line, that is, a DO decreasing straight line (the same applies hereinafter).

まず、図9は、流入水の負荷(水質及び流入量)が平均的な場合を示すものであって、この場合は、測定点における測定値が上限値である1.5mg/Lと下限値である0.5mg/Lとの間に入るように曝気量を制御することにより、曝気点におけるDO値も適正な範囲である約4.5mg/Lと約5.5mg/Lとの間となる。これにより、好気性水域におけるDO減少直線は、直線(a)と直線(b)との間に位置する状態となり、ディッチにおける好気性水域と無酸素水域とのバランスが適正に保たれることになる。   First, FIG. 9 shows a case where the load (water quality and inflow) of the influent water is average. In this case, the measured value at the measurement point is 1.5 mg / L which is the upper limit value and the lower limit value. By controlling the amount of aeration so that it falls between 0.5 mg / L, the DO value at the aeration point is also within an appropriate range between about 4.5 mg / L and about 5.5 mg / L. Become. As a result, the DO decrease straight line in the aerobic water area is located between the straight line (a) and the straight line (b), and the balance between the aerobic water area and the anoxic water area in the ditch is appropriately maintained. Become.

ここで、流入水の負荷が高くなって酸素消費量が多くなった場合は、曝気点におけるDO値が適正範囲内にあったとしても、循環水中の溶存酸素の減少率が大きくなるため、図10に示すように、ディッチにおけるDO減少直線が、直線(c)に示すように急激に減少することになる。このとき、測定点におけるDO値が下限値よりも低くなるので、測定点におけるDO値が下限値と上限値との間に入るように曝気量を増加させる制御が行われる。このとき、溶存酸素の減少率が同じだとすると、測定点におけるDO値が下限値と上限値との間に入るようにするためには、DO減少直線が直線(d)と直線(e)との範囲になるように曝気量を制御する必要がある。したがって、前記直線(a),(b)に比べて測定点より上流側のDO値が大幅に上昇し、測定点より上流側では酸素供給過多の状態、すなわち、曝気装置から過剰な曝気が行われている状態となり、曝気装置における送風機が無駄なエネルギーを消費していることになる。また、曝気量の増大に伴って気泡周辺の溶存酸素濃度が高くなり、水中への酸素の溶解が低下するために更に多くの曝気量が必要となる。   Here, when the load of influent water increases and the oxygen consumption increases, even if the DO value at the aeration point is within the appropriate range, the rate of decrease of dissolved oxygen in the circulating water increases. As shown in FIG. 10, the DO decreasing straight line in the ditch decreases rapidly as shown by the straight line (c). At this time, since the DO value at the measurement point becomes lower than the lower limit value, control is performed to increase the amount of aeration so that the DO value at the measurement point falls between the lower limit value and the upper limit value. At this time, assuming that the decrease rate of dissolved oxygen is the same, in order for the DO value at the measurement point to fall between the lower limit value and the upper limit value, the DO decrease straight line is a straight line (d) and a straight line (e). It is necessary to control the amount of aeration so that it is within the range. Therefore, the DO value on the upstream side of the measurement point is significantly increased compared to the straight lines (a) and (b), and the oxygen supply is excessive on the upstream side of the measurement point, that is, excessive aeration is performed from the aeration apparatus. Therefore, the blower in the aeration apparatus consumes useless energy. Further, as the amount of aeration increases, the dissolved oxygen concentration around the bubbles increases, and the dissolution of oxygen in water decreases, so a larger amount of aeration is required.

一方、流入水の負荷が低くなって酸素消費量が少なくなった場合は、曝気点におけるDO値が適正範囲内にあったとしても、循環水中の溶存酸素の減少率が小さくなるため、図11に示すように、ディッチにおけるDO減少直線は、直線(f)に示すように緩やかに減少することになる。このとき、測定点におけるDO値が上限値よりも高くなるので、測定点におけるDO値が下限値と上限値との間に入るように曝気量を減少させる制御が行われる。このとき、溶存酸素の減少率が同じだとすると、測定点におけるDO値が下限値と上限値との間に入るようにするためには、DO減少直線が直線(g)と直線(h)との範囲になるように曝気量を制御する必要がある。したがって、この場合は、前記直線(a),(b)に比べて測定点より上流側でDO値が低下するとともに、下流側のDO値が上昇することになる。このため、測定点におけるDO値が上限値に近付くと好気性水域が下流側に広がり、十分な無酸素水域を得られなくなってしまうことになる。また、曝気装置の曝気量には下限があり、これ以下の曝気量では均一な曝気操作が行えなくなるため、曝気量が下限に達した時点で流速を制御する必要がある。   On the other hand, when the load of influent water is reduced and the oxygen consumption is reduced, even if the DO value at the aeration point is within the appropriate range, the rate of decrease in dissolved oxygen in the circulating water becomes small. As shown in FIG. 2, the DO decreasing straight line in the ditch is gradually reduced as shown by the straight line (f). At this time, since the DO value at the measurement point becomes higher than the upper limit value, the aeration amount is controlled so that the DO value at the measurement point falls between the lower limit value and the upper limit value. At this time, assuming that the decrease rate of dissolved oxygen is the same, in order to make the DO value at the measurement point fall between the lower limit value and the upper limit value, the DO decrease straight line is a straight line (g) and a straight line (h). It is necessary to control the amount of aeration so that it is within the range. Accordingly, in this case, the DO value decreases on the upstream side of the measurement point and the downstream DO value increases as compared with the straight lines (a) and (b). For this reason, when the DO value at the measurement point approaches the upper limit value, the aerobic water area spreads downstream, and a sufficient anoxic water area cannot be obtained. In addition, there is a lower limit for the aeration amount of the aeration apparatus, and a uniform aeration operation cannot be performed with an aeration amount less than this, so it is necessary to control the flow rate when the aeration amount reaches the lower limit.

これらの現象は、DO測定点を好気性水域における最適範囲の最終端に設定し、この測定点におけるDO値がゼロとなるように制御しても完全には避けられず、曝気点からの時間差も考慮した複雑な制御が必要となるだけでなく、特に、高負荷の場合におけるエネルギーの無駄な消費は大きな問題となる。   These phenomena cannot be completely avoided even if the DO measurement point is set to the end of the optimum range in the aerobic water area and the DO value at this measurement point is controlled to be zero, and the time difference from the aeration point is not avoided. In addition, not only complicated control that takes into consideration is required, but also wasteful consumption of energy becomes a big problem especially in the case of a high load.

そこで本発明は、オキシデーションディッチ法における好気性水域と無酸素水域とのバランスを常に最適に保ちながら、曝気装置における送風機のエネルギー消費量を削減することができる排水処理装置及び運転方法を提供することを目的としている。   Therefore, the present invention provides a wastewater treatment apparatus and an operation method capable of reducing the energy consumption of a blower in an aeration apparatus while always maintaining an optimal balance between an aerobic water area and an anoxic water area in the oxidation ditch method. The purpose is that.

上記目的を達成するため、本発明の排水処理装置は、無終端水路に循環水流発生手段及び酸素供給手段を備え、該酸素供給手段の下流側の好気性水域と、該好気性水域の終端から前記酸素供給手段に至る無酸素水域とを形成したオキシデーションディッチ法により排水処理を行う排水処理装置において、前記好気性水域における上流側と下流側とに、循環水中の溶存酸素濃度を測定する上流側溶存酸素計及び下流側溶存酸素計をそれぞれ設けるとともに、該上流側溶存酸素計及び下流側溶存酸素計で測定した溶存酸素濃度に基づいて前記循環水流発生手段による循環水の流速及び酸素供給手段による酸素供給量を調節する制御手段を設け、該制御手段は、前記上流側溶存酸素計の測定値に基づいて前記酸素供給手段による酸素供給量を調節し、前記下流側溶存酸素計の測定値に基づいて前記循環水流発生手段による循環水の流速を調節するように形成されていることを特徴としている。 In order to achieve the above object, the wastewater treatment apparatus of the present invention comprises a circulating water flow generating means and an oxygen supply means in an endless water channel, and includes an aerobic water area downstream of the oxygen supply means, and an end of the aerobic water area. In the wastewater treatment apparatus for performing wastewater treatment by an oxidation ditch method that forms an anoxic water area leading to the oxygen supply means, upstream of measuring the dissolved oxygen concentration in the circulating water on the upstream side and the downstream side in the aerobic water area A side dissolved oxygen meter and a downstream side dissolved oxygen meter are provided, respectively, and based on the dissolved oxygen concentration measured by the upstream side dissolved oxygen meter and the downstream side dissolved oxygen meter, the flow rate of circulating water and the oxygen supply unit by the circulating water flow generating unit a control means for regulating the supply of oxygen by providing, said control means adjusts the amount of oxygen supplied by the oxygen supply means on the basis of the measurement value of the upstream dissolved oxygen meter It is characterized in that it is formed so as to adjust the flow rate of the circulating water by the circulating water stream generating means on the basis of the measured value of the downstream dissolved oxygen meter.

また、本発明の排水処理装置の運転方法は、無終端水路に循環水流発生手段及び酸素供給手段を備え、該酸素供給手段の下流側に形成される好気性水域と、該好気性水域の終端から前記酸素供給手段に至る無酸素水域とを形成したオキシデーションディッチ法により排水処理を行う排水処理装置の運転方法において、前記好気性水域における上流側の溶存酸素濃度と下流側の溶存酸素濃度とをそれぞれ測定し、前記上流側の溶存酸素濃度に基づいて前記酸素供給手段による酸素供給量を調節し、前記下流側の溶存酸素濃度に基づいて前記循環水流発生手段による循環水の流速を調節している。 Further, the operation method of the wastewater treatment apparatus of the present invention comprises a circulating water flow generating means and an oxygen supply means in an endless water channel, an aerobic water area formed downstream of the oxygen supply means, and a terminal end of the aerobic water area In the operation method of the wastewater treatment apparatus that performs wastewater treatment by the oxidation ditch method that forms an anoxic water area from the oxygen supply means to the oxygen supply means, an upstream dissolved oxygen concentration and a downstream dissolved oxygen concentration in the aerobic water area, It was measured, before SL adjusts the amount of oxygen supplied by the oxygen supply means on the basis of the dissolved oxygen concentration on the upstream side, adjusting the flow rate of the circulating water by the circulating water stream generating means on the basis of the dissolved oxygen concentration in the downstream There is a clause .

より具体的には、前記上流側の溶存酸素濃度があらかじめ設定された上流側設定値に比べて高いときには前記酸素供給手段による酸素供給量を減少させ、該上流側の溶存酸素濃度があらかじめ設定された上流側設定値に比べて低いときには前記前記酸素供給手段による酸素供給量を増加させるとともに、前記下流側の溶存酸素濃度があらかじめ設定された下流側設定値に比べて高いときには前記循環水流発生手段による循環水の流速を低くし、該下流側の溶存酸素濃度があらかじめ設定された下流側設定値に比べて低いときには前記循環水流発生手段による循環水の流速を高くすることを特徴としている。   More specifically, when the dissolved oxygen concentration on the upstream side is higher than the preset upstream set value, the oxygen supply amount by the oxygen supply means is decreased, and the dissolved oxygen concentration on the upstream side is preset. The oxygen supply amount by the oxygen supply means is increased when it is lower than the upstream set value, and the circulating water flow generating means is when the downstream dissolved oxygen concentration is higher than the preset downstream set value. The flow rate of the circulating water is reduced, and when the dissolved oxygen concentration on the downstream side is lower than a preset downstream side set value, the flow rate of the circulating water by the circulating water flow generating means is increased.

本発明によれば、オキシデーションディッチ法によって確実な排水処理を行えるとともに、エネルギー消費量の削減も図れる。   According to the present invention, reliable drainage treatment can be performed by the oxidation ditch method, and energy consumption can be reduced.

図1は本発明の一形態例を示すオキシデーションディッチ法による排水処理装置の構成図である。この排水処理装置は、無終端水路からなるディッチ11に循環水流発生手段12と酸素供給手段である曝気装置13とを設け、ディッチ11内に矢印で示す方向の循環水流を形成することにより、曝気装置13から所定の距離までを好気性水域14とし、この好気性水域14の終端から曝気装置13までを無酸素水域15としている。また、好気性水域14の下流部分には最終沈殿池16への処理水流出経路17が設けられ、無酸素水域15の上流部分に返送汚泥経路18及び原水流入経路19がそれぞれ設けられている。   FIG. 1 is a configuration diagram of a wastewater treatment apparatus by an oxidation ditch method showing one embodiment of the present invention. This waste water treatment apparatus is provided with a circulating water flow generation means 12 and an aeration apparatus 13 as an oxygen supply means in a ditch 11 composed of an endless water channel, and forms a circulating water flow in the direction indicated by an arrow in the ditch 11, thereby aeration. The aerobic water area 14 is defined as a predetermined distance from the apparatus 13, and the anaerobic water area 15 is defined from the end of the aerobic water area 14 to the aeration apparatus 13. Further, a treated water outflow path 17 to the final sedimentation basin 16 is provided in the downstream part of the aerobic water area 14, and a return sludge path 18 and a raw water inflow path 19 are provided in the upstream part of the anoxic water area 15.

原水流入経路19からディッチ11に流入した原水は、循環水流発生手段12で形成された循環水流によって返送汚泥経路18から流入した汚泥と共にディッチ11内を循環し、曝気装置13から供給される酸素を溶存させた好気性水域14と、溶存酸素が消費された後の無酸素水域15でそれぞれ処理されることにより、有機物や窒素が除去されて処理水流出経路17から最終沈殿池16に流出する。最終沈殿池16で汚泥から分離した処理水は流出経路20から流出し、沈殿した汚泥は、一部が余剰汚泥として汚泥抜出経路21から抜き取られ、残部が返送汚泥経路18を経てディッチ11に返送される。   The raw water flowing into the ditch 11 from the raw water inflow path 19 circulates in the ditch 11 together with the sludge flowing in from the return sludge path 18 by the circulating water flow formed by the circulating water flow generating means 12, and oxygen supplied from the aeration device 13 is circulated. By being treated in the dissolved aerobic water area 14 and the anaerobic water area 15 after the dissolved oxygen is consumed, the organic matter and nitrogen are removed and flow out from the treated water outflow path 17 to the final settling basin 16. The treated water separated from the sludge in the final sedimentation basin 16 flows out from the outflow path 20, and the settled sludge is partially extracted from the sludge extraction path 21 as surplus sludge, and the remainder passes through the return sludge path 18 to the ditch 11. Will be returned.

このように形成されているオキシデーションディッチ法による排水処理装置において、前記好気性水域14には、上流側と下流側とに循環水中の溶存酸素濃度を測定する上流側溶存酸素計(第1DO計)22と下流側溶存酸素計(第2DO計)23とが設けられている。この第1、第2DO計22,23は、前記循環水流発生手段12及び曝気装置13を制御するための溶存酸素濃度を測定するためのものであって、その設置位置は任意であるが、第1DO計22は曝気装置13の直後に設けることが好ましく、第2DO計23は好気性水域14の終端近くに設けることが好ましい。これにより、溶存酸素濃度の最大値付近と最小値付近とを測定することができるので、制御性を向上させることができる。   In the wastewater treatment apparatus by the oxidation ditch method formed as described above, the aerobic water area 14 includes an upstream dissolved oxygen meter (first DO meter) that measures the dissolved oxygen concentration in the circulating water upstream and downstream. ) 22 and a downstream dissolved oxygen meter (second DO meter) 23 are provided. The first and second DO meters 22 and 23 are for measuring the dissolved oxygen concentration for controlling the circulating water flow generating means 12 and the aeration device 13, and their installation positions are arbitrary. The 1DO meter 22 is preferably provided immediately after the aeration apparatus 13, and the second DO meter 23 is preferably provided near the end of the aerobic water area 14. Thereby, since the vicinity of the maximum value and the minimum value of the dissolved oxygen concentration can be measured, controllability can be improved.

図2のブロック図に示すように、前記上流側溶存酸素計(第1DO計)22の測定値(上流側測定値)及び下流側溶存酸素計(第2DO計)23の測定値(下流側測定値)は、制御手段24にそれぞれ読み込まれ、この制御手段24で各測定値を所定の手順で処理することにより、前記循環水流発生手段12と酸素供給手段である曝気装置13とに制御信号がそれぞれ出力され、循環水の流速や酸素供給量が適正な範囲となるように調節される。   As shown in the block diagram of FIG. 2, the measured value (upstream measured value) of the upstream dissolved oxygen meter (first DO meter) 22 and the measured value (downstream measured) of the downstream dissolved oxygen meter (second DO meter) 23 Value) is read by the control means 24, and each measurement value is processed by the control means 24 according to a predetermined procedure, whereby a control signal is sent to the circulating water flow generation means 12 and the aeration apparatus 13 as the oxygen supply means. Each is output and adjusted so that the flow rate of the circulating water and the oxygen supply amount are within an appropriate range.

図3は、前記制御手段24における処理手順の一例を示すフローチャートである。なお、本フローチャートにおける判断記号では、下向き矢印が[Yes]、横向き矢印が[No]の状態となっている。以下、このフローチャートと、図4乃至図7に示すDO減少直線の状態を示す図とを参照して運転方法の一例を説明する。   FIG. 3 is a flowchart showing an example of a processing procedure in the control means 24. In the determination symbols in this flowchart, the downward arrow is [Yes] and the horizontal arrow is [No]. Hereinafter, an example of the operation method will be described with reference to this flowchart and the drawings showing the state of the DO decreasing straight line shown in FIGS.

まず、図4は、流入水の負荷(水質及び流量)に対して適正な制御が行われ、ディッチ内のDO減少直線が適正な状態となった場合を示すものである。この場合、ディッチ長さに対して曝気点から5%の位置に設定した第1測定点における第1DO計22が測定したDO値(DO1)は、あらかじめ設定された上流側設定値に対する上限値(DO1H)としての5.0mg/Lと、下限値(DO1L)としての4.0mg/Lとの範囲内に収まる状態になるとともに、ディッチ長さに対して曝気点から40%の位置に設定した第2測定点における第2DO計23が測定したDO値(DO2)は、あらかじめ設定された下流側設定値に対する上限値(DO2H)としての1.5mg/Lと、下限値(DO2L)としての0.5mg/Lとの範囲内に収まっている状態となる。   First, FIG. 4 shows a case where appropriate control is performed with respect to the load (water quality and flow rate) of the influent water, and the DO decreasing straight line in the ditch is in an appropriate state. In this case, the DO value (DO1) measured by the first DO meter 22 at the first measurement point set at a position 5% from the aeration point with respect to the ditch length is the upper limit value ( DO1H) was set within a range of 5.0 mg / L as the lower limit (DO1L) and 4.0 mg / L as the lower limit (DO1L), and was set at a position 40% from the aeration point with respect to the ditch length. The DO value (DO2) measured by the second DO meter 23 at the second measurement point is 1.5 mg / L as the upper limit value (DO2H) with respect to the preset downstream side set value and 0 as the lower limit value (DO2L). It will be in the state of being within the range of .5 mg / L.

したがって、好気性水域14におけるDO減少直線は、前述の図9に示した状態と同様に、直線(a)と直線(b)との間に位置する状態となり、ディッチにおける好気性水域と無酸素水域とのバランスが適正に保たれた状態となっている。このとき、制御手段では、図3のフローチャートに基づいた処理が行われており、ステップ101で第1DO計22が測定したDO1と上流側上限値であるDO1Hとが比較され、DO1がDO1Hを下回っていることが確認される。ステップ102では、DO1と上流側下限値であるDO1Lとが比較され、DO1がDO1Lを超えていることが確認される。さらに、ステップ103では、第2DO計23が測定したDO2と下流側上限値であるDO2Hとが比較され、DO2がDO2Hを超えていないことが確認され、ステップ104では、DO2と下流側下限値であるDO2Lとが比較され、DO2がDO2Lを超えていることが確認される。通常の状態では、このステップ101からステップ104が適当な時間間隔で繰り返されており、上流側測定値であるDO1と、下流側測定値であるDO2とが前記範囲を外れない限り、この状態が継続される。   Therefore, the DO decreasing straight line in the aerobic water area 14 is located between the straight line (a) and the straight line (b), similarly to the state shown in FIG. The balance with the water area is properly maintained. At this time, in the control means, processing based on the flowchart of FIG. 3 is performed. In step 101, DO1 measured by the first DO meter 22 is compared with the upstream upper limit DO1H, and DO1 falls below DO1H. It is confirmed that In step 102, DO1 is compared with DO1L, which is the upstream lower limit value, and it is confirmed that DO1 exceeds DO1L. Furthermore, in step 103, DO2 measured by the second DO meter 23 is compared with the downstream upper limit DO2H, and it is confirmed that DO2 does not exceed DO2H. In step 104, DO2 and the downstream lower limit value are It is compared with a certain DO2L, and it is confirmed that DO2 exceeds DO2L. In a normal state, Step 101 to Step 104 are repeated at an appropriate time interval, and unless the upstream measurement value DO1 and the downstream measurement value DO2 deviate from the above range, this state is maintained. Will continue.

このような状態で流入水の負荷が変化し、ステップ101でDO1がDO1Hを下回っていない、即ちDO1が高いと判断されたときは、第1測定点での溶存酸素量が多い状態であるから、ステップ105に進んで曝気量を減少する操作が行われ、逆にステップ102でDO1がDO1Lを超えていない、即ちDO1が低いと判断されたときは、第1測定点での溶存酸素量が少ない状態であるから、ステップ106に進んで曝気量を増大する操作が行われる。   In such a state, the load of the influent water changes, and when it is determined in step 101 that DO1 is not lower than DO1H, that is, DO1 is high, the amount of dissolved oxygen at the first measurement point is large. , The operation proceeds to step 105 to reduce the aeration amount. Conversely, when it is determined in step 102 that DO1 does not exceed DO1L, that is, DO1 is low, the dissolved oxygen amount at the first measurement point is Since the state is low, the operation proceeds to step 106 to increase the aeration amount.

また、ステップ103でDO2がDO2Hを下回っていない、即ちDO2が高いと判断されたときは、第2測定点での溶存酸素量が多く、好気性水域14が下流側に伸びている状態を示しているから、ステップ107に進んで流速を減少させる操作が行われる。さらに、ステップ104でDO2がDO2Lを超えていない、即ちDO2が低いと判断されたときは、好気性水域14が十分に形成されていない状態を示しているから、ステップ108に進んで流速を増加させる制御が行われる。   Further, when it is determined in step 103 that DO2 is not lower than DO2H, that is, DO2 is high, the amount of dissolved oxygen at the second measurement point is large, and the aerobic water area 14 extends downstream. Therefore, the operation proceeds to step 107 to perform an operation for decreasing the flow velocity. Furthermore, when it is determined in step 104 that DO2 does not exceed DO2L, that is, DO2 is low, it indicates that the aerobic water area 14 is not sufficiently formed. Control is performed.

なお、図3に示すフローチャートでは、ステップ105又はステップ106の曝気量増減処理を終えた後、ステップ103のDO2の判断に進み、DO1とDO2とを交互に判断しながら曝気量や流速をそれぞれ調節しているが、DO1が所定範囲内に収まるまでステップ101、102,105,106を繰り返して曝気量を調節した後、DO2に基づいたステップ103,104,107,108の処理を繰り返して流速を調節するように制御することも可能である。   In the flowchart shown in FIG. 3, after the aeration amount increase / decrease process in step 105 or step 106 is completed, the process proceeds to the determination of DO2 in step 103, and the aeration amount and flow rate are adjusted while alternately determining DO1 and DO2. However, after adjusting the amount of aeration by repeating steps 101, 102, 105, and 106 until DO1 falls within the predetermined range, the process of steps 103, 104, 107, and 108 based on DO2 is repeated to increase the flow rate. It is also possible to control to adjust.

図5に示すように、流入原水の負荷が変動し、上流側で測定したDO1が適正範囲内にあったとしても、下流側で測定したDO2が適正範囲を外れたときには、例えば、DO2がDO2Hを超えており、ディッチ内のDO減少直線が直線(j)で示す状態になったときには、ステップ103からステップ107に進み、循環水の流速を減少させる制御が行われる。すなわち、制御手段24から循環水流発生手段12に流速を減少させるための信号が出力され、この信号に基づいて循環水流発生手段12が作動し、ディッチ内の流速を低下させる。逆に、DO2がDO2Lを下回ってDO減少直線が直線(k)で示す状態になったときには、ステップ104からステップ108に進んで流速を増加させる制御が行われ、制御手段24から循環水流発生手段12に流速を増加させる信号が出力される。   As shown in FIG. 5, even if the load of inflow raw water fluctuates and DO1 measured on the upstream side is within the appropriate range, when DO2 measured on the downstream side is outside the appropriate range, for example, DO2 is DO2H. When the DO decrease straight line in the ditch is in the state indicated by the straight line (j), the process proceeds from step 103 to step 107, and control for reducing the flow rate of the circulating water is performed. That is, a signal for decreasing the flow velocity is output from the control means 24 to the circulating water flow generating means 12, and the circulating water flow generating means 12 is operated based on this signal to reduce the flow velocity in the ditch. Conversely, when DO2 falls below DO2L and the DO decreasing straight line is in the state indicated by the straight line (k), control proceeds from step 104 to step 108 to increase the flow velocity, and the control means 24 performs the circulating water flow generation means. A signal for increasing the flow velocity to 12 is output.

ステップ107,108における流速の増減制御は、あらかじめ数段階の流速を設定しおき、ステップ107では1段階下げ、ステップ108では1段階上げるというような制御を行ってもよく、DO2とDO2H又はDO2Lとの差を演算し、この演算結果に基づいて新たな流速を設定するという制御を行うようにしてもよい。また、DO2の変動状況を監視して最適流速を予測する制御を行うことも可能である。なお、循環水流発生手段12における流速調節は、水流を発生させるためのスクリューやプロペラ等を駆動するモーターに与える電力(電圧や電流)を制御するなどの一般的な手法で行うことができる。   The flow rate increase / decrease control in steps 107 and 108 may be performed by setting several steps of flow velocity in advance, lowering by one step in step 107, and increasing by one step in step 108. DO2 and DO2H or DO2L It is also possible to perform a control of calculating the difference between the two and setting a new flow velocity based on the calculation result. It is also possible to perform control to predict the optimum flow velocity by monitoring the fluctuation state of DO2. The flow rate adjustment in the circulating water flow generation means 12 can be performed by a general method such as controlling electric power (voltage or current) applied to a motor that drives a screw, a propeller, or the like for generating a water flow.

このように、DO2がDO2Hを超えているときはディッチ内の流速を下げて好気性水域14の領域を縮小させ、DO2がDO2Lを下回っているときにはディッチ内の流速を上げて好気性水域14の領域を拡大することにより、ディッチ内のDO減少直線を直線(j)あるいは直線(k)の状態から、前記直線(a)と直線(b)との間に修正することができ、好気性水域と無酸素水域とのバランスが良好な状態になるように制御することができる。   Thus, when DO2 exceeds DO2H, the flow rate in the ditch is reduced to reduce the region of the aerobic water region 14, and when DO2 is below DO2L, the flow rate in the ditch is increased to increase the flow rate of the aerobic water region 14. By expanding the area, the DO decreasing straight line in the ditch can be corrected between the straight line (a) and the straight line (b) from the straight line (j) or the straight line (k), and the aerobic water area. It is possible to control so that the balance between water and anoxic water is in a good state.

また、図6に示すように、DO減少直線が直線(m)、直線(n)あるいは直線(o)に変化し、DO1が適正範囲よりも上昇してステップ101でDO1がDO1Hを下回っていないと判断された場合は、曝気装置13による曝気量が過剰な状態を示しているから、ステップ105において曝気量を減少させる処理が行われる。   Also, as shown in FIG. 6, the DO decreasing straight line changes to a straight line (m), a straight line (n), or a straight line (o), DO1 rises above the appropriate range, and DO1 does not fall below DO1H in step 101. If it is determined that the amount of aeration by the aeration device 13 is excessive, a process for reducing the amount of aeration is performed in step 105.

逆に、図7に示すように、DO減少直線が直線(p)、直線(q)あるいは直線(r)に変化し、DO1が適正範囲よりも減少してステップ102でDO1がDO1Lを超えていないと判断された場合は、曝気装置13による曝気量が過少な状態を示しているから、ステップ106において曝気量を増加させる処理が行われる。   Conversely, as shown in FIG. 7, the DO decreasing line changes to a straight line (p), a straight line (q), or a straight line (r), DO1 decreases from the appropriate range, and DO1 exceeds DO1L in step 102. If it is determined that the aeration amount by the aeration apparatus 13 is too small, a process for increasing the aeration amount is performed in step 106.

ステップ105,106における曝気量の増減制御は、前記流速の制御と同様に、あらかじめ数段階の曝気量を設定しておき、ステップ105では1段階下げ、ステップ106では1段階上げるという制御でもよく、DO1とDO1H又はDO1Lとの差を演算した結果に基づいて新たな流速を設定する制御でもよく、さらに、DO1の変動状況に基づく予測制御を加えるようにしてもよい。また、曝気量の増減調節は、曝気装置13に設けられている送風機に供給する電力を制御するなどの一般的な手法で行うことができる。   The aeration amount increase / decrease control in steps 105 and 106 may be a control in which several steps of aeration amount are set in advance in the same manner as the flow rate control, one step is lowered in step 105, and one step is increased in step 106. Control may be performed to set a new flow velocity based on the result of calculating the difference between DO1 and DO1H or DO1L, and prediction control based on the fluctuation state of DO1 may be added. The increase / decrease adjustment of the aeration amount can be performed by a general method such as controlling the power supplied to the blower provided in the aeration apparatus 13.

このようにして上流側DO値を所定範囲内に収める制御を行うとともに、図6の直線(m)や図7の直線(p)のように、DO2がDO2Hを超えている場合には、ステップ103からステップ107に進んで流速を減少させる制御が行われる。また、図6の直線(o)や図7の直線(r)のように、DO2がDO2Lより下回っているときには、ステップ104からステップ108に進んで流速を増加させる制御が行われる。   In this way, control is performed to keep the upstream DO value within a predetermined range, and when DO2 exceeds DO2H as shown by the straight line (m) in FIG. 6 or the straight line (p) in FIG. Control proceeds from step 103 to step 107 to reduce the flow velocity. Further, when DO2 is lower than DO2L as shown by the straight line (o) in FIG. 6 or the straight line (r) in FIG. 7, the control proceeds from step 104 to step 108 to increase the flow velocity.

このとき、曝気装置13からの曝気量を変化させると、上流側だけでなく下流側のDO値も変化するので、例えば、図6における直線(n)は、曝気量の減少によって図5における直線(k)と同じような状態となり、同様に、図7における直線(q)は、曝気量の増加によって図5における直線(j)と同じような状態となる。その他の場合も、曝気量の増減によって各DO減少直線の傾きが大きく変わることなく、DO減少直線が上下方向に平行移動した状態となる。そして、曝気量を増減させてからDO2が変化するまでは、流速に応じた時間差が生じるので、ステップ105,106で曝気量を変化させるのと同時に流速も連動させて変化させるようにしてもよい。すなわち、曝気量を増加させるとDO2が上昇することになるので流速をあらかじめ減少させ、曝気量を減少させるときには流速を増加させるような操作を加えるようにしてもよい。   At this time, if the amount of aeration from the aeration device 13 is changed, not only the upstream side but also the downstream DO value changes. For example, the straight line (n) in FIG. Similarly, the line (q) in FIG. 7 is in the same state as the line (j) in FIG. 5 due to an increase in the amount of aeration. In other cases, the DO reduction straight line is translated in the vertical direction without largely changing the inclination of each DO reduction straight line due to the increase or decrease in the amount of aeration. Since a time difference corresponding to the flow rate occurs after the aeration amount is increased / decreased until DO2 changes, the aeration amount may be changed at the same time as the aeration amount is changed in steps 105 and 106. . That is, if the amount of aeration is increased, DO2 will rise, so the flow rate may be decreased in advance, and an operation for increasing the flow rate may be added when the amount of aeration is decreased.

一方、前記制御手段24において、読み込んだDO1とDO2との関係からDO減少直線の傾きを算出し、このDO減少直線の傾きに応じて前記循環水流発生手段12及び曝気装置13を制御することもできる。すなわち、図8のフローチャート(A),(B)にそれぞれ示すように、DO1及びDO2を読み込み(ステップ201,301)、両者の値からDO減少直線の傾きを算出した後(ステップ202,302)、流速調節と曝気量調節とを順番に行ったり(ステップ203,204)、DO1又はDO2の測定値と設定値とを比較して流速調節と曝気量調節とを同時に行ったり(ステップ303,304)、という制御も可能である。   On the other hand, the control means 24 may calculate the inclination of the DO decrease line from the read relationship between DO1 and DO2, and control the circulating water flow generation means 12 and the aeration apparatus 13 according to the inclination of the DO decrease line. it can. That is, as shown in the flowcharts (A) and (B) of FIG. 8, DO1 and DO2 are read (steps 201 and 301), and the slope of the DO decreasing line is calculated from both values (steps 202 and 302). The flow rate adjustment and the aeration amount adjustment are performed in order (steps 203 and 204), or the measured value of DO1 or DO2 is compared with the set value, and the flow rate adjustment and the aeration amount adjustment are performed simultaneously (steps 303 and 304). ) Is also possible.

例えば、DO減少直線が図6における直線(o)の状態のときには、単に曝気量を減少させるだけでは好気性水域14が更に短くなるので、このように直線の傾きが大きいとき、図8(A)に示すフローチャートでは、ステップ203で流速調節を行うことによってDO減少直線の傾きを直線(a)、(b)と同程度にして、例えば図6の直線(m)の状態とした後、ステップ204で曝気量調節を行い、DO減少直線を直線(a)、(b)の範囲に制御する。また、図8(B)に示すフローチャートでは、ステップ303におけるDO1及びDO2の測定値と設定値との比較からDO1がDO1Hより高いと判断すると、DO1をDO1H以下にするための曝気量を減少させる制御と、ステップ302で算出したDO減少直線の傾きを直線(a)、(b)と同程度にするための流速を増加させる制御とを同時に行うようにしている。   For example, when the DO reduction straight line is in the state of the straight line (o) in FIG. 6, simply reducing the aeration amount makes the aerobic water area 14 shorter, so when the slope of the straight line is large in this way, FIG. In the flowchart shown in FIG. 6, by adjusting the flow velocity in step 203, the slope of the DO reduction straight line is set to the same level as the straight lines (a) and (b), for example, in the state of the straight line (m) in FIG. In 204, the aeration amount is adjusted, and the DO reduction straight line is controlled within the range of the straight lines (a) and (b). Further, in the flowchart shown in FIG. 8B, if it is determined that DO1 is higher than DO1H from the comparison between the measured values of DO1 and DO2 in step 303 and the set value, the amount of aeration for making DO1 equal to or lower than DO1H is decreased. The control and the control for increasing the flow velocity for making the inclination of the DO reduction straight line calculated in step 302 the same level as the straight lines (a) and (b) are performed simultaneously.

逆に、DO減少直線が図6における直線(m)の状態のときには、その傾きが直線(a)、(b)と同程度であるから、直線の傾きを調節するための流速制御は行わずに、曝気量調節のみを行うようにする。また、DO減少直線が図5における直線(j)、(k)のような場合には、直線の傾きを調節するだけでよいから、流速調節のみを行うようにすればよい。   On the contrary, when the DO decreasing straight line is in the state of the straight line (m) in FIG. 6, the gradient is the same as that of the straight lines (a) and (b), and thus the flow rate control for adjusting the straight line gradient is not performed. In addition, only the amount of aeration is adjusted. Further, when the DO decreasing straight line is the straight lines (j) and (k) in FIG. 5, it is only necessary to adjust the slope of the straight line, and therefore only the flow rate adjustment is performed.

DO減少直線の制御手順は、前述のように前記DO1及びDO2の状態に応じて行われるが、排水処理装置の規模や設置環境に応じて最適な制御手順を設定することが好ましく、以下に示すような制御手順を適宜選択してあるいは組み合わせて実施することが可能である。   The control procedure of the DO reduction straight line is performed according to the state of the DO1 and DO2 as described above, but it is preferable to set an optimal control procedure according to the scale and installation environment of the wastewater treatment apparatus, as shown below. Such control procedures can be appropriately selected or combined.

まず、1番目の制御手順として、上流側のDO1が適正値となるように曝気量を増減させた後、下流側のDO2が適正値となるように流速を増減させる制御である。この手順は、図3に示したフローチャートにおいて、上流側における制御のステップ101〜105又は102〜106を繰り返して曝気量を調節し、DO1を適正範囲に調節した後、下流側における制御のステップ103〜107又は104〜108を繰り返して流速を調節し、DO2を適正範囲に調節する手順である。   First, as the first control procedure, the aeration amount is increased or decreased so that the upstream DO1 becomes an appropriate value, and then the flow velocity is increased or decreased so that the downstream DO2 becomes an appropriate value. In this flowchart, in the flowchart shown in FIG. 3, the control steps 101 to 105 or 102 to 106 on the upstream side are repeated to adjust the aeration amount, the DO1 is adjusted to an appropriate range, and then the control step 103 on the downstream side. This is a procedure for adjusting DO2 to an appropriate range by adjusting ~ 107 or 104 ~ 108 repeatedly.

2番目の制御手順は、1番目の制御とは逆に、最初に下流側のDO2が適正値となるように流速を増減させた後、上流側のDO1が適正値となるように曝気量を増減させる制御である。この手順は、図3に示したフローチャートにおいて、先に下流側における制御のステップ103〜107又は104〜108を繰り返して流速を調節し、DO2を適正範囲に調節した後、上流側における制御のステップ101〜105又は102〜106を繰り返して曝気量を調節し、DO1を適正範囲に調節する手順である。   Contrary to the first control, the second control procedure first increases / decreases the flow rate so that the downstream DO2 has an appropriate value, and then adjusts the aeration amount so that the upstream DO1 has an appropriate value. This is a control to increase or decrease. In the flowchart shown in FIG. 3, the control step 103 to 107 or 104 to 108 on the downstream side is first repeated to adjust the flow velocity, the DO2 is adjusted to an appropriate range, and then the control step on the upstream side is performed. This is a procedure for adjusting the amount of aeration by repeating 101 to 105 or 102 to 106 and adjusting DO1 to an appropriate range.

3番目の制御手順は、上流側のDO1が適正値となるように曝気量を増減させるとともに、下流側のDO2が適正値となるように流速を増減させる制御である。この手順は、図3に示したフローチャートにおいて、上流側における制御のステップ101〜105又は102〜106を行って曝気量をある程度調節した後、続いて下流側における制御のステップ103〜107又は104〜108を行って流速をある程度調節し、これらを繰り返すことによってDO1及びDO2が適正範囲に入るように曝気量及び流速をそれぞれ調節する手順である。   The third control procedure is a control for increasing / decreasing the amount of aeration so that the upstream DO1 has an appropriate value and increasing / decreasing the flow rate so that the downstream DO2 has an appropriate value. In the flowchart shown in FIG. 3, after the upstream control steps 101 to 105 or 102 to 106 are performed to adjust the amount of aeration to some extent, the downstream control steps 103 to 107 or 104 to 108 is a procedure for adjusting the flow rate to some extent by performing 108, and adjusting the aeration amount and flow rate so that DO1 and DO2 fall within the proper range by repeating these steps.

4番目の制御手順は、DO1とDO2とからDO減少直線の傾きを算出し、この傾きが適正状態の傾きに近付くように流速を調節した後、DO1が適正値となるように曝気量を調節する制御手順であって、図8(A)に示したフローチャートとなる。5番目の制御手順は、DO1が適正値となるように曝気量を調節した後、DO1とDO2とから算出したDO減少直線の傾きが適正状態になるように流速を調節する制御手順である。6番目の制御手順は、DO1とDO2とから算出したDO減少直線の傾きとDO1の値とから、DO1が適正値となるように曝気量を調節する操作と、DO減少直線の傾きを適正状態に近付けるための流速調節とを同時に実行する制御手順であって、図8(B)に示したフローチャートとなる。   The fourth control procedure calculates the slope of the DO decrease line from DO1 and DO2, adjusts the flow rate so that this slope approaches the slope of the appropriate state, and then adjusts the aeration amount so that DO1 becomes an appropriate value. The control procedure is as shown in the flowchart of FIG. The fifth control procedure is a control procedure for adjusting the flow rate so that the inclination of the DO decrease straight line calculated from DO1 and DO2 is in an appropriate state after adjusting the amount of aeration so that DO1 becomes an appropriate value. The sixth control procedure is to adjust the aeration amount so that DO1 becomes an appropriate value from the inclination of the DO decrease line calculated from DO1 and DO2 and the value of DO1, and to set the inclination of the DO decrease line to an appropriate state. FIG. 8B is a flowchart showing a control procedure for simultaneously executing the flow velocity adjustment for approaching to.

なお、4番目から6番目の制御手順において、曝気量の調節をDO2に基づいて行うことも可能であるが、下流側では曝気量を変化させてからDO2が変化するまでに時間差を生じるので、DO1に基づいて曝気量を調節することが好ましい。   In the fourth to sixth control procedures, it is possible to adjust the amount of aeration based on DO2, but since there is a time difference from the change of the amount of aeration to the change of DO2 on the downstream side, It is preferable to adjust the amount of aeration based on DO1.

また、組み合わせ例としては、前記制御手順のいずれを行っているときでも、DO1が適正値よりも上昇している場合にはDO2の測定値にかかわらず曝気量を減少させる操作を優先して曝気装置13のエネルギー消費量を削減する制御、即ち1番目あるいは5番目の制御手順を行い、DO2が上昇している場合にはDO1の値にかかわらず流速を減少させる操作を優先して無酸素水域を確保する制御、即ち2番目あるいは4番目の制御手順を行うようにすることもできる。さらに、流入水量の増減や水温等の条件に応じて制御手順を変更することもできる。   In addition, as an example of combination, when any of the above control procedures is performed, if DO1 is higher than the appropriate value, the operation for reducing the aeration amount is given priority regardless of the measured value of DO2. Control to reduce the energy consumption of the apparatus 13, that is, the first or fifth control procedure, and when DO2 is rising, the operation of decreasing the flow rate regardless of the value of DO1 is given priority to the anoxic water area It is also possible to perform the control for ensuring the above, that is, the second or fourth control procedure. Furthermore, the control procedure can be changed according to conditions such as increase / decrease of the inflow water amount and water temperature.

このように、好気性水域14における上流側と下流側とで溶存酸素濃度をそれぞれ測定し、各測定値に基づいて循環水流発生手段12及び曝気装置13をそれぞれ制御することにより、上流側が酸素供給過多の状態となったり、好気性水域が下流側に広がって無酸素水域を狭めたりてしまうことがなくなる。これにより、流入水の日間変動が大きな場合でも確実な排水処理が行えるとともに、曝気装置13におけるエネルギー消費量を大幅に削減することができる。   In this way, the dissolved oxygen concentration is measured on the upstream side and the downstream side in the aerobic water area 14, respectively, and the upstream side supplies oxygen by controlling the circulating water flow generating means 12 and the aeration device 13 based on each measured value. There will be no excess state, and the aerobic water area will spread downstream and the anoxic water area will not be narrowed. As a result, reliable drainage treatment can be performed even when the daily fluctuation of the influent water is large, and the energy consumption in the aeration apparatus 13 can be greatly reduced.

オキシデーションディッチ法によって窒素の除去を含む排水の浄化処理に利用できる。 It can be used for purification of wastewater including removal of nitrogen by the oxidation ditch method.

本発明の一形態例を示す排水処理装置の構成図である。It is a block diagram of the waste water treatment equipment which shows one example of this invention. 制御系のブロック図である。It is a block diagram of a control system. 処理手順の一例を示すフローチャートである。It is a flowchart which shows an example of a process sequence. ディッチ一周分の流れ方向における正常なDO値の変化を示す図である。It is a figure which shows the change of the normal DO value in the flow direction for one cycle of a ditch. 同じく下流側のDO値が適正範囲から外れた状態を示す図である。It is a figure which similarly shows the state from which the downstream DO value was remove | deviated from the appropriate range. 同じく上流側のDO値が適正範囲よりも上昇した状態を示す図である。Similarly, it is a figure which shows the state which DO value of the upstream side rose from the appropriate range. 同じく上流側のDO値が適正範囲よりも低下した状態を示す図である。Similarly, it is a figure which shows the state which the upstream DO value fell from the appropriate range. 他の処理手順例を示すフローチャートである。It is a flowchart which shows the other process sequence example. 従来の制御方法において、流入水の負荷が平均的な場合のDO値の変化を示す図である。In the conventional control method, it is a figure which shows the change of DO value when the load of inflow water is average. 同じく流入水の負荷が上昇したときのDO値の変化を示す図である。It is a figure which similarly shows the change of DO value when the load of inflow water rises. 同じく流入水の負荷が低下したときのDO値の変化を示す図である。It is a figure which similarly shows the change of DO value when the load of inflow water falls.

符号の説明Explanation of symbols

11…ディッチ、12…循環水流発生手段、13…曝気装置、14…好気性水域、15…無酸素水域、16…最終沈殿池、17…処理水流出経路、18…返送汚泥経路、19…原水流入経路、20…流出経路、21…汚泥抜出経路、22…上流側溶存酸素計(第1DO計)、23…下流側溶存酸素計(第2DO計)、24…制御手段   DESCRIPTION OF SYMBOLS 11 ... Ditch, 12 ... Circulating water flow generation means, 13 ... Aeration apparatus, 14 ... Aerobic water area, 15 ... Anoxic water area, 16 ... Final sedimentation basin, 17 ... Treated water outflow route, 18 ... Return sludge route, 19 ... Raw water Inflow path, 20 ... Outflow path, 21 ... Sludge extraction path, 22 ... Upstream dissolved oxygen meter (first DO meter), 23 ... Downstream dissolved oxygen meter (second DO meter), 24 ... Control means

Claims (3)

無終端水路に循環水流発生手段及び酸素供給手段を備え、該酸素供給手段の下流側の好気性水域と、該好気性水域の終端から前記酸素供給手段に至る無酸素水域とを形成したオキシデーションディッチ法により排水処理を行う排水処理装置において、前記好気性水域における上流側と下流側とに、循環水中の溶存酸素濃度を測定する上流側溶存酸素計及び下流側溶存酸素計をそれぞれ設けるとともに、該上流側溶存酸素計及び下流側溶存酸素計で測定した溶存酸素濃度に基づいて前記循環水流発生手段による循環水の流速及び酸素供給手段による酸素供給量を調節する制御手段を設け、該制御手段は、前記上流側溶存酸素計の測定値に基づいて前記酸素供給手段による酸素供給量を調節し、前記下流側溶存酸素計の測定値に基づいて前記循環水流発生手段による循環水の流速を調節するように形成されていることを特徴とする排水処理装置。 Oxidation comprising a circulation water flow generating means and an oxygen supply means in an endless water channel, and forming an aerobic water area downstream of the oxygen supply means and an anoxic water area extending from the end of the aerobic water area to the oxygen supply means In the wastewater treatment apparatus that performs wastewater treatment by the ditch method, an upstream dissolved oxygen meter and a downstream dissolved oxygen meter that measure the dissolved oxygen concentration in the circulating water are respectively provided on the upstream side and the downstream side in the aerobic water area, a control means for regulating the amount of oxygen supplied by the flow rate and the oxygen supply means of the circulating water by the circulating water stream generating means on the basis of the dissolved oxygen concentration measured by the upstream side dissolved oxygen meter and the downstream dissolved oxygen meter provided, said control means Adjusts the oxygen supply amount by the oxygen supply means based on the measured value of the upstream dissolved oxygen meter, and circulates based on the measured value of the downstream dissolved oxygen meter. Wastewater treatment apparatus characterized by being formed so as to adjust the flow rate of the circulating water by flow generating means. 無終端水路に循環水流発生手段及び酸素供給手段を備え、該酸素供給手段の下流側に形成される好気性水域と、該好気性水域の終端から前記酸素供給手段に至る無酸素水域とを形成したオキシデーションディッチ法により排水処理を行う排水処理装置の運転方法において、前記好気性水域における上流側の溶存酸素濃度と下流側の溶存酸素濃度とをそれぞれ測定し、前記上流側の溶存酸素濃度に基づいて前記酸素供給手段による酸素供給量を調節し、前記下流側の溶存酸素濃度に基づいて前記循環水流発生手段による循環水の流速を調節することを特徴とする排水処理装置の運転方法。 An endless water channel is provided with circulating water flow generation means and oxygen supply means, and forms an aerobic water area formed downstream of the oxygen supply means and an anoxic water area extending from the end of the aerobic water area to the oxygen supply means In the operation method of the wastewater treatment apparatus that performs wastewater treatment by the oxidation ditch method, the dissolved oxygen concentration on the upstream side and the dissolved oxygen concentration on the downstream side in the aerobic water area are respectively measured, and the dissolved oxygen concentration on the upstream side is measured. A method for operating a wastewater treatment apparatus , wherein an oxygen supply amount by the oxygen supply unit is adjusted based on the dissolved oxygen concentration on the downstream side, and a flow rate of the circulating water by the circulating water flow generation unit is adjusted based on the dissolved oxygen concentration on the downstream side . 前記上流側の溶存酸素濃度があらかじめ設定された上流側設定値に比べて高いときには前記酸素供給手段による酸素供給量を減少させ、該上流側の溶存酸素濃度があらかじめ設定された上流側設定値に比べて低いときには前記酸素供給手段による酸素供給量を増加させるとともに、前記下流側の溶存酸素濃度があらかじめ設定された下流側設定値に比べて高いときには前記循環水流発生手段による循環水の流速を低くし、該下流側の溶存酸素濃度があらかじめ設定された下流側設定値に比べて低いときには前記循環水流発生手段による循環水の流速を高くすることを特徴とする請求項記載の排水処理装置の運転方法。 When the upstream dissolved oxygen concentration is higher than a preset upstream set value, the oxygen supply amount by the oxygen supply means is decreased, and the upstream dissolved oxygen concentration is set to a preset upstream set value. When it is lower than that, the oxygen supply amount by the oxygen supply means is increased, and when the dissolved oxygen concentration on the downstream side is higher than a preset downstream side set value, the flow rate of the circulating water by the circulating water flow generation means is reduced. 3. The waste water treatment apparatus according to claim 2, wherein when the dissolved oxygen concentration on the downstream side is lower than a preset downstream side set value, the flow rate of the circulating water by the circulating water flow generating means is increased. how to drive.
JP2003289234A 2003-08-07 2003-08-07 Waste water treatment apparatus and operation method thereof Expired - Lifetime JP4230310B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003289234A JP4230310B2 (en) 2003-08-07 2003-08-07 Waste water treatment apparatus and operation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003289234A JP4230310B2 (en) 2003-08-07 2003-08-07 Waste water treatment apparatus and operation method thereof

Publications (2)

Publication Number Publication Date
JP2005052804A JP2005052804A (en) 2005-03-03
JP4230310B2 true JP4230310B2 (en) 2009-02-25

Family

ID=34367636

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003289234A Expired - Lifetime JP4230310B2 (en) 2003-08-07 2003-08-07 Waste water treatment apparatus and operation method thereof

Country Status (1)

Country Link
JP (1) JP4230310B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102897905A (en) * 2012-09-26 2013-01-30 冯秀娟 Activated sludge reactor

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007326030A (en) * 2006-06-07 2007-12-20 Maezawa Ind Inc Operation method of oxidation ditch
JP2008036517A (en) * 2006-08-04 2008-02-21 Kochi Univ Wastewater treatment apparatus and method
JP5725869B2 (en) * 2011-01-11 2015-05-27 日本下水道事業団 Waste water treatment apparatus and operation method thereof
CN102887588B (en) * 2012-11-15 2014-05-07 重庆市渝西水务有限公司 Internal reflux system for Orbal oxidation ditch
CN103102044B (en) * 2013-01-02 2014-02-26 北京工业大学 Method for strengthening autotrophic denitrification effect of urban sewage by using oxidation ditch
SE538525C2 (en) * 2014-03-04 2016-09-06 Xylem Ip Man S À R L Purification plant and method for controlling such a purification plant
CN103833147B (en) * 2014-03-27 2015-01-21 珠江水利委员会珠江水利科学研究院 Strain reproduction spreading equipment for contamination control of river
SE538527C2 (en) 2014-06-17 2016-09-06 Xylem Ip Man S À R L Plant for the treatment of liquid and method for controlling such a plant
CN105549394B (en) * 2015-12-29 2018-08-03 清华大学 A kind of optimal control method and control system of oxidation ditch aeration and plug-flow process
JP7023608B2 (en) * 2017-03-28 2022-02-22 株式会社Nttファシリティーズ Sewage treatment equipment
JP7023609B2 (en) * 2017-03-28 2022-02-22 株式会社Nttファシリティーズ Sewage treatment equipment
WO2018198422A1 (en) * 2017-04-28 2018-11-01 国立大学法人北海道大学 Membrane-separation activated sludge treatment device and membrane-separation activated sludge treatment method
JP7016622B2 (en) * 2017-04-28 2022-02-07 国立大学法人北海道大学 Membrane separation activated sludge treatment equipment and membrane separation activated sludge treatment method
JP7016623B2 (en) * 2017-04-28 2022-02-07 国立大学法人北海道大学 Membrane separation activated sludge treatment equipment and membrane separation activated sludge treatment method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102897905A (en) * 2012-09-26 2013-01-30 冯秀娟 Activated sludge reactor

Also Published As

Publication number Publication date
JP2005052804A (en) 2005-03-03

Similar Documents

Publication Publication Date Title
JP4230310B2 (en) Waste water treatment apparatus and operation method thereof
JP2010194481A (en) Sewage treatment apparatus and operation method of sewage treatment apparatus
KR20150096407A (en) Optimized process and aeration performance with an advanced control algorithm
JP4509579B2 (en) Aeration air volume control device of sewage treatment plant
JP2012200705A (en) Nitrogen-containing wastewater treatment method and apparatus
JP2011147858A (en) Apparatus and method for treating sewage
JP4229999B2 (en) Biological nitrogen removal equipment
JP2019150795A (en) Aeration amount control method and facility for aerobic tank in sewage treatment facility
JP6655975B2 (en) Aeration control device and aeration control method
JP5956372B2 (en) Water treatment apparatus and water treatment method
JP4008694B2 (en) Sewage treatment plant water quality controller
JP2008260002A (en) Operation control method for aeration apparatus
JP6619242B2 (en) Water treatment system
JP4464851B2 (en) Operation control method for aeration apparatus
JP2015104712A (en) Sewage treatment system and method
JP2006315004A (en) Water quality control unit for sewage disposal plant
JP2011005354A (en) Method of operating activated sludge capable of simultaneously treating bod and nitrogen
JP7039201B2 (en) Air volume control device, air volume control method and computer program
JP2012143696A (en) Wastewater treatment apparatus, and method for driving the same
JP2016007576A (en) Water treatment plant
JP4620391B2 (en) Sewage treatment equipment
JP5205760B2 (en) Aeration tank control method
JP6430324B2 (en) Waste water treatment method and waste water treatment apparatus
JP2017100092A (en) Sewage treatment control device
JP2017064568A (en) Water treatment system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060426

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080821

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080826

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080924

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081111

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081203

R150 Certificate of patent or registration of utility model

Ref document number: 4230310

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111212

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111212

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111212

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111212

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111212

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111212

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111212

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121212

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121212

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121212

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131212

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term